defxx: convert driver to net_device_ops
[deliverable/linux.git] / drivers / net / rrunner.c
CommitLineData
1da177e4
LT
1/*
2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3 *
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5 *
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
19 *
20 * Softnet support and various other patches from Val Henson of
21 * ODS/Essential.
22 *
23 * PCI DMA mapping code partly based on work by Francois Romieu.
24 */
25
26
27#define DEBUG 1
28#define RX_DMA_SKBUFF 1
29#define PKT_COPY_THRESHOLD 512
30
1da177e4
LT
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/errno.h>
34#include <linux/ioport.h>
35#include <linux/pci.h>
36#include <linux/kernel.h>
37#include <linux/netdevice.h>
38#include <linux/hippidevice.h>
39#include <linux/skbuff.h>
40#include <linux/init.h>
41#include <linux/delay.h>
42#include <linux/mm.h>
43#include <net/sock.h>
44
45#include <asm/system.h>
46#include <asm/cache.h>
47#include <asm/byteorder.h>
48#include <asm/io.h>
49#include <asm/irq.h>
50#include <asm/uaccess.h>
51
52#define rr_if_busy(dev) netif_queue_stopped(dev)
53#define rr_if_running(dev) netif_running(dev)
54
55#include "rrunner.h"
56
57#define RUN_AT(x) (jiffies + (x))
58
59
60MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62MODULE_LICENSE("GPL");
63
64static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
65
66/*
67 * Implementation notes:
68 *
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
74 * chunk.
75 *
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
79 */
80
1da177e4
LT
81static int __devinit rr_init_one(struct pci_dev *pdev,
82 const struct pci_device_id *ent)
83{
84 struct net_device *dev;
85 static int version_disp;
86 u8 pci_latency;
87 struct rr_private *rrpriv;
88 void *tmpptr;
89 dma_addr_t ring_dma;
90 int ret = -ENOMEM;
91
92 dev = alloc_hippi_dev(sizeof(struct rr_private));
93 if (!dev)
94 goto out3;
95
96 ret = pci_enable_device(pdev);
97 if (ret) {
98 ret = -ENODEV;
99 goto out2;
100 }
101
102 rrpriv = netdev_priv(dev);
103
1da177e4
LT
104 SET_NETDEV_DEV(dev, &pdev->dev);
105
106 if (pci_request_regions(pdev, "rrunner")) {
107 ret = -EIO;
108 goto out;
109 }
110
111 pci_set_drvdata(pdev, dev);
112
113 rrpriv->pci_dev = pdev;
114
115 spin_lock_init(&rrpriv->lock);
116
117 dev->irq = pdev->irq;
118 dev->open = &rr_open;
119 dev->hard_start_xmit = &rr_start_xmit;
120 dev->stop = &rr_close;
1da177e4
LT
121 dev->do_ioctl = &rr_ioctl;
122
123 dev->base_addr = pci_resource_start(pdev, 0);
124
125 /* display version info if adapter is found */
126 if (!version_disp) {
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
129 version_disp = 1;
130 printk(version);
131 }
132
133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134 if (pci_latency <= 0x58){
135 pci_latency = 0x58;
136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137 }
138
139 pci_set_master(pdev);
140
141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143 dev->base_addr, dev->irq, pci_latency);
144
145 /*
146 * Remap the regs into kernel space.
147 */
148
149 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
150
151 if (!rrpriv->regs){
152 printk(KERN_ERR "%s: Unable to map I/O register, "
153 "RoadRunner will be disabled.\n", dev->name);
154 ret = -EIO;
155 goto out;
156 }
157
158 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159 rrpriv->tx_ring = tmpptr;
160 rrpriv->tx_ring_dma = ring_dma;
161
162 if (!tmpptr) {
163 ret = -ENOMEM;
164 goto out;
165 }
166
167 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168 rrpriv->rx_ring = tmpptr;
169 rrpriv->rx_ring_dma = ring_dma;
170
171 if (!tmpptr) {
172 ret = -ENOMEM;
173 goto out;
174 }
175
176 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177 rrpriv->evt_ring = tmpptr;
178 rrpriv->evt_ring_dma = ring_dma;
179
180 if (!tmpptr) {
181 ret = -ENOMEM;
182 goto out;
183 }
184
185 /*
186 * Don't access any register before this point!
187 */
188#ifdef __BIG_ENDIAN
189 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190 &rrpriv->regs->HostCtrl);
191#endif
192 /*
193 * Need to add a case for little-endian 64-bit hosts here.
194 */
195
196 rr_init(dev);
197
198 dev->base_addr = 0;
199
200 ret = register_netdev(dev);
201 if (ret)
202 goto out;
203 return 0;
204
205 out:
206 if (rrpriv->rx_ring)
6aa20a22 207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
1da177e4
LT
208 rrpriv->rx_ring_dma);
209 if (rrpriv->tx_ring)
210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
212 if (rrpriv->regs)
6aa20a22 213 iounmap(rrpriv->regs);
1da177e4
LT
214 if (pdev) {
215 pci_release_regions(pdev);
216 pci_set_drvdata(pdev, NULL);
217 }
218 out2:
219 free_netdev(dev);
220 out3:
221 return ret;
222}
223
224static void __devexit rr_remove_one (struct pci_dev *pdev)
225{
226 struct net_device *dev = pci_get_drvdata(pdev);
227
228 if (dev) {
229 struct rr_private *rr = netdev_priv(dev);
230
231 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232 printk(KERN_ERR "%s: trying to unload running NIC\n",
233 dev->name);
234 writel(HALT_NIC, &rr->regs->HostCtrl);
235 }
236
237 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
238 rr->evt_ring_dma);
239 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
240 rr->rx_ring_dma);
241 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
242 rr->tx_ring_dma);
243 unregister_netdev(dev);
244 iounmap(rr->regs);
245 free_netdev(dev);
246 pci_release_regions(pdev);
247 pci_disable_device(pdev);
248 pci_set_drvdata(pdev, NULL);
249 }
250}
251
252
253/*
254 * Commands are considered to be slow, thus there is no reason to
255 * inline this.
256 */
257static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
258{
259 struct rr_regs __iomem *regs;
260 u32 idx;
261
262 regs = rrpriv->regs;
263 /*
264 * This is temporary - it will go away in the final version.
265 * We probably also want to make this function inline.
266 */
267 if (readl(&regs->HostCtrl) & NIC_HALTED){
268 printk("issuing command for halted NIC, code 0x%x, "
269 "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
270 if (readl(&regs->Mode) & FATAL_ERR)
271 printk("error codes Fail1 %02x, Fail2 %02x\n",
272 readl(&regs->Fail1), readl(&regs->Fail2));
273 }
274
275 idx = rrpriv->info->cmd_ctrl.pi;
276
277 writel(*(u32*)(cmd), &regs->CmdRing[idx]);
278 wmb();
279
280 idx = (idx - 1) % CMD_RING_ENTRIES;
281 rrpriv->info->cmd_ctrl.pi = idx;
282 wmb();
283
284 if (readl(&regs->Mode) & FATAL_ERR)
285 printk("error code %02x\n", readl(&regs->Fail1));
286}
287
288
289/*
290 * Reset the board in a sensible manner. The NIC is already halted
291 * when we get here and a spin-lock is held.
292 */
293static int rr_reset(struct net_device *dev)
294{
295 struct rr_private *rrpriv;
296 struct rr_regs __iomem *regs;
1da177e4
LT
297 u32 start_pc;
298 int i;
299
300 rrpriv = netdev_priv(dev);
301 regs = rrpriv->regs;
302
303 rr_load_firmware(dev);
304
305 writel(0x01000000, &regs->TX_state);
306 writel(0xff800000, &regs->RX_state);
307 writel(0, &regs->AssistState);
308 writel(CLEAR_INTA, &regs->LocalCtrl);
309 writel(0x01, &regs->BrkPt);
310 writel(0, &regs->Timer);
311 writel(0, &regs->TimerRef);
312 writel(RESET_DMA, &regs->DmaReadState);
313 writel(RESET_DMA, &regs->DmaWriteState);
314 writel(0, &regs->DmaWriteHostHi);
315 writel(0, &regs->DmaWriteHostLo);
316 writel(0, &regs->DmaReadHostHi);
317 writel(0, &regs->DmaReadHostLo);
318 writel(0, &regs->DmaReadLen);
319 writel(0, &regs->DmaWriteLen);
320 writel(0, &regs->DmaWriteLcl);
321 writel(0, &regs->DmaWriteIPchecksum);
322 writel(0, &regs->DmaReadLcl);
323 writel(0, &regs->DmaReadIPchecksum);
324 writel(0, &regs->PciState);
325#if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
326 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
327#elif (BITS_PER_LONG == 64)
328 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
329#else
330 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
331#endif
332
333#if 0
334 /*
335 * Don't worry, this is just black magic.
336 */
337 writel(0xdf000, &regs->RxBase);
338 writel(0xdf000, &regs->RxPrd);
339 writel(0xdf000, &regs->RxCon);
340 writel(0xce000, &regs->TxBase);
341 writel(0xce000, &regs->TxPrd);
342 writel(0xce000, &regs->TxCon);
343 writel(0, &regs->RxIndPro);
344 writel(0, &regs->RxIndCon);
345 writel(0, &regs->RxIndRef);
346 writel(0, &regs->TxIndPro);
347 writel(0, &regs->TxIndCon);
348 writel(0, &regs->TxIndRef);
349 writel(0xcc000, &regs->pad10[0]);
350 writel(0, &regs->DrCmndPro);
351 writel(0, &regs->DrCmndCon);
352 writel(0, &regs->DwCmndPro);
353 writel(0, &regs->DwCmndCon);
354 writel(0, &regs->DwCmndRef);
355 writel(0, &regs->DrDataPro);
356 writel(0, &regs->DrDataCon);
357 writel(0, &regs->DrDataRef);
358 writel(0, &regs->DwDataPro);
359 writel(0, &regs->DwDataCon);
360 writel(0, &regs->DwDataRef);
361#endif
362
363 writel(0xffffffff, &regs->MbEvent);
364 writel(0, &regs->Event);
365
366 writel(0, &regs->TxPi);
367 writel(0, &regs->IpRxPi);
368
369 writel(0, &regs->EvtCon);
370 writel(0, &regs->EvtPrd);
371
372 rrpriv->info->evt_ctrl.pi = 0;
373
374 for (i = 0; i < CMD_RING_ENTRIES; i++)
375 writel(0, &regs->CmdRing[i]);
376
377/*
378 * Why 32 ? is this not cache line size dependent?
379 */
380 writel(RBURST_64|WBURST_64, &regs->PciState);
381 wmb();
382
cf962378
AV
383 start_pc = rr_read_eeprom_word(rrpriv,
384 offsetof(struct eeprom, rncd_info.FwStart));
1da177e4
LT
385
386#if (DEBUG > 1)
387 printk("%s: Executing firmware at address 0x%06x\n",
388 dev->name, start_pc);
389#endif
390
391 writel(start_pc + 0x800, &regs->Pc);
392 wmb();
393 udelay(5);
394
395 writel(start_pc, &regs->Pc);
396 wmb();
397
398 return 0;
399}
400
401
402/*
403 * Read a string from the EEPROM.
404 */
405static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406 unsigned long offset,
407 unsigned char *buf,
408 unsigned long length)
409{
410 struct rr_regs __iomem *regs = rrpriv->regs;
411 u32 misc, io, host, i;
412
413 io = readl(&regs->ExtIo);
414 writel(0, &regs->ExtIo);
415 misc = readl(&regs->LocalCtrl);
416 writel(0, &regs->LocalCtrl);
417 host = readl(&regs->HostCtrl);
418 writel(host | HALT_NIC, &regs->HostCtrl);
419 mb();
420
421 for (i = 0; i < length; i++){
422 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
423 mb();
424 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
425 mb();
426 }
427
428 writel(host, &regs->HostCtrl);
429 writel(misc, &regs->LocalCtrl);
430 writel(io, &regs->ExtIo);
431 mb();
432 return i;
433}
434
435
436/*
437 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438 * it to our CPU byte-order.
439 */
440static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
cf962378 441 size_t offset)
1da177e4 442{
cf962378 443 __be32 word;
1da177e4 444
cf962378
AV
445 if ((rr_read_eeprom(rrpriv, offset,
446 (unsigned char *)&word, 4) == 4))
1da177e4
LT
447 return be32_to_cpu(word);
448 return 0;
449}
450
451
452/*
453 * Write a string to the EEPROM.
454 *
455 * This is only called when the firmware is not running.
456 */
457static unsigned int write_eeprom(struct rr_private *rrpriv,
458 unsigned long offset,
459 unsigned char *buf,
460 unsigned long length)
461{
462 struct rr_regs __iomem *regs = rrpriv->regs;
463 u32 misc, io, data, i, j, ready, error = 0;
464
465 io = readl(&regs->ExtIo);
466 writel(0, &regs->ExtIo);
467 misc = readl(&regs->LocalCtrl);
468 writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
469 mb();
470
471 for (i = 0; i < length; i++){
472 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
473 mb();
474 data = buf[i] << 24;
475 /*
476 * Only try to write the data if it is not the same
477 * value already.
478 */
479 if ((readl(&regs->WinData) & 0xff000000) != data){
480 writel(data, &regs->WinData);
481 ready = 0;
482 j = 0;
483 mb();
484 while(!ready){
485 udelay(20);
486 if ((readl(&regs->WinData) & 0xff000000) ==
487 data)
488 ready = 1;
489 mb();
490 if (j++ > 5000){
491 printk("data mismatch: %08x, "
492 "WinData %08x\n", data,
493 readl(&regs->WinData));
494 ready = 1;
495 error = 1;
496 }
497 }
498 }
499 }
500
501 writel(misc, &regs->LocalCtrl);
502 writel(io, &regs->ExtIo);
503 mb();
504
505 return error;
506}
507
508
4f092432 509static int __devinit rr_init(struct net_device *dev)
1da177e4
LT
510{
511 struct rr_private *rrpriv;
512 struct rr_regs __iomem *regs;
1da177e4 513 u32 sram_size, rev;
1da177e4
LT
514
515 rrpriv = netdev_priv(dev);
516 regs = rrpriv->regs;
517
518 rev = readl(&regs->FwRev);
519 rrpriv->fw_rev = rev;
520 if (rev > 0x00020024)
521 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
522 ((rev >> 8) & 0xff), (rev & 0xff));
523 else if (rev >= 0x00020000) {
524 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
525 "later is recommended)\n", (rev >> 16),
526 ((rev >> 8) & 0xff), (rev & 0xff));
527 }else{
528 printk(" Firmware revision too old: %i.%i.%i, please "
529 "upgrade to 2.0.37 or later.\n",
530 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
531 }
532
533#if (DEBUG > 2)
534 printk(" Maximum receive rings %i\n", readl(&regs->MaxRxRng));
535#endif
536
537 /*
538 * Read the hardware address from the eeprom. The HW address
539 * is not really necessary for HIPPI but awfully convenient.
540 * The pointer arithmetic to put it in dev_addr is ugly, but
541 * Donald Becker does it this way for the GigE version of this
542 * card and it's shorter and more portable than any
543 * other method I've seen. -VAL
544 */
545
cf962378
AV
546 *(__be16 *)(dev->dev_addr) =
547 htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
548 *(__be32 *)(dev->dev_addr+2) =
549 htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
6aa20a22 550
e174961c 551 printk(" MAC: %pM\n", dev->dev_addr);
1da177e4 552
cf962378 553 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
554 printk(" SRAM size 0x%06x\n", sram_size);
555
1da177e4
LT
556 return 0;
557}
558
559
560static int rr_init1(struct net_device *dev)
561{
562 struct rr_private *rrpriv;
563 struct rr_regs __iomem *regs;
564 unsigned long myjif, flags;
565 struct cmd cmd;
566 u32 hostctrl;
567 int ecode = 0;
568 short i;
569
570 rrpriv = netdev_priv(dev);
571 regs = rrpriv->regs;
572
573 spin_lock_irqsave(&rrpriv->lock, flags);
574
575 hostctrl = readl(&regs->HostCtrl);
576 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
577 wmb();
578
579 if (hostctrl & PARITY_ERR){
580 printk("%s: Parity error halting NIC - this is serious!\n",
581 dev->name);
582 spin_unlock_irqrestore(&rrpriv->lock, flags);
583 ecode = -EFAULT;
584 goto error;
585 }
586
587 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
588 set_infoaddr(regs, rrpriv->info_dma);
589
590 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
591 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
592 rrpriv->info->evt_ctrl.mode = 0;
593 rrpriv->info->evt_ctrl.pi = 0;
594 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
595
596 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
597 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
598 rrpriv->info->cmd_ctrl.mode = 0;
599 rrpriv->info->cmd_ctrl.pi = 15;
600
601 for (i = 0; i < CMD_RING_ENTRIES; i++) {
602 writel(0, &regs->CmdRing[i]);
603 }
604
605 for (i = 0; i < TX_RING_ENTRIES; i++) {
606 rrpriv->tx_ring[i].size = 0;
607 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
608 rrpriv->tx_skbuff[i] = NULL;
609 }
610 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
611 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
612 rrpriv->info->tx_ctrl.mode = 0;
613 rrpriv->info->tx_ctrl.pi = 0;
614 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
615
616 /*
617 * Set dirty_tx before we start receiving interrupts, otherwise
618 * the interrupt handler might think it is supposed to process
619 * tx ints before we are up and running, which may cause a null
620 * pointer access in the int handler.
621 */
622 rrpriv->tx_full = 0;
623 rrpriv->cur_rx = 0;
624 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
625
626 rr_reset(dev);
627
628 /* Tuning values */
629 writel(0x5000, &regs->ConRetry);
630 writel(0x100, &regs->ConRetryTmr);
631 writel(0x500000, &regs->ConTmout);
632 writel(0x60, &regs->IntrTmr);
633 writel(0x500000, &regs->TxDataMvTimeout);
634 writel(0x200000, &regs->RxDataMvTimeout);
635 writel(0x80, &regs->WriteDmaThresh);
636 writel(0x80, &regs->ReadDmaThresh);
637
638 rrpriv->fw_running = 0;
639 wmb();
640
641 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
642 writel(hostctrl, &regs->HostCtrl);
643 wmb();
644
645 spin_unlock_irqrestore(&rrpriv->lock, flags);
646
647 for (i = 0; i < RX_RING_ENTRIES; i++) {
648 struct sk_buff *skb;
649 dma_addr_t addr;
650
651 rrpriv->rx_ring[i].mode = 0;
652 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
653 if (!skb) {
654 printk(KERN_WARNING "%s: Unable to allocate memory "
655 "for receive ring - halting NIC\n", dev->name);
656 ecode = -ENOMEM;
657 goto error;
658 }
659 rrpriv->rx_skbuff[i] = skb;
660 addr = pci_map_single(rrpriv->pci_dev, skb->data,
661 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
662 /*
663 * Sanity test to see if we conflict with the DMA
664 * limitations of the Roadrunner.
665 */
666 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
667 printk("skb alloc error\n");
668
669 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
670 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
671 }
672
673 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
674 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
675 rrpriv->rx_ctrl[4].mode = 8;
676 rrpriv->rx_ctrl[4].pi = 0;
677 wmb();
678 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
679
680 udelay(1000);
681
682 /*
683 * Now start the FirmWare.
684 */
685 cmd.code = C_START_FW;
686 cmd.ring = 0;
687 cmd.index = 0;
688
689 rr_issue_cmd(rrpriv, &cmd);
690
691 /*
692 * Give the FirmWare time to chew on the `get running' command.
693 */
694 myjif = jiffies + 5 * HZ;
695 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
696 cpu_relax();
697
698 netif_start_queue(dev);
699
700 return ecode;
701
702 error:
703 /*
704 * We might have gotten here because we are out of memory,
705 * make sure we release everything we allocated before failing
706 */
707 for (i = 0; i < RX_RING_ENTRIES; i++) {
708 struct sk_buff *skb = rrpriv->rx_skbuff[i];
709
710 if (skb) {
6aa20a22
JG
711 pci_unmap_single(rrpriv->pci_dev,
712 rrpriv->rx_ring[i].addr.addrlo,
1da177e4
LT
713 dev->mtu + HIPPI_HLEN,
714 PCI_DMA_FROMDEVICE);
715 rrpriv->rx_ring[i].size = 0;
716 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
717 dev_kfree_skb(skb);
718 rrpriv->rx_skbuff[i] = NULL;
719 }
720 }
721 return ecode;
722}
723
724
725/*
726 * All events are considered to be slow (RX/TX ints do not generate
727 * events) and are handled here, outside the main interrupt handler,
728 * to reduce the size of the handler.
729 */
730static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
731{
732 struct rr_private *rrpriv;
733 struct rr_regs __iomem *regs;
734 u32 tmp;
735
736 rrpriv = netdev_priv(dev);
737 regs = rrpriv->regs;
738
739 while (prodidx != eidx){
740 switch (rrpriv->evt_ring[eidx].code){
741 case E_NIC_UP:
742 tmp = readl(&regs->FwRev);
743 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
744 "up and running\n", dev->name,
745 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
746 rrpriv->fw_running = 1;
747 writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
748 wmb();
749 break;
750 case E_LINK_ON:
751 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
752 break;
753 case E_LINK_OFF:
754 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
755 break;
756 case E_RX_IDLE:
757 printk(KERN_WARNING "%s: RX data not moving\n",
758 dev->name);
759 goto drop;
760 case E_WATCHDOG:
761 printk(KERN_INFO "%s: The watchdog is here to see "
762 "us\n", dev->name);
763 break;
764 case E_INTERN_ERR:
765 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
766 dev->name);
6aa20a22 767 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
768 &regs->HostCtrl);
769 wmb();
770 break;
771 case E_HOST_ERR:
772 printk(KERN_ERR "%s: Host software error\n",
773 dev->name);
6aa20a22 774 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
775 &regs->HostCtrl);
776 wmb();
777 break;
778 /*
779 * TX events.
780 */
781 case E_CON_REJ:
782 printk(KERN_WARNING "%s: Connection rejected\n",
783 dev->name);
09f75cd7 784 dev->stats.tx_aborted_errors++;
1da177e4
LT
785 break;
786 case E_CON_TMOUT:
787 printk(KERN_WARNING "%s: Connection timeout\n",
788 dev->name);
789 break;
790 case E_DISC_ERR:
791 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
792 dev->name);
09f75cd7 793 dev->stats.tx_aborted_errors++;
1da177e4
LT
794 break;
795 case E_INT_PRTY:
796 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
797 dev->name);
6aa20a22 798 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
799 &regs->HostCtrl);
800 wmb();
801 break;
802 case E_TX_IDLE:
803 printk(KERN_WARNING "%s: Transmitter idle\n",
804 dev->name);
805 break;
806 case E_TX_LINK_DROP:
807 printk(KERN_WARNING "%s: Link lost during transmit\n",
808 dev->name);
09f75cd7 809 dev->stats.tx_aborted_errors++;
6aa20a22 810 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
811 &regs->HostCtrl);
812 wmb();
813 break;
814 case E_TX_INV_RNG:
815 printk(KERN_ERR "%s: Invalid send ring block\n",
816 dev->name);
6aa20a22 817 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
818 &regs->HostCtrl);
819 wmb();
820 break;
821 case E_TX_INV_BUF:
822 printk(KERN_ERR "%s: Invalid send buffer address\n",
823 dev->name);
6aa20a22 824 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
825 &regs->HostCtrl);
826 wmb();
827 break;
828 case E_TX_INV_DSC:
829 printk(KERN_ERR "%s: Invalid descriptor address\n",
830 dev->name);
6aa20a22 831 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
832 &regs->HostCtrl);
833 wmb();
834 break;
835 /*
836 * RX events.
837 */
838 case E_RX_RNG_OUT:
839 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
840 break;
841
842 case E_RX_PAR_ERR:
843 printk(KERN_WARNING "%s: Receive parity error\n",
844 dev->name);
845 goto drop;
846 case E_RX_LLRC_ERR:
847 printk(KERN_WARNING "%s: Receive LLRC error\n",
848 dev->name);
849 goto drop;
850 case E_PKT_LN_ERR:
851 printk(KERN_WARNING "%s: Receive packet length "
852 "error\n", dev->name);
853 goto drop;
854 case E_DTA_CKSM_ERR:
855 printk(KERN_WARNING "%s: Data checksum error\n",
856 dev->name);
857 goto drop;
858 case E_SHT_BST:
859 printk(KERN_WARNING "%s: Unexpected short burst "
860 "error\n", dev->name);
861 goto drop;
862 case E_STATE_ERR:
863 printk(KERN_WARNING "%s: Recv. state transition"
864 " error\n", dev->name);
865 goto drop;
866 case E_UNEXP_DATA:
867 printk(KERN_WARNING "%s: Unexpected data error\n",
868 dev->name);
869 goto drop;
870 case E_LST_LNK_ERR:
871 printk(KERN_WARNING "%s: Link lost error\n",
872 dev->name);
873 goto drop;
874 case E_FRM_ERR:
875 printk(KERN_WARNING "%s: Framming Error\n",
876 dev->name);
877 goto drop;
878 case E_FLG_SYN_ERR:
2450022a 879 printk(KERN_WARNING "%s: Flag sync. lost during "
1da177e4
LT
880 "packet\n", dev->name);
881 goto drop;
882 case E_RX_INV_BUF:
883 printk(KERN_ERR "%s: Invalid receive buffer "
884 "address\n", dev->name);
6aa20a22 885 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
886 &regs->HostCtrl);
887 wmb();
888 break;
889 case E_RX_INV_DSC:
890 printk(KERN_ERR "%s: Invalid receive descriptor "
891 "address\n", dev->name);
6aa20a22 892 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
893 &regs->HostCtrl);
894 wmb();
895 break;
896 case E_RNG_BLK:
897 printk(KERN_ERR "%s: Invalid ring block\n",
898 dev->name);
6aa20a22 899 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
900 &regs->HostCtrl);
901 wmb();
902 break;
903 drop:
904 /* Label packet to be dropped.
905 * Actual dropping occurs in rx
906 * handling.
907 *
908 * The index of packet we get to drop is
909 * the index of the packet following
910 * the bad packet. -kbf
911 */
912 {
913 u16 index = rrpriv->evt_ring[eidx].index;
914 index = (index + (RX_RING_ENTRIES - 1)) %
915 RX_RING_ENTRIES;
916 rrpriv->rx_ring[index].mode |=
917 (PACKET_BAD | PACKET_END);
918 }
919 break;
920 default:
921 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
922 dev->name, rrpriv->evt_ring[eidx].code);
923 }
924 eidx = (eidx + 1) % EVT_RING_ENTRIES;
925 }
926
927 rrpriv->info->evt_ctrl.pi = eidx;
928 wmb();
929 return eidx;
930}
931
932
933static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
934{
935 struct rr_private *rrpriv = netdev_priv(dev);
936 struct rr_regs __iomem *regs = rrpriv->regs;
937
938 do {
939 struct rx_desc *desc;
940 u32 pkt_len;
941
942 desc = &(rrpriv->rx_ring[index]);
943 pkt_len = desc->size;
944#if (DEBUG > 2)
945 printk("index %i, rxlimit %i\n", index, rxlimit);
946 printk("len %x, mode %x\n", pkt_len, desc->mode);
947#endif
948 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
09f75cd7 949 dev->stats.rx_dropped++;
1da177e4
LT
950 goto defer;
951 }
952
953 if (pkt_len > 0){
954 struct sk_buff *skb, *rx_skb;
955
956 rx_skb = rrpriv->rx_skbuff[index];
957
958 if (pkt_len < PKT_COPY_THRESHOLD) {
959 skb = alloc_skb(pkt_len, GFP_ATOMIC);
960 if (skb == NULL){
961 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
09f75cd7 962 dev->stats.rx_dropped++;
1da177e4
LT
963 goto defer;
964 } else {
965 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
966 desc->addr.addrlo,
967 pkt_len,
968 PCI_DMA_FROMDEVICE);
969
970 memcpy(skb_put(skb, pkt_len),
971 rx_skb->data, pkt_len);
972
973 pci_dma_sync_single_for_device(rrpriv->pci_dev,
974 desc->addr.addrlo,
975 pkt_len,
976 PCI_DMA_FROMDEVICE);
977 }
978 }else{
979 struct sk_buff *newskb;
980
981 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
982 GFP_ATOMIC);
983 if (newskb){
984 dma_addr_t addr;
985
6aa20a22
JG
986 pci_unmap_single(rrpriv->pci_dev,
987 desc->addr.addrlo, dev->mtu +
1da177e4
LT
988 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
989 skb = rx_skb;
990 skb_put(skb, pkt_len);
991 rrpriv->rx_skbuff[index] = newskb;
6aa20a22
JG
992 addr = pci_map_single(rrpriv->pci_dev,
993 newskb->data,
994 dev->mtu + HIPPI_HLEN,
1da177e4
LT
995 PCI_DMA_FROMDEVICE);
996 set_rraddr(&desc->addr, addr);
997 } else {
998 printk("%s: Out of memory, deferring "
999 "packet\n", dev->name);
09f75cd7 1000 dev->stats.rx_dropped++;
1da177e4
LT
1001 goto defer;
1002 }
1003 }
1da177e4
LT
1004 skb->protocol = hippi_type_trans(skb, dev);
1005
1006 netif_rx(skb); /* send it up */
1007
09f75cd7
JG
1008 dev->stats.rx_packets++;
1009 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
1010 }
1011 defer:
1012 desc->mode = 0;
1013 desc->size = dev->mtu + HIPPI_HLEN;
1014
1015 if ((index & 7) == 7)
1016 writel(index, &regs->IpRxPi);
1017
1018 index = (index + 1) % RX_RING_ENTRIES;
1019 } while(index != rxlimit);
1020
1021 rrpriv->cur_rx = index;
1022 wmb();
1023}
1024
1025
7d12e780 1026static irqreturn_t rr_interrupt(int irq, void *dev_id)
1da177e4
LT
1027{
1028 struct rr_private *rrpriv;
1029 struct rr_regs __iomem *regs;
1030 struct net_device *dev = (struct net_device *)dev_id;
1031 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1032
1033 rrpriv = netdev_priv(dev);
1034 regs = rrpriv->regs;
1035
1036 if (!(readl(&regs->HostCtrl) & RR_INT))
1037 return IRQ_NONE;
1038
1039 spin_lock(&rrpriv->lock);
1040
1041 prodidx = readl(&regs->EvtPrd);
1042 txcsmr = (prodidx >> 8) & 0xff;
1043 rxlimit = (prodidx >> 16) & 0xff;
1044 prodidx &= 0xff;
1045
1046#if (DEBUG > 2)
1047 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1048 prodidx, rrpriv->info->evt_ctrl.pi);
1049#endif
1050 /*
1051 * Order here is important. We must handle events
1052 * before doing anything else in order to catch
1053 * such things as LLRC errors, etc -kbf
1054 */
1055
1056 eidx = rrpriv->info->evt_ctrl.pi;
1057 if (prodidx != eidx)
1058 eidx = rr_handle_event(dev, prodidx, eidx);
1059
1060 rxindex = rrpriv->cur_rx;
1061 if (rxindex != rxlimit)
1062 rx_int(dev, rxlimit, rxindex);
1063
1064 txcon = rrpriv->dirty_tx;
1065 if (txcsmr != txcon) {
1066 do {
1067 /* Due to occational firmware TX producer/consumer out
1068 * of sync. error need to check entry in ring -kbf
1069 */
1070 if(rrpriv->tx_skbuff[txcon]){
1071 struct tx_desc *desc;
1072 struct sk_buff *skb;
1073
1074 desc = &(rrpriv->tx_ring[txcon]);
1075 skb = rrpriv->tx_skbuff[txcon];
1076
09f75cd7
JG
1077 dev->stats.tx_packets++;
1078 dev->stats.tx_bytes += skb->len;
1da177e4
LT
1079
1080 pci_unmap_single(rrpriv->pci_dev,
1081 desc->addr.addrlo, skb->len,
1082 PCI_DMA_TODEVICE);
1083 dev_kfree_skb_irq(skb);
1084
1085 rrpriv->tx_skbuff[txcon] = NULL;
1086 desc->size = 0;
1087 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1088 desc->mode = 0;
1089 }
1090 txcon = (txcon + 1) % TX_RING_ENTRIES;
1091 } while (txcsmr != txcon);
1092 wmb();
1093
1094 rrpriv->dirty_tx = txcon;
1095 if (rrpriv->tx_full && rr_if_busy(dev) &&
1096 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1097 != rrpriv->dirty_tx)){
1098 rrpriv->tx_full = 0;
1099 netif_wake_queue(dev);
1100 }
1101 }
1102
1103 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1104 writel(eidx, &regs->EvtCon);
1105 wmb();
1106
1107 spin_unlock(&rrpriv->lock);
1108 return IRQ_HANDLED;
1109}
1110
1111static inline void rr_raz_tx(struct rr_private *rrpriv,
1112 struct net_device *dev)
1113{
1114 int i;
1115
1116 for (i = 0; i < TX_RING_ENTRIES; i++) {
1117 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1118
1119 if (skb) {
1120 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1121
1122 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1123 skb->len, PCI_DMA_TODEVICE);
1124 desc->size = 0;
1125 set_rraddr(&desc->addr, 0);
1126 dev_kfree_skb(skb);
1127 rrpriv->tx_skbuff[i] = NULL;
1128 }
1129 }
1130}
1131
1132
1133static inline void rr_raz_rx(struct rr_private *rrpriv,
1134 struct net_device *dev)
1135{
1136 int i;
1137
1138 for (i = 0; i < RX_RING_ENTRIES; i++) {
1139 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1140
1141 if (skb) {
1142 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1143
1144 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1145 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1146 desc->size = 0;
1147 set_rraddr(&desc->addr, 0);
1148 dev_kfree_skb(skb);
1149 rrpriv->rx_skbuff[i] = NULL;
1150 }
1151 }
1152}
1153
1154static void rr_timer(unsigned long data)
1155{
1156 struct net_device *dev = (struct net_device *)data;
1157 struct rr_private *rrpriv = netdev_priv(dev);
1158 struct rr_regs __iomem *regs = rrpriv->regs;
1159 unsigned long flags;
1160
1161 if (readl(&regs->HostCtrl) & NIC_HALTED){
1162 printk("%s: Restarting nic\n", dev->name);
1163 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1164 memset(rrpriv->info, 0, sizeof(struct rr_info));
1165 wmb();
1166
1167 rr_raz_tx(rrpriv, dev);
1168 rr_raz_rx(rrpriv, dev);
1169
1170 if (rr_init1(dev)) {
1171 spin_lock_irqsave(&rrpriv->lock, flags);
6aa20a22 1172 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1da177e4
LT
1173 &regs->HostCtrl);
1174 spin_unlock_irqrestore(&rrpriv->lock, flags);
1175 }
1176 }
1177 rrpriv->timer.expires = RUN_AT(5*HZ);
1178 add_timer(&rrpriv->timer);
1179}
1180
1181
1182static int rr_open(struct net_device *dev)
1183{
1184 struct rr_private *rrpriv = netdev_priv(dev);
1185 struct pci_dev *pdev = rrpriv->pci_dev;
1186 struct rr_regs __iomem *regs;
1187 int ecode = 0;
1188 unsigned long flags;
1189 dma_addr_t dma_addr;
1190
1191 regs = rrpriv->regs;
1192
1193 if (rrpriv->fw_rev < 0x00020000) {
1194 printk(KERN_WARNING "%s: trying to configure device with "
1195 "obsolete firmware\n", dev->name);
1196 ecode = -EBUSY;
1197 goto error;
1198 }
1199
1200 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1201 256 * sizeof(struct ring_ctrl),
1202 &dma_addr);
1203 if (!rrpriv->rx_ctrl) {
1204 ecode = -ENOMEM;
1205 goto error;
1206 }
1207 rrpriv->rx_ctrl_dma = dma_addr;
1208 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1209
1210 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1211 &dma_addr);
1212 if (!rrpriv->info) {
1213 ecode = -ENOMEM;
1214 goto error;
1215 }
1216 rrpriv->info_dma = dma_addr;
1217 memset(rrpriv->info, 0, sizeof(struct rr_info));
1218 wmb();
1219
1220 spin_lock_irqsave(&rrpriv->lock, flags);
1221 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1222 readl(&regs->HostCtrl);
1223 spin_unlock_irqrestore(&rrpriv->lock, flags);
1224
1fb9df5d 1225 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1da177e4
LT
1226 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1227 dev->name, dev->irq);
1228 ecode = -EAGAIN;
1229 goto error;
1230 }
1231
1232 if ((ecode = rr_init1(dev)))
1233 goto error;
1234
1235 /* Set the timer to switch to check for link beat and perhaps switch
1236 to an alternate media type. */
1237 init_timer(&rrpriv->timer);
1238 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1239 rrpriv->timer.data = (unsigned long)dev;
1240 rrpriv->timer.function = &rr_timer; /* timer handler */
1241 add_timer(&rrpriv->timer);
1242
1243 netif_start_queue(dev);
1244
1245 return ecode;
1246
1247 error:
1248 spin_lock_irqsave(&rrpriv->lock, flags);
1249 writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1250 spin_unlock_irqrestore(&rrpriv->lock, flags);
1251
1252 if (rrpriv->info) {
1253 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1254 rrpriv->info_dma);
1255 rrpriv->info = NULL;
1256 }
1257 if (rrpriv->rx_ctrl) {
1258 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1259 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1260 rrpriv->rx_ctrl = NULL;
1261 }
1262
1263 netif_stop_queue(dev);
6aa20a22 1264
1da177e4
LT
1265 return ecode;
1266}
1267
1268
1269static void rr_dump(struct net_device *dev)
1270{
1271 struct rr_private *rrpriv;
1272 struct rr_regs __iomem *regs;
1273 u32 index, cons;
1274 short i;
1275 int len;
1276
1277 rrpriv = netdev_priv(dev);
1278 regs = rrpriv->regs;
1279
1280 printk("%s: dumping NIC TX rings\n", dev->name);
1281
1282 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1283 readl(&regs->RxPrd), readl(&regs->TxPrd),
1284 readl(&regs->EvtPrd), readl(&regs->TxPi),
1285 rrpriv->info->tx_ctrl.pi);
1286
1287 printk("Error code 0x%x\n", readl(&regs->Fail1));
1288
1289 index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1290 cons = rrpriv->dirty_tx;
1291 printk("TX ring index %i, TX consumer %i\n",
1292 index, cons);
1293
1294 if (rrpriv->tx_skbuff[index]){
1295 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1296 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1297 for (i = 0; i < len; i++){
1298 if (!(i & 7))
1299 printk("\n");
1300 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1301 }
1302 printk("\n");
1303 }
1304
1305 if (rrpriv->tx_skbuff[cons]){
1306 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1307 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1308 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1309 rrpriv->tx_ring[cons].mode,
1310 rrpriv->tx_ring[cons].size,
1311 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1312 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1313 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1314 for (i = 0; i < len; i++){
1315 if (!(i & 7))
1316 printk("\n");
1317 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1318 }
1319 printk("\n");
1320 }
1321
1322 printk("dumping TX ring info:\n");
1323 for (i = 0; i < TX_RING_ENTRIES; i++)
1324 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1325 rrpriv->tx_ring[i].mode,
1326 rrpriv->tx_ring[i].size,
1327 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1328
1329}
1330
1331
1332static int rr_close(struct net_device *dev)
1333{
1334 struct rr_private *rrpriv;
1335 struct rr_regs __iomem *regs;
1336 unsigned long flags;
1337 u32 tmp;
1338 short i;
1339
1340 netif_stop_queue(dev);
1341
1342 rrpriv = netdev_priv(dev);
1343 regs = rrpriv->regs;
1344
1345 /*
1346 * Lock to make sure we are not cleaning up while another CPU
1347 * is handling interrupts.
1348 */
1349 spin_lock_irqsave(&rrpriv->lock, flags);
1350
1351 tmp = readl(&regs->HostCtrl);
1352 if (tmp & NIC_HALTED){
1353 printk("%s: NIC already halted\n", dev->name);
1354 rr_dump(dev);
1355 }else{
1356 tmp |= HALT_NIC | RR_CLEAR_INT;
1357 writel(tmp, &regs->HostCtrl);
1358 readl(&regs->HostCtrl);
1359 }
1360
1361 rrpriv->fw_running = 0;
1362
1363 del_timer_sync(&rrpriv->timer);
1364
1365 writel(0, &regs->TxPi);
1366 writel(0, &regs->IpRxPi);
1367
1368 writel(0, &regs->EvtCon);
1369 writel(0, &regs->EvtPrd);
1370
1371 for (i = 0; i < CMD_RING_ENTRIES; i++)
1372 writel(0, &regs->CmdRing[i]);
1373
1374 rrpriv->info->tx_ctrl.entries = 0;
1375 rrpriv->info->cmd_ctrl.pi = 0;
1376 rrpriv->info->evt_ctrl.pi = 0;
1377 rrpriv->rx_ctrl[4].entries = 0;
1378
1379 rr_raz_tx(rrpriv, dev);
1380 rr_raz_rx(rrpriv, dev);
1381
1382 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1383 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1384 rrpriv->rx_ctrl = NULL;
1385
1386 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1387 rrpriv->info, rrpriv->info_dma);
1388 rrpriv->info = NULL;
1389
1390 free_irq(dev->irq, dev);
1391 spin_unlock_irqrestore(&rrpriv->lock, flags);
1392
1393 return 0;
1394}
1395
1396
1397static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1398{
1399 struct rr_private *rrpriv = netdev_priv(dev);
1400 struct rr_regs __iomem *regs = rrpriv->regs;
6f1cf165 1401 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1da177e4
LT
1402 struct ring_ctrl *txctrl;
1403 unsigned long flags;
1404 u32 index, len = skb->len;
1405 u32 *ifield;
1406 struct sk_buff *new_skb;
1407
1408 if (readl(&regs->Mode) & FATAL_ERR)
1409 printk("error codes Fail1 %02x, Fail2 %02x\n",
1410 readl(&regs->Fail1), readl(&regs->Fail2));
1411
1412 /*
1413 * We probably need to deal with tbusy here to prevent overruns.
1414 */
1415
1416 if (skb_headroom(skb) < 8){
1417 printk("incoming skb too small - reallocating\n");
1418 if (!(new_skb = dev_alloc_skb(len + 8))) {
1419 dev_kfree_skb(skb);
1420 netif_wake_queue(dev);
1421 return -EBUSY;
1422 }
1423 skb_reserve(new_skb, 8);
1424 skb_put(new_skb, len);
d626f62b 1425 skb_copy_from_linear_data(skb, new_skb->data, len);
1da177e4
LT
1426 dev_kfree_skb(skb);
1427 skb = new_skb;
1428 }
1429
1430 ifield = (u32 *)skb_push(skb, 8);
1431
1432 ifield[0] = 0;
6f1cf165 1433 ifield[1] = hcb->ifield;
1da177e4
LT
1434
1435 /*
1436 * We don't need the lock before we are actually going to start
1437 * fiddling with the control blocks.
1438 */
1439 spin_lock_irqsave(&rrpriv->lock, flags);
1440
1441 txctrl = &rrpriv->info->tx_ctrl;
1442
1443 index = txctrl->pi;
1444
1445 rrpriv->tx_skbuff[index] = skb;
1446 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1447 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1448 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1449 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1450 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1451 wmb();
1452 writel(txctrl->pi, &regs->TxPi);
1453
1454 if (txctrl->pi == rrpriv->dirty_tx){
1455 rrpriv->tx_full = 1;
1456 netif_stop_queue(dev);
1457 }
1458
1459 spin_unlock_irqrestore(&rrpriv->lock, flags);
1460
1461 dev->trans_start = jiffies;
1462 return 0;
1463}
1464
1465
1da177e4
LT
1466/*
1467 * Read the firmware out of the EEPROM and put it into the SRAM
1468 * (or from user space - later)
1469 *
1470 * This operation requires the NIC to be halted and is performed with
1471 * interrupts disabled and with the spinlock hold.
1472 */
1473static int rr_load_firmware(struct net_device *dev)
1474{
1475 struct rr_private *rrpriv;
1476 struct rr_regs __iomem *regs;
cf962378 1477 size_t eptr, segptr;
1da177e4
LT
1478 int i, j;
1479 u32 localctrl, sptr, len, tmp;
1480 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1da177e4
LT
1481
1482 rrpriv = netdev_priv(dev);
1483 regs = rrpriv->regs;
1484
1485 if (dev->flags & IFF_UP)
1486 return -EBUSY;
1487
1488 if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
6aa20a22 1489 printk("%s: Trying to load firmware to a running NIC.\n",
1da177e4
LT
1490 dev->name);
1491 return -EBUSY;
1492 }
1493
1494 localctrl = readl(&regs->LocalCtrl);
1495 writel(0, &regs->LocalCtrl);
1496
1497 writel(0, &regs->EvtPrd);
1498 writel(0, &regs->RxPrd);
1499 writel(0, &regs->TxPrd);
1500
1501 /*
1502 * First wipe the entire SRAM, otherwise we might run into all
1503 * kinds of trouble ... sigh, this took almost all afternoon
1504 * to track down ;-(
1505 */
1506 io = readl(&regs->ExtIo);
1507 writel(0, &regs->ExtIo);
cf962378 1508 sram_size = rr_read_eeprom_word(rrpriv, 8);
1da177e4
LT
1509
1510 for (i = 200; i < sram_size / 4; i++){
1511 writel(i * 4, &regs->WinBase);
1512 mb();
1513 writel(0, &regs->WinData);
1514 mb();
1515 }
1516 writel(io, &regs->ExtIo);
1517 mb();
1518
cf962378
AV
1519 eptr = rr_read_eeprom_word(rrpriv,
1520 offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1da177e4
LT
1521 eptr = ((eptr & 0x1fffff) >> 3);
1522
cf962378 1523 p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1da177e4 1524 p2len = (p2len << 2);
cf962378 1525 p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1da177e4
LT
1526 p2size = ((p2size & 0x1fffff) >> 3);
1527
1528 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1529 printk("%s: eptr is invalid\n", dev->name);
1530 goto out;
1531 }
1532
cf962378
AV
1533 revision = rr_read_eeprom_word(rrpriv,
1534 offsetof(struct eeprom, manf.HeaderFmt));
1da177e4
LT
1535
1536 if (revision != 1){
1537 printk("%s: invalid firmware format (%i)\n",
1538 dev->name, revision);
1539 goto out;
1540 }
1541
cf962378 1542 nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1543 eptr +=4;
1544#if (DEBUG > 1)
1545 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1546#endif
1547
1548 for (i = 0; i < nr_seg; i++){
cf962378 1549 sptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1550 eptr += 4;
cf962378 1551 len = rr_read_eeprom_word(rrpriv, eptr);
1da177e4 1552 eptr += 4;
cf962378 1553 segptr = rr_read_eeprom_word(rrpriv, eptr);
1da177e4
LT
1554 segptr = ((segptr & 0x1fffff) >> 3);
1555 eptr += 4;
1556#if (DEBUG > 1)
1557 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1558 dev->name, i, sptr, len, segptr);
1559#endif
1560 for (j = 0; j < len; j++){
cf962378 1561 tmp = rr_read_eeprom_word(rrpriv, segptr);
1da177e4
LT
1562 writel(sptr, &regs->WinBase);
1563 mb();
1564 writel(tmp, &regs->WinData);
1565 mb();
1566 segptr += 4;
1567 sptr += 4;
1568 }
1569 }
1570
1571out:
1572 writel(localctrl, &regs->LocalCtrl);
1573 mb();
1574 return 0;
1575}
1576
1577
1578static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1579{
1580 struct rr_private *rrpriv;
1581 unsigned char *image, *oldimage;
1582 unsigned long flags;
1583 unsigned int i;
1584 int error = -EOPNOTSUPP;
1585
1586 rrpriv = netdev_priv(dev);
1587
1588 switch(cmd){
1589 case SIOCRRGFW:
1590 if (!capable(CAP_SYS_RAWIO)){
1591 return -EPERM;
1592 }
1593
1594 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1595 if (!image){
1596 printk(KERN_ERR "%s: Unable to allocate memory "
1597 "for EEPROM image\n", dev->name);
1598 return -ENOMEM;
1599 }
1600
1601
1602 if (rrpriv->fw_running){
1603 printk("%s: Firmware already running\n", dev->name);
1604 error = -EPERM;
1605 goto gf_out;
1606 }
1607
1608 spin_lock_irqsave(&rrpriv->lock, flags);
1609 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1610 spin_unlock_irqrestore(&rrpriv->lock, flags);
1611 if (i != EEPROM_BYTES){
1612 printk(KERN_ERR "%s: Error reading EEPROM\n",
1613 dev->name);
1614 error = -EFAULT;
1615 goto gf_out;
1616 }
1617 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1618 if (error)
1619 error = -EFAULT;
1620 gf_out:
1621 kfree(image);
1622 return error;
6aa20a22 1623
1da177e4
LT
1624 case SIOCRRPFW:
1625 if (!capable(CAP_SYS_RAWIO)){
1626 return -EPERM;
1627 }
1628
1629 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1630 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1631 if (!image || !oldimage) {
1632 printk(KERN_ERR "%s: Unable to allocate memory "
1633 "for EEPROM image\n", dev->name);
1634 error = -ENOMEM;
1635 goto wf_out;
1636 }
1637
1638 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1639 if (error) {
1640 error = -EFAULT;
1641 goto wf_out;
1642 }
1643
1644 if (rrpriv->fw_running){
1645 printk("%s: Firmware already running\n", dev->name);
1646 error = -EPERM;
1647 goto wf_out;
1648 }
1649
1650 printk("%s: Updating EEPROM firmware\n", dev->name);
1651
1652 spin_lock_irqsave(&rrpriv->lock, flags);
1653 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1654 if (error)
1655 printk(KERN_ERR "%s: Error writing EEPROM\n",
1656 dev->name);
1657
1658 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1659 spin_unlock_irqrestore(&rrpriv->lock, flags);
1660
1661 if (i != EEPROM_BYTES)
1662 printk(KERN_ERR "%s: Error reading back EEPROM "
1663 "image\n", dev->name);
1664
1665 error = memcmp(image, oldimage, EEPROM_BYTES);
1666 if (error){
1667 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1668 dev->name);
1669 error = -EFAULT;
1670 }
1671 wf_out:
b4558ea9
JJ
1672 kfree(oldimage);
1673 kfree(image);
1da177e4 1674 return error;
6aa20a22 1675
1da177e4
LT
1676 case SIOCRRID:
1677 return put_user(0x52523032, (int __user *)rq->ifr_data);
1678 default:
1679 return error;
1680 }
1681}
1682
1683static struct pci_device_id rr_pci_tbl[] = {
1684 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1685 PCI_ANY_ID, PCI_ANY_ID, },
1686 { 0,}
1687};
1688MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1689
1690static struct pci_driver rr_driver = {
1691 .name = "rrunner",
1692 .id_table = rr_pci_tbl,
1693 .probe = rr_init_one,
1694 .remove = __devexit_p(rr_remove_one),
1695};
1696
1697static int __init rr_init_module(void)
1698{
29917620 1699 return pci_register_driver(&rr_driver);
1da177e4
LT
1700}
1701
1702static void __exit rr_cleanup_module(void)
1703{
1704 pci_unregister_driver(&rr_driver);
1705}
1706
1707module_init(rr_init_module);
1708module_exit(rr_cleanup_module);
1709
1710/*
1711 * Local variables:
1712 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1713 * End:
1714 */
This page took 0.534568 seconds and 5 git commands to generate.