Merge branch 'upstream' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
1da177e4
LT
45 ************************************************************************/
46
1da177e4
LT
47#include <linux/module.h>
48#include <linux/types.h>
49#include <linux/errno.h>
50#include <linux/ioport.h>
51#include <linux/pci.h>
1e7f0bd8 52#include <linux/dma-mapping.h>
1da177e4
LT
53#include <linux/kernel.h>
54#include <linux/netdevice.h>
55#include <linux/etherdevice.h>
56#include <linux/skbuff.h>
57#include <linux/init.h>
58#include <linux/delay.h>
59#include <linux/stddef.h>
60#include <linux/ioctl.h>
61#include <linux/timex.h>
62#include <linux/sched.h>
63#include <linux/ethtool.h>
1da177e4 64#include <linux/workqueue.h>
be3a6b02 65#include <linux/if_vlan.h>
7d3d0439
RA
66#include <linux/ip.h>
67#include <linux/tcp.h>
68#include <net/tcp.h>
1da177e4 69
1da177e4
LT
70#include <asm/system.h>
71#include <asm/uaccess.h>
20346722 72#include <asm/io.h>
fe931395 73#include <asm/div64.h>
330ce0de 74#include <asm/irq.h>
1da177e4
LT
75
76/* local include */
77#include "s2io.h"
78#include "s2io-regs.h"
79
1ee6dd77 80#define DRV_VERSION "2.0.16.1"
6c1792f4 81
1da177e4 82/* S2io Driver name & version. */
20346722 83static char s2io_driver_name[] = "Neterion";
6c1792f4 84static char s2io_driver_version[] = DRV_VERSION;
1da177e4 85
26df54bf
AB
86static int rxd_size[4] = {32,48,48,64};
87static int rxd_count[4] = {127,85,85,63};
da6971d8 88
1ee6dd77 89static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 90{
91 int ret;
92
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96 return ret;
97}
98
20346722 99/*
1da177e4
LT
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
103 */
541ae68f 104#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
108
109#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112#define PANIC 1
113#define LOW 2
1ee6dd77 114static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 115{
1ee6dd77 116 struct mac_info *mac_control;
20346722 117
118 mac_control = &sp->mac_control;
863c11a9
AR
119 if (rxb_size <= rxd_count[sp->rxd_mode])
120 return PANIC;
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122 return LOW;
123 return 0;
1da177e4
LT
124}
125
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
135static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
7ba013ac 246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
bd1034f0
AR
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
7d3d0439
RA
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
1da177e4
LT
271};
272
273#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278
25fff88e 279#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
284
be3a6b02 285/* Add the vlan */
286static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
288{
1ee6dd77 289 struct s2io_nic *nic = dev->priv;
be3a6b02 290 unsigned long flags;
291
292 spin_lock_irqsave(&nic->tx_lock, flags);
293 nic->vlgrp = grp;
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
295}
296
297/* Unregister the vlan */
298static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299{
1ee6dd77 300 struct s2io_nic *nic = dev->priv;
be3a6b02 301 unsigned long flags;
302
303 spin_lock_irqsave(&nic->tx_lock, flags);
304 if (nic->vlgrp)
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
307}
308
20346722 309/*
1da177e4
LT
310 * Constants to be programmed into the Xena's registers, to configure
311 * the XAUI.
312 */
313
1da177e4 314#define END_SIGN 0x0
f71e1309 315static const u64 herc_act_dtx_cfg[] = {
541ae68f 316 /* Set address */
e960fc5c 317 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 318 /* Write data */
e960fc5c 319 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 320 /* Set address */
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 /* Write data */
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 /* Set address */
e960fc5c 325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 /* Write data */
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 /* Set address */
541ae68f 329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 /* Write data */
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332 /* Done */
333 END_SIGN
334};
335
f71e1309 336static const u64 xena_dtx_cfg[] = {
c92ca04b 337 /* Set address */
1da177e4 338 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
339 /* Write data */
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 /* Set address */
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 /* Write data */
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 /* Set address */
1da177e4 346 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
347 /* Write data */
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
349 END_SIGN
350};
351
20346722 352/*
1da177e4
LT
353 * Constants for Fixing the MacAddress problem seen mostly on
354 * Alpha machines.
355 */
f71e1309 356static const u64 fix_mac[] = {
1da177e4
LT
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
371 END_SIGN
372};
373
b41477f3
AR
374MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
375MODULE_LICENSE("GPL");
376MODULE_VERSION(DRV_VERSION);
377
378
1da177e4 379/* Module Loadable parameters. */
b41477f3
AR
380S2IO_PARM_INT(tx_fifo_num, 1);
381S2IO_PARM_INT(rx_ring_num, 1);
382
383
384S2IO_PARM_INT(rx_ring_mode, 1);
385S2IO_PARM_INT(use_continuous_tx_intrs, 1);
386S2IO_PARM_INT(rmac_pause_time, 0x100);
387S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
388S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
389S2IO_PARM_INT(shared_splits, 0);
390S2IO_PARM_INT(tmac_util_period, 5);
391S2IO_PARM_INT(rmac_util_period, 5);
392S2IO_PARM_INT(bimodal, 0);
393S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 394/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 395S2IO_PARM_INT(rxsync_frequency, 3);
cc6e7c44 396/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
b41477f3 397S2IO_PARM_INT(intr_type, 0);
7d3d0439 398/* Large receive offload feature */
b41477f3 399S2IO_PARM_INT(lro, 0);
7d3d0439
RA
400/* Max pkts to be aggregated by LRO at one time. If not specified,
401 * aggregation happens until we hit max IP pkt size(64K)
402 */
b41477f3 403S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 404S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
405
406S2IO_PARM_INT(napi, 1);
407S2IO_PARM_INT(ufo, 0);
b41477f3
AR
408
409static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
410 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
411static unsigned int rx_ring_sz[MAX_RX_RINGS] =
412 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
413static unsigned int rts_frm_len[MAX_RX_RINGS] =
414 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
415
416module_param_array(tx_fifo_len, uint, NULL, 0);
417module_param_array(rx_ring_sz, uint, NULL, 0);
418module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 419
20346722 420/*
1da177e4 421 * S2IO device table.
20346722 422 * This table lists all the devices that this driver supports.
1da177e4
LT
423 */
424static struct pci_device_id s2io_tbl[] __devinitdata = {
425 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
426 PCI_ANY_ID, PCI_ANY_ID},
427 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
428 PCI_ANY_ID, PCI_ANY_ID},
429 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722 430 PCI_ANY_ID, PCI_ANY_ID},
431 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
432 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
433 {0,}
434};
435
436MODULE_DEVICE_TABLE(pci, s2io_tbl);
437
438static struct pci_driver s2io_driver = {
439 .name = "S2IO",
440 .id_table = s2io_tbl,
441 .probe = s2io_init_nic,
442 .remove = __devexit_p(s2io_rem_nic),
443};
444
445/* A simplifier macro used both by init and free shared_mem Fns(). */
446#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
447
448/**
449 * init_shared_mem - Allocation and Initialization of Memory
450 * @nic: Device private variable.
20346722 451 * Description: The function allocates all the memory areas shared
452 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
453 * Rx descriptors and the statistics block.
454 */
455
456static int init_shared_mem(struct s2io_nic *nic)
457{
458 u32 size;
459 void *tmp_v_addr, *tmp_v_addr_next;
460 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 461 struct RxD_block *pre_rxd_blk = NULL;
372cc597 462 int i, j, blk_cnt;
1da177e4
LT
463 int lst_size, lst_per_page;
464 struct net_device *dev = nic->dev;
8ae418cf 465 unsigned long tmp;
1ee6dd77 466 struct buffAdd *ba;
1da177e4 467
1ee6dd77 468 struct mac_info *mac_control;
1da177e4
LT
469 struct config_param *config;
470
471 mac_control = &nic->mac_control;
472 config = &nic->config;
473
474
475 /* Allocation and initialization of TXDLs in FIOFs */
476 size = 0;
477 for (i = 0; i < config->tx_fifo_num; i++) {
478 size += config->tx_cfg[i].fifo_len;
479 }
480 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 481 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 482 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 483 return -EINVAL;
1da177e4
LT
484 }
485
1ee6dd77 486 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
487 lst_per_page = PAGE_SIZE / lst_size;
488
489 for (i = 0; i < config->tx_fifo_num; i++) {
490 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 491 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722 492 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
493 GFP_KERNEL);
494 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
495 DBG_PRINT(ERR_DBG,
496 "Malloc failed for list_info\n");
497 return -ENOMEM;
498 }
20346722 499 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
500 }
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
503 lst_per_page);
20346722 504 mac_control->fifos[i].tx_curr_put_info.offset = 0;
505 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 506 config->tx_cfg[i].fifo_len - 1;
20346722 507 mac_control->fifos[i].tx_curr_get_info.offset = 0;
508 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 509 config->tx_cfg[i].fifo_len - 1;
20346722 510 mac_control->fifos[i].fifo_no = i;
511 mac_control->fifos[i].nic = nic;
fed5eccd 512 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 513
1da177e4
LT
514 for (j = 0; j < page_num; j++) {
515 int k = 0;
516 dma_addr_t tmp_p;
517 void *tmp_v;
518 tmp_v = pci_alloc_consistent(nic->pdev,
519 PAGE_SIZE, &tmp_p);
520 if (!tmp_v) {
521 DBG_PRINT(ERR_DBG,
522 "pci_alloc_consistent ");
523 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
524 return -ENOMEM;
525 }
776bd20f 526 /* If we got a zero DMA address(can happen on
527 * certain platforms like PPC), reallocate.
528 * Store virtual address of page we don't want,
529 * to be freed later.
530 */
531 if (!tmp_p) {
532 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 533 DBG_PRINT(INIT_DBG,
776bd20f 534 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 535 DBG_PRINT(INIT_DBG,
6b4d617d 536 "Virtual address %p\n", tmp_v);
776bd20f 537 tmp_v = pci_alloc_consistent(nic->pdev,
538 PAGE_SIZE, &tmp_p);
539 if (!tmp_v) {
540 DBG_PRINT(ERR_DBG,
541 "pci_alloc_consistent ");
542 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
543 return -ENOMEM;
544 }
545 }
1da177e4
LT
546 while (k < lst_per_page) {
547 int l = (j * lst_per_page) + k;
548 if (l == config->tx_cfg[i].fifo_len)
20346722 549 break;
550 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 551 tmp_v + (k * lst_size);
20346722 552 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
553 tmp_p + (k * lst_size);
554 k++;
555 }
556 }
557 }
1da177e4 558
4384247b 559 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
560 if (!nic->ufo_in_band_v)
561 return -ENOMEM;
562
1da177e4
LT
563 /* Allocation and initialization of RXDs in Rings */
564 size = 0;
565 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
566 if (config->rx_cfg[i].num_rxd %
567 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
568 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
569 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
570 i);
571 DBG_PRINT(ERR_DBG, "RxDs per Block");
572 return FAILURE;
573 }
574 size += config->rx_cfg[i].num_rxd;
20346722 575 mac_control->rings[i].block_count =
da6971d8
AR
576 config->rx_cfg[i].num_rxd /
577 (rxd_count[nic->rxd_mode] + 1 );
578 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
579 mac_control->rings[i].block_count;
1da177e4 580 }
da6971d8 581 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 582 size = (size * (sizeof(struct RxD1)));
da6971d8 583 else
1ee6dd77 584 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
585
586 for (i = 0; i < config->rx_ring_num; i++) {
20346722 587 mac_control->rings[i].rx_curr_get_info.block_index = 0;
588 mac_control->rings[i].rx_curr_get_info.offset = 0;
589 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 590 config->rx_cfg[i].num_rxd - 1;
20346722 591 mac_control->rings[i].rx_curr_put_info.block_index = 0;
592 mac_control->rings[i].rx_curr_put_info.offset = 0;
593 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 594 config->rx_cfg[i].num_rxd - 1;
20346722 595 mac_control->rings[i].nic = nic;
596 mac_control->rings[i].ring_no = i;
597
da6971d8
AR
598 blk_cnt = config->rx_cfg[i].num_rxd /
599 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
600 /* Allocating all the Rx blocks */
601 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 602 struct rx_block_info *rx_blocks;
da6971d8
AR
603 int l;
604
605 rx_blocks = &mac_control->rings[i].rx_blocks[j];
606 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
607 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
608 &tmp_p_addr);
609 if (tmp_v_addr == NULL) {
610 /*
20346722 611 * In case of failure, free_shared_mem()
612 * is called, which should free any
613 * memory that was alloced till the
1da177e4
LT
614 * failure happened.
615 */
da6971d8 616 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
617 return -ENOMEM;
618 }
619 memset(tmp_v_addr, 0, size);
da6971d8
AR
620 rx_blocks->block_virt_addr = tmp_v_addr;
621 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 622 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
623 rxd_count[nic->rxd_mode],
624 GFP_KERNEL);
372cc597
SS
625 if (!rx_blocks->rxds)
626 return -ENOMEM;
da6971d8
AR
627 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
628 rx_blocks->rxds[l].virt_addr =
629 rx_blocks->block_virt_addr +
630 (rxd_size[nic->rxd_mode] * l);
631 rx_blocks->rxds[l].dma_addr =
632 rx_blocks->block_dma_addr +
633 (rxd_size[nic->rxd_mode] * l);
634 }
1da177e4
LT
635 }
636 /* Interlinking all Rx Blocks */
637 for (j = 0; j < blk_cnt; j++) {
20346722 638 tmp_v_addr =
639 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 640 tmp_v_addr_next =
20346722 641 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 642 blk_cnt].block_virt_addr;
20346722 643 tmp_p_addr =
644 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 645 tmp_p_addr_next =
20346722 646 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
647 blk_cnt].block_dma_addr;
648
1ee6dd77 649 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
650 pre_rxd_blk->reserved_2_pNext_RxD_block =
651 (unsigned long) tmp_v_addr_next;
1da177e4
LT
652 pre_rxd_blk->pNext_RxD_Blk_physical =
653 (u64) tmp_p_addr_next;
654 }
655 }
da6971d8
AR
656 if (nic->rxd_mode >= RXD_MODE_3A) {
657 /*
658 * Allocation of Storages for buffer addresses in 2BUFF mode
659 * and the buffers as well.
660 */
661 for (i = 0; i < config->rx_ring_num; i++) {
662 blk_cnt = config->rx_cfg[i].num_rxd /
663 (rxd_count[nic->rxd_mode]+ 1);
664 mac_control->rings[i].ba =
1ee6dd77 665 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 666 GFP_KERNEL);
da6971d8 667 if (!mac_control->rings[i].ba)
1da177e4 668 return -ENOMEM;
da6971d8
AR
669 for (j = 0; j < blk_cnt; j++) {
670 int k = 0;
671 mac_control->rings[i].ba[j] =
1ee6dd77 672 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
673 (rxd_count[nic->rxd_mode] + 1)),
674 GFP_KERNEL);
675 if (!mac_control->rings[i].ba[j])
1da177e4 676 return -ENOMEM;
da6971d8
AR
677 while (k != rxd_count[nic->rxd_mode]) {
678 ba = &mac_control->rings[i].ba[j][k];
679
680 ba->ba_0_org = (void *) kmalloc
681 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
682 if (!ba->ba_0_org)
683 return -ENOMEM;
684 tmp = (unsigned long)ba->ba_0_org;
685 tmp += ALIGN_SIZE;
686 tmp &= ~((unsigned long) ALIGN_SIZE);
687 ba->ba_0 = (void *) tmp;
688
689 ba->ba_1_org = (void *) kmalloc
690 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
691 if (!ba->ba_1_org)
692 return -ENOMEM;
693 tmp = (unsigned long) ba->ba_1_org;
694 tmp += ALIGN_SIZE;
695 tmp &= ~((unsigned long) ALIGN_SIZE);
696 ba->ba_1 = (void *) tmp;
697 k++;
698 }
1da177e4
LT
699 }
700 }
701 }
1da177e4
LT
702
703 /* Allocation and initialization of Statistics block */
1ee6dd77 704 size = sizeof(struct stat_block);
1da177e4
LT
705 mac_control->stats_mem = pci_alloc_consistent
706 (nic->pdev, size, &mac_control->stats_mem_phy);
707
708 if (!mac_control->stats_mem) {
20346722 709 /*
710 * In case of failure, free_shared_mem() is called, which
711 * should free any memory that was alloced till the
1da177e4
LT
712 * failure happened.
713 */
714 return -ENOMEM;
715 }
716 mac_control->stats_mem_sz = size;
717
718 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 719 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 720 memset(tmp_v_addr, 0, size);
1da177e4
LT
721 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
722 (unsigned long long) tmp_p_addr);
723
724 return SUCCESS;
725}
726
20346722 727/**
728 * free_shared_mem - Free the allocated Memory
1da177e4
LT
729 * @nic: Device private variable.
730 * Description: This function is to free all memory locations allocated by
731 * the init_shared_mem() function and return it to the kernel.
732 */
733
734static void free_shared_mem(struct s2io_nic *nic)
735{
736 int i, j, blk_cnt, size;
737 void *tmp_v_addr;
738 dma_addr_t tmp_p_addr;
1ee6dd77 739 struct mac_info *mac_control;
1da177e4
LT
740 struct config_param *config;
741 int lst_size, lst_per_page;
776bd20f 742 struct net_device *dev = nic->dev;
1da177e4
LT
743
744 if (!nic)
745 return;
746
747 mac_control = &nic->mac_control;
748 config = &nic->config;
749
1ee6dd77 750 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
751 lst_per_page = PAGE_SIZE / lst_size;
752
753 for (i = 0; i < config->tx_fifo_num; i++) {
754 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
755 lst_per_page);
756 for (j = 0; j < page_num; j++) {
757 int mem_blks = (j * lst_per_page);
776bd20f 758 if (!mac_control->fifos[i].list_info)
6aa20a22 759 return;
776bd20f 760 if (!mac_control->fifos[i].list_info[mem_blks].
761 list_virt_addr)
1da177e4
LT
762 break;
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722 764 mac_control->fifos[i].
765 list_info[mem_blks].
1da177e4 766 list_virt_addr,
20346722 767 mac_control->fifos[i].
768 list_info[mem_blks].
1da177e4
LT
769 list_phy_addr);
770 }
776bd20f 771 /* If we got a zero DMA address during allocation,
772 * free the page now
773 */
774 if (mac_control->zerodma_virt_addr) {
775 pci_free_consistent(nic->pdev, PAGE_SIZE,
776 mac_control->zerodma_virt_addr,
777 (dma_addr_t)0);
6aa20a22 778 DBG_PRINT(INIT_DBG,
6b4d617d
AM
779 "%s: Freeing TxDL with zero DMA addr. ",
780 dev->name);
781 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
782 mac_control->zerodma_virt_addr);
776bd20f 783 }
20346722 784 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
785 }
786
1da177e4 787 size = SIZE_OF_BLOCK;
1da177e4 788 for (i = 0; i < config->rx_ring_num; i++) {
20346722 789 blk_cnt = mac_control->rings[i].block_count;
1da177e4 790 for (j = 0; j < blk_cnt; j++) {
20346722 791 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
792 block_virt_addr;
793 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
794 block_dma_addr;
1da177e4
LT
795 if (tmp_v_addr == NULL)
796 break;
797 pci_free_consistent(nic->pdev, size,
798 tmp_v_addr, tmp_p_addr);
da6971d8 799 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
800 }
801 }
802
da6971d8
AR
803 if (nic->rxd_mode >= RXD_MODE_3A) {
804 /* Freeing buffer storage addresses in 2BUFF mode. */
805 for (i = 0; i < config->rx_ring_num; i++) {
806 blk_cnt = config->rx_cfg[i].num_rxd /
807 (rxd_count[nic->rxd_mode] + 1);
808 for (j = 0; j < blk_cnt; j++) {
809 int k = 0;
810 if (!mac_control->rings[i].ba[j])
811 continue;
812 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 813 struct buffAdd *ba =
da6971d8
AR
814 &mac_control->rings[i].ba[j][k];
815 kfree(ba->ba_0_org);
816 kfree(ba->ba_1_org);
817 k++;
818 }
819 kfree(mac_control->rings[i].ba[j]);
1da177e4 820 }
da6971d8 821 kfree(mac_control->rings[i].ba);
1da177e4 822 }
1da177e4 823 }
1da177e4
LT
824
825 if (mac_control->stats_mem) {
826 pci_free_consistent(nic->pdev,
827 mac_control->stats_mem_sz,
828 mac_control->stats_mem,
829 mac_control->stats_mem_phy);
830 }
fed5eccd
AR
831 if (nic->ufo_in_band_v)
832 kfree(nic->ufo_in_band_v);
1da177e4
LT
833}
834
541ae68f 835/**
836 * s2io_verify_pci_mode -
837 */
838
1ee6dd77 839static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 840{
1ee6dd77 841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 842 register u64 val64 = 0;
843 int mode;
844
845 val64 = readq(&bar0->pci_mode);
846 mode = (u8)GET_PCI_MODE(val64);
847
848 if ( val64 & PCI_MODE_UNKNOWN_MODE)
849 return -1; /* Unknown PCI mode */
850 return mode;
851}
852
c92ca04b
AR
853#define NEC_VENID 0x1033
854#define NEC_DEVID 0x0125
855static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
856{
857 struct pci_dev *tdev = NULL;
26d36b64
AC
858 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
859 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 860 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 861 pci_dev_put(tdev);
c92ca04b
AR
862 return 1;
863 }
864 }
865 return 0;
866}
541ae68f 867
7b32a312 868static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 869/**
870 * s2io_print_pci_mode -
871 */
1ee6dd77 872static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 873{
1ee6dd77 874 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 875 register u64 val64 = 0;
876 int mode;
877 struct config_param *config = &nic->config;
878
879 val64 = readq(&bar0->pci_mode);
880 mode = (u8)GET_PCI_MODE(val64);
881
882 if ( val64 & PCI_MODE_UNKNOWN_MODE)
883 return -1; /* Unknown PCI mode */
884
c92ca04b
AR
885 config->bus_speed = bus_speed[mode];
886
887 if (s2io_on_nec_bridge(nic->pdev)) {
888 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
889 nic->dev->name);
890 return mode;
891 }
892
541ae68f 893 if (val64 & PCI_MODE_32_BITS) {
894 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
895 } else {
896 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
897 }
898
899 switch(mode) {
900 case PCI_MODE_PCI_33:
901 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f 902 break;
903 case PCI_MODE_PCI_66:
904 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f 905 break;
906 case PCI_MODE_PCIX_M1_66:
907 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f 908 break;
909 case PCI_MODE_PCIX_M1_100:
910 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f 911 break;
912 case PCI_MODE_PCIX_M1_133:
913 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f 914 break;
915 case PCI_MODE_PCIX_M2_66:
916 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f 917 break;
918 case PCI_MODE_PCIX_M2_100:
919 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f 920 break;
921 case PCI_MODE_PCIX_M2_133:
922 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f 923 break;
924 default:
925 return -1; /* Unsupported bus speed */
926 }
927
928 return mode;
929}
930
20346722 931/**
932 * init_nic - Initialization of hardware
1da177e4 933 * @nic: device peivate variable
20346722 934 * Description: The function sequentially configures every block
935 * of the H/W from their reset values.
936 * Return Value: SUCCESS on success and
1da177e4
LT
937 * '-1' on failure (endian settings incorrect).
938 */
939
940static int init_nic(struct s2io_nic *nic)
941{
1ee6dd77 942 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
943 struct net_device *dev = nic->dev;
944 register u64 val64 = 0;
945 void __iomem *add;
946 u32 time;
947 int i, j;
1ee6dd77 948 struct mac_info *mac_control;
1da177e4 949 struct config_param *config;
c92ca04b 950 int dtx_cnt = 0;
1da177e4 951 unsigned long long mem_share;
20346722 952 int mem_size;
1da177e4
LT
953
954 mac_control = &nic->mac_control;
955 config = &nic->config;
956
5e25b9dd 957 /* to set the swapper controle on the card */
20346722 958 if(s2io_set_swapper(nic)) {
1da177e4
LT
959 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
960 return -1;
961 }
962
541ae68f 963 /*
964 * Herc requires EOI to be removed from reset before XGXS, so..
965 */
966 if (nic->device_type & XFRAME_II_DEVICE) {
967 val64 = 0xA500000000ULL;
968 writeq(val64, &bar0->sw_reset);
969 msleep(500);
970 val64 = readq(&bar0->sw_reset);
971 }
972
1da177e4
LT
973 /* Remove XGXS from reset state */
974 val64 = 0;
975 writeq(val64, &bar0->sw_reset);
1da177e4 976 msleep(500);
20346722 977 val64 = readq(&bar0->sw_reset);
1da177e4
LT
978
979 /* Enable Receiving broadcasts */
980 add = &bar0->mac_cfg;
981 val64 = readq(&bar0->mac_cfg);
982 val64 |= MAC_RMAC_BCAST_ENABLE;
983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
984 writel((u32) val64, add);
985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
986 writel((u32) (val64 >> 32), (add + 4));
987
988 /* Read registers in all blocks */
989 val64 = readq(&bar0->mac_int_mask);
990 val64 = readq(&bar0->mc_int_mask);
991 val64 = readq(&bar0->xgxs_int_mask);
992
993 /* Set MTU */
994 val64 = dev->mtu;
995 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
996
541ae68f 997 if (nic->device_type & XFRAME_II_DEVICE) {
998 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 999 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1000 &bar0->dtx_control, UF);
541ae68f 1001 if (dtx_cnt & 0x1)
1002 msleep(1); /* Necessary!! */
1da177e4
LT
1003 dtx_cnt++;
1004 }
541ae68f 1005 } else {
c92ca04b
AR
1006 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1007 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1008 &bar0->dtx_control, UF);
1009 val64 = readq(&bar0->dtx_control);
1010 dtx_cnt++;
1da177e4
LT
1011 }
1012 }
1013
1014 /* Tx DMA Initialization */
1015 val64 = 0;
1016 writeq(val64, &bar0->tx_fifo_partition_0);
1017 writeq(val64, &bar0->tx_fifo_partition_1);
1018 writeq(val64, &bar0->tx_fifo_partition_2);
1019 writeq(val64, &bar0->tx_fifo_partition_3);
1020
1021
1022 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1023 val64 |=
1024 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1025 13) | vBIT(config->tx_cfg[i].fifo_priority,
1026 ((i * 32) + 5), 3);
1027
1028 if (i == (config->tx_fifo_num - 1)) {
1029 if (i % 2 == 0)
1030 i++;
1031 }
1032
1033 switch (i) {
1034 case 1:
1035 writeq(val64, &bar0->tx_fifo_partition_0);
1036 val64 = 0;
1037 break;
1038 case 3:
1039 writeq(val64, &bar0->tx_fifo_partition_1);
1040 val64 = 0;
1041 break;
1042 case 5:
1043 writeq(val64, &bar0->tx_fifo_partition_2);
1044 val64 = 0;
1045 break;
1046 case 7:
1047 writeq(val64, &bar0->tx_fifo_partition_3);
1048 break;
1049 }
1050 }
1051
5e25b9dd 1052 /*
1053 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1054 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1055 */
541ae68f 1056 if ((nic->device_type == XFRAME_I_DEVICE) &&
1057 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd 1058 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1059
1da177e4
LT
1060 val64 = readq(&bar0->tx_fifo_partition_0);
1061 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1062 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1063
20346722 1064 /*
1065 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1066 * integrity checking.
1067 */
1068 val64 = readq(&bar0->tx_pa_cfg);
1069 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1070 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1071 writeq(val64, &bar0->tx_pa_cfg);
1072
1073 /* Rx DMA intialization. */
1074 val64 = 0;
1075 for (i = 0; i < config->rx_ring_num; i++) {
1076 val64 |=
1077 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1078 3);
1079 }
1080 writeq(val64, &bar0->rx_queue_priority);
1081
20346722 1082 /*
1083 * Allocating equal share of memory to all the
1da177e4
LT
1084 * configured Rings.
1085 */
1086 val64 = 0;
541ae68f 1087 if (nic->device_type & XFRAME_II_DEVICE)
1088 mem_size = 32;
1089 else
1090 mem_size = 64;
1091
1da177e4
LT
1092 for (i = 0; i < config->rx_ring_num; i++) {
1093 switch (i) {
1094 case 0:
20346722 1095 mem_share = (mem_size / config->rx_ring_num +
1096 mem_size % config->rx_ring_num);
1da177e4
LT
1097 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1098 continue;
1099 case 1:
20346722 1100 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1101 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1102 continue;
1103 case 2:
20346722 1104 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1105 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1106 continue;
1107 case 3:
20346722 1108 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1109 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1110 continue;
1111 case 4:
20346722 1112 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1113 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1114 continue;
1115 case 5:
20346722 1116 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1117 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1118 continue;
1119 case 6:
20346722 1120 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1121 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1122 continue;
1123 case 7:
20346722 1124 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1125 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1126 continue;
1127 }
1128 }
1129 writeq(val64, &bar0->rx_queue_cfg);
1130
20346722 1131 /*
5e25b9dd 1132 * Filling Tx round robin registers
1133 * as per the number of FIFOs
1da177e4 1134 */
5e25b9dd 1135 switch (config->tx_fifo_num) {
1136 case 1:
1137 val64 = 0x0000000000000000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 writeq(val64, &bar0->tx_w_round_robin_1);
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 writeq(val64, &bar0->tx_w_round_robin_3);
1142 writeq(val64, &bar0->tx_w_round_robin_4);
1143 break;
1144 case 2:
1145 val64 = 0x0000010000010000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_0);
1147 val64 = 0x0100000100000100ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_1);
1149 val64 = 0x0001000001000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_2);
1151 val64 = 0x0000010000010000ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_3);
1153 val64 = 0x0100000000000000ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_4);
1155 break;
1156 case 3:
1157 val64 = 0x0001000102000001ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_0);
1159 val64 = 0x0001020000010001ULL;
1160 writeq(val64, &bar0->tx_w_round_robin_1);
1161 val64 = 0x0200000100010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_2);
1163 val64 = 0x0001000102000001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_3);
1165 val64 = 0x0001020000000000ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1167 break;
1168 case 4:
1169 val64 = 0x0001020300010200ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000102030001ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0200010000010203ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0001020001000001ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0203000100000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1179 break;
1180 case 5:
1181 val64 = 0x0001000203000102ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020001030004ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0001000203000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001020001030004ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001000000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1191 break;
1192 case 6:
1193 val64 = 0x0001020304000102ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0304050001020001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0203000100000102ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0304000102030405ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0001000200000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1203 break;
1204 case 7:
1205 val64 = 0x0001020001020300ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0102030400010203ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0405060001020001ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0304050000010200ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0102030000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1215 break;
1216 case 8:
1217 val64 = 0x0001020300040105ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0200030106000204ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0103000502010007ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304010002060500ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0103020400000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 }
1229
b41477f3 1230 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1231 val64 = readq(&bar0->tx_fifo_partition_0);
1232 val64 |= (TX_FIFO_PARTITION_EN);
1233 writeq(val64, &bar0->tx_fifo_partition_0);
1234
5e25b9dd 1235 /* Filling the Rx round robin registers as per the
1236 * number of Rings and steering based on QoS.
1237 */
1238 switch (config->rx_ring_num) {
1239 case 1:
1240 val64 = 0x8080808080808080ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1242 break;
1243 case 2:
1244 val64 = 0x0000010000010000ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0100000100000100ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0001000001000001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0000010000010000ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0100000000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1254
1255 val64 = 0x8080808040404040ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1257 break;
1258 case 3:
1259 val64 = 0x0001000102000001ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0001020000010001ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0200000100010200ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0001000102000001ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0001020000000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1269
1270 val64 = 0x8080804040402020ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1272 break;
1273 case 4:
1274 val64 = 0x0001020300010200ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_0);
1276 val64 = 0x0100000102030001ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_1);
1278 val64 = 0x0200010000010203ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1280 val64 = 0x0001020001000001ULL;
5e25b9dd 1281 writeq(val64, &bar0->rx_w_round_robin_3);
1282 val64 = 0x0203000100000000ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_4);
1284
1285 val64 = 0x8080404020201010ULL;
1286 writeq(val64, &bar0->rts_qos_steering);
1287 break;
1288 case 5:
1289 val64 = 0x0001000203000102ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_0);
1291 val64 = 0x0001020001030004ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_1);
1293 val64 = 0x0001000203000102ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_2);
1295 val64 = 0x0001020001030004ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_3);
1297 val64 = 0x0001000000000000ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_4);
1299
1300 val64 = 0x8080404020201008ULL;
1301 writeq(val64, &bar0->rts_qos_steering);
1302 break;
1303 case 6:
1304 val64 = 0x0001020304000102ULL;
1305 writeq(val64, &bar0->rx_w_round_robin_0);
1306 val64 = 0x0304050001020001ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_1);
1308 val64 = 0x0203000100000102ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_2);
1310 val64 = 0x0304000102030405ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_3);
1312 val64 = 0x0001000200000000ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_4);
1314
1315 val64 = 0x8080404020100804ULL;
1316 writeq(val64, &bar0->rts_qos_steering);
1317 break;
1318 case 7:
1319 val64 = 0x0001020001020300ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_0);
1321 val64 = 0x0102030400010203ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_1);
1323 val64 = 0x0405060001020001ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_2);
1325 val64 = 0x0304050000010200ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_3);
1327 val64 = 0x0102030000000000ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_4);
1329
1330 val64 = 0x8080402010080402ULL;
1331 writeq(val64, &bar0->rts_qos_steering);
1332 break;
1333 case 8:
1334 val64 = 0x0001020300040105ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_0);
1336 val64 = 0x0200030106000204ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_1);
1338 val64 = 0x0103000502010007ULL;
1339 writeq(val64, &bar0->rx_w_round_robin_2);
1340 val64 = 0x0304010002060500ULL;
1341 writeq(val64, &bar0->rx_w_round_robin_3);
1342 val64 = 0x0103020400000000ULL;
1343 writeq(val64, &bar0->rx_w_round_robin_4);
1344
1345 val64 = 0x8040201008040201ULL;
1346 writeq(val64, &bar0->rts_qos_steering);
1347 break;
1348 }
1da177e4
LT
1349
1350 /* UDP Fix */
1351 val64 = 0;
20346722 1352 for (i = 0; i < 8; i++)
1da177e4
LT
1353 writeq(val64, &bar0->rts_frm_len_n[i]);
1354
5e25b9dd 1355 /* Set the default rts frame length for the rings configured */
1356 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1357 for (i = 0 ; i < config->rx_ring_num ; i++)
1358 writeq(val64, &bar0->rts_frm_len_n[i]);
1359
1360 /* Set the frame length for the configured rings
1361 * desired by the user
1362 */
1363 for (i = 0; i < config->rx_ring_num; i++) {
1364 /* If rts_frm_len[i] == 0 then it is assumed that user not
1365 * specified frame length steering.
1366 * If the user provides the frame length then program
1367 * the rts_frm_len register for those values or else
1368 * leave it as it is.
1369 */
1370 if (rts_frm_len[i] != 0) {
1371 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1372 &bar0->rts_frm_len_n[i]);
1373 }
1374 }
1da177e4 1375
20346722 1376 /* Program statistics memory */
1da177e4 1377 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1378
541ae68f 1379 if (nic->device_type == XFRAME_II_DEVICE) {
1380 val64 = STAT_BC(0x320);
1381 writeq(val64, &bar0->stat_byte_cnt);
1382 }
1383
20346722 1384 /*
1da177e4
LT
1385 * Initializing the sampling rate for the device to calculate the
1386 * bandwidth utilization.
1387 */
1388 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1389 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1390 writeq(val64, &bar0->mac_link_util);
1391
1392
20346722 1393 /*
1394 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1395 * Scheme.
1396 */
20346722 1397 /*
1398 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1399 * 250 interrupts per sec. Continuous interrupts are enabled
1400 * by default.
1401 */
541ae68f 1402 if (nic->device_type == XFRAME_II_DEVICE) {
1403 int count = (nic->config.bus_speed * 125)/2;
1404 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1405 } else {
1406
1407 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1408 }
1409 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1410 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1411 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f 1412 if (use_continuous_tx_intrs)
1413 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1414 writeq(val64, &bar0->tti_data1_mem);
1415
1416 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1417 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1418 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1419 writeq(val64, &bar0->tti_data2_mem);
1420
1421 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1422 writeq(val64, &bar0->tti_command_mem);
1423
20346722 1424 /*
1da177e4
LT
1425 * Once the operation completes, the Strobe bit of the command
1426 * register will be reset. We poll for this particular condition
1427 * We wait for a maximum of 500ms for the operation to complete,
1428 * if it's not complete by then we return error.
1429 */
1430 time = 0;
1431 while (TRUE) {
1432 val64 = readq(&bar0->tti_command_mem);
1433 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1434 break;
1435 }
1436 if (time > 10) {
1437 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1438 dev->name);
1439 return -1;
1440 }
1441 msleep(50);
1442 time++;
1443 }
1444
b6e3f982 1445 if (nic->config.bimodal) {
1446 int k = 0;
1447 for (k = 0; k < config->rx_ring_num; k++) {
1448 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1449 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1450 writeq(val64, &bar0->tti_command_mem);
541ae68f 1451
541ae68f 1452 /*
b6e3f982 1453 * Once the operation completes, the Strobe bit of the command
1454 * register will be reset. We poll for this particular condition
1455 * We wait for a maximum of 500ms for the operation to complete,
1456 * if it's not complete by then we return error.
1457 */
1458 time = 0;
1459 while (TRUE) {
1460 val64 = readq(&bar0->tti_command_mem);
1461 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1462 break;
1463 }
1464 if (time > 10) {
1465 DBG_PRINT(ERR_DBG,
1466 "%s: TTI init Failed\n",
1467 dev->name);
1468 return -1;
1469 }
1470 time++;
1471 msleep(50);
1472 }
1473 }
541ae68f 1474 } else {
1da177e4 1475
b6e3f982 1476 /* RTI Initialization */
1477 if (nic->device_type == XFRAME_II_DEVICE) {
1478 /*
1479 * Programmed to generate Apprx 500 Intrs per
1480 * second
1481 */
1482 int count = (nic->config.bus_speed * 125)/4;
1483 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1484 } else {
1485 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1486 }
1487 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1488 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1489 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1490
b6e3f982 1491 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1492
b6e3f982 1493 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1494 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1495 if (nic->intr_type == MSI_X)
1496 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1497 RTI_DATA2_MEM_RX_UFC_D(0x40));
1498 else
1499 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1500 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1501 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1502
b6e3f982 1503 for (i = 0; i < config->rx_ring_num; i++) {
1504 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1505 | RTI_CMD_MEM_OFFSET(i);
1506 writeq(val64, &bar0->rti_command_mem);
1507
1508 /*
1509 * Once the operation completes, the Strobe bit of the
1510 * command register will be reset. We poll for this
1511 * particular condition. We wait for a maximum of 500ms
1512 * for the operation to complete, if it's not complete
1513 * by then we return error.
1514 */
1515 time = 0;
1516 while (TRUE) {
1517 val64 = readq(&bar0->rti_command_mem);
1518 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1519 break;
1520 }
1521 if (time > 10) {
1522 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1523 dev->name);
1524 return -1;
1525 }
1526 time++;
1527 msleep(50);
1528 }
1da177e4 1529 }
1da177e4
LT
1530 }
1531
20346722 1532 /*
1533 * Initializing proper values as Pause threshold into all
1da177e4
LT
1534 * the 8 Queues on Rx side.
1535 */
1536 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1537 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1538
1539 /* Disable RMAC PAD STRIPPING */
509a2671 1540 add = &bar0->mac_cfg;
1da177e4
LT
1541 val64 = readq(&bar0->mac_cfg);
1542 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 val64 = readq(&bar0->mac_cfg);
1548
7d3d0439
RA
1549 /* Enable FCS stripping by adapter */
1550 add = &bar0->mac_cfg;
1551 val64 = readq(&bar0->mac_cfg);
1552 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1553 if (nic->device_type == XFRAME_II_DEVICE)
1554 writeq(val64, &bar0->mac_cfg);
1555 else {
1556 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1557 writel((u32) (val64), add);
1558 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1559 writel((u32) (val64 >> 32), (add + 4));
1560 }
1561
20346722 1562 /*
1563 * Set the time value to be inserted in the pause frame
1da177e4
LT
1564 * generated by xena.
1565 */
1566 val64 = readq(&bar0->rmac_pause_cfg);
1567 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1568 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1569 writeq(val64, &bar0->rmac_pause_cfg);
1570
20346722 1571 /*
1da177e4
LT
1572 * Set the Threshold Limit for Generating the pause frame
1573 * If the amount of data in any Queue exceeds ratio of
1574 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1575 * pause frame is generated
1576 */
1577 val64 = 0;
1578 for (i = 0; i < 4; i++) {
1579 val64 |=
1580 (((u64) 0xFF00 | nic->mac_control.
1581 mc_pause_threshold_q0q3)
1582 << (i * 2 * 8));
1583 }
1584 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1585
1586 val64 = 0;
1587 for (i = 0; i < 4; i++) {
1588 val64 |=
1589 (((u64) 0xFF00 | nic->mac_control.
1590 mc_pause_threshold_q4q7)
1591 << (i * 2 * 8));
1592 }
1593 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1594
20346722 1595 /*
1596 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1597 * exceeded the limit pointed by shared_splits
1598 */
1599 val64 = readq(&bar0->pic_control);
1600 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1601 writeq(val64, &bar0->pic_control);
1602
863c11a9
AR
1603 if (nic->config.bus_speed == 266) {
1604 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1605 writeq(0x0, &bar0->read_retry_delay);
1606 writeq(0x0, &bar0->write_retry_delay);
1607 }
1608
541ae68f 1609 /*
1610 * Programming the Herc to split every write transaction
1611 * that does not start on an ADB to reduce disconnects.
1612 */
1613 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1614 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1615 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1616 writeq(val64, &bar0->misc_control);
1617 val64 = readq(&bar0->pic_control2);
1618 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1619 writeq(val64, &bar0->pic_control2);
541ae68f 1620 }
c92ca04b
AR
1621 if (strstr(nic->product_name, "CX4")) {
1622 val64 = TMAC_AVG_IPG(0x17);
1623 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1624 }
1625
1da177e4
LT
1626 return SUCCESS;
1627}
a371a07d 1628#define LINK_UP_DOWN_INTERRUPT 1
1629#define MAC_RMAC_ERR_TIMER 2
1630
1ee6dd77 1631static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1632{
cc6e7c44
RA
1633 if (nic->intr_type != INTA)
1634 return MAC_RMAC_ERR_TIMER;
a371a07d 1635 if (nic->device_type == XFRAME_II_DEVICE)
1636 return LINK_UP_DOWN_INTERRUPT;
1637 else
1638 return MAC_RMAC_ERR_TIMER;
1639}
1da177e4 1640
20346722 1641/**
1642 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1643 * @nic: device private variable,
1644 * @mask: A mask indicating which Intr block must be modified and,
1645 * @flag: A flag indicating whether to enable or disable the Intrs.
1646 * Description: This function will either disable or enable the interrupts
20346722 1647 * depending on the flag argument. The mask argument can be used to
1648 * enable/disable any Intr block.
1da177e4
LT
1649 * Return Value: NONE.
1650 */
1651
1652static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1653{
1ee6dd77 1654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1655 register u64 val64 = 0, temp64 = 0;
1656
1657 /* Top level interrupt classification */
1658 /* PIC Interrupts */
1659 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1660 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1661 val64 = TXPIC_INT_M;
1da177e4
LT
1662 if (flag == ENABLE_INTRS) {
1663 temp64 = readq(&bar0->general_int_mask);
1664 temp64 &= ~((u64) val64);
1665 writeq(temp64, &bar0->general_int_mask);
20346722 1666 /*
a371a07d 1667 * If Hercules adapter enable GPIO otherwise
b41477f3 1668 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 1669 * interrupts for now.
1670 * TODO
1da177e4 1671 */
a371a07d 1672 if (s2io_link_fault_indication(nic) ==
1673 LINK_UP_DOWN_INTERRUPT ) {
1674 temp64 = readq(&bar0->pic_int_mask);
1675 temp64 &= ~((u64) PIC_INT_GPIO);
1676 writeq(temp64, &bar0->pic_int_mask);
1677 temp64 = readq(&bar0->gpio_int_mask);
1678 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1679 writeq(temp64, &bar0->gpio_int_mask);
1680 } else {
1681 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1682 }
20346722 1683 /*
1da177e4
LT
1684 * No MSI Support is available presently, so TTI and
1685 * RTI interrupts are also disabled.
1686 */
1687 } else if (flag == DISABLE_INTRS) {
20346722 1688 /*
1689 * Disable PIC Intrs in the general
1690 * intr mask register
1da177e4
LT
1691 */
1692 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1693 temp64 = readq(&bar0->general_int_mask);
1694 val64 |= temp64;
1695 writeq(val64, &bar0->general_int_mask);
1696 }
1697 }
1698
1da177e4
LT
1699 /* MAC Interrupts */
1700 /* Enabling/Disabling MAC interrupts */
1701 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1702 val64 = TXMAC_INT_M | RXMAC_INT_M;
1703 if (flag == ENABLE_INTRS) {
1704 temp64 = readq(&bar0->general_int_mask);
1705 temp64 &= ~((u64) val64);
1706 writeq(temp64, &bar0->general_int_mask);
20346722 1707 /*
1708 * All MAC block error interrupts are disabled for now
1da177e4
LT
1709 * TODO
1710 */
1da177e4 1711 } else if (flag == DISABLE_INTRS) {
20346722 1712 /*
1713 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1714 */
1715 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1716 writeq(DISABLE_ALL_INTRS,
1717 &bar0->mac_rmac_err_mask);
1718
1719 temp64 = readq(&bar0->general_int_mask);
1720 val64 |= temp64;
1721 writeq(val64, &bar0->general_int_mask);
1722 }
1723 }
1724
1da177e4
LT
1725 /* Tx traffic interrupts */
1726 if (mask & TX_TRAFFIC_INTR) {
1727 val64 = TXTRAFFIC_INT_M;
1728 if (flag == ENABLE_INTRS) {
1729 temp64 = readq(&bar0->general_int_mask);
1730 temp64 &= ~((u64) val64);
1731 writeq(temp64, &bar0->general_int_mask);
20346722 1732 /*
1da177e4 1733 * Enable all the Tx side interrupts
20346722 1734 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1735 */
1736 writeq(0x0, &bar0->tx_traffic_mask);
1737 } else if (flag == DISABLE_INTRS) {
20346722 1738 /*
1739 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1740 * register.
1741 */
1742 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1743 temp64 = readq(&bar0->general_int_mask);
1744 val64 |= temp64;
1745 writeq(val64, &bar0->general_int_mask);
1746 }
1747 }
1748
1749 /* Rx traffic interrupts */
1750 if (mask & RX_TRAFFIC_INTR) {
1751 val64 = RXTRAFFIC_INT_M;
1752 if (flag == ENABLE_INTRS) {
1753 temp64 = readq(&bar0->general_int_mask);
1754 temp64 &= ~((u64) val64);
1755 writeq(temp64, &bar0->general_int_mask);
1756 /* writing 0 Enables all 8 RX interrupt levels */
1757 writeq(0x0, &bar0->rx_traffic_mask);
1758 } else if (flag == DISABLE_INTRS) {
20346722 1759 /*
1760 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1761 * register.
1762 */
1763 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1764 temp64 = readq(&bar0->general_int_mask);
1765 val64 |= temp64;
1766 writeq(val64, &bar0->general_int_mask);
1767 }
1768 }
1769}
1770
19a60522
SS
1771/**
1772 * verify_pcc_quiescent- Checks for PCC quiescent state
1773 * Return: 1 If PCC is quiescence
1774 * 0 If PCC is not quiescence
1775 */
1ee6dd77 1776static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1777{
19a60522 1778 int ret = 0, herc;
1ee6dd77 1779 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1780 u64 val64 = readq(&bar0->adapter_status);
1781
1782 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 1783
1784 if (flag == FALSE) {
19a60522
SS
1785 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1786 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1787 ret = 1;
19a60522
SS
1788 } else {
1789 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1790 ret = 1;
20346722 1791 }
1792 } else {
19a60522 1793 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
5e25b9dd 1794 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1795 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1796 ret = 1;
5e25b9dd 1797 } else {
1798 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1799 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1800 ret = 1;
20346722 1801 }
1802 }
1803
1804 return ret;
1805}
1806/**
1807 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1808 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1809 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1810 * differs and the calling function passes the input argument flag to
1811 * indicate this.
20346722 1812 * Return: 1 If xena is quiescence
1da177e4
LT
1813 * 0 If Xena is not quiescence
1814 */
1815
1ee6dd77 1816static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1817{
19a60522 1818 int mode;
1ee6dd77 1819 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1820 u64 val64 = readq(&bar0->adapter_status);
1821 mode = s2io_verify_pci_mode(sp);
1da177e4 1822
19a60522
SS
1823 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1824 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1825 return 0;
1826 }
1827 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1828 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1829 return 0;
1830 }
1831 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1832 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1833 return 0;
1834 }
1835 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1836 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1837 return 0;
1838 }
1839 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1840 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1841 return 0;
1842 }
1843 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1844 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1845 return 0;
1846 }
1847 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1848 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1849 return 0;
1850 }
1851 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1852 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1853 return 0;
1da177e4
LT
1854 }
1855
19a60522
SS
1856 /*
1857 * In PCI 33 mode, the P_PLL is not used, and therefore,
1858 * the the P_PLL_LOCK bit in the adapter_status register will
1859 * not be asserted.
1860 */
1861 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1862 sp->device_type == XFRAME_II_DEVICE && mode !=
1863 PCI_MODE_PCI_33) {
1864 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1865 return 0;
1866 }
1867 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1868 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1869 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1870 return 0;
1871 }
1872 return 1;
1da177e4
LT
1873}
1874
1875/**
1876 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1877 * @sp: Pointer to device specifc structure
20346722 1878 * Description :
1da177e4
LT
1879 * New procedure to clear mac address reading problems on Alpha platforms
1880 *
1881 */
1882
1ee6dd77 1883static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1884{
1ee6dd77 1885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1886 u64 val64;
1887 int i = 0;
1888
1889 while (fix_mac[i] != END_SIGN) {
1890 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1891 udelay(10);
1da177e4
LT
1892 val64 = readq(&bar0->gpio_control);
1893 }
1894}
1895
1896/**
20346722 1897 * start_nic - Turns the device on
1da177e4 1898 * @nic : device private variable.
20346722 1899 * Description:
1900 * This function actually turns the device on. Before this function is
1901 * called,all Registers are configured from their reset states
1902 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1903 * calling this function, the device interrupts are cleared and the NIC is
1904 * literally switched on by writing into the adapter control register.
20346722 1905 * Return Value:
1da177e4
LT
1906 * SUCCESS on success and -1 on failure.
1907 */
1908
1909static int start_nic(struct s2io_nic *nic)
1910{
1ee6dd77 1911 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1912 struct net_device *dev = nic->dev;
1913 register u64 val64 = 0;
20346722 1914 u16 subid, i;
1ee6dd77 1915 struct mac_info *mac_control;
1da177e4
LT
1916 struct config_param *config;
1917
1918 mac_control = &nic->mac_control;
1919 config = &nic->config;
1920
1921 /* PRC Initialization and configuration */
1922 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1923 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1924 &bar0->prc_rxd0_n[i]);
1925
1926 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982 1927 if (nic->config.bimodal)
1928 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1929 if (nic->rxd_mode == RXD_MODE_1)
1930 val64 |= PRC_CTRL_RC_ENABLED;
1931 else
1932 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
1933 if (nic->device_type == XFRAME_II_DEVICE)
1934 val64 |= PRC_CTRL_GROUP_READS;
1935 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1936 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
1937 writeq(val64, &bar0->prc_ctrl_n[i]);
1938 }
1939
da6971d8
AR
1940 if (nic->rxd_mode == RXD_MODE_3B) {
1941 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1942 val64 = readq(&bar0->rx_pa_cfg);
1943 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1944 writeq(val64, &bar0->rx_pa_cfg);
1945 }
1da177e4 1946
20346722 1947 /*
1da177e4
LT
1948 * Enabling MC-RLDRAM. After enabling the device, we timeout
1949 * for around 100ms, which is approximately the time required
1950 * for the device to be ready for operation.
1951 */
1952 val64 = readq(&bar0->mc_rldram_mrs);
1953 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1954 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1955 val64 = readq(&bar0->mc_rldram_mrs);
1956
20346722 1957 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1958
1959 /* Enabling ECC Protection. */
1960 val64 = readq(&bar0->adapter_control);
1961 val64 &= ~ADAPTER_ECC_EN;
1962 writeq(val64, &bar0->adapter_control);
1963
20346722 1964 /*
1965 * Clearing any possible Link state change interrupts that
1da177e4
LT
1966 * could have popped up just before Enabling the card.
1967 */
1968 val64 = readq(&bar0->mac_rmac_err_reg);
1969 if (val64)
1970 writeq(val64, &bar0->mac_rmac_err_reg);
1971
20346722 1972 /*
1973 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
1974 * it.
1975 */
1976 val64 = readq(&bar0->adapter_status);
19a60522 1977 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
1978 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1979 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1980 (unsigned long long) val64);
1981 return FAILURE;
1982 }
1983
20346722 1984 /*
1da177e4 1985 * With some switches, link might be already up at this point.
20346722 1986 * Because of this weird behavior, when we enable laser,
1987 * we may not get link. We need to handle this. We cannot
1988 * figure out which switch is misbehaving. So we are forced to
1989 * make a global change.
1da177e4
LT
1990 */
1991
1992 /* Enabling Laser. */
1993 val64 = readq(&bar0->adapter_control);
1994 val64 |= ADAPTER_EOI_TX_ON;
1995 writeq(val64, &bar0->adapter_control);
1996
c92ca04b
AR
1997 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
1998 /*
1999 * Dont see link state interrupts initally on some switches,
2000 * so directly scheduling the link state task here.
2001 */
2002 schedule_work(&nic->set_link_task);
2003 }
1da177e4
LT
2004 /* SXE-002: Initialize link and activity LED */
2005 subid = nic->pdev->subsystem_device;
541ae68f 2006 if (((subid & 0xFF) >= 0x07) &&
2007 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2008 val64 = readq(&bar0->gpio_control);
2009 val64 |= 0x0000800000000000ULL;
2010 writeq(val64, &bar0->gpio_control);
2011 val64 = 0x0411040400000000ULL;
509a2671 2012 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2013 }
2014
1da177e4
LT
2015 return SUCCESS;
2016}
fed5eccd
AR
2017/**
2018 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2019 */
1ee6dd77
RB
2020static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2021 TxD *txdlp, int get_off)
fed5eccd 2022{
1ee6dd77 2023 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2024 struct sk_buff *skb;
1ee6dd77 2025 struct TxD *txds;
fed5eccd
AR
2026 u16 j, frg_cnt;
2027
2028 txds = txdlp;
26b7625c 2029 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2030 pci_unmap_single(nic->pdev, (dma_addr_t)
2031 txds->Buffer_Pointer, sizeof(u64),
2032 PCI_DMA_TODEVICE);
2033 txds++;
2034 }
2035
2036 skb = (struct sk_buff *) ((unsigned long)
2037 txds->Host_Control);
2038 if (!skb) {
1ee6dd77 2039 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2040 return NULL;
2041 }
2042 pci_unmap_single(nic->pdev, (dma_addr_t)
2043 txds->Buffer_Pointer,
2044 skb->len - skb->data_len,
2045 PCI_DMA_TODEVICE);
2046 frg_cnt = skb_shinfo(skb)->nr_frags;
2047 if (frg_cnt) {
2048 txds++;
2049 for (j = 0; j < frg_cnt; j++, txds++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2051 if (!txds->Buffer_Pointer)
2052 break;
6aa20a22 2053 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2054 txds->Buffer_Pointer,
2055 frag->size, PCI_DMA_TODEVICE);
2056 }
2057 }
1ee6dd77 2058 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2059 return(skb);
2060}
1da177e4 2061
20346722 2062/**
2063 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2064 * @nic : device private variable.
20346722 2065 * Description:
1da177e4 2066 * Free all queued Tx buffers.
20346722 2067 * Return Value: void
1da177e4
LT
2068*/
2069
2070static void free_tx_buffers(struct s2io_nic *nic)
2071{
2072 struct net_device *dev = nic->dev;
2073 struct sk_buff *skb;
1ee6dd77 2074 struct TxD *txdp;
1da177e4 2075 int i, j;
1ee6dd77 2076 struct mac_info *mac_control;
1da177e4 2077 struct config_param *config;
fed5eccd 2078 int cnt = 0;
1da177e4
LT
2079
2080 mac_control = &nic->mac_control;
2081 config = &nic->config;
2082
2083 for (i = 0; i < config->tx_fifo_num; i++) {
2084 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
1ee6dd77 2085 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
1da177e4 2086 list_virt_addr;
fed5eccd
AR
2087 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2088 if (skb) {
2089 dev_kfree_skb(skb);
2090 cnt++;
1da177e4 2091 }
1da177e4
LT
2092 }
2093 DBG_PRINT(INTR_DBG,
2094 "%s:forcibly freeing %d skbs on FIFO%d\n",
2095 dev->name, cnt, i);
20346722 2096 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2097 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2098 }
2099}
2100
20346722 2101/**
2102 * stop_nic - To stop the nic
1da177e4 2103 * @nic ; device private variable.
20346722 2104 * Description:
2105 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2106 * function does. This function is called to stop the device.
2107 * Return Value:
2108 * void.
2109 */
2110
2111static void stop_nic(struct s2io_nic *nic)
2112{
1ee6dd77 2113 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2114 register u64 val64 = 0;
5d3213cc 2115 u16 interruptible;
1ee6dd77 2116 struct mac_info *mac_control;
1da177e4
LT
2117 struct config_param *config;
2118
2119 mac_control = &nic->mac_control;
2120 config = &nic->config;
2121
2122 /* Disable all interrupts */
e960fc5c 2123 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d 2124 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2125 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2126 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2127
5d3213cc
AR
2128 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2129 val64 = readq(&bar0->adapter_control);
2130 val64 &= ~(ADAPTER_CNTL_EN);
2131 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2132}
2133
1ee6dd77
RB
2134static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2135 sk_buff *skb)
da6971d8
AR
2136{
2137 struct net_device *dev = nic->dev;
2138 struct sk_buff *frag_list;
50eb8006 2139 void *tmp;
da6971d8
AR
2140
2141 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 2142 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
da6971d8
AR
2143 (nic->pdev, skb->data, l3l4hdr_size + 4,
2144 PCI_DMA_FROMDEVICE);
2145
2146 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2147 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2148 if (skb_shinfo(skb)->frag_list == NULL) {
2149 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2150 return -ENOMEM ;
2151 }
2152 frag_list = skb_shinfo(skb)->frag_list;
372cc597 2153 skb->truesize += frag_list->truesize;
da6971d8 2154 frag_list->next = NULL;
50eb8006
JG
2155 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2156 frag_list->data = tmp;
2157 frag_list->tail = tmp;
da6971d8
AR
2158
2159 /* Buffer-2 receives L4 data payload */
1ee6dd77 2160 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
da6971d8
AR
2161 frag_list->data, dev->mtu,
2162 PCI_DMA_FROMDEVICE);
2163 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2164 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2165
2166 return SUCCESS;
2167}
2168
20346722 2169/**
2170 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2171 * @nic: device private variable
20346722 2172 * @ring_no: ring number
2173 * Description:
1da177e4
LT
2174 * The function allocates Rx side skbs and puts the physical
2175 * address of these buffers into the RxD buffer pointers, so that the NIC
2176 * can DMA the received frame into these locations.
2177 * The NIC supports 3 receive modes, viz
2178 * 1. single buffer,
2179 * 2. three buffer and
2180 * 3. Five buffer modes.
20346722 2181 * Each mode defines how many fragments the received frame will be split
2182 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2183 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2184 * is split into 3 fragments. As of now only single buffer mode is
2185 * supported.
2186 * Return Value:
2187 * SUCCESS on success or an appropriate -ve value on failure.
2188 */
2189
ac1f60db 2190static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2191{
2192 struct net_device *dev = nic->dev;
2193 struct sk_buff *skb;
1ee6dd77 2194 struct RxD_t *rxdp;
1da177e4 2195 int off, off1, size, block_no, block_no1;
1da177e4 2196 u32 alloc_tab = 0;
20346722 2197 u32 alloc_cnt;
1ee6dd77 2198 struct mac_info *mac_control;
1da177e4 2199 struct config_param *config;
20346722 2200 u64 tmp;
1ee6dd77 2201 struct buffAdd *ba;
1da177e4 2202 unsigned long flags;
1ee6dd77 2203 struct RxD_t *first_rxdp = NULL;
1da177e4
LT
2204
2205 mac_control = &nic->mac_control;
2206 config = &nic->config;
20346722 2207 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2208 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2209
5d3213cc 2210 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2211 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2212 while (alloc_tab < alloc_cnt) {
20346722 2213 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2214 block_index;
20346722 2215 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2216
da6971d8
AR
2217 rxdp = mac_control->rings[ring_no].
2218 rx_blocks[block_no].rxds[off].virt_addr;
2219
2220 if ((block_no == block_no1) && (off == off1) &&
2221 (rxdp->Host_Control)) {
2222 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2223 dev->name);
1da177e4
LT
2224 DBG_PRINT(INTR_DBG, " info equated\n");
2225 goto end;
2226 }
da6971d8 2227 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2228 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2229 block_index++;
da6971d8
AR
2230 if (mac_control->rings[ring_no].rx_curr_put_info.
2231 block_index == mac_control->rings[ring_no].
2232 block_count)
2233 mac_control->rings[ring_no].rx_curr_put_info.
2234 block_index = 0;
2235 block_no = mac_control->rings[ring_no].
2236 rx_curr_put_info.block_index;
2237 if (off == rxd_count[nic->rxd_mode])
2238 off = 0;
20346722 2239 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2240 offset = off;
2241 rxdp = mac_control->rings[ring_no].
2242 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2243 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2244 dev->name, rxdp);
2245 }
db874e65
SS
2246 if(!napi) {
2247 spin_lock_irqsave(&nic->put_lock, flags);
2248 mac_control->rings[ring_no].put_pos =
2249 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2250 spin_unlock_irqrestore(&nic->put_lock, flags);
2251 } else {
2252 mac_control->rings[ring_no].put_pos =
2253 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2254 }
da6971d8
AR
2255 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2256 ((nic->rxd_mode >= RXD_MODE_3A) &&
2257 (rxdp->Control_2 & BIT(0)))) {
20346722 2258 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2259 offset = off;
1da177e4
LT
2260 goto end;
2261 }
da6971d8
AR
2262 /* calculate size of skb based on ring mode */
2263 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2264 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2265 if (nic->rxd_mode == RXD_MODE_1)
2266 size += NET_IP_ALIGN;
2267 else if (nic->rxd_mode == RXD_MODE_3B)
2268 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2269 else
2270 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2271
da6971d8
AR
2272 /* allocate skb */
2273 skb = dev_alloc_skb(size);
2274 if(!skb) {
1da177e4
LT
2275 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2276 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b 2277 if (first_rxdp) {
2278 wmb();
2279 first_rxdp->Control_1 |= RXD_OWN_XENA;
2280 }
da6971d8
AR
2281 return -ENOMEM ;
2282 }
2283 if (nic->rxd_mode == RXD_MODE_1) {
2284 /* 1 buffer mode - normal operation mode */
1ee6dd77 2285 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2286 skb_reserve(skb, NET_IP_ALIGN);
1ee6dd77 2287 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2288 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2289 PCI_DMA_FROMDEVICE);
2290 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2291
2292 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2293 /*
2294 * 2 or 3 buffer mode -
2295 * Both 2 buffer mode and 3 buffer mode provides 128
2296 * byte aligned receive buffers.
2297 *
2298 * 3 buffer mode provides header separation where in
2299 * skb->data will have L3/L4 headers where as
2300 * skb_shinfo(skb)->frag_list will have the L4 data
2301 * payload
2302 */
2303
1ee6dd77 2304 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2305 ba = &mac_control->rings[ring_no].ba[block_no][off];
2306 skb_reserve(skb, BUF0_LEN);
2307 tmp = (u64)(unsigned long) skb->data;
2308 tmp += ALIGN_SIZE;
2309 tmp &= ~ALIGN_SIZE;
2310 skb->data = (void *) (unsigned long)tmp;
2311 skb->tail = (void *) (unsigned long)tmp;
2312
1ee6dd77
RB
2313 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2314 ((struct RxD3*)rxdp)->Buffer0_ptr =
75c30b13 2315 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2316 PCI_DMA_FROMDEVICE);
75c30b13
AR
2317 else
2318 pci_dma_sync_single_for_device(nic->pdev,
1ee6dd77 2319 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
75c30b13 2320 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2321 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2322 if (nic->rxd_mode == RXD_MODE_3B) {
2323 /* Two buffer mode */
2324
2325 /*
6aa20a22 2326 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2327 * L4 payload
2328 */
1ee6dd77 2329 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
da6971d8
AR
2330 (nic->pdev, skb->data, dev->mtu + 4,
2331 PCI_DMA_FROMDEVICE);
2332
75c30b13 2333 /* Buffer-1 will be dummy buffer. Not used */
1ee6dd77
RB
2334 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2335 ((struct RxD3*)rxdp)->Buffer1_ptr =
6aa20a22 2336 pci_map_single(nic->pdev,
75c30b13
AR
2337 ba->ba_1, BUF1_LEN,
2338 PCI_DMA_FROMDEVICE);
2339 }
da6971d8
AR
2340 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2341 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2342 (dev->mtu + 4);
2343 } else {
2344 /* 3 buffer mode */
2345 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2346 dev_kfree_skb_irq(skb);
2347 if (first_rxdp) {
2348 wmb();
2349 first_rxdp->Control_1 |=
2350 RXD_OWN_XENA;
2351 }
2352 return -ENOMEM ;
2353 }
2354 }
2355 rxdp->Control_2 |= BIT(0);
1da177e4 2356 }
1da177e4 2357 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b 2358 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2359 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2360 off++;
da6971d8
AR
2361 if (off == (rxd_count[nic->rxd_mode] + 1))
2362 off = 0;
20346722 2363 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2364
da6971d8 2365 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2366 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2367 if (first_rxdp) {
2368 wmb();
2369 first_rxdp->Control_1 |= RXD_OWN_XENA;
2370 }
2371 first_rxdp = rxdp;
2372 }
1da177e4
LT
2373 atomic_inc(&nic->rx_bufs_left[ring_no]);
2374 alloc_tab++;
2375 }
2376
2377 end:
303bcb4b 2378 /* Transfer ownership of first descriptor to adapter just before
2379 * exiting. Before that, use memory barrier so that ownership
2380 * and other fields are seen by adapter correctly.
2381 */
2382 if (first_rxdp) {
2383 wmb();
2384 first_rxdp->Control_1 |= RXD_OWN_XENA;
2385 }
2386
1da177e4
LT
2387 return SUCCESS;
2388}
2389
da6971d8
AR
2390static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2391{
2392 struct net_device *dev = sp->dev;
2393 int j;
2394 struct sk_buff *skb;
1ee6dd77
RB
2395 struct RxD_t *rxdp;
2396 struct mac_info *mac_control;
2397 struct buffAdd *ba;
da6971d8
AR
2398
2399 mac_control = &sp->mac_control;
2400 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2401 rxdp = mac_control->rings[ring_no].
2402 rx_blocks[blk].rxds[j].virt_addr;
2403 skb = (struct sk_buff *)
2404 ((unsigned long) rxdp->Host_Control);
2405 if (!skb) {
2406 continue;
2407 }
2408 if (sp->rxd_mode == RXD_MODE_1) {
2409 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2410 ((struct RxD1*)rxdp)->Buffer0_ptr,
da6971d8
AR
2411 dev->mtu +
2412 HEADER_ETHERNET_II_802_3_SIZE
2413 + HEADER_802_2_SIZE +
2414 HEADER_SNAP_SIZE,
2415 PCI_DMA_FROMDEVICE);
1ee6dd77 2416 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8
AR
2417 } else if(sp->rxd_mode == RXD_MODE_3B) {
2418 ba = &mac_control->rings[ring_no].
2419 ba[blk][j];
2420 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2421 ((struct RxD3*)rxdp)->Buffer0_ptr,
da6971d8
AR
2422 BUF0_LEN,
2423 PCI_DMA_FROMDEVICE);
2424 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2425 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2426 BUF1_LEN,
2427 PCI_DMA_FROMDEVICE);
2428 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2429 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2430 dev->mtu + 4,
2431 PCI_DMA_FROMDEVICE);
1ee6dd77 2432 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2433 } else {
2434 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2435 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2436 PCI_DMA_FROMDEVICE);
2437 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2438 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2439 l3l4hdr_size + 4,
2440 PCI_DMA_FROMDEVICE);
2441 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2442 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
da6971d8 2443 PCI_DMA_FROMDEVICE);
1ee6dd77 2444 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2445 }
2446 dev_kfree_skb(skb);
2447 atomic_dec(&sp->rx_bufs_left[ring_no]);
2448 }
2449}
2450
1da177e4 2451/**
20346722 2452 * free_rx_buffers - Frees all Rx buffers
1da177e4 2453 * @sp: device private variable.
20346722 2454 * Description:
1da177e4
LT
2455 * This function will free all Rx buffers allocated by host.
2456 * Return Value:
2457 * NONE.
2458 */
2459
2460static void free_rx_buffers(struct s2io_nic *sp)
2461{
2462 struct net_device *dev = sp->dev;
da6971d8 2463 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2464 struct mac_info *mac_control;
1da177e4 2465 struct config_param *config;
1da177e4
LT
2466
2467 mac_control = &sp->mac_control;
2468 config = &sp->config;
2469
2470 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2471 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2472 free_rxd_blk(sp,i,blk);
1da177e4 2473
20346722 2474 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2475 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2476 mac_control->rings[i].rx_curr_put_info.offset = 0;
2477 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2478 atomic_set(&sp->rx_bufs_left[i], 0);
2479 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2480 dev->name, buf_cnt, i);
2481 }
2482}
2483
2484/**
2485 * s2io_poll - Rx interrupt handler for NAPI support
2486 * @dev : pointer to the device structure.
20346722 2487 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2488 * during one pass through the 'Poll" function.
2489 * Description:
2490 * Comes into picture only if NAPI support has been incorporated. It does
2491 * the same thing that rx_intr_handler does, but not in a interrupt context
2492 * also It will process only a given number of packets.
2493 * Return value:
2494 * 0 on success and 1 if there are No Rx packets to be processed.
2495 */
2496
1da177e4
LT
2497static int s2io_poll(struct net_device *dev, int *budget)
2498{
1ee6dd77 2499 struct s2io_nic *nic = dev->priv;
20346722 2500 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2501 struct mac_info *mac_control;
1da177e4 2502 struct config_param *config;
1ee6dd77 2503 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2504 int i;
1da177e4 2505
7ba013ac 2506 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2507 mac_control = &nic->mac_control;
2508 config = &nic->config;
2509
20346722 2510 nic->pkts_to_process = *budget;
2511 if (nic->pkts_to_process > dev->quota)
2512 nic->pkts_to_process = dev->quota;
2513 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2514
19a60522
SS
2515 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2516 readl(&bar0->rx_traffic_int);
1da177e4
LT
2517
2518 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2519 rx_intr_handler(&mac_control->rings[i]);
2520 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2521 if (!nic->pkts_to_process) {
2522 /* Quota for the current iteration has been met */
2523 goto no_rx;
1da177e4 2524 }
1da177e4
LT
2525 }
2526 if (!pkt_cnt)
2527 pkt_cnt = 1;
2528
2529 dev->quota -= pkt_cnt;
2530 *budget -= pkt_cnt;
2531 netif_rx_complete(dev);
2532
2533 for (i = 0; i < config->rx_ring_num; i++) {
2534 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2535 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2536 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2537 break;
2538 }
2539 }
2540 /* Re enable the Rx interrupts. */
c92ca04b 2541 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2542 readl(&bar0->rx_traffic_mask);
7ba013ac 2543 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2544 return 0;
2545
20346722 2546no_rx:
1da177e4
LT
2547 dev->quota -= pkt_cnt;
2548 *budget -= pkt_cnt;
2549
2550 for (i = 0; i < config->rx_ring_num; i++) {
2551 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2552 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2553 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2554 break;
2555 }
2556 }
7ba013ac 2557 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2558 return 1;
2559}
20346722 2560
b41477f3 2561#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2562/**
b41477f3 2563 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2564 * @dev : pointer to the device structure.
2565 * Description:
b41477f3
AR
2566 * This function will be called by upper layer to check for events on the
2567 * interface in situations where interrupts are disabled. It is used for
2568 * specific in-kernel networking tasks, such as remote consoles and kernel
2569 * debugging over the network (example netdump in RedHat).
612eff0e 2570 */
612eff0e
BH
2571static void s2io_netpoll(struct net_device *dev)
2572{
1ee6dd77
RB
2573 struct s2io_nic *nic = dev->priv;
2574 struct mac_info *mac_control;
612eff0e 2575 struct config_param *config;
1ee6dd77 2576 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2577 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2578 int i;
2579
2580 disable_irq(dev->irq);
2581
2582 atomic_inc(&nic->isr_cnt);
2583 mac_control = &nic->mac_control;
2584 config = &nic->config;
2585
612eff0e 2586 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2587 writeq(val64, &bar0->tx_traffic_int);
2588
6aa20a22 2589 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2590 * run out of skbs and will fail and eventually netpoll application such
2591 * as netdump will fail.
2592 */
2593 for (i = 0; i < config->tx_fifo_num; i++)
2594 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2595
b41477f3 2596 /* check for received packet and indicate up to network */
612eff0e
BH
2597 for (i = 0; i < config->rx_ring_num; i++)
2598 rx_intr_handler(&mac_control->rings[i]);
2599
2600 for (i = 0; i < config->rx_ring_num; i++) {
2601 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2602 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2603 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2604 break;
2605 }
2606 }
2607 atomic_dec(&nic->isr_cnt);
2608 enable_irq(dev->irq);
2609 return;
2610}
2611#endif
2612
20346722 2613/**
1da177e4
LT
2614 * rx_intr_handler - Rx interrupt handler
2615 * @nic: device private variable.
20346722 2616 * Description:
2617 * If the interrupt is because of a received frame or if the
1da177e4 2618 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2619 * called. It picks out the RxD at which place the last Rx processing had
2620 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2621 * the offset.
2622 * Return Value:
2623 * NONE.
2624 */
1ee6dd77 2625static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2626{
1ee6dd77 2627 struct s2io_nic *nic = ring_data->nic;
1da177e4 2628 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2629 int get_block, put_block, put_offset;
1ee6dd77
RB
2630 struct rx_curr_get_info get_info, put_info;
2631 struct RxD_t *rxdp;
1da177e4 2632 struct sk_buff *skb;
20346722 2633 int pkt_cnt = 0;
7d3d0439
RA
2634 int i;
2635
7ba013ac 2636 spin_lock(&nic->rx_lock);
2637 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2638 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac 2639 __FUNCTION__, dev->name);
2640 spin_unlock(&nic->rx_lock);
776bd20f 2641 return;
7ba013ac 2642 }
2643
20346722 2644 get_info = ring_data->rx_curr_get_info;
2645 get_block = get_info.block_index;
1ee6dd77 2646 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2647 put_block = put_info.block_index;
da6971d8 2648 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2649 if (!napi) {
2650 spin_lock(&nic->put_lock);
2651 put_offset = ring_data->put_pos;
2652 spin_unlock(&nic->put_lock);
2653 } else
2654 put_offset = ring_data->put_pos;
2655
da6971d8 2656 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2657 /*
2658 * If your are next to put index then it's
2659 * FIFO full condition
2660 */
da6971d8
AR
2661 if ((get_block == put_block) &&
2662 (get_info.offset + 1) == put_info.offset) {
75c30b13 2663 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2664 break;
2665 }
20346722 2666 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2667 if (skb == NULL) {
2668 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2669 dev->name);
2670 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2671 spin_unlock(&nic->rx_lock);
20346722 2672 return;
1da177e4 2673 }
da6971d8
AR
2674 if (nic->rxd_mode == RXD_MODE_1) {
2675 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2676 ((struct RxD1*)rxdp)->Buffer0_ptr,
20346722 2677 dev->mtu +
2678 HEADER_ETHERNET_II_802_3_SIZE +
2679 HEADER_802_2_SIZE +
2680 HEADER_SNAP_SIZE,
2681 PCI_DMA_FROMDEVICE);
da6971d8 2682 } else if (nic->rxd_mode == RXD_MODE_3B) {
75c30b13 2683 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2684 ((struct RxD3*)rxdp)->Buffer0_ptr,
20346722 2685 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2686 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2687 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8 2688 dev->mtu + 4,
20346722 2689 PCI_DMA_FROMDEVICE);
da6971d8 2690 } else {
75c30b13 2691 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2692 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2693 PCI_DMA_FROMDEVICE);
2694 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2695 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2696 l3l4hdr_size + 4,
2697 PCI_DMA_FROMDEVICE);
2698 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2699 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2700 dev->mtu, PCI_DMA_FROMDEVICE);
2701 }
863c11a9 2702 prefetch(skb->data);
20346722 2703 rx_osm_handler(ring_data, rxdp);
2704 get_info.offset++;
da6971d8
AR
2705 ring_data->rx_curr_get_info.offset = get_info.offset;
2706 rxdp = ring_data->rx_blocks[get_block].
2707 rxds[get_info.offset].virt_addr;
2708 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2709 get_info.offset = 0;
da6971d8 2710 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2711 get_block++;
da6971d8
AR
2712 if (get_block == ring_data->block_count)
2713 get_block = 0;
2714 ring_data->rx_curr_get_info.block_index = get_block;
20346722 2715 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2716 }
1da177e4 2717
20346722 2718 nic->pkts_to_process -= 1;
db874e65 2719 if ((napi) && (!nic->pkts_to_process))
20346722 2720 break;
20346722 2721 pkt_cnt++;
1da177e4
LT
2722 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2723 break;
2724 }
7d3d0439
RA
2725 if (nic->lro) {
2726 /* Clear all LRO sessions before exiting */
2727 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2728 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2729 if (lro->in_use) {
2730 update_L3L4_header(nic, lro);
2731 queue_rx_frame(lro->parent);
2732 clear_lro_session(lro);
2733 }
2734 }
2735 }
2736
7ba013ac 2737 spin_unlock(&nic->rx_lock);
1da177e4 2738}
20346722 2739
2740/**
1da177e4
LT
2741 * tx_intr_handler - Transmit interrupt handler
2742 * @nic : device private variable
20346722 2743 * Description:
2744 * If an interrupt was raised to indicate DMA complete of the
2745 * Tx packet, this function is called. It identifies the last TxD
2746 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2747 * DMA'ed into the NICs internal memory.
2748 * Return Value:
2749 * NONE
2750 */
2751
1ee6dd77 2752static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2753{
1ee6dd77 2754 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2755 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2756 struct tx_curr_get_info get_info, put_info;
1da177e4 2757 struct sk_buff *skb;
1ee6dd77 2758 struct TxD *txdlp;
1da177e4 2759
20346722 2760 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2761 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2762 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722 2763 list_virt_addr;
2764 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2765 (get_info.offset != put_info.offset) &&
2766 (txdlp->Host_Control)) {
2767 /* Check for TxD errors */
2768 if (txdlp->Control_1 & TXD_T_CODE) {
2769 unsigned long long err;
2770 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2771 if (err & 0x1) {
2772 nic->mac_control.stats_info->sw_stat.
2773 parity_err_cnt++;
2774 }
776bd20f 2775 if ((err >> 48) == 0xA) {
2776 DBG_PRINT(TX_DBG, "TxD returned due \
19a60522 2777 to loss of link\n");
776bd20f 2778 }
2779 else {
19a60522 2780 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
776bd20f 2781 }
20346722 2782 }
1da177e4 2783
fed5eccd 2784 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 2785 if (skb == NULL) {
2786 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2787 __FUNCTION__);
2788 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2789 return;
2790 }
2791
20346722 2792 /* Updating the statistics block */
20346722 2793 nic->stats.tx_bytes += skb->len;
2794 dev_kfree_skb_irq(skb);
2795
2796 get_info.offset++;
863c11a9
AR
2797 if (get_info.offset == get_info.fifo_len + 1)
2798 get_info.offset = 0;
1ee6dd77 2799 txdlp = (struct TxD *) fifo_data->list_info
20346722 2800 [get_info.offset].list_virt_addr;
2801 fifo_data->tx_curr_get_info.offset =
2802 get_info.offset;
1da177e4
LT
2803 }
2804
2805 spin_lock(&nic->tx_lock);
2806 if (netif_queue_stopped(dev))
2807 netif_wake_queue(dev);
2808 spin_unlock(&nic->tx_lock);
2809}
2810
bd1034f0
AR
2811/**
2812 * s2io_mdio_write - Function to write in to MDIO registers
2813 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2814 * @addr : address value
2815 * @value : data value
2816 * @dev : pointer to net_device structure
2817 * Description:
2818 * This function is used to write values to the MDIO registers
2819 * NONE
2820 */
2821static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2822{
2823 u64 val64 = 0x0;
1ee6dd77
RB
2824 struct s2io_nic *sp = dev->priv;
2825 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2826
2827 //address transaction
2828 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2829 | MDIO_MMD_DEV_ADDR(mmd_type)
2830 | MDIO_MMS_PRT_ADDR(0x0);
2831 writeq(val64, &bar0->mdio_control);
2832 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2833 writeq(val64, &bar0->mdio_control);
2834 udelay(100);
2835
2836 //Data transaction
2837 val64 = 0x0;
2838 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2839 | MDIO_MMD_DEV_ADDR(mmd_type)
2840 | MDIO_MMS_PRT_ADDR(0x0)
2841 | MDIO_MDIO_DATA(value)
2842 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2843 writeq(val64, &bar0->mdio_control);
2844 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2845 writeq(val64, &bar0->mdio_control);
2846 udelay(100);
2847
2848 val64 = 0x0;
2849 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2850 | MDIO_MMD_DEV_ADDR(mmd_type)
2851 | MDIO_MMS_PRT_ADDR(0x0)
2852 | MDIO_OP(MDIO_OP_READ_TRANS);
2853 writeq(val64, &bar0->mdio_control);
2854 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2855 writeq(val64, &bar0->mdio_control);
2856 udelay(100);
2857
2858}
2859
2860/**
2861 * s2io_mdio_read - Function to write in to MDIO registers
2862 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2863 * @addr : address value
2864 * @dev : pointer to net_device structure
2865 * Description:
2866 * This function is used to read values to the MDIO registers
2867 * NONE
2868 */
2869static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2870{
2871 u64 val64 = 0x0;
2872 u64 rval64 = 0x0;
1ee6dd77
RB
2873 struct s2io_nic *sp = dev->priv;
2874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2875
2876 /* address transaction */
2877 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2878 | MDIO_MMD_DEV_ADDR(mmd_type)
2879 | MDIO_MMS_PRT_ADDR(0x0);
2880 writeq(val64, &bar0->mdio_control);
2881 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2882 writeq(val64, &bar0->mdio_control);
2883 udelay(100);
2884
2885 /* Data transaction */
2886 val64 = 0x0;
2887 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2888 | MDIO_MMD_DEV_ADDR(mmd_type)
2889 | MDIO_MMS_PRT_ADDR(0x0)
2890 | MDIO_OP(MDIO_OP_READ_TRANS);
2891 writeq(val64, &bar0->mdio_control);
2892 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2893 writeq(val64, &bar0->mdio_control);
2894 udelay(100);
2895
2896 /* Read the value from regs */
2897 rval64 = readq(&bar0->mdio_control);
2898 rval64 = rval64 & 0xFFFF0000;
2899 rval64 = rval64 >> 16;
2900 return rval64;
2901}
2902/**
2903 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2904 * @counter : couter value to be updated
2905 * @flag : flag to indicate the status
2906 * @type : counter type
2907 * Description:
2908 * This function is to check the status of the xpak counters value
2909 * NONE
2910 */
2911
2912static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2913{
2914 u64 mask = 0x3;
2915 u64 val64;
2916 int i;
2917 for(i = 0; i <index; i++)
2918 mask = mask << 0x2;
2919
2920 if(flag > 0)
2921 {
2922 *counter = *counter + 1;
2923 val64 = *regs_stat & mask;
2924 val64 = val64 >> (index * 0x2);
2925 val64 = val64 + 1;
2926 if(val64 == 3)
2927 {
2928 switch(type)
2929 {
2930 case 1:
2931 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2932 "service. Excessive temperatures may "
2933 "result in premature transceiver "
2934 "failure \n");
2935 break;
2936 case 2:
2937 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2938 "service Excessive bias currents may "
2939 "indicate imminent laser diode "
2940 "failure \n");
2941 break;
2942 case 3:
2943 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2944 "service Excessive laser output "
2945 "power may saturate far-end "
2946 "receiver\n");
2947 break;
2948 default:
2949 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2950 "type \n");
2951 }
2952 val64 = 0x0;
2953 }
2954 val64 = val64 << (index * 0x2);
2955 *regs_stat = (*regs_stat & (~mask)) | (val64);
2956
2957 } else {
2958 *regs_stat = *regs_stat & (~mask);
2959 }
2960}
2961
2962/**
2963 * s2io_updt_xpak_counter - Function to update the xpak counters
2964 * @dev : pointer to net_device struct
2965 * Description:
2966 * This function is to upate the status of the xpak counters value
2967 * NONE
2968 */
2969static void s2io_updt_xpak_counter(struct net_device *dev)
2970{
2971 u16 flag = 0x0;
2972 u16 type = 0x0;
2973 u16 val16 = 0x0;
2974 u64 val64 = 0x0;
2975 u64 addr = 0x0;
2976
1ee6dd77
RB
2977 struct s2io_nic *sp = dev->priv;
2978 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
2979
2980 /* Check the communication with the MDIO slave */
2981 addr = 0x0000;
2982 val64 = 0x0;
2983 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
2984 if((val64 == 0xFFFF) || (val64 == 0x0000))
2985 {
2986 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
2987 "Returned %llx\n", (unsigned long long)val64);
2988 return;
2989 }
2990
2991 /* Check for the expecte value of 2040 at PMA address 0x0000 */
2992 if(val64 != 0x2040)
2993 {
2994 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
2995 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
2996 (unsigned long long)val64);
2997 return;
2998 }
2999
3000 /* Loading the DOM register to MDIO register */
3001 addr = 0xA100;
3002 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3003 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3004
3005 /* Reading the Alarm flags */
3006 addr = 0xA070;
3007 val64 = 0x0;
3008 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3009
3010 flag = CHECKBIT(val64, 0x7);
3011 type = 1;
3012 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3013 &stat_info->xpak_stat.xpak_regs_stat,
3014 0x0, flag, type);
3015
3016 if(CHECKBIT(val64, 0x6))
3017 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3018
3019 flag = CHECKBIT(val64, 0x3);
3020 type = 2;
3021 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3022 &stat_info->xpak_stat.xpak_regs_stat,
3023 0x2, flag, type);
3024
3025 if(CHECKBIT(val64, 0x2))
3026 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3027
3028 flag = CHECKBIT(val64, 0x1);
3029 type = 3;
3030 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3031 &stat_info->xpak_stat.xpak_regs_stat,
3032 0x4, flag, type);
3033
3034 if(CHECKBIT(val64, 0x0))
3035 stat_info->xpak_stat.alarm_laser_output_power_low++;
3036
3037 /* Reading the Warning flags */
3038 addr = 0xA074;
3039 val64 = 0x0;
3040 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3041
3042 if(CHECKBIT(val64, 0x7))
3043 stat_info->xpak_stat.warn_transceiver_temp_high++;
3044
3045 if(CHECKBIT(val64, 0x6))
3046 stat_info->xpak_stat.warn_transceiver_temp_low++;
3047
3048 if(CHECKBIT(val64, 0x3))
3049 stat_info->xpak_stat.warn_laser_bias_current_high++;
3050
3051 if(CHECKBIT(val64, 0x2))
3052 stat_info->xpak_stat.warn_laser_bias_current_low++;
3053
3054 if(CHECKBIT(val64, 0x1))
3055 stat_info->xpak_stat.warn_laser_output_power_high++;
3056
3057 if(CHECKBIT(val64, 0x0))
3058 stat_info->xpak_stat.warn_laser_output_power_low++;
3059}
3060
20346722 3061/**
1da177e4
LT
3062 * alarm_intr_handler - Alarm Interrrupt handler
3063 * @nic: device private variable
20346722 3064 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3065 * complete, this function is called. If the interrupt was to indicate
20346722 3066 * a loss of link, the OSM link status handler is invoked for any other
3067 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3068 * and a H/W reset is issued.
3069 * Return Value:
3070 * NONE
3071*/
3072
3073static void alarm_intr_handler(struct s2io_nic *nic)
3074{
3075 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3076 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3077 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3078 u64 cnt;
3079 int i;
372cc597
SS
3080 if (atomic_read(&nic->card_state) == CARD_DOWN)
3081 return;
bd1034f0
AR
3082 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3083 /* Handling the XPAK counters update */
3084 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3085 /* waiting for an hour */
3086 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3087 } else {
3088 s2io_updt_xpak_counter(dev);
3089 /* reset the count to zero */
3090 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3091 }
1da177e4
LT
3092
3093 /* Handling link status change error Intr */
a371a07d 3094 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3095 err_reg = readq(&bar0->mac_rmac_err_reg);
3096 writeq(err_reg, &bar0->mac_rmac_err_reg);
3097 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3098 schedule_work(&nic->set_link_task);
3099 }
1da177e4
LT
3100 }
3101
5e25b9dd 3102 /* Handling Ecc errors */
3103 val64 = readq(&bar0->mc_err_reg);
3104 writeq(val64, &bar0->mc_err_reg);
3105 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3106 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac 3107 nic->mac_control.stats_info->sw_stat.
3108 double_ecc_errs++;
776bd20f 3109 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3110 dev->name);
776bd20f 3111 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3112 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3113 /* Reset XframeI only if critical error */
3114 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3115 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3116 netif_stop_queue(dev);
3117 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3118 nic->mac_control.stats_info->sw_stat.
3119 soft_reset_cnt++;
776bd20f 3120 }
e960fc5c 3121 }
5e25b9dd 3122 } else {
7ba013ac 3123 nic->mac_control.stats_info->sw_stat.
3124 single_ecc_errs++;
5e25b9dd 3125 }
3126 }
3127
1da177e4
LT
3128 /* In case of a serious error, the device will be Reset. */
3129 val64 = readq(&bar0->serr_source);
3130 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3131 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3132 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3133 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3134 (unsigned long long)val64);
1da177e4
LT
3135 netif_stop_queue(dev);
3136 schedule_work(&nic->rst_timer_task);
bd1034f0 3137 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3138 }
3139
3140 /*
3141 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3142 * Error occurs, the adapter will be recycled by disabling the
20346722 3143 * adapter enable bit and enabling it again after the device
1da177e4
LT
3144 * becomes Quiescent.
3145 */
3146 val64 = readq(&bar0->pcc_err_reg);
3147 writeq(val64, &bar0->pcc_err_reg);
3148 if (val64 & PCC_FB_ECC_DB_ERR) {
3149 u64 ac = readq(&bar0->adapter_control);
3150 ac &= ~(ADAPTER_CNTL_EN);
3151 writeq(ac, &bar0->adapter_control);
3152 ac = readq(&bar0->adapter_control);
3153 schedule_work(&nic->set_link_task);
3154 }
bd1034f0
AR
3155 /* Check for data parity error */
3156 val64 = readq(&bar0->pic_int_status);
3157 if (val64 & PIC_INT_GPIO) {
3158 val64 = readq(&bar0->gpio_int_reg);
3159 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3160 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3161 schedule_work(&nic->rst_timer_task);
3162 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3163 }
3164 }
3165
3166 /* Check for ring full counter */
3167 if (nic->device_type & XFRAME_II_DEVICE) {
3168 val64 = readq(&bar0->ring_bump_counter1);
3169 for (i=0; i<4; i++) {
3170 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3171 cnt >>= 64 - ((i+1)*16);
3172 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3173 += cnt;
3174 }
3175
3176 val64 = readq(&bar0->ring_bump_counter2);
3177 for (i=0; i<4; i++) {
3178 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3179 cnt >>= 64 - ((i+1)*16);
3180 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3181 += cnt;
3182 }
3183 }
1da177e4
LT
3184
3185 /* Other type of interrupts are not being handled now, TODO */
3186}
3187
20346722 3188/**
1da177e4 3189 * wait_for_cmd_complete - waits for a command to complete.
20346722 3190 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3191 * s2io_nic structure.
20346722 3192 * Description: Function that waits for a command to Write into RMAC
3193 * ADDR DATA registers to be completed and returns either success or
3194 * error depending on whether the command was complete or not.
1da177e4
LT
3195 * Return value:
3196 * SUCCESS on success and FAILURE on failure.
3197 */
3198
cc3afe6f 3199static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit)
1da177e4 3200{
1da177e4
LT
3201 int ret = FAILURE, cnt = 0;
3202 u64 val64;
3203
3204 while (TRUE) {
c92ca04b
AR
3205 val64 = readq(addr);
3206 if (!(val64 & busy_bit)) {
1da177e4
LT
3207 ret = SUCCESS;
3208 break;
3209 }
c92ca04b
AR
3210
3211 if(in_interrupt())
3212 mdelay(50);
3213 else
3214 msleep(50);
3215
1da177e4
LT
3216 if (cnt++ > 10)
3217 break;
3218 }
1da177e4
LT
3219 return ret;
3220}
19a60522
SS
3221/*
3222 * check_pci_device_id - Checks if the device id is supported
3223 * @id : device id
3224 * Description: Function to check if the pci device id is supported by driver.
3225 * Return value: Actual device id if supported else PCI_ANY_ID
3226 */
3227static u16 check_pci_device_id(u16 id)
3228{
3229 switch (id) {
3230 case PCI_DEVICE_ID_HERC_WIN:
3231 case PCI_DEVICE_ID_HERC_UNI:
3232 return XFRAME_II_DEVICE;
3233 case PCI_DEVICE_ID_S2IO_UNI:
3234 case PCI_DEVICE_ID_S2IO_WIN:
3235 return XFRAME_I_DEVICE;
3236 default:
3237 return PCI_ANY_ID;
3238 }
3239}
1da177e4 3240
20346722 3241/**
3242 * s2io_reset - Resets the card.
1da177e4
LT
3243 * @sp : private member of the device structure.
3244 * Description: Function to Reset the card. This function then also
20346722 3245 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3246 * the card reset also resets the configuration space.
3247 * Return value:
3248 * void.
3249 */
3250
1ee6dd77 3251static void s2io_reset(struct s2io_nic * sp)
1da177e4 3252{
1ee6dd77 3253 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3254 u64 val64;
5e25b9dd 3255 u16 subid, pci_cmd;
19a60522
SS
3256 int i;
3257 u16 val16;
3258 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3259 __FUNCTION__, sp->dev->name);
1da177e4 3260
0b1f7ebe 3261 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3262 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3263
19a60522
SS
3264 if (sp->device_type == XFRAME_II_DEVICE) {
3265 int ret;
3266 ret = pci_set_power_state(sp->pdev, 3);
3267 if (!ret)
3268 ret = pci_set_power_state(sp->pdev, 0);
3269 else {
3270 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3271 __FUNCTION__);
3272 goto old_way;
3273 }
3274 msleep(20);
3275 goto new_way;
3276 }
3277old_way:
1da177e4
LT
3278 val64 = SW_RESET_ALL;
3279 writeq(val64, &bar0->sw_reset);
19a60522 3280new_way:
c92ca04b
AR
3281 if (strstr(sp->product_name, "CX4")) {
3282 msleep(750);
3283 }
19a60522
SS
3284 msleep(250);
3285 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3286
19a60522
SS
3287 /* Restore the PCI state saved during initialization. */
3288 pci_restore_state(sp->pdev);
3289 pci_read_config_word(sp->pdev, 0x2, &val16);
3290 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3291 break;
3292 msleep(200);
3293 }
1da177e4 3294
19a60522
SS
3295 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3296 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3297 }
3298
3299 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3300
3301 s2io_init_pci(sp);
1da177e4 3302
20346722 3303 /* Set swapper to enable I/O register access */
3304 s2io_set_swapper(sp);
3305
cc6e7c44
RA
3306 /* Restore the MSIX table entries from local variables */
3307 restore_xmsi_data(sp);
3308
5e25b9dd 3309 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3310 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3311 /* Clear "detected parity error" bit */
303bcb4b 3312 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3313
303bcb4b 3314 /* Clearing PCIX Ecc status register */
3315 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3316
303bcb4b 3317 /* Clearing PCI_STATUS error reflected here */
3318 writeq(BIT(62), &bar0->txpic_int_reg);
3319 }
5e25b9dd 3320
20346722 3321 /* Reset device statistics maintained by OS */
3322 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3323
1da177e4
LT
3324 /* SXE-002: Configure link and activity LED to turn it off */
3325 subid = sp->pdev->subsystem_device;
541ae68f 3326 if (((subid & 0xFF) >= 0x07) &&
3327 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3328 val64 = readq(&bar0->gpio_control);
3329 val64 |= 0x0000800000000000ULL;
3330 writeq(val64, &bar0->gpio_control);
3331 val64 = 0x0411040400000000ULL;
509a2671 3332 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3333 }
3334
541ae68f 3335 /*
3336 * Clear spurious ECC interrupts that would have occured on
3337 * XFRAME II cards after reset.
3338 */
3339 if (sp->device_type == XFRAME_II_DEVICE) {
3340 val64 = readq(&bar0->pcc_err_reg);
3341 writeq(val64, &bar0->pcc_err_reg);
3342 }
3343
1da177e4
LT
3344 sp->device_enabled_once = FALSE;
3345}
3346
3347/**
20346722 3348 * s2io_set_swapper - to set the swapper controle on the card
3349 * @sp : private member of the device structure,
1da177e4 3350 * pointer to the s2io_nic structure.
20346722 3351 * Description: Function to set the swapper control on the card
1da177e4
LT
3352 * correctly depending on the 'endianness' of the system.
3353 * Return value:
3354 * SUCCESS on success and FAILURE on failure.
3355 */
3356
1ee6dd77 3357static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3358{
3359 struct net_device *dev = sp->dev;
1ee6dd77 3360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3361 u64 val64, valt, valr;
3362
20346722 3363 /*
1da177e4
LT
3364 * Set proper endian settings and verify the same by reading
3365 * the PIF Feed-back register.
3366 */
3367
3368 val64 = readq(&bar0->pif_rd_swapper_fb);
3369 if (val64 != 0x0123456789ABCDEFULL) {
3370 int i = 0;
3371 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3372 0x8100008181000081ULL, /* FE=1, SE=0 */
3373 0x4200004242000042ULL, /* FE=0, SE=1 */
3374 0}; /* FE=0, SE=0 */
3375
3376 while(i<4) {
3377 writeq(value[i], &bar0->swapper_ctrl);
3378 val64 = readq(&bar0->pif_rd_swapper_fb);
3379 if (val64 == 0x0123456789ABCDEFULL)
3380 break;
3381 i++;
3382 }
3383 if (i == 4) {
3384 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3385 dev->name);
3386 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3387 (unsigned long long) val64);
3388 return FAILURE;
3389 }
3390 valr = value[i];
3391 } else {
3392 valr = readq(&bar0->swapper_ctrl);
3393 }
3394
3395 valt = 0x0123456789ABCDEFULL;
3396 writeq(valt, &bar0->xmsi_address);
3397 val64 = readq(&bar0->xmsi_address);
3398
3399 if(val64 != valt) {
3400 int i = 0;
3401 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3402 0x0081810000818100ULL, /* FE=1, SE=0 */
3403 0x0042420000424200ULL, /* FE=0, SE=1 */
3404 0}; /* FE=0, SE=0 */
3405
3406 while(i<4) {
3407 writeq((value[i] | valr), &bar0->swapper_ctrl);
3408 writeq(valt, &bar0->xmsi_address);
3409 val64 = readq(&bar0->xmsi_address);
3410 if(val64 == valt)
3411 break;
3412 i++;
3413 }
3414 if(i == 4) {
20346722 3415 unsigned long long x = val64;
1da177e4 3416 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3417 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3418 return FAILURE;
3419 }
3420 }
3421 val64 = readq(&bar0->swapper_ctrl);
3422 val64 &= 0xFFFF000000000000ULL;
3423
3424#ifdef __BIG_ENDIAN
20346722 3425 /*
3426 * The device by default set to a big endian format, so a
1da177e4
LT
3427 * big endian driver need not set anything.
3428 */
3429 val64 |= (SWAPPER_CTRL_TXP_FE |
3430 SWAPPER_CTRL_TXP_SE |
3431 SWAPPER_CTRL_TXD_R_FE |
3432 SWAPPER_CTRL_TXD_W_FE |
3433 SWAPPER_CTRL_TXF_R_FE |
3434 SWAPPER_CTRL_RXD_R_FE |
3435 SWAPPER_CTRL_RXD_W_FE |
3436 SWAPPER_CTRL_RXF_W_FE |
3437 SWAPPER_CTRL_XMSI_FE |
1da177e4 3438 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3439 if (sp->intr_type == INTA)
cc6e7c44 3440 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3441 writeq(val64, &bar0->swapper_ctrl);
3442#else
20346722 3443 /*
1da177e4 3444 * Initially we enable all bits to make it accessible by the
20346722 3445 * driver, then we selectively enable only those bits that
1da177e4
LT
3446 * we want to set.
3447 */
3448 val64 |= (SWAPPER_CTRL_TXP_FE |
3449 SWAPPER_CTRL_TXP_SE |
3450 SWAPPER_CTRL_TXD_R_FE |
3451 SWAPPER_CTRL_TXD_R_SE |
3452 SWAPPER_CTRL_TXD_W_FE |
3453 SWAPPER_CTRL_TXD_W_SE |
3454 SWAPPER_CTRL_TXF_R_FE |
3455 SWAPPER_CTRL_RXD_R_FE |
3456 SWAPPER_CTRL_RXD_R_SE |
3457 SWAPPER_CTRL_RXD_W_FE |
3458 SWAPPER_CTRL_RXD_W_SE |
3459 SWAPPER_CTRL_RXF_W_FE |
3460 SWAPPER_CTRL_XMSI_FE |
1da177e4 3461 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3462 if (sp->intr_type == INTA)
3463 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3464 writeq(val64, &bar0->swapper_ctrl);
3465#endif
3466 val64 = readq(&bar0->swapper_ctrl);
3467
20346722 3468 /*
3469 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3470 * feedback register.
3471 */
3472 val64 = readq(&bar0->pif_rd_swapper_fb);
3473 if (val64 != 0x0123456789ABCDEFULL) {
3474 /* Endian settings are incorrect, calls for another dekko. */
3475 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3476 dev->name);
3477 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3478 (unsigned long long) val64);
3479 return FAILURE;
3480 }
3481
3482 return SUCCESS;
3483}
3484
1ee6dd77 3485static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3486{
1ee6dd77 3487 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3488 u64 val64;
3489 int ret = 0, cnt = 0;
3490
3491 do {
3492 val64 = readq(&bar0->xmsi_access);
3493 if (!(val64 & BIT(15)))
3494 break;
3495 mdelay(1);
3496 cnt++;
3497 } while(cnt < 5);
3498 if (cnt == 5) {
3499 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3500 ret = 1;
3501 }
3502
3503 return ret;
3504}
3505
1ee6dd77 3506static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3507{
1ee6dd77 3508 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3509 u64 val64;
3510 int i;
3511
75c30b13 3512 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3513 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3514 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3515 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3516 writeq(val64, &bar0->xmsi_access);
3517 if (wait_for_msix_trans(nic, i)) {
3518 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3519 continue;
3520 }
3521 }
3522}
3523
1ee6dd77 3524static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3525{
1ee6dd77 3526 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3527 u64 val64, addr, data;
3528 int i;
3529
3530 /* Store and display */
75c30b13 3531 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3532 val64 = (BIT(15) | vBIT(i, 26, 6));
3533 writeq(val64, &bar0->xmsi_access);
3534 if (wait_for_msix_trans(nic, i)) {
3535 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3536 continue;
3537 }
3538 addr = readq(&bar0->xmsi_address);
3539 data = readq(&bar0->xmsi_data);
3540 if (addr && data) {
3541 nic->msix_info[i].addr = addr;
3542 nic->msix_info[i].data = data;
3543 }
3544 }
3545}
3546
1ee6dd77 3547int s2io_enable_msi(struct s2io_nic *nic)
cc6e7c44 3548{
1ee6dd77 3549 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3550 u16 msi_ctrl, msg_val;
3551 struct config_param *config = &nic->config;
3552 struct net_device *dev = nic->dev;
3553 u64 val64, tx_mat, rx_mat;
3554 int i, err;
3555
3556 val64 = readq(&bar0->pic_control);
3557 val64 &= ~BIT(1);
3558 writeq(val64, &bar0->pic_control);
3559
3560 err = pci_enable_msi(nic->pdev);
3561 if (err) {
3562 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3563 nic->dev->name);
3564 return err;
3565 }
3566
3567 /*
3568 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3569 * for interrupt handling.
3570 */
3571 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3572 msg_val ^= 0x1;
3573 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3574 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3575
3576 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3577 msi_ctrl |= 0x10;
3578 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3579
3580 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3581 tx_mat = readq(&bar0->tx_mat0_n[0]);
3582 for (i=0; i<config->tx_fifo_num; i++) {
3583 tx_mat |= TX_MAT_SET(i, 1);
3584 }
3585 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3586
3587 rx_mat = readq(&bar0->rx_mat);
3588 for (i=0; i<config->rx_ring_num; i++) {
3589 rx_mat |= RX_MAT_SET(i, 1);
3590 }
3591 writeq(rx_mat, &bar0->rx_mat);
3592
3593 dev->irq = nic->pdev->irq;
3594 return 0;
3595}
3596
1ee6dd77 3597static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3598{
1ee6dd77 3599 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3600 u64 tx_mat, rx_mat;
3601 u16 msi_control; /* Temp variable */
3602 int ret, i, j, msix_indx = 1;
3603
3604 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3605 GFP_KERNEL);
3606 if (nic->entries == NULL) {
3607 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3608 return -ENOMEM;
3609 }
3610 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3611
3612 nic->s2io_entries =
3613 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3614 GFP_KERNEL);
3615 if (nic->s2io_entries == NULL) {
3616 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3617 kfree(nic->entries);
3618 return -ENOMEM;
3619 }
3620 memset(nic->s2io_entries, 0,
3621 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3622
3623 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3624 nic->entries[i].entry = i;
3625 nic->s2io_entries[i].entry = i;
3626 nic->s2io_entries[i].arg = NULL;
3627 nic->s2io_entries[i].in_use = 0;
3628 }
3629
3630 tx_mat = readq(&bar0->tx_mat0_n[0]);
3631 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3632 tx_mat |= TX_MAT_SET(i, msix_indx);
3633 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3634 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3635 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3636 }
3637 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3638
3639 if (!nic->config.bimodal) {
3640 rx_mat = readq(&bar0->rx_mat);
3641 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3642 rx_mat |= RX_MAT_SET(j, msix_indx);
3643 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3644 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3645 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3646 }
3647 writeq(rx_mat, &bar0->rx_mat);
3648 } else {
3649 tx_mat = readq(&bar0->tx_mat0_n[7]);
3650 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3651 tx_mat |= TX_MAT_SET(i, msix_indx);
3652 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3653 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3654 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3655 }
3656 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3657 }
3658
c92ca04b 3659 nic->avail_msix_vectors = 0;
cc6e7c44 3660 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3661 /* We fail init if error or we get less vectors than min required */
3662 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3663 nic->avail_msix_vectors = ret;
3664 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3665 }
cc6e7c44
RA
3666 if (ret) {
3667 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3668 kfree(nic->entries);
3669 kfree(nic->s2io_entries);
3670 nic->entries = NULL;
3671 nic->s2io_entries = NULL;
c92ca04b 3672 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3673 return -ENOMEM;
3674 }
c92ca04b
AR
3675 if (!nic->avail_msix_vectors)
3676 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3677
3678 /*
3679 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3680 * in the herc NIC. (Temp change, needs to be removed later)
3681 */
3682 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3683 msi_control |= 0x1; /* Enable MSI */
3684 pci_write_config_word(nic->pdev, 0x42, msi_control);
3685
3686 return 0;
3687}
3688
1da177e4
LT
3689/* ********************************************************* *
3690 * Functions defined below concern the OS part of the driver *
3691 * ********************************************************* */
3692
20346722 3693/**
1da177e4
LT
3694 * s2io_open - open entry point of the driver
3695 * @dev : pointer to the device structure.
3696 * Description:
3697 * This function is the open entry point of the driver. It mainly calls a
3698 * function to allocate Rx buffers and inserts them into the buffer
20346722 3699 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3700 * Return value:
3701 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3702 * file on failure.
3703 */
3704
ac1f60db 3705static int s2io_open(struct net_device *dev)
1da177e4 3706{
1ee6dd77 3707 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3708 int err = 0;
3709
20346722 3710 /*
3711 * Make sure you have link off by default every time
1da177e4
LT
3712 * Nic is initialized
3713 */
3714 netif_carrier_off(dev);
0b1f7ebe 3715 sp->last_link_state = 0;
1da177e4
LT
3716
3717 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3718 err = s2io_card_up(sp);
3719 if (err) {
1da177e4
LT
3720 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3721 dev->name);
e6a8fee2 3722 goto hw_init_failed;
1da177e4
LT
3723 }
3724
3725 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3726 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3727 s2io_card_down(sp);
20346722 3728 err = -ENODEV;
e6a8fee2 3729 goto hw_init_failed;
1da177e4
LT
3730 }
3731
3732 netif_start_queue(dev);
3733 return 0;
20346722 3734
20346722 3735hw_init_failed:
cc6e7c44
RA
3736 if (sp->intr_type == MSI_X) {
3737 if (sp->entries)
3738 kfree(sp->entries);
3739 if (sp->s2io_entries)
3740 kfree(sp->s2io_entries);
3741 }
20346722 3742 return err;
1da177e4
LT
3743}
3744
3745/**
3746 * s2io_close -close entry point of the driver
3747 * @dev : device pointer.
3748 * Description:
3749 * This is the stop entry point of the driver. It needs to undo exactly
3750 * whatever was done by the open entry point,thus it's usually referred to
3751 * as the close function.Among other things this function mainly stops the
3752 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3753 * Return value:
3754 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3755 * file on failure.
3756 */
3757
ac1f60db 3758static int s2io_close(struct net_device *dev)
1da177e4 3759{
1ee6dd77 3760 struct s2io_nic *sp = dev->priv;
cc6e7c44 3761
1da177e4
LT
3762 flush_scheduled_work();
3763 netif_stop_queue(dev);
3764 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3765 s2io_card_down(sp);
cc6e7c44 3766
1da177e4
LT
3767 sp->device_close_flag = TRUE; /* Device is shut down. */
3768 return 0;
3769}
3770
3771/**
3772 * s2io_xmit - Tx entry point of te driver
3773 * @skb : the socket buffer containing the Tx data.
3774 * @dev : device pointer.
3775 * Description :
3776 * This function is the Tx entry point of the driver. S2IO NIC supports
3777 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3778 * NOTE: when device cant queue the pkt,just the trans_start variable will
3779 * not be upadted.
3780 * Return value:
3781 * 0 on success & 1 on failure.
3782 */
3783
ac1f60db 3784static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3785{
1ee6dd77 3786 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3787 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3788 register u64 val64;
1ee6dd77
RB
3789 struct TxD *txdp;
3790 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3791 unsigned long flags;
be3a6b02 3792 u16 vlan_tag = 0;
3793 int vlan_priority = 0;
1ee6dd77 3794 struct mac_info *mac_control;
1da177e4 3795 struct config_param *config;
75c30b13 3796 int offload_type;
1da177e4
LT
3797
3798 mac_control = &sp->mac_control;
3799 config = &sp->config;
3800
20346722 3801 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3802 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3803 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3804 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3805 dev->name);
3806 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722 3807 dev_kfree_skb(skb);
3808 return 0;
1da177e4
LT
3809 }
3810
3811 queue = 0;
1da177e4 3812
be3a6b02 3813 /* Get Fifo number to Transmit based on vlan priority */
3814 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3815 vlan_tag = vlan_tx_tag_get(skb);
3816 vlan_priority = vlan_tag >> 13;
3817 queue = config->fifo_mapping[vlan_priority];
3818 }
3819
20346722 3820 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3821 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 3822 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722 3823 list_virt_addr;
3824
3825 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3826 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3827 if (txdp->Host_Control ||
3828 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3829 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3830 netif_stop_queue(dev);
3831 dev_kfree_skb(skb);
3832 spin_unlock_irqrestore(&sp->tx_lock, flags);
3833 return 0;
3834 }
0b1f7ebe 3835
3836 /* A buffer with no data will be dropped */
3837 if (!skb->len) {
3838 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3839 dev_kfree_skb(skb);
3840 spin_unlock_irqrestore(&sp->tx_lock, flags);
3841 return 0;
3842 }
3843
75c30b13 3844 offload_type = s2io_offload_type(skb);
75c30b13 3845 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 3846 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 3847 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 3848 }
84fa7933 3849 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
3850 txdp->Control_2 |=
3851 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3852 TXD_TX_CKO_UDP_EN);
3853 }
fed5eccd
AR
3854 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3855 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3856 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3857
be3a6b02 3858 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3859 txdp->Control_2 |= TXD_VLAN_ENABLE;
3860 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3861 }
3862
fed5eccd 3863 frg_len = skb->len - skb->data_len;
75c30b13 3864 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
3865 int ufo_size;
3866
75c30b13 3867 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
3868 ufo_size &= ~7;
3869 txdp->Control_1 |= TXD_UFO_EN;
3870 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3871 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3872#ifdef __BIG_ENDIAN
3873 sp->ufo_in_band_v[put_off] =
3874 (u64)skb_shinfo(skb)->ip6_frag_id;
3875#else
3876 sp->ufo_in_band_v[put_off] =
3877 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3878#endif
3879 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3880 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3881 sp->ufo_in_band_v,
3882 sizeof(u64), PCI_DMA_TODEVICE);
3883 txdp++;
fed5eccd 3884 }
1da177e4 3885
fed5eccd
AR
3886 txdp->Buffer_Pointer = pci_map_single
3887 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3888 txdp->Host_Control = (unsigned long) skb;
3889 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 3890 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3891 txdp->Control_1 |= TXD_UFO_EN;
3892
3893 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3894 /* For fragmented SKB. */
3895 for (i = 0; i < frg_cnt; i++) {
3896 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 3897 /* A '0' length fragment will be ignored */
3898 if (!frag->size)
3899 continue;
1da177e4
LT
3900 txdp++;
3901 txdp->Buffer_Pointer = (u64) pci_map_page
3902 (sp->pdev, frag->page, frag->page_offset,
3903 frag->size, PCI_DMA_TODEVICE);
efd51b5c 3904 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 3905 if (offload_type == SKB_GSO_UDP)
fed5eccd 3906 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
3907 }
3908 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3909
75c30b13 3910 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3911 frg_cnt++; /* as Txd0 was used for inband header */
3912
1da177e4 3913 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3914 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3915 writeq(val64, &tx_fifo->TxDL_Pointer);
3916
3917 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3918 TX_FIFO_LAST_LIST);
75c30b13 3919 if (offload_type)
fed5eccd 3920 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 3921
1da177e4
LT
3922 writeq(val64, &tx_fifo->List_Control);
3923
303bcb4b 3924 mmiowb();
3925
1da177e4 3926 put_off++;
863c11a9
AR
3927 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3928 put_off = 0;
20346722 3929 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3930
3931 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 3932 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 3933 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
3934 DBG_PRINT(TX_DBG,
3935 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3936 put_off, get_off);
3937 netif_stop_queue(dev);
3938 }
3939
3940 dev->trans_start = jiffies;
3941 spin_unlock_irqrestore(&sp->tx_lock, flags);
3942
3943 return 0;
3944}
3945
25fff88e 3946static void
3947s2io_alarm_handle(unsigned long data)
3948{
1ee6dd77 3949 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e 3950
3951 alarm_intr_handler(sp);
3952 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3953}
3954
1ee6dd77 3955static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
3956{
3957 int rxb_size, level;
3958
3959 if (!sp->lro) {
3960 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3961 level = rx_buffer_level(sp, rxb_size, rng_n);
3962
3963 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3964 int ret;
3965 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3966 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3967 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3968 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3969 __FUNCTION__);
3970 clear_bit(0, (&sp->tasklet_status));
3971 return -1;
3972 }
3973 clear_bit(0, (&sp->tasklet_status));
3974 } else if (level == LOW)
3975 tasklet_schedule(&sp->task);
3976
3977 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
3978 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
3979 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
3980 }
3981 return 0;
3982}
3983
7d12e780 3984static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
cc6e7c44
RA
3985{
3986 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77 3987 struct s2io_nic *sp = dev->priv;
cc6e7c44 3988 int i;
1ee6dd77 3989 struct mac_info *mac_control;
cc6e7c44
RA
3990 struct config_param *config;
3991
3992 atomic_inc(&sp->isr_cnt);
3993 mac_control = &sp->mac_control;
3994 config = &sp->config;
3995 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3996
3997 /* If Intr is because of Rx Traffic */
3998 for (i = 0; i < config->rx_ring_num; i++)
3999 rx_intr_handler(&mac_control->rings[i]);
4000
4001 /* If Intr is because of Tx Traffic */
4002 for (i = 0; i < config->tx_fifo_num; i++)
4003 tx_intr_handler(&mac_control->fifos[i]);
4004
4005 /*
4006 * If the Rx buffer count is below the panic threshold then
4007 * reallocate the buffers from the interrupt handler itself,
4008 * else schedule a tasklet to reallocate the buffers.
4009 */
75c30b13
AR
4010 for (i = 0; i < config->rx_ring_num; i++)
4011 s2io_chk_rx_buffers(sp, i);
cc6e7c44
RA
4012
4013 atomic_dec(&sp->isr_cnt);
4014 return IRQ_HANDLED;
4015}
4016
7d12e780 4017static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4018{
1ee6dd77
RB
4019 struct ring_info *ring = (struct ring_info *)dev_id;
4020 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4021
4022 atomic_inc(&sp->isr_cnt);
cc6e7c44 4023
75c30b13
AR
4024 rx_intr_handler(ring);
4025 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4026
cc6e7c44 4027 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4028 return IRQ_HANDLED;
4029}
4030
7d12e780 4031static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4032{
1ee6dd77
RB
4033 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4034 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4035
4036 atomic_inc(&sp->isr_cnt);
4037 tx_intr_handler(fifo);
4038 atomic_dec(&sp->isr_cnt);
4039 return IRQ_HANDLED;
4040}
1ee6dd77 4041static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4042{
1ee6dd77 4043 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4044 u64 val64;
4045
4046 val64 = readq(&bar0->pic_int_status);
4047 if (val64 & PIC_INT_GPIO) {
4048 val64 = readq(&bar0->gpio_int_reg);
4049 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4050 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4051 /*
4052 * This is unstable state so clear both up/down
4053 * interrupt and adapter to re-evaluate the link state.
4054 */
a371a07d 4055 val64 |= GPIO_INT_REG_LINK_DOWN;
4056 val64 |= GPIO_INT_REG_LINK_UP;
4057 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4058 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4059 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4060 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4061 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4062 }
c92ca04b
AR
4063 else if (val64 & GPIO_INT_REG_LINK_UP) {
4064 val64 = readq(&bar0->adapter_status);
c92ca04b 4065 /* Enable Adapter */
19a60522
SS
4066 val64 = readq(&bar0->adapter_control);
4067 val64 |= ADAPTER_CNTL_EN;
4068 writeq(val64, &bar0->adapter_control);
4069 val64 |= ADAPTER_LED_ON;
4070 writeq(val64, &bar0->adapter_control);
4071 if (!sp->device_enabled_once)
4072 sp->device_enabled_once = 1;
c92ca04b 4073
19a60522
SS
4074 s2io_link(sp, LINK_UP);
4075 /*
4076 * unmask link down interrupt and mask link-up
4077 * intr
4078 */
4079 val64 = readq(&bar0->gpio_int_mask);
4080 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4081 val64 |= GPIO_INT_MASK_LINK_UP;
4082 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4083
c92ca04b
AR
4084 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4085 val64 = readq(&bar0->adapter_status);
19a60522
SS
4086 s2io_link(sp, LINK_DOWN);
4087 /* Link is down so unmaks link up interrupt */
4088 val64 = readq(&bar0->gpio_int_mask);
4089 val64 &= ~GPIO_INT_MASK_LINK_UP;
4090 val64 |= GPIO_INT_MASK_LINK_DOWN;
4091 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4092 }
4093 }
c92ca04b 4094 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4095}
4096
1da177e4
LT
4097/**
4098 * s2io_isr - ISR handler of the device .
4099 * @irq: the irq of the device.
4100 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4101 * Description: This function is the ISR handler of the device. It
4102 * identifies the reason for the interrupt and calls the relevant
4103 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4104 * recv buffers, if their numbers are below the panic value which is
4105 * presently set to 25% of the original number of rcv buffers allocated.
4106 * Return value:
20346722 4107 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4108 * IRQ_NONE: will be returned if interrupt is not from our device
4109 */
7d12e780 4110static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4111{
4112 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4113 struct s2io_nic *sp = dev->priv;
4114 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4115 int i;
19a60522 4116 u64 reason = 0;
1ee6dd77 4117 struct mac_info *mac_control;
1da177e4
LT
4118 struct config_param *config;
4119
7ba013ac 4120 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4121 mac_control = &sp->mac_control;
4122 config = &sp->config;
4123
20346722 4124 /*
1da177e4
LT
4125 * Identify the cause for interrupt and call the appropriate
4126 * interrupt handler. Causes for the interrupt could be;
4127 * 1. Rx of packet.
4128 * 2. Tx complete.
4129 * 3. Link down.
20346722 4130 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4131 */
4132 reason = readq(&bar0->general_int_status);
4133
4134 if (!reason) {
19a60522
SS
4135 /* The interrupt was not raised by us. */
4136 atomic_dec(&sp->isr_cnt);
4137 return IRQ_NONE;
4138 }
4139 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4140 /* Disable device and get out */
7ba013ac 4141 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4142 return IRQ_NONE;
4143 }
5d3213cc 4144
db874e65
SS
4145 if (napi) {
4146 if (reason & GEN_INTR_RXTRAFFIC) {
19a60522 4147 if ( likely ( netif_rx_schedule_prep(dev)) ) {
db874e65 4148 __netif_rx_schedule(dev);
19a60522 4149 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4150 }
19a60522
SS
4151 else
4152 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4153 }
4154 } else {
4155 /*
4156 * Rx handler is called by default, without checking for the
4157 * cause of interrupt.
4158 * rx_traffic_int reg is an R1 register, writing all 1's
4159 * will ensure that the actual interrupt causing bit get's
4160 * cleared and hence a read can be avoided.
4161 */
19a60522
SS
4162 if (reason & GEN_INTR_RXTRAFFIC)
4163 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4164
db874e65
SS
4165 for (i = 0; i < config->rx_ring_num; i++) {
4166 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4167 }
4168 }
1da177e4 4169
863c11a9
AR
4170 /*
4171 * tx_traffic_int reg is an R1 register, writing all 1's
4172 * will ensure that the actual interrupt causing bit get's
4173 * cleared and hence a read can be avoided.
4174 */
19a60522
SS
4175 if (reason & GEN_INTR_TXTRAFFIC)
4176 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4177
863c11a9
AR
4178 for (i = 0; i < config->tx_fifo_num; i++)
4179 tx_intr_handler(&mac_control->fifos[i]);
20346722 4180
a371a07d 4181 if (reason & GEN_INTR_TXPIC)
4182 s2io_txpic_intr_handle(sp);
20346722 4183 /*
4184 * If the Rx buffer count is below the panic threshold then
4185 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4186 * else schedule a tasklet to reallocate the buffers.
4187 */
db874e65
SS
4188 if (!napi) {
4189 for (i = 0; i < config->rx_ring_num; i++)
4190 s2io_chk_rx_buffers(sp, i);
4191 }
4192
4193 writeq(0, &bar0->general_int_mask);
4194 readl(&bar0->general_int_status);
4195
7ba013ac 4196 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4197 return IRQ_HANDLED;
4198}
4199
7ba013ac 4200/**
4201 * s2io_updt_stats -
4202 */
1ee6dd77 4203static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4204{
1ee6dd77 4205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4206 u64 val64;
4207 int cnt = 0;
4208
4209 if (atomic_read(&sp->card_state) == CARD_UP) {
4210 /* Apprx 30us on a 133 MHz bus */
4211 val64 = SET_UPDT_CLICKS(10) |
4212 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4213 writeq(val64, &bar0->stat_cfg);
4214 do {
4215 udelay(100);
4216 val64 = readq(&bar0->stat_cfg);
4217 if (!(val64 & BIT(0)))
4218 break;
4219 cnt++;
4220 if (cnt == 5)
4221 break; /* Updt failed */
4222 } while(1);
75c30b13 4223 } else {
1ee6dd77 4224 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
7ba013ac 4225 }
4226}
4227
1da177e4 4228/**
20346722 4229 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4230 * @dev : pointer to the device structure.
4231 * Description:
20346722 4232 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4233 * structure and returns a pointer to the same.
4234 * Return value:
4235 * pointer to the updated net_device_stats structure.
4236 */
4237
ac1f60db 4238static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4239{
1ee6dd77
RB
4240 struct s2io_nic *sp = dev->priv;
4241 struct mac_info *mac_control;
1da177e4
LT
4242 struct config_param *config;
4243
20346722 4244
1da177e4
LT
4245 mac_control = &sp->mac_control;
4246 config = &sp->config;
4247
7ba013ac 4248 /* Configure Stats for immediate updt */
4249 s2io_updt_stats(sp);
4250
4251 sp->stats.tx_packets =
4252 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722 4253 sp->stats.tx_errors =
4254 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4255 sp->stats.rx_errors =
ee705dba 4256 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722 4257 sp->stats.multicast =
4258 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4259 sp->stats.rx_length_errors =
ee705dba 4260 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4261
4262 return (&sp->stats);
4263}
4264
4265/**
4266 * s2io_set_multicast - entry point for multicast address enable/disable.
4267 * @dev : pointer to the device structure
4268 * Description:
20346722 4269 * This function is a driver entry point which gets called by the kernel
4270 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4271 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4272 * determine, if multicast address must be enabled or if promiscuous mode
4273 * is to be disabled etc.
4274 * Return value:
4275 * void.
4276 */
4277
4278static void s2io_set_multicast(struct net_device *dev)
4279{
4280 int i, j, prev_cnt;
4281 struct dev_mc_list *mclist;
1ee6dd77
RB
4282 struct s2io_nic *sp = dev->priv;
4283 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4284 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4285 0xfeffffffffffULL;
4286 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4287 void __iomem *add;
4288
4289 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4290 /* Enable all Multicast addresses */
4291 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4292 &bar0->rmac_addr_data0_mem);
4293 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4294 &bar0->rmac_addr_data1_mem);
4295 val64 = RMAC_ADDR_CMD_MEM_WE |
4296 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4297 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4298 writeq(val64, &bar0->rmac_addr_cmd_mem);
4299 /* Wait till command completes */
c92ca04b
AR
4300 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4301 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4302
4303 sp->m_cast_flg = 1;
4304 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4305 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4306 /* Disable all Multicast addresses */
4307 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4308 &bar0->rmac_addr_data0_mem);
5e25b9dd 4309 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4310 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4311 val64 = RMAC_ADDR_CMD_MEM_WE |
4312 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4313 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4314 writeq(val64, &bar0->rmac_addr_cmd_mem);
4315 /* Wait till command completes */
c92ca04b
AR
4316 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4317 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4318
4319 sp->m_cast_flg = 0;
4320 sp->all_multi_pos = 0;
4321 }
4322
4323 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4324 /* Put the NIC into promiscuous mode */
4325 add = &bar0->mac_cfg;
4326 val64 = readq(&bar0->mac_cfg);
4327 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4328
4329 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4330 writel((u32) val64, add);
4331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4332 writel((u32) (val64 >> 32), (add + 4));
4333
4334 val64 = readq(&bar0->mac_cfg);
4335 sp->promisc_flg = 1;
776bd20f 4336 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4337 dev->name);
4338 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4339 /* Remove the NIC from promiscuous mode */
4340 add = &bar0->mac_cfg;
4341 val64 = readq(&bar0->mac_cfg);
4342 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4343
4344 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4345 writel((u32) val64, add);
4346 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4347 writel((u32) (val64 >> 32), (add + 4));
4348
4349 val64 = readq(&bar0->mac_cfg);
4350 sp->promisc_flg = 0;
776bd20f 4351 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4352 dev->name);
4353 }
4354
4355 /* Update individual M_CAST address list */
4356 if ((!sp->m_cast_flg) && dev->mc_count) {
4357 if (dev->mc_count >
4358 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4359 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4360 dev->name);
4361 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4362 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4363 return;
4364 }
4365
4366 prev_cnt = sp->mc_addr_count;
4367 sp->mc_addr_count = dev->mc_count;
4368
4369 /* Clear out the previous list of Mc in the H/W. */
4370 for (i = 0; i < prev_cnt; i++) {
4371 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4372 &bar0->rmac_addr_data0_mem);
4373 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4374 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4375 val64 = RMAC_ADDR_CMD_MEM_WE |
4376 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4377 RMAC_ADDR_CMD_MEM_OFFSET
4378 (MAC_MC_ADDR_START_OFFSET + i);
4379 writeq(val64, &bar0->rmac_addr_cmd_mem);
4380
4381 /* Wait for command completes */
c92ca04b
AR
4382 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4383 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4384 DBG_PRINT(ERR_DBG, "%s: Adding ",
4385 dev->name);
4386 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4387 return;
4388 }
4389 }
4390
4391 /* Create the new Rx filter list and update the same in H/W. */
4392 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4393 i++, mclist = mclist->next) {
4394 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4395 ETH_ALEN);
a7a80d5a 4396 mac_addr = 0;
1da177e4
LT
4397 for (j = 0; j < ETH_ALEN; j++) {
4398 mac_addr |= mclist->dmi_addr[j];
4399 mac_addr <<= 8;
4400 }
4401 mac_addr >>= 8;
4402 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4403 &bar0->rmac_addr_data0_mem);
4404 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4405 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4406 val64 = RMAC_ADDR_CMD_MEM_WE |
4407 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4408 RMAC_ADDR_CMD_MEM_OFFSET
4409 (i + MAC_MC_ADDR_START_OFFSET);
4410 writeq(val64, &bar0->rmac_addr_cmd_mem);
4411
4412 /* Wait for command completes */
c92ca04b
AR
4413 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4414 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4415 DBG_PRINT(ERR_DBG, "%s: Adding ",
4416 dev->name);
4417 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4418 return;
4419 }
4420 }
4421 }
4422}
4423
4424/**
20346722 4425 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4426 * @dev : pointer to the device structure.
4427 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4428 * Description : This procedure will program the Xframe to receive
1da177e4 4429 * frames with new Mac Address
20346722 4430 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4431 * as defined in errno.h file on failure.
4432 */
4433
26df54bf 4434static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4435{
1ee6dd77
RB
4436 struct s2io_nic *sp = dev->priv;
4437 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4438 register u64 val64, mac_addr = 0;
4439 int i;
4440
20346722 4441 /*
1da177e4
LT
4442 * Set the new MAC address as the new unicast filter and reflect this
4443 * change on the device address registered with the OS. It will be
20346722 4444 * at offset 0.
1da177e4
LT
4445 */
4446 for (i = 0; i < ETH_ALEN; i++) {
4447 mac_addr <<= 8;
4448 mac_addr |= addr[i];
4449 }
4450
4451 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4452 &bar0->rmac_addr_data0_mem);
4453
4454 val64 =
4455 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4456 RMAC_ADDR_CMD_MEM_OFFSET(0);
4457 writeq(val64, &bar0->rmac_addr_cmd_mem);
4458 /* Wait till command completes */
c92ca04b
AR
4459 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4460 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4461 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4462 return FAILURE;
4463 }
4464
4465 return SUCCESS;
4466}
4467
4468/**
20346722 4469 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4470 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4471 * @info: pointer to the structure with parameters given by ethtool to set
4472 * link information.
4473 * Description:
20346722 4474 * The function sets different link parameters provided by the user onto
1da177e4
LT
4475 * the NIC.
4476 * Return value:
4477 * 0 on success.
4478*/
4479
4480static int s2io_ethtool_sset(struct net_device *dev,
4481 struct ethtool_cmd *info)
4482{
1ee6dd77 4483 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4484 if ((info->autoneg == AUTONEG_ENABLE) ||
4485 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4486 return -EINVAL;
4487 else {
4488 s2io_close(sp->dev);
4489 s2io_open(sp->dev);
4490 }
4491
4492 return 0;
4493}
4494
4495/**
20346722 4496 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4497 * @sp : private member of the device structure, pointer to the
4498 * s2io_nic structure.
4499 * @info : pointer to the structure with parameters given by ethtool
4500 * to return link information.
4501 * Description:
4502 * Returns link specific information like speed, duplex etc.. to ethtool.
4503 * Return value :
4504 * return 0 on success.
4505 */
4506
4507static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4508{
1ee6dd77 4509 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4510 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4511 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4512 info->port = PORT_FIBRE;
4513 /* info->transceiver?? TODO */
4514
4515 if (netif_carrier_ok(sp->dev)) {
4516 info->speed = 10000;
4517 info->duplex = DUPLEX_FULL;
4518 } else {
4519 info->speed = -1;
4520 info->duplex = -1;
4521 }
4522
4523 info->autoneg = AUTONEG_DISABLE;
4524 return 0;
4525}
4526
4527/**
20346722 4528 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4529 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4530 * s2io_nic structure.
4531 * @info : pointer to the structure with parameters given by ethtool to
4532 * return driver information.
4533 * Description:
4534 * Returns driver specefic information like name, version etc.. to ethtool.
4535 * Return value:
4536 * void
4537 */
4538
4539static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4540 struct ethtool_drvinfo *info)
4541{
1ee6dd77 4542 struct s2io_nic *sp = dev->priv;
1da177e4 4543
dbc2309d
JL
4544 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4545 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4546 strncpy(info->fw_version, "", sizeof(info->fw_version));
4547 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4548 info->regdump_len = XENA_REG_SPACE;
4549 info->eedump_len = XENA_EEPROM_SPACE;
4550 info->testinfo_len = S2IO_TEST_LEN;
4551 info->n_stats = S2IO_STAT_LEN;
4552}
4553
4554/**
4555 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4556 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4557 * s2io_nic structure.
20346722 4558 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4559 * dumping the registers.
4560 * @reg_space: The input argumnet into which all the registers are dumped.
4561 * Description:
4562 * Dumps the entire register space of xFrame NIC into the user given
4563 * buffer area.
4564 * Return value :
4565 * void .
4566*/
4567
4568static void s2io_ethtool_gregs(struct net_device *dev,
4569 struct ethtool_regs *regs, void *space)
4570{
4571 int i;
4572 u64 reg;
4573 u8 *reg_space = (u8 *) space;
1ee6dd77 4574 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4575
4576 regs->len = XENA_REG_SPACE;
4577 regs->version = sp->pdev->subsystem_device;
4578
4579 for (i = 0; i < regs->len; i += 8) {
4580 reg = readq(sp->bar0 + i);
4581 memcpy((reg_space + i), &reg, 8);
4582 }
4583}
4584
4585/**
4586 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4587 * @data : address of the private member of the device structure, which
1da177e4 4588 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 4589 * Description: This is actually the timer function that alternates the
4590 * adapter LED bit of the adapter control bit to set/reset every time on
4591 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4592 * once every second.
4593*/
4594static void s2io_phy_id(unsigned long data)
4595{
1ee6dd77
RB
4596 struct s2io_nic *sp = (struct s2io_nic *) data;
4597 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4598 u64 val64 = 0;
4599 u16 subid;
4600
4601 subid = sp->pdev->subsystem_device;
541ae68f 4602 if ((sp->device_type == XFRAME_II_DEVICE) ||
4603 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4604 val64 = readq(&bar0->gpio_control);
4605 val64 ^= GPIO_CTRL_GPIO_0;
4606 writeq(val64, &bar0->gpio_control);
4607 } else {
4608 val64 = readq(&bar0->adapter_control);
4609 val64 ^= ADAPTER_LED_ON;
4610 writeq(val64, &bar0->adapter_control);
4611 }
4612
4613 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4614}
4615
4616/**
4617 * s2io_ethtool_idnic - To physically identify the nic on the system.
4618 * @sp : private member of the device structure, which is a pointer to the
4619 * s2io_nic structure.
20346722 4620 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4621 * ethtool.
4622 * Description: Used to physically identify the NIC on the system.
20346722 4623 * The Link LED will blink for a time specified by the user for
1da177e4 4624 * identification.
20346722 4625 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4626 * identification is possible only if it's link is up.
4627 * Return value:
4628 * int , returns 0 on success
4629 */
4630
4631static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4632{
4633 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4634 struct s2io_nic *sp = dev->priv;
4635 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4636 u16 subid;
4637
4638 subid = sp->pdev->subsystem_device;
4639 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f 4640 if ((sp->device_type == XFRAME_I_DEVICE) &&
4641 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4642 val64 = readq(&bar0->adapter_control);
4643 if (!(val64 & ADAPTER_CNTL_EN)) {
4644 printk(KERN_ERR
4645 "Adapter Link down, cannot blink LED\n");
4646 return -EFAULT;
4647 }
4648 }
4649 if (sp->id_timer.function == NULL) {
4650 init_timer(&sp->id_timer);
4651 sp->id_timer.function = s2io_phy_id;
4652 sp->id_timer.data = (unsigned long) sp;
4653 }
4654 mod_timer(&sp->id_timer, jiffies);
4655 if (data)
20346722 4656 msleep_interruptible(data * HZ);
1da177e4 4657 else
20346722 4658 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4659 del_timer_sync(&sp->id_timer);
4660
541ae68f 4661 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4662 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4663 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4664 }
4665
4666 return 0;
4667}
4668
4669/**
4670 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 4671 * @sp : private member of the device structure, which is a pointer to the
4672 * s2io_nic structure.
1da177e4
LT
4673 * @ep : pointer to the structure with pause parameters given by ethtool.
4674 * Description:
4675 * Returns the Pause frame generation and reception capability of the NIC.
4676 * Return value:
4677 * void
4678 */
4679static void s2io_ethtool_getpause_data(struct net_device *dev,
4680 struct ethtool_pauseparam *ep)
4681{
4682 u64 val64;
1ee6dd77
RB
4683 struct s2io_nic *sp = dev->priv;
4684 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4685
4686 val64 = readq(&bar0->rmac_pause_cfg);
4687 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4688 ep->tx_pause = TRUE;
4689 if (val64 & RMAC_PAUSE_RX_ENABLE)
4690 ep->rx_pause = TRUE;
4691 ep->autoneg = FALSE;
4692}
4693
4694/**
4695 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4696 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4697 * s2io_nic structure.
4698 * @ep : pointer to the structure with pause parameters given by ethtool.
4699 * Description:
4700 * It can be used to set or reset Pause frame generation or reception
4701 * support of the NIC.
4702 * Return value:
4703 * int, returns 0 on Success
4704 */
4705
4706static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4707 struct ethtool_pauseparam *ep)
1da177e4
LT
4708{
4709 u64 val64;
1ee6dd77
RB
4710 struct s2io_nic *sp = dev->priv;
4711 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4712
4713 val64 = readq(&bar0->rmac_pause_cfg);
4714 if (ep->tx_pause)
4715 val64 |= RMAC_PAUSE_GEN_ENABLE;
4716 else
4717 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4718 if (ep->rx_pause)
4719 val64 |= RMAC_PAUSE_RX_ENABLE;
4720 else
4721 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4722 writeq(val64, &bar0->rmac_pause_cfg);
4723 return 0;
4724}
4725
4726/**
4727 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4728 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4729 * s2io_nic structure.
4730 * @off : offset at which the data must be written
4731 * @data : Its an output parameter where the data read at the given
20346722 4732 * offset is stored.
1da177e4 4733 * Description:
20346722 4734 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4735 * read data.
4736 * NOTE: Will allow to read only part of the EEPROM visible through the
4737 * I2C bus.
4738 * Return value:
4739 * -1 on failure and 0 on success.
4740 */
4741
4742#define S2IO_DEV_ID 5
1ee6dd77 4743static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
4744{
4745 int ret = -1;
4746 u32 exit_cnt = 0;
4747 u64 val64;
1ee6dd77 4748 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4749
ad4ebed0 4750 if (sp->device_type == XFRAME_I_DEVICE) {
4751 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4752 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4753 I2C_CONTROL_CNTL_START;
4754 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4755
ad4ebed0 4756 while (exit_cnt < 5) {
4757 val64 = readq(&bar0->i2c_control);
4758 if (I2C_CONTROL_CNTL_END(val64)) {
4759 *data = I2C_CONTROL_GET_DATA(val64);
4760 ret = 0;
4761 break;
4762 }
4763 msleep(50);
4764 exit_cnt++;
1da177e4 4765 }
1da177e4
LT
4766 }
4767
ad4ebed0 4768 if (sp->device_type == XFRAME_II_DEVICE) {
4769 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4770 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 4771 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4772 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4773 val64 |= SPI_CONTROL_REQ;
4774 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4775 while (exit_cnt < 5) {
4776 val64 = readq(&bar0->spi_control);
4777 if (val64 & SPI_CONTROL_NACK) {
4778 ret = 1;
4779 break;
4780 } else if (val64 & SPI_CONTROL_DONE) {
4781 *data = readq(&bar0->spi_data);
4782 *data &= 0xffffff;
4783 ret = 0;
4784 break;
4785 }
4786 msleep(50);
4787 exit_cnt++;
4788 }
4789 }
1da177e4
LT
4790 return ret;
4791}
4792
4793/**
4794 * write_eeprom - actually writes the relevant part of the data value.
4795 * @sp : private member of the device structure, which is a pointer to the
4796 * s2io_nic structure.
4797 * @off : offset at which the data must be written
4798 * @data : The data that is to be written
20346722 4799 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4800 * the Eeprom. (max of 3)
4801 * Description:
4802 * Actually writes the relevant part of the data value into the Eeprom
4803 * through the I2C bus.
4804 * Return value:
4805 * 0 on success, -1 on failure.
4806 */
4807
1ee6dd77 4808static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
4809{
4810 int exit_cnt = 0, ret = -1;
4811 u64 val64;
1ee6dd77 4812 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4813
ad4ebed0 4814 if (sp->device_type == XFRAME_I_DEVICE) {
4815 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4816 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4817 I2C_CONTROL_CNTL_START;
4818 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4819
4820 while (exit_cnt < 5) {
4821 val64 = readq(&bar0->i2c_control);
4822 if (I2C_CONTROL_CNTL_END(val64)) {
4823 if (!(val64 & I2C_CONTROL_NACK))
4824 ret = 0;
4825 break;
4826 }
4827 msleep(50);
4828 exit_cnt++;
4829 }
4830 }
1da177e4 4831
ad4ebed0 4832 if (sp->device_type == XFRAME_II_DEVICE) {
4833 int write_cnt = (cnt == 8) ? 0 : cnt;
4834 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4835
4836 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4837 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 4838 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4839 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4840 val64 |= SPI_CONTROL_REQ;
4841 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4842 while (exit_cnt < 5) {
4843 val64 = readq(&bar0->spi_control);
4844 if (val64 & SPI_CONTROL_NACK) {
4845 ret = 1;
4846 break;
4847 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4848 ret = 0;
ad4ebed0 4849 break;
4850 }
4851 msleep(50);
4852 exit_cnt++;
1da177e4 4853 }
1da177e4 4854 }
1da177e4
LT
4855 return ret;
4856}
1ee6dd77 4857static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 4858{
b41477f3
AR
4859 u8 *vpd_data;
4860 u8 data;
9dc737a7
AR
4861 int i=0, cnt, fail = 0;
4862 int vpd_addr = 0x80;
4863
4864 if (nic->device_type == XFRAME_II_DEVICE) {
4865 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4866 vpd_addr = 0x80;
4867 }
4868 else {
4869 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4870 vpd_addr = 0x50;
4871 }
19a60522 4872 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 4873
b41477f3
AR
4874 vpd_data = kmalloc(256, GFP_KERNEL);
4875 if (!vpd_data)
4876 return;
4877
9dc737a7
AR
4878 for (i = 0; i < 256; i +=4 ) {
4879 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4880 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4881 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4882 for (cnt = 0; cnt <5; cnt++) {
4883 msleep(2);
4884 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4885 if (data == 0x80)
4886 break;
4887 }
4888 if (cnt >= 5) {
4889 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
4890 fail = 1;
4891 break;
4892 }
4893 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
4894 (u32 *)&vpd_data[i]);
4895 }
19a60522
SS
4896
4897 if(!fail) {
4898 /* read serial number of adapter */
4899 for (cnt = 0; cnt < 256; cnt++) {
4900 if ((vpd_data[cnt] == 'S') &&
4901 (vpd_data[cnt+1] == 'N') &&
4902 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
4903 memset(nic->serial_num, 0, VPD_STRING_LEN);
4904 memcpy(nic->serial_num, &vpd_data[cnt + 3],
4905 vpd_data[cnt+2]);
4906 break;
4907 }
4908 }
4909 }
4910
4911 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
4912 memset(nic->product_name, 0, vpd_data[1]);
4913 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
4914 }
b41477f3 4915 kfree(vpd_data);
9dc737a7
AR
4916}
4917
1da177e4
LT
4918/**
4919 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4920 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 4921 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4922 * containing all relevant information.
4923 * @data_buf : user defined value to be written into Eeprom.
4924 * Description: Reads the values stored in the Eeprom at given offset
4925 * for a given length. Stores these values int the input argument data
4926 * buffer 'data_buf' and returns these to the caller (ethtool.)
4927 * Return value:
4928 * int 0 on success
4929 */
4930
4931static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 4932 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 4933{
ad4ebed0 4934 u32 i, valid;
4935 u64 data;
1ee6dd77 4936 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4937
4938 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4939
4940 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4941 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4942
4943 for (i = 0; i < eeprom->len; i += 4) {
4944 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4945 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4946 return -EFAULT;
4947 }
4948 valid = INV(data);
4949 memcpy((data_buf + i), &valid, 4);
4950 }
4951 return 0;
4952}
4953
4954/**
4955 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4956 * @sp : private member of the device structure, which is a pointer to the
4957 * s2io_nic structure.
20346722 4958 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
4959 * containing all relevant information.
4960 * @data_buf ; user defined value to be written into Eeprom.
4961 * Description:
4962 * Tries to write the user provided value in the Eeprom, at the offset
4963 * given by the user.
4964 * Return value:
4965 * 0 on success, -EFAULT on failure.
4966 */
4967
4968static int s2io_ethtool_seeprom(struct net_device *dev,
4969 struct ethtool_eeprom *eeprom,
4970 u8 * data_buf)
4971{
4972 int len = eeprom->len, cnt = 0;
ad4ebed0 4973 u64 valid = 0, data;
1ee6dd77 4974 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4975
4976 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4977 DBG_PRINT(ERR_DBG,
4978 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4979 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4980 eeprom->magic);
4981 return -EFAULT;
4982 }
4983
4984 while (len) {
4985 data = (u32) data_buf[cnt] & 0x000000FF;
4986 if (data) {
4987 valid = (u32) (data << 24);
4988 } else
4989 valid = data;
4990
4991 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4992 DBG_PRINT(ERR_DBG,
4993 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4994 DBG_PRINT(ERR_DBG,
4995 "write into the specified offset\n");
4996 return -EFAULT;
4997 }
4998 cnt++;
4999 len--;
5000 }
5001
5002 return 0;
5003}
5004
5005/**
20346722 5006 * s2io_register_test - reads and writes into all clock domains.
5007 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5008 * s2io_nic structure.
5009 * @data : variable that returns the result of each of the test conducted b
5010 * by the driver.
5011 * Description:
5012 * Read and write into all clock domains. The NIC has 3 clock domains,
5013 * see that registers in all the three regions are accessible.
5014 * Return value:
5015 * 0 on success.
5016 */
5017
1ee6dd77 5018static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5019{
1ee6dd77 5020 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5021 u64 val64 = 0, exp_val;
1da177e4
LT
5022 int fail = 0;
5023
20346722 5024 val64 = readq(&bar0->pif_rd_swapper_fb);
5025 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5026 fail = 1;
5027 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5028 }
5029
5030 val64 = readq(&bar0->rmac_pause_cfg);
5031 if (val64 != 0xc000ffff00000000ULL) {
5032 fail = 1;
5033 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5034 }
5035
5036 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5037 if (sp->device_type == XFRAME_II_DEVICE)
5038 exp_val = 0x0404040404040404ULL;
5039 else
5040 exp_val = 0x0808080808080808ULL;
5041 if (val64 != exp_val) {
1da177e4
LT
5042 fail = 1;
5043 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5044 }
5045
5046 val64 = readq(&bar0->xgxs_efifo_cfg);
5047 if (val64 != 0x000000001923141EULL) {
5048 fail = 1;
5049 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5050 }
5051
5052 val64 = 0x5A5A5A5A5A5A5A5AULL;
5053 writeq(val64, &bar0->xmsi_data);
5054 val64 = readq(&bar0->xmsi_data);
5055 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5056 fail = 1;
5057 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5058 }
5059
5060 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5061 writeq(val64, &bar0->xmsi_data);
5062 val64 = readq(&bar0->xmsi_data);
5063 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5064 fail = 1;
5065 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5066 }
5067
5068 *data = fail;
ad4ebed0 5069 return fail;
1da177e4
LT
5070}
5071
5072/**
20346722 5073 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5074 * @sp : private member of the device structure, which is a pointer to the
5075 * s2io_nic structure.
5076 * @data:variable that returns the result of each of the test conducted by
5077 * the driver.
5078 * Description:
20346722 5079 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5080 * register.
5081 * Return value:
5082 * 0 on success.
5083 */
5084
1ee6dd77 5085static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5086{
5087 int fail = 0;
ad4ebed0 5088 u64 ret_data, org_4F0, org_7F0;
5089 u8 saved_4F0 = 0, saved_7F0 = 0;
5090 struct net_device *dev = sp->dev;
1da177e4
LT
5091
5092 /* Test Write Error at offset 0 */
ad4ebed0 5093 /* Note that SPI interface allows write access to all areas
5094 * of EEPROM. Hence doing all negative testing only for Xframe I.
5095 */
5096 if (sp->device_type == XFRAME_I_DEVICE)
5097 if (!write_eeprom(sp, 0, 0, 3))
5098 fail = 1;
5099
5100 /* Save current values at offsets 0x4F0 and 0x7F0 */
5101 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5102 saved_4F0 = 1;
5103 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5104 saved_7F0 = 1;
1da177e4
LT
5105
5106 /* Test Write at offset 4f0 */
ad4ebed0 5107 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5108 fail = 1;
5109 if (read_eeprom(sp, 0x4F0, &ret_data))
5110 fail = 1;
5111
ad4ebed0 5112 if (ret_data != 0x012345) {
26b7625c
AM
5113 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5114 "Data written %llx Data read %llx\n",
5115 dev->name, (unsigned long long)0x12345,
5116 (unsigned long long)ret_data);
1da177e4 5117 fail = 1;
ad4ebed0 5118 }
1da177e4
LT
5119
5120 /* Reset the EEPROM data go FFFF */
ad4ebed0 5121 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5122
5123 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5124 if (sp->device_type == XFRAME_I_DEVICE)
5125 if (!write_eeprom(sp, 0x07C, 0, 3))
5126 fail = 1;
1da177e4 5127
ad4ebed0 5128 /* Test Write Request at offset 0x7f0 */
5129 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5130 fail = 1;
ad4ebed0 5131 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5132 fail = 1;
5133
ad4ebed0 5134 if (ret_data != 0x012345) {
26b7625c
AM
5135 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5136 "Data written %llx Data read %llx\n",
5137 dev->name, (unsigned long long)0x12345,
5138 (unsigned long long)ret_data);
1da177e4 5139 fail = 1;
ad4ebed0 5140 }
1da177e4
LT
5141
5142 /* Reset the EEPROM data go FFFF */
ad4ebed0 5143 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5144
ad4ebed0 5145 if (sp->device_type == XFRAME_I_DEVICE) {
5146 /* Test Write Error at offset 0x80 */
5147 if (!write_eeprom(sp, 0x080, 0, 3))
5148 fail = 1;
1da177e4 5149
ad4ebed0 5150 /* Test Write Error at offset 0xfc */
5151 if (!write_eeprom(sp, 0x0FC, 0, 3))
5152 fail = 1;
1da177e4 5153
ad4ebed0 5154 /* Test Write Error at offset 0x100 */
5155 if (!write_eeprom(sp, 0x100, 0, 3))
5156 fail = 1;
1da177e4 5157
ad4ebed0 5158 /* Test Write Error at offset 4ec */
5159 if (!write_eeprom(sp, 0x4EC, 0, 3))
5160 fail = 1;
5161 }
5162
5163 /* Restore values at offsets 0x4F0 and 0x7F0 */
5164 if (saved_4F0)
5165 write_eeprom(sp, 0x4F0, org_4F0, 3);
5166 if (saved_7F0)
5167 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5168
5169 *data = fail;
ad4ebed0 5170 return fail;
1da177e4
LT
5171}
5172
5173/**
5174 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5175 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5176 * s2io_nic structure.
20346722 5177 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5178 * the driver.
5179 * Description:
5180 * This invokes the MemBist test of the card. We give around
5181 * 2 secs time for the Test to complete. If it's still not complete
20346722 5182 * within this peiod, we consider that the test failed.
1da177e4
LT
5183 * Return value:
5184 * 0 on success and -1 on failure.
5185 */
5186
1ee6dd77 5187static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5188{
5189 u8 bist = 0;
5190 int cnt = 0, ret = -1;
5191
5192 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5193 bist |= PCI_BIST_START;
5194 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5195
5196 while (cnt < 20) {
5197 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5198 if (!(bist & PCI_BIST_START)) {
5199 *data = (bist & PCI_BIST_CODE_MASK);
5200 ret = 0;
5201 break;
5202 }
5203 msleep(100);
5204 cnt++;
5205 }
5206
5207 return ret;
5208}
5209
5210/**
20346722 5211 * s2io-link_test - verifies the link state of the nic
5212 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5213 * s2io_nic structure.
5214 * @data: variable that returns the result of each of the test conducted by
5215 * the driver.
5216 * Description:
20346722 5217 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5218 * argument 'data' appropriately.
5219 * Return value:
5220 * 0 on success.
5221 */
5222
1ee6dd77 5223static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5224{
1ee6dd77 5225 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5226 u64 val64;
5227
5228 val64 = readq(&bar0->adapter_status);
c92ca04b 5229 if(!(LINK_IS_UP(val64)))
1da177e4 5230 *data = 1;
c92ca04b
AR
5231 else
5232 *data = 0;
1da177e4 5233
b41477f3 5234 return *data;
1da177e4
LT
5235}
5236
5237/**
20346722 5238 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5239 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5240 * s2io_nic structure.
20346722 5241 * @data - variable that returns the result of each of the test
1da177e4
LT
5242 * conducted by the driver.
5243 * Description:
20346722 5244 * This is one of the offline test that tests the read and write
1da177e4
LT
5245 * access to the RldRam chip on the NIC.
5246 * Return value:
5247 * 0 on success.
5248 */
5249
1ee6dd77 5250static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5251{
1ee6dd77 5252 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5253 u64 val64;
ad4ebed0 5254 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5255
5256 val64 = readq(&bar0->adapter_control);
5257 val64 &= ~ADAPTER_ECC_EN;
5258 writeq(val64, &bar0->adapter_control);
5259
5260 val64 = readq(&bar0->mc_rldram_test_ctrl);
5261 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5262 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5263
5264 val64 = readq(&bar0->mc_rldram_mrs);
5265 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5266 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5267
5268 val64 |= MC_RLDRAM_MRS_ENABLE;
5269 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5270
5271 while (iteration < 2) {
5272 val64 = 0x55555555aaaa0000ULL;
5273 if (iteration == 1) {
5274 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5275 }
5276 writeq(val64, &bar0->mc_rldram_test_d0);
5277
5278 val64 = 0xaaaa5a5555550000ULL;
5279 if (iteration == 1) {
5280 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5281 }
5282 writeq(val64, &bar0->mc_rldram_test_d1);
5283
5284 val64 = 0x55aaaaaaaa5a0000ULL;
5285 if (iteration == 1) {
5286 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5287 }
5288 writeq(val64, &bar0->mc_rldram_test_d2);
5289
ad4ebed0 5290 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5291 writeq(val64, &bar0->mc_rldram_test_add);
5292
ad4ebed0 5293 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5294 MC_RLDRAM_TEST_GO;
5295 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5296
5297 for (cnt = 0; cnt < 5; cnt++) {
5298 val64 = readq(&bar0->mc_rldram_test_ctrl);
5299 if (val64 & MC_RLDRAM_TEST_DONE)
5300 break;
5301 msleep(200);
5302 }
5303
5304 if (cnt == 5)
5305 break;
5306
ad4ebed0 5307 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5308 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5309
5310 for (cnt = 0; cnt < 5; cnt++) {
5311 val64 = readq(&bar0->mc_rldram_test_ctrl);
5312 if (val64 & MC_RLDRAM_TEST_DONE)
5313 break;
5314 msleep(500);
5315 }
5316
5317 if (cnt == 5)
5318 break;
5319
5320 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5321 if (!(val64 & MC_RLDRAM_TEST_PASS))
5322 test_fail = 1;
1da177e4
LT
5323
5324 iteration++;
5325 }
5326
ad4ebed0 5327 *data = test_fail;
1da177e4 5328
ad4ebed0 5329 /* Bring the adapter out of test mode */
5330 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5331
5332 return test_fail;
1da177e4
LT
5333}
5334
5335/**
5336 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5337 * @sp : private member of the device structure, which is a pointer to the
5338 * s2io_nic structure.
5339 * @ethtest : pointer to a ethtool command specific structure that will be
5340 * returned to the user.
20346722 5341 * @data : variable that returns the result of each of the test
1da177e4
LT
5342 * conducted by the driver.
5343 * Description:
5344 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5345 * the health of the card.
5346 * Return value:
5347 * void
5348 */
5349
5350static void s2io_ethtool_test(struct net_device *dev,
5351 struct ethtool_test *ethtest,
5352 uint64_t * data)
5353{
1ee6dd77 5354 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5355 int orig_state = netif_running(sp->dev);
5356
5357 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5358 /* Offline Tests. */
20346722 5359 if (orig_state)
1da177e4 5360 s2io_close(sp->dev);
1da177e4
LT
5361
5362 if (s2io_register_test(sp, &data[0]))
5363 ethtest->flags |= ETH_TEST_FL_FAILED;
5364
5365 s2io_reset(sp);
1da177e4
LT
5366
5367 if (s2io_rldram_test(sp, &data[3]))
5368 ethtest->flags |= ETH_TEST_FL_FAILED;
5369
5370 s2io_reset(sp);
1da177e4
LT
5371
5372 if (s2io_eeprom_test(sp, &data[1]))
5373 ethtest->flags |= ETH_TEST_FL_FAILED;
5374
5375 if (s2io_bist_test(sp, &data[4]))
5376 ethtest->flags |= ETH_TEST_FL_FAILED;
5377
5378 if (orig_state)
5379 s2io_open(sp->dev);
5380
5381 data[2] = 0;
5382 } else {
5383 /* Online Tests. */
5384 if (!orig_state) {
5385 DBG_PRINT(ERR_DBG,
5386 "%s: is not up, cannot run test\n",
5387 dev->name);
5388 data[0] = -1;
5389 data[1] = -1;
5390 data[2] = -1;
5391 data[3] = -1;
5392 data[4] = -1;
5393 }
5394
5395 if (s2io_link_test(sp, &data[2]))
5396 ethtest->flags |= ETH_TEST_FL_FAILED;
5397
5398 data[0] = 0;
5399 data[1] = 0;
5400 data[3] = 0;
5401 data[4] = 0;
5402 }
5403}
5404
5405static void s2io_get_ethtool_stats(struct net_device *dev,
5406 struct ethtool_stats *estats,
5407 u64 * tmp_stats)
5408{
5409 int i = 0;
1ee6dd77
RB
5410 struct s2io_nic *sp = dev->priv;
5411 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5412
7ba013ac 5413 s2io_updt_stats(sp);
541ae68f 5414 tmp_stats[i++] =
5415 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5416 le32_to_cpu(stat_info->tmac_frms);
5417 tmp_stats[i++] =
5418 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5419 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5420 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f 5421 tmp_stats[i++] =
5422 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5423 le32_to_cpu(stat_info->tmac_mcst_frms);
5424 tmp_stats[i++] =
5425 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5426 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5427 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5428 tmp_stats[i++] =
5429 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5430 le32_to_cpu(stat_info->tmac_ttl_octets);
5431 tmp_stats[i++] =
5432 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5433 le32_to_cpu(stat_info->tmac_ucst_frms);
5434 tmp_stats[i++] =
5435 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5436 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f 5437 tmp_stats[i++] =
5438 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5439 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5440 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5441 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f 5442 tmp_stats[i++] =
5443 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5444 le32_to_cpu(stat_info->tmac_vld_ip);
5445 tmp_stats[i++] =
5446 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5447 le32_to_cpu(stat_info->tmac_drop_ip);
5448 tmp_stats[i++] =
5449 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5450 le32_to_cpu(stat_info->tmac_icmp);
5451 tmp_stats[i++] =
5452 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5453 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5454 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f 5455 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5456 le32_to_cpu(stat_info->tmac_udp);
5457 tmp_stats[i++] =
5458 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5459 le32_to_cpu(stat_info->rmac_vld_frms);
5460 tmp_stats[i++] =
5461 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5462 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5463 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f 5465 tmp_stats[i++] =
5466 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5467 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5468 tmp_stats[i++] =
5469 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5470 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5471 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5472 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5476 tmp_stats[i++] =
5477 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5478 le32_to_cpu(stat_info->rmac_ttl_octets);
5479 tmp_stats[i++] =
5480 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5481 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5482 tmp_stats[i++] =
5483 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5484 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f 5485 tmp_stats[i++] =
5486 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5487 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5488 tmp_stats[i++] =
5489 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5490 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5492 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f 5493 tmp_stats[i++] =
5494 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5495 le32_to_cpu(stat_info->rmac_usized_frms);
5496 tmp_stats[i++] =
5497 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5498 le32_to_cpu(stat_info->rmac_osized_frms);
5499 tmp_stats[i++] =
5500 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5501 le32_to_cpu(stat_info->rmac_frag_frms);
5502 tmp_stats[i++] =
5503 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5504 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5505 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5506 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5507 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5508 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5509 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5510 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5511 tmp_stats[i++] =
5512 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5513 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5514 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5515 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5516 tmp_stats[i++] =
5517 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5518 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5519 tmp_stats[i++] =
5520 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5521 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5522 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5523 tmp_stats[i++] =
5524 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f 5525 le32_to_cpu(stat_info->rmac_udp);
5526 tmp_stats[i++] =
5527 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5528 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5529 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5530 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5531 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5532 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5533 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5534 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5535 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5536 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5537 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5538 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5539 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5540 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5541 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5542 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5543 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5544 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5545 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f 5546 tmp_stats[i++] =
5547 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5548 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5549 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5550 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f 5551 tmp_stats[i++] =
5552 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5553 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5554 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5555 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5556 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5557 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5558 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5559 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5560 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5561 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5562 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5563 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5564 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5565 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5566 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5567 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5568 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5569 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5570 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5571 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5572 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5576 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5577 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5578 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5579 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5580 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5584 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5585 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5586 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5587 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5588 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
7ba013ac 5589 tmp_stats[i++] = 0;
5590 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5591 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5592 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5593 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5594 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5595 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5596 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5597 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5598 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5599 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5600 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5601 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5602 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5603 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5604 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5605 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5606 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5607 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5608 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5609 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5610 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5611 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5612 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5613 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5614 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5615 int count = 0;
6aa20a22 5616 /*
bd1034f0
AR
5617 * Since 64-bit divide does not work on all platforms,
5618 * do repeated subtraction.
5619 */
5620 while (tmp >= stat_info->sw_stat.num_aggregations) {
5621 tmp -= stat_info->sw_stat.num_aggregations;
5622 count++;
5623 }
5624 tmp_stats[i++] = count;
fe931395 5625 }
bd1034f0
AR
5626 else
5627 tmp_stats[i++] = 0;
1da177e4
LT
5628}
5629
ac1f60db 5630static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5631{
5632 return (XENA_REG_SPACE);
5633}
5634
5635
ac1f60db 5636static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5637{
1ee6dd77 5638 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5639
5640 return (sp->rx_csum);
5641}
ac1f60db
AB
5642
5643static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5644{
1ee6dd77 5645 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5646
5647 if (data)
5648 sp->rx_csum = 1;
5649 else
5650 sp->rx_csum = 0;
5651
5652 return 0;
5653}
ac1f60db
AB
5654
5655static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5656{
5657 return (XENA_EEPROM_SPACE);
5658}
5659
ac1f60db 5660static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5661{
5662 return (S2IO_TEST_LEN);
5663}
ac1f60db
AB
5664
5665static void s2io_ethtool_get_strings(struct net_device *dev,
5666 u32 stringset, u8 * data)
1da177e4
LT
5667{
5668 switch (stringset) {
5669 case ETH_SS_TEST:
5670 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5671 break;
5672 case ETH_SS_STATS:
5673 memcpy(data, &ethtool_stats_keys,
5674 sizeof(ethtool_stats_keys));
5675 }
5676}
1da177e4
LT
5677static int s2io_ethtool_get_stats_count(struct net_device *dev)
5678{
5679 return (S2IO_STAT_LEN);
5680}
5681
ac1f60db 5682static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5683{
5684 if (data)
5685 dev->features |= NETIF_F_IP_CSUM;
5686 else
5687 dev->features &= ~NETIF_F_IP_CSUM;
5688
5689 return 0;
5690}
5691
75c30b13
AR
5692static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5693{
5694 return (dev->features & NETIF_F_TSO) != 0;
5695}
5696static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5697{
5698 if (data)
5699 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5700 else
5701 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5702
5703 return 0;
5704}
1da177e4 5705
7282d491 5706static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
5707 .get_settings = s2io_ethtool_gset,
5708 .set_settings = s2io_ethtool_sset,
5709 .get_drvinfo = s2io_ethtool_gdrvinfo,
5710 .get_regs_len = s2io_ethtool_get_regs_len,
5711 .get_regs = s2io_ethtool_gregs,
5712 .get_link = ethtool_op_get_link,
5713 .get_eeprom_len = s2io_get_eeprom_len,
5714 .get_eeprom = s2io_ethtool_geeprom,
5715 .set_eeprom = s2io_ethtool_seeprom,
5716 .get_pauseparam = s2io_ethtool_getpause_data,
5717 .set_pauseparam = s2io_ethtool_setpause_data,
5718 .get_rx_csum = s2io_ethtool_get_rx_csum,
5719 .set_rx_csum = s2io_ethtool_set_rx_csum,
5720 .get_tx_csum = ethtool_op_get_tx_csum,
5721 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5722 .get_sg = ethtool_op_get_sg,
5723 .set_sg = ethtool_op_set_sg,
75c30b13
AR
5724 .get_tso = s2io_ethtool_op_get_tso,
5725 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
5726 .get_ufo = ethtool_op_get_ufo,
5727 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5728 .self_test_count = s2io_ethtool_self_test_count,
5729 .self_test = s2io_ethtool_test,
5730 .get_strings = s2io_ethtool_get_strings,
5731 .phys_id = s2io_ethtool_idnic,
5732 .get_stats_count = s2io_ethtool_get_stats_count,
5733 .get_ethtool_stats = s2io_get_ethtool_stats
5734};
5735
5736/**
20346722 5737 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5738 * @dev : Device pointer.
5739 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5740 * a proprietary structure used to pass information to the driver.
5741 * @cmd : This is used to distinguish between the different commands that
5742 * can be passed to the IOCTL functions.
5743 * Description:
20346722 5744 * Currently there are no special functionality supported in IOCTL, hence
5745 * function always return EOPNOTSUPPORTED
1da177e4
LT
5746 */
5747
ac1f60db 5748static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5749{
5750 return -EOPNOTSUPP;
5751}
5752
5753/**
5754 * s2io_change_mtu - entry point to change MTU size for the device.
5755 * @dev : device pointer.
5756 * @new_mtu : the new MTU size for the device.
5757 * Description: A driver entry point to change MTU size for the device.
5758 * Before changing the MTU the device must be stopped.
5759 * Return value:
5760 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5761 * file on failure.
5762 */
5763
ac1f60db 5764static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 5765{
1ee6dd77 5766 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5767
5768 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5769 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5770 dev->name);
5771 return -EPERM;
5772 }
5773
1da177e4 5774 dev->mtu = new_mtu;
d8892c6e 5775 if (netif_running(dev)) {
e6a8fee2 5776 s2io_card_down(sp);
d8892c6e 5777 netif_stop_queue(dev);
5778 if (s2io_card_up(sp)) {
5779 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5780 __FUNCTION__);
5781 }
5782 if (netif_queue_stopped(dev))
5783 netif_wake_queue(dev);
5784 } else { /* Device is down */
1ee6dd77 5785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 5786 u64 val64 = new_mtu;
5787
5788 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5789 }
1da177e4
LT
5790
5791 return 0;
5792}
5793
5794/**
5795 * s2io_tasklet - Bottom half of the ISR.
5796 * @dev_adr : address of the device structure in dma_addr_t format.
5797 * Description:
5798 * This is the tasklet or the bottom half of the ISR. This is
20346722 5799 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5800 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5801 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5802 * replenish the Rx buffers in the Rx buffer descriptors.
5803 * Return value:
5804 * void.
5805 */
5806
5807static void s2io_tasklet(unsigned long dev_addr)
5808{
5809 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 5810 struct s2io_nic *sp = dev->priv;
1da177e4 5811 int i, ret;
1ee6dd77 5812 struct mac_info *mac_control;
1da177e4
LT
5813 struct config_param *config;
5814
5815 mac_control = &sp->mac_control;
5816 config = &sp->config;
5817
5818 if (!TASKLET_IN_USE) {
5819 for (i = 0; i < config->rx_ring_num; i++) {
5820 ret = fill_rx_buffers(sp, i);
5821 if (ret == -ENOMEM) {
5822 DBG_PRINT(ERR_DBG, "%s: Out of ",
5823 dev->name);
5824 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5825 break;
5826 } else if (ret == -EFILL) {
5827 DBG_PRINT(ERR_DBG,
5828 "%s: Rx Ring %d is full\n",
5829 dev->name, i);
5830 break;
5831 }
5832 }
5833 clear_bit(0, (&sp->tasklet_status));
5834 }
5835}
5836
5837/**
5838 * s2io_set_link - Set the LInk status
5839 * @data: long pointer to device private structue
5840 * Description: Sets the link status for the adapter
5841 */
5842
c4028958 5843static void s2io_set_link(struct work_struct *work)
1da177e4 5844{
1ee6dd77 5845 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 5846 struct net_device *dev = nic->dev;
1ee6dd77 5847 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
5848 register u64 val64;
5849 u16 subid;
5850
5851 if (test_and_set_bit(0, &(nic->link_state))) {
5852 /* The card is being reset, no point doing anything */
5853 return;
5854 }
5855
5856 subid = nic->pdev->subsystem_device;
a371a07d 5857 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5858 /*
5859 * Allow a small delay for the NICs self initiated
5860 * cleanup to complete.
5861 */
5862 msleep(100);
5863 }
1da177e4
LT
5864
5865 val64 = readq(&bar0->adapter_status);
19a60522
SS
5866 if (LINK_IS_UP(val64)) {
5867 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
5868 if (verify_xena_quiescence(nic)) {
5869 val64 = readq(&bar0->adapter_control);
5870 val64 |= ADAPTER_CNTL_EN;
1da177e4 5871 writeq(val64, &bar0->adapter_control);
19a60522
SS
5872 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
5873 nic->device_type, subid)) {
5874 val64 = readq(&bar0->gpio_control);
5875 val64 |= GPIO_CTRL_GPIO_0;
5876 writeq(val64, &bar0->gpio_control);
5877 val64 = readq(&bar0->gpio_control);
5878 } else {
5879 val64 |= ADAPTER_LED_ON;
5880 writeq(val64, &bar0->adapter_control);
a371a07d 5881 }
1da177e4 5882 nic->device_enabled_once = TRUE;
19a60522
SS
5883 } else {
5884 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5885 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5886 netif_stop_queue(dev);
1da177e4 5887 }
19a60522
SS
5888 }
5889 val64 = readq(&bar0->adapter_status);
5890 if (!LINK_IS_UP(val64)) {
5891 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5892 DBG_PRINT(ERR_DBG, " Link down after enabling ");
5893 DBG_PRINT(ERR_DBG, "device \n");
5894 } else
1da177e4 5895 s2io_link(nic, LINK_UP);
19a60522
SS
5896 } else {
5897 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5898 subid)) {
5899 val64 = readq(&bar0->gpio_control);
5900 val64 &= ~GPIO_CTRL_GPIO_0;
5901 writeq(val64, &bar0->gpio_control);
5902 val64 = readq(&bar0->gpio_control);
1da177e4 5903 }
19a60522 5904 s2io_link(nic, LINK_DOWN);
1da177e4
LT
5905 }
5906 clear_bit(0, &(nic->link_state));
5907}
5908
1ee6dd77
RB
5909static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
5910 struct buffAdd *ba,
5911 struct sk_buff **skb, u64 *temp0, u64 *temp1,
5912 u64 *temp2, int size)
5d3213cc
AR
5913{
5914 struct net_device *dev = sp->dev;
5915 struct sk_buff *frag_list;
5916
5917 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
5918 /* allocate skb */
5919 if (*skb) {
5920 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
5921 /*
5922 * As Rx frame are not going to be processed,
5923 * using same mapped address for the Rxd
5924 * buffer pointer
5925 */
1ee6dd77 5926 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5d3213cc
AR
5927 } else {
5928 *skb = dev_alloc_skb(size);
5929 if (!(*skb)) {
5930 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
5931 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
5932 return -ENOMEM ;
5933 }
5934 /* storing the mapped addr in a temp variable
5935 * such it will be used for next rxd whose
5936 * Host Control is NULL
5937 */
1ee6dd77 5938 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
5939 pci_map_single( sp->pdev, (*skb)->data,
5940 size - NET_IP_ALIGN,
5941 PCI_DMA_FROMDEVICE);
5942 rxdp->Host_Control = (unsigned long) (*skb);
5943 }
5944 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
5945 /* Two buffer Mode */
5946 if (*skb) {
1ee6dd77
RB
5947 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5948 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5949 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5d3213cc
AR
5950 } else {
5951 *skb = dev_alloc_skb(size);
2ceaac75
DR
5952 if (!(*skb)) {
5953 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
19a60522 5954 dev->name);
2ceaac75
DR
5955 return -ENOMEM;
5956 }
1ee6dd77 5957 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
5958 pci_map_single(sp->pdev, (*skb)->data,
5959 dev->mtu + 4,
5960 PCI_DMA_FROMDEVICE);
1ee6dd77 5961 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
5962 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
5963 PCI_DMA_FROMDEVICE);
5964 rxdp->Host_Control = (unsigned long) (*skb);
5965
5966 /* Buffer-1 will be dummy buffer not used */
1ee6dd77 5967 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
5968 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5969 PCI_DMA_FROMDEVICE);
5970 }
5971 } else if ((rxdp->Host_Control == 0)) {
5972 /* Three buffer mode */
5973 if (*skb) {
1ee6dd77
RB
5974 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
5975 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5976 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5d3213cc
AR
5977 } else {
5978 *skb = dev_alloc_skb(size);
2ceaac75
DR
5979 if (!(*skb)) {
5980 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
5981 dev->name);
5982 return -ENOMEM;
5983 }
1ee6dd77 5984 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
5985 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
5986 PCI_DMA_FROMDEVICE);
5987 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 5988 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
5989 pci_map_single( sp->pdev, (*skb)->data,
5990 l3l4hdr_size + 4,
5991 PCI_DMA_FROMDEVICE);
5992 /*
5993 * skb_shinfo(skb)->frag_list will have L4
5994 * data payload
5995 */
5996 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
5997 ALIGN_SIZE);
5998 if (skb_shinfo(*skb)->frag_list == NULL) {
5999 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6000 failed\n ", dev->name);
6001 return -ENOMEM ;
6002 }
6003 frag_list = skb_shinfo(*skb)->frag_list;
6004 frag_list->next = NULL;
6005 /*
6006 * Buffer-2 receives L4 data payload
6007 */
1ee6dd77 6008 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6009 pci_map_single( sp->pdev, frag_list->data,
6010 dev->mtu, PCI_DMA_FROMDEVICE);
6011 }
6012 }
6013 return 0;
6014}
1ee6dd77
RB
6015static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6016 int size)
5d3213cc
AR
6017{
6018 struct net_device *dev = sp->dev;
6019 if (sp->rxd_mode == RXD_MODE_1) {
6020 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6021 } else if (sp->rxd_mode == RXD_MODE_3B) {
6022 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6023 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6024 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6025 } else {
6026 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6027 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6028 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6029 }
6030}
6031
1ee6dd77 6032static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6033{
6034 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6035 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6036 struct config_param *config = &sp->config;
6037 struct net_device *dev = sp->dev;
1ee6dd77 6038 struct RxD_t *rxdp = NULL;
5d3213cc 6039 struct sk_buff *skb = NULL;
1ee6dd77 6040 struct buffAdd *ba = NULL;
5d3213cc
AR
6041 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6042
6043 /* Calculate the size based on ring mode */
6044 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6045 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6046 if (sp->rxd_mode == RXD_MODE_1)
6047 size += NET_IP_ALIGN;
6048 else if (sp->rxd_mode == RXD_MODE_3B)
6049 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6050 else
6051 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6052
6053 for (i = 0; i < config->rx_ring_num; i++) {
6054 blk_cnt = config->rx_cfg[i].num_rxd /
6055 (rxd_count[sp->rxd_mode] +1);
6056
6057 for (j = 0; j < blk_cnt; j++) {
6058 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6059 rxdp = mac_control->rings[i].
6060 rx_blocks[j].rxds[k].virt_addr;
6061 if(sp->rxd_mode >= RXD_MODE_3A)
6062 ba = &mac_control->rings[i].ba[j][k];
6063 set_rxd_buffer_pointer(sp, rxdp, ba,
6064 &skb,(u64 *)&temp0_64,
6065 (u64 *)&temp1_64,
6066 (u64 *)&temp2_64, size);
6067
6068 set_rxd_buffer_size(sp, rxdp, size);
6069 wmb();
6070 /* flip the Ownership bit to Hardware */
6071 rxdp->Control_1 |= RXD_OWN_XENA;
6072 }
6073 }
6074 }
6075 return 0;
6076
6077}
6078
1ee6dd77 6079static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6080{
e6a8fee2 6081 int ret = 0;
c92ca04b 6082 struct net_device *dev = sp->dev;
e6a8fee2 6083 int err = 0;
1da177e4 6084
e6a8fee2
AR
6085 if (sp->intr_type == MSI)
6086 ret = s2io_enable_msi(sp);
6087 else if (sp->intr_type == MSI_X)
6088 ret = s2io_enable_msi_x(sp);
6089 if (ret) {
6090 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6091 sp->intr_type = INTA;
20346722 6092 }
1da177e4 6093
1ee6dd77 6094 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6095 store_xmsi_data(sp);
c92ca04b 6096
e6a8fee2
AR
6097 /* After proper initialization of H/W, register ISR */
6098 if (sp->intr_type == MSI) {
6099 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6100 IRQF_SHARED, sp->name, dev);
6101 if (err) {
6102 pci_disable_msi(sp->pdev);
6103 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6104 dev->name);
6105 return -1;
6106 }
6107 }
6108 if (sp->intr_type == MSI_X) {
6109 int i;
c92ca04b 6110
e6a8fee2
AR
6111 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6112 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6113 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6114 dev->name, i);
6115 err = request_irq(sp->entries[i].vector,
6116 s2io_msix_fifo_handle, 0, sp->desc[i],
6117 sp->s2io_entries[i].arg);
6118 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6119 (unsigned long long)sp->msix_info[i].addr);
6120 } else {
6121 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6122 dev->name, i);
6123 err = request_irq(sp->entries[i].vector,
6124 s2io_msix_ring_handle, 0, sp->desc[i],
6125 sp->s2io_entries[i].arg);
6126 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc[i],
6127 (unsigned long long)sp->msix_info[i].addr);
c92ca04b 6128 }
e6a8fee2
AR
6129 if (err) {
6130 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6131 "failed\n", dev->name, i);
6132 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6133 return -1;
6134 }
6135 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6136 }
6137 }
6138 if (sp->intr_type == INTA) {
6139 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6140 sp->name, dev);
6141 if (err) {
6142 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6143 dev->name);
6144 return -1;
6145 }
6146 }
6147 return 0;
6148}
1ee6dd77 6149static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6150{
6151 int cnt = 0;
6152 struct net_device *dev = sp->dev;
6153
6154 if (sp->intr_type == MSI_X) {
6155 int i;
6156 u16 msi_control;
6157
6158 for (i=1; (sp->s2io_entries[i].in_use ==
6159 MSIX_REGISTERED_SUCCESS); i++) {
6160 int vector = sp->entries[i].vector;
6161 void *arg = sp->s2io_entries[i].arg;
6162
6163 free_irq(vector, arg);
6164 }
6165 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6166 msi_control &= 0xFFFE; /* Disable MSI */
6167 pci_write_config_word(sp->pdev, 0x42, msi_control);
6168
6169 pci_disable_msix(sp->pdev);
6170 } else {
6171 free_irq(sp->pdev->irq, dev);
6172 if (sp->intr_type == MSI) {
6173 u16 val;
6174
6175 pci_disable_msi(sp->pdev);
6176 pci_read_config_word(sp->pdev, 0x4c, &val);
6177 val ^= 0x1;
6178 pci_write_config_word(sp->pdev, 0x4c, val);
c92ca04b
AR
6179 }
6180 }
6181 /* Waiting till all Interrupt handlers are complete */
6182 cnt = 0;
6183 do {
6184 msleep(10);
6185 if (!atomic_read(&sp->isr_cnt))
6186 break;
6187 cnt++;
6188 } while(cnt < 5);
e6a8fee2
AR
6189}
6190
1ee6dd77 6191static void s2io_card_down(struct s2io_nic * sp)
e6a8fee2
AR
6192{
6193 int cnt = 0;
1ee6dd77 6194 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6195 unsigned long flags;
6196 register u64 val64 = 0;
6197
6198 del_timer_sync(&sp->alarm_timer);
6199 /* If s2io_set_link task is executing, wait till it completes. */
6200 while (test_and_set_bit(0, &(sp->link_state))) {
6201 msleep(50);
6202 }
6203 atomic_set(&sp->card_state, CARD_DOWN);
6204
6205 /* disable Tx and Rx traffic on the NIC */
6206 stop_nic(sp);
6207
6208 s2io_rem_isr(sp);
1da177e4
LT
6209
6210 /* Kill tasklet. */
6211 tasklet_kill(&sp->task);
6212
6213 /* Check if the device is Quiescent and then Reset the NIC */
6214 do {
5d3213cc
AR
6215 /* As per the HW requirement we need to replenish the
6216 * receive buffer to avoid the ring bump. Since there is
6217 * no intention of processing the Rx frame at this pointwe are
6218 * just settting the ownership bit of rxd in Each Rx
6219 * ring to HW and set the appropriate buffer size
6220 * based on the ring mode
6221 */
6222 rxd_owner_bit_reset(sp);
6223
1da177e4 6224 val64 = readq(&bar0->adapter_status);
19a60522
SS
6225 if (verify_xena_quiescence(sp)) {
6226 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6227 break;
6228 }
6229
6230 msleep(50);
6231 cnt++;
6232 if (cnt == 10) {
6233 DBG_PRINT(ERR_DBG,
6234 "s2io_close:Device not Quiescent ");
6235 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6236 (unsigned long long) val64);
6237 break;
6238 }
6239 } while (1);
1da177e4
LT
6240 s2io_reset(sp);
6241
7ba013ac 6242 spin_lock_irqsave(&sp->tx_lock, flags);
6243 /* Free all Tx buffers */
1da177e4 6244 free_tx_buffers(sp);
7ba013ac 6245 spin_unlock_irqrestore(&sp->tx_lock, flags);
6246
6247 /* Free all Rx buffers */
6248 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6249 free_rx_buffers(sp);
7ba013ac 6250 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6251
1da177e4
LT
6252 clear_bit(0, &(sp->link_state));
6253}
6254
1ee6dd77 6255static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6256{
cc6e7c44 6257 int i, ret = 0;
1ee6dd77 6258 struct mac_info *mac_control;
1da177e4
LT
6259 struct config_param *config;
6260 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6261 u16 interruptible;
1da177e4
LT
6262
6263 /* Initialize the H/W I/O registers */
6264 if (init_nic(sp) != 0) {
6265 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6266 dev->name);
e6a8fee2 6267 s2io_reset(sp);
1da177e4
LT
6268 return -ENODEV;
6269 }
6270
20346722 6271 /*
6272 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6273 * Rx ring and initializing buffers into 30 Rx blocks
6274 */
6275 mac_control = &sp->mac_control;
6276 config = &sp->config;
6277
6278 for (i = 0; i < config->rx_ring_num; i++) {
6279 if ((ret = fill_rx_buffers(sp, i))) {
6280 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6281 dev->name);
6282 s2io_reset(sp);
6283 free_rx_buffers(sp);
6284 return -ENOMEM;
6285 }
6286 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6287 atomic_read(&sp->rx_bufs_left[i]));
6288 }
19a60522
SS
6289 /* Maintain the state prior to the open */
6290 if (sp->promisc_flg)
6291 sp->promisc_flg = 0;
6292 if (sp->m_cast_flg) {
6293 sp->m_cast_flg = 0;
6294 sp->all_multi_pos= 0;
6295 }
1da177e4
LT
6296
6297 /* Setting its receive mode */
6298 s2io_set_multicast(dev);
6299
7d3d0439 6300 if (sp->lro) {
b41477f3 6301 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6302 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6303 /* Check if we can use(if specified) user provided value */
6304 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6305 sp->lro_max_aggr_per_sess = lro_max_pkts;
6306 }
6307
1da177e4
LT
6308 /* Enable Rx Traffic and interrupts on the NIC */
6309 if (start_nic(sp)) {
6310 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6311 s2io_reset(sp);
e6a8fee2
AR
6312 free_rx_buffers(sp);
6313 return -ENODEV;
6314 }
6315
6316 /* Add interrupt service routine */
6317 if (s2io_add_isr(sp) != 0) {
6318 if (sp->intr_type == MSI_X)
6319 s2io_rem_isr(sp);
6320 s2io_reset(sp);
1da177e4
LT
6321 free_rx_buffers(sp);
6322 return -ENODEV;
6323 }
6324
25fff88e 6325 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6326
e6a8fee2
AR
6327 /* Enable tasklet for the device */
6328 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6329
6330 /* Enable select interrupts */
6331 if (sp->intr_type != INTA)
6332 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6333 else {
6334 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6335 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6336 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6337 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6338 }
6339
6340
1da177e4
LT
6341 atomic_set(&sp->card_state, CARD_UP);
6342 return 0;
6343}
6344
20346722 6345/**
1da177e4
LT
6346 * s2io_restart_nic - Resets the NIC.
6347 * @data : long pointer to the device private structure
6348 * Description:
6349 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6350 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6351 * the run time of the watch dog routine which is run holding a
6352 * spin lock.
6353 */
6354
c4028958 6355static void s2io_restart_nic(struct work_struct *work)
1da177e4 6356{
1ee6dd77 6357 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6358 struct net_device *dev = sp->dev;
1da177e4 6359
e6a8fee2 6360 s2io_card_down(sp);
1da177e4
LT
6361 if (s2io_card_up(sp)) {
6362 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6363 dev->name);
6364 }
6365 netif_wake_queue(dev);
6366 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6367 dev->name);
20346722 6368
1da177e4
LT
6369}
6370
20346722 6371/**
6372 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6373 * @dev : Pointer to net device structure
6374 * Description:
6375 * This function is triggered if the Tx Queue is stopped
6376 * for a pre-defined amount of time when the Interface is still up.
6377 * If the Interface is jammed in such a situation, the hardware is
6378 * reset (by s2io_close) and restarted again (by s2io_open) to
6379 * overcome any problem that might have been caused in the hardware.
6380 * Return value:
6381 * void
6382 */
6383
6384static void s2io_tx_watchdog(struct net_device *dev)
6385{
1ee6dd77 6386 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6387
6388 if (netif_carrier_ok(dev)) {
6389 schedule_work(&sp->rst_timer_task);
bd1034f0 6390 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6391 }
6392}
6393
6394/**
6395 * rx_osm_handler - To perform some OS related operations on SKB.
6396 * @sp: private member of the device structure,pointer to s2io_nic structure.
6397 * @skb : the socket buffer pointer.
6398 * @len : length of the packet
6399 * @cksum : FCS checksum of the frame.
6400 * @ring_no : the ring from which this RxD was extracted.
20346722 6401 * Description:
b41477f3 6402 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6403 * some OS related operations on the SKB before passing it to the upper
6404 * layers. It mainly checks if the checksum is OK, if so adds it to the
6405 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6406 * to the upper layer. If the checksum is wrong, it increments the Rx
6407 * packet error count, frees the SKB and returns error.
6408 * Return value:
6409 * SUCCESS on success and -1 on failure.
6410 */
1ee6dd77 6411static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6412{
1ee6dd77 6413 struct s2io_nic *sp = ring_data->nic;
1da177e4 6414 struct net_device *dev = (struct net_device *) sp->dev;
20346722 6415 struct sk_buff *skb = (struct sk_buff *)
6416 ((unsigned long) rxdp->Host_Control);
6417 int ring_no = ring_data->ring_no;
1da177e4 6418 u16 l3_csum, l4_csum;
863c11a9 6419 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6420 struct lro *lro;
da6971d8 6421
20346722 6422 skb->dev = dev;
c92ca04b 6423
863c11a9 6424 if (err) {
bd1034f0
AR
6425 /* Check for parity error */
6426 if (err & 0x1) {
6427 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6428 }
6429
863c11a9
AR
6430 /*
6431 * Drop the packet if bad transfer code. Exception being
6432 * 0x5, which could be due to unsupported IPv6 extension header.
6433 * In this case, we let stack handle the packet.
6434 * Note that in this case, since checksum will be incorrect,
6435 * stack will validate the same.
6436 */
6437 if (err && ((err >> 48) != 0x5)) {
6438 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6439 dev->name, err);
6440 sp->stats.rx_crc_errors++;
6441 dev_kfree_skb(skb);
6442 atomic_dec(&sp->rx_bufs_left[ring_no]);
6443 rxdp->Host_Control = 0;
6444 return 0;
6445 }
20346722 6446 }
1da177e4 6447
20346722 6448 /* Updating statistics */
6449 rxdp->Host_Control = 0;
6450 sp->rx_pkt_count++;
6451 sp->stats.rx_packets++;
da6971d8
AR
6452 if (sp->rxd_mode == RXD_MODE_1) {
6453 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6454
da6971d8
AR
6455 sp->stats.rx_bytes += len;
6456 skb_put(skb, len);
6457
6458 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6459 int get_block = ring_data->rx_curr_get_info.block_index;
6460 int get_off = ring_data->rx_curr_get_info.offset;
6461 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6462 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6463 unsigned char *buff = skb_push(skb, buf0_len);
6464
1ee6dd77 6465 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6466 sp->stats.rx_bytes += buf0_len + buf2_len;
6467 memcpy(buff, ba->ba_0, buf0_len);
6468
6469 if (sp->rxd_mode == RXD_MODE_3A) {
6470 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6471
6472 skb_put(skb, buf1_len);
6473 skb->len += buf2_len;
6474 skb->data_len += buf2_len;
da6971d8
AR
6475 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6476 sp->stats.rx_bytes += buf1_len;
6477
6478 } else
6479 skb_put(skb, buf2_len);
6480 }
20346722 6481
7d3d0439
RA
6482 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6483 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 6484 (sp->rx_csum)) {
6485 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6486 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6487 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6488 /*
1da177e4
LT
6489 * NIC verifies if the Checksum of the received
6490 * frame is Ok or not and accordingly returns
6491 * a flag in the RxD.
6492 */
6493 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6494 if (sp->lro) {
6495 u32 tcp_len;
6496 u8 *tcp;
6497 int ret = 0;
6498
6499 ret = s2io_club_tcp_session(skb->data, &tcp,
6500 &tcp_len, &lro, rxdp, sp);
6501 switch (ret) {
6502 case 3: /* Begin anew */
6503 lro->parent = skb;
6504 goto aggregate;
6505 case 1: /* Aggregate */
6506 {
6507 lro_append_pkt(sp, lro,
6508 skb, tcp_len);
6509 goto aggregate;
6510 }
6511 case 4: /* Flush session */
6512 {
6513 lro_append_pkt(sp, lro,
6514 skb, tcp_len);
6515 queue_rx_frame(lro->parent);
6516 clear_lro_session(lro);
6517 sp->mac_control.stats_info->
6518 sw_stat.flush_max_pkts++;
6519 goto aggregate;
6520 }
6521 case 2: /* Flush both */
6522 lro->parent->data_len =
6523 lro->frags_len;
6524 sp->mac_control.stats_info->
6525 sw_stat.sending_both++;
6526 queue_rx_frame(lro->parent);
6527 clear_lro_session(lro);
6528 goto send_up;
6529 case 0: /* sessions exceeded */
c92ca04b
AR
6530 case -1: /* non-TCP or not
6531 * L2 aggregatable
6532 */
7d3d0439
RA
6533 case 5: /*
6534 * First pkt in session not
6535 * L3/L4 aggregatable
6536 */
6537 break;
6538 default:
6539 DBG_PRINT(ERR_DBG,
6540 "%s: Samadhana!!\n",
6541 __FUNCTION__);
6542 BUG();
6543 }
6544 }
1da177e4 6545 } else {
20346722 6546 /*
6547 * Packet with erroneous checksum, let the
1da177e4
LT
6548 * upper layers deal with it.
6549 */
6550 skb->ip_summed = CHECKSUM_NONE;
6551 }
6552 } else {
6553 skb->ip_summed = CHECKSUM_NONE;
6554 }
6555
7d3d0439
RA
6556 if (!sp->lro) {
6557 skb->protocol = eth_type_trans(skb, dev);
7d3d0439
RA
6558 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6559 /* Queueing the vlan frame to the upper layer */
db874e65
SS
6560 if (napi)
6561 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6562 RXD_GET_VLAN_TAG(rxdp->Control_2));
6563 else
6564 vlan_hwaccel_rx(skb, sp->vlgrp,
6565 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 6566 } else {
db874e65
SS
6567 if (napi)
6568 netif_receive_skb(skb);
6569 else
6570 netif_rx(skb);
7d3d0439 6571 }
7d3d0439
RA
6572 } else {
6573send_up:
6574 queue_rx_frame(skb);
6aa20a22 6575 }
1da177e4 6576 dev->last_rx = jiffies;
7d3d0439 6577aggregate:
1da177e4 6578 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6579 return SUCCESS;
6580}
6581
6582/**
6583 * s2io_link - stops/starts the Tx queue.
6584 * @sp : private member of the device structure, which is a pointer to the
6585 * s2io_nic structure.
6586 * @link : inidicates whether link is UP/DOWN.
6587 * Description:
6588 * This function stops/starts the Tx queue depending on whether the link
20346722 6589 * status of the NIC is is down or up. This is called by the Alarm
6590 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6591 * Return value:
6592 * void.
6593 */
6594
1ee6dd77 6595static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
6596{
6597 struct net_device *dev = (struct net_device *) sp->dev;
6598
6599 if (link != sp->last_link_state) {
6600 if (link == LINK_DOWN) {
6601 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6602 netif_carrier_off(dev);
6603 } else {
6604 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6605 netif_carrier_on(dev);
6606 }
6607 }
6608 sp->last_link_state = link;
6609}
6610
6611/**
20346722 6612 * get_xena_rev_id - to identify revision ID of xena.
6613 * @pdev : PCI Dev structure
6614 * Description:
6615 * Function to identify the Revision ID of xena.
6616 * Return value:
6617 * returns the revision ID of the device.
6618 */
6619
26df54bf 6620static int get_xena_rev_id(struct pci_dev *pdev)
20346722 6621{
6622 u8 id = 0;
6623 int ret;
6624 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6625 return id;
6626}
6627
6628/**
6629 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6630 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6631 * s2io_nic structure.
6632 * Description:
6633 * This function initializes a few of the PCI and PCI-X configuration registers
6634 * with recommended values.
6635 * Return value:
6636 * void
6637 */
6638
1ee6dd77 6639static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 6640{
20346722 6641 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6642
6643 /* Enable Data Parity Error Recovery in PCI-X command register. */
6644 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6645 &(pcix_cmd));
1da177e4 6646 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6647 (pcix_cmd | 1));
1da177e4 6648 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6649 &(pcix_cmd));
1da177e4
LT
6650
6651 /* Set the PErr Response bit in PCI command register. */
6652 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6653 pci_write_config_word(sp->pdev, PCI_COMMAND,
6654 (pci_cmd | PCI_COMMAND_PARITY));
6655 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6656}
6657
9dc737a7
AR
6658static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6659{
6660 if ( tx_fifo_num > 8) {
6661 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6662 "supported\n");
6663 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6664 tx_fifo_num = 8;
6665 }
6666 if ( rx_ring_num > 8) {
6667 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6668 "supported\n");
6669 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6670 rx_ring_num = 8;
6671 }
db874e65
SS
6672 if (*dev_intr_type != INTA)
6673 napi = 0;
6674
9dc737a7
AR
6675#ifndef CONFIG_PCI_MSI
6676 if (*dev_intr_type != INTA) {
6677 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6678 "MSI/MSI-X. Defaulting to INTA\n");
6679 *dev_intr_type = INTA;
6680 }
6681#else
6682 if (*dev_intr_type > MSI_X) {
6683 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6684 "Defaulting to INTA\n");
6685 *dev_intr_type = INTA;
6686 }
6687#endif
6688 if ((*dev_intr_type == MSI_X) &&
6689 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6690 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 6691 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
6692 "Defaulting to INTA\n");
6693 *dev_intr_type = INTA;
6694 }
372cc597
SS
6695 if ( (rx_ring_num > 1) && (*dev_intr_type != INTA) )
6696 napi = 0;
9dc737a7
AR
6697 if (rx_ring_mode > 3) {
6698 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6699 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6700 rx_ring_mode = 3;
6701 }
6702 return SUCCESS;
6703}
6704
1da177e4 6705/**
20346722 6706 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
6707 * @pdev : structure containing the PCI related information of the device.
6708 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6709 * Description:
6710 * The function initializes an adapter identified by the pci_dec structure.
20346722 6711 * All OS related initialization including memory and device structure and
6712 * initlaization of the device private variable is done. Also the swapper
6713 * control register is initialized to enable read and write into the I/O
1da177e4
LT
6714 * registers of the device.
6715 * Return value:
6716 * returns 0 on success and negative on failure.
6717 */
6718
6719static int __devinit
6720s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6721{
1ee6dd77 6722 struct s2io_nic *sp;
1da177e4 6723 struct net_device *dev;
1da177e4
LT
6724 int i, j, ret;
6725 int dma_flag = FALSE;
6726 u32 mac_up, mac_down;
6727 u64 val64 = 0, tmp64 = 0;
1ee6dd77 6728 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 6729 u16 subid;
1ee6dd77 6730 struct mac_info *mac_control;
1da177e4 6731 struct config_param *config;
541ae68f 6732 int mode;
cc6e7c44 6733 u8 dev_intr_type = intr_type;
1da177e4 6734
9dc737a7
AR
6735 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6736 return ret;
1da177e4
LT
6737
6738 if ((ret = pci_enable_device(pdev))) {
6739 DBG_PRINT(ERR_DBG,
6740 "s2io_init_nic: pci_enable_device failed\n");
6741 return ret;
6742 }
6743
1e7f0bd8 6744 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6745 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6746 dma_flag = TRUE;
1da177e4 6747 if (pci_set_consistent_dma_mask
1e7f0bd8 6748 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6749 DBG_PRINT(ERR_DBG,
6750 "Unable to obtain 64bit DMA for \
6751 consistent allocations\n");
6752 pci_disable_device(pdev);
6753 return -ENOMEM;
6754 }
1e7f0bd8 6755 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
6756 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6757 } else {
6758 pci_disable_device(pdev);
6759 return -ENOMEM;
6760 }
cc6e7c44
RA
6761 if (dev_intr_type != MSI_X) {
6762 if (pci_request_regions(pdev, s2io_driver_name)) {
b41477f3
AR
6763 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6764 pci_disable_device(pdev);
cc6e7c44
RA
6765 return -ENODEV;
6766 }
6767 }
6768 else {
6769 if (!(request_mem_region(pci_resource_start(pdev, 0),
6770 pci_resource_len(pdev, 0), s2io_driver_name))) {
6771 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6772 pci_disable_device(pdev);
6773 return -ENODEV;
6774 }
6775 if (!(request_mem_region(pci_resource_start(pdev, 2),
6776 pci_resource_len(pdev, 2), s2io_driver_name))) {
6777 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6778 release_mem_region(pci_resource_start(pdev, 0),
6779 pci_resource_len(pdev, 0));
6780 pci_disable_device(pdev);
6781 return -ENODEV;
6782 }
1da177e4
LT
6783 }
6784
1ee6dd77 6785 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
6786 if (dev == NULL) {
6787 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6788 pci_disable_device(pdev);
6789 pci_release_regions(pdev);
6790 return -ENODEV;
6791 }
6792
6793 pci_set_master(pdev);
6794 pci_set_drvdata(pdev, dev);
6795 SET_MODULE_OWNER(dev);
6796 SET_NETDEV_DEV(dev, &pdev->dev);
6797
6798 /* Private member variable initialized to s2io NIC structure */
6799 sp = dev->priv;
1ee6dd77 6800 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
6801 sp->dev = dev;
6802 sp->pdev = pdev;
1da177e4 6803 sp->high_dma_flag = dma_flag;
1da177e4 6804 sp->device_enabled_once = FALSE;
da6971d8
AR
6805 if (rx_ring_mode == 1)
6806 sp->rxd_mode = RXD_MODE_1;
6807 if (rx_ring_mode == 2)
6808 sp->rxd_mode = RXD_MODE_3B;
6809 if (rx_ring_mode == 3)
6810 sp->rxd_mode = RXD_MODE_3A;
6811
cc6e7c44 6812 sp->intr_type = dev_intr_type;
1da177e4 6813
541ae68f 6814 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6815 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6816 sp->device_type = XFRAME_II_DEVICE;
6817 else
6818 sp->device_type = XFRAME_I_DEVICE;
6819
7d3d0439 6820 sp->lro = lro;
6aa20a22 6821
1da177e4
LT
6822 /* Initialize some PCI/PCI-X fields of the NIC. */
6823 s2io_init_pci(sp);
6824
20346722 6825 /*
1da177e4 6826 * Setting the device configuration parameters.
20346722 6827 * Most of these parameters can be specified by the user during
6828 * module insertion as they are module loadable parameters. If
6829 * these parameters are not not specified during load time, they
1da177e4
LT
6830 * are initialized with default values.
6831 */
6832 mac_control = &sp->mac_control;
6833 config = &sp->config;
6834
6835 /* Tx side parameters. */
1da177e4
LT
6836 config->tx_fifo_num = tx_fifo_num;
6837 for (i = 0; i < MAX_TX_FIFOS; i++) {
6838 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6839 config->tx_cfg[i].fifo_priority = i;
6840 }
6841
20346722 6842 /* mapping the QoS priority to the configured fifos */
6843 for (i = 0; i < MAX_TX_FIFOS; i++)
6844 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6845
1da177e4
LT
6846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6847 for (i = 0; i < config->tx_fifo_num; i++) {
6848 config->tx_cfg[i].f_no_snoop =
6849 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6850 if (config->tx_cfg[i].fifo_len < 65) {
6851 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6852 break;
6853 }
6854 }
fed5eccd
AR
6855 /* + 2 because one Txd for skb->data and one Txd for UFO */
6856 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
6857
6858 /* Rx side parameters. */
1da177e4
LT
6859 config->rx_ring_num = rx_ring_num;
6860 for (i = 0; i < MAX_RX_RINGS; i++) {
6861 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 6862 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
6863 config->rx_cfg[i].ring_priority = i;
6864 }
6865
6866 for (i = 0; i < rx_ring_num; i++) {
6867 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6868 config->rx_cfg[i].f_no_snoop =
6869 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6870 }
6871
6872 /* Setting Mac Control parameters */
6873 mac_control->rmac_pause_time = rmac_pause_time;
6874 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6875 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6876
6877
6878 /* Initialize Ring buffer parameters. */
6879 for (i = 0; i < config->rx_ring_num; i++)
6880 atomic_set(&sp->rx_bufs_left[i], 0);
6881
7ba013ac 6882 /* Initialize the number of ISRs currently running */
6883 atomic_set(&sp->isr_cnt, 0);
6884
1da177e4
LT
6885 /* initialize the shared memory used by the NIC and the host */
6886 if (init_shared_mem(sp)) {
6887 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 6888 dev->name);
1da177e4
LT
6889 ret = -ENOMEM;
6890 goto mem_alloc_failed;
6891 }
6892
6893 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6894 pci_resource_len(pdev, 0));
6895 if (!sp->bar0) {
19a60522 6896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
6897 dev->name);
6898 ret = -ENOMEM;
6899 goto bar0_remap_failed;
6900 }
6901
6902 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6903 pci_resource_len(pdev, 2));
6904 if (!sp->bar1) {
19a60522 6905 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
6906 dev->name);
6907 ret = -ENOMEM;
6908 goto bar1_remap_failed;
6909 }
6910
6911 dev->irq = pdev->irq;
6912 dev->base_addr = (unsigned long) sp->bar0;
6913
6914 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6915 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 6916 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
6917 (sp->bar1 + (j * 0x00020000));
6918 }
6919
6920 /* Driver entry points */
6921 dev->open = &s2io_open;
6922 dev->stop = &s2io_close;
6923 dev->hard_start_xmit = &s2io_xmit;
6924 dev->get_stats = &s2io_get_stats;
6925 dev->set_multicast_list = &s2io_set_multicast;
6926 dev->do_ioctl = &s2io_ioctl;
6927 dev->change_mtu = &s2io_change_mtu;
6928 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 6929 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6930 dev->vlan_rx_register = s2io_vlan_rx_register;
6931 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 6932
1da177e4
LT
6933 /*
6934 * will use eth_mac_addr() for dev->set_mac_address
6935 * mac address will be set every time dev->open() is called
6936 */
1da177e4 6937 dev->poll = s2io_poll;
20346722 6938 dev->weight = 32;
1da177e4 6939
612eff0e
BH
6940#ifdef CONFIG_NET_POLL_CONTROLLER
6941 dev->poll_controller = s2io_netpoll;
6942#endif
6943
1da177e4
LT
6944 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6945 if (sp->high_dma_flag == TRUE)
6946 dev->features |= NETIF_F_HIGHDMA;
1da177e4 6947 dev->features |= NETIF_F_TSO;
f83ef8c0 6948 dev->features |= NETIF_F_TSO6;
db874e65 6949 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
6950 dev->features |= NETIF_F_UFO;
6951 dev->features |= NETIF_F_HW_CSUM;
6952 }
1da177e4
LT
6953
6954 dev->tx_timeout = &s2io_tx_watchdog;
6955 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
6956 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
6957 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 6958
e960fc5c 6959 pci_save_state(sp->pdev);
1da177e4
LT
6960
6961 /* Setting swapper control on the NIC, for proper reset operation */
6962 if (s2io_set_swapper(sp)) {
6963 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6964 dev->name);
6965 ret = -EAGAIN;
6966 goto set_swap_failed;
6967 }
6968
541ae68f 6969 /* Verify if the Herc works on the slot its placed into */
6970 if (sp->device_type & XFRAME_II_DEVICE) {
6971 mode = s2io_verify_pci_mode(sp);
6972 if (mode < 0) {
6973 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6974 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6975 ret = -EBADSLT;
6976 goto set_swap_failed;
6977 }
6978 }
6979
6980 /* Not needed for Herc */
6981 if (sp->device_type & XFRAME_I_DEVICE) {
6982 /*
6983 * Fix for all "FFs" MAC address problems observed on
6984 * Alpha platforms
6985 */
6986 fix_mac_address(sp);
6987 s2io_reset(sp);
6988 }
1da177e4
LT
6989
6990 /*
1da177e4
LT
6991 * MAC address initialization.
6992 * For now only one mac address will be read and used.
6993 */
6994 bar0 = sp->bar0;
6995 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6996 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6997 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b
AR
6998 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6999 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
7000 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7001 mac_down = (u32) tmp64;
7002 mac_up = (u32) (tmp64 >> 32);
7003
7004 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
7005
7006 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7007 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7008 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7009 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7010 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7011 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7012
1da177e4
LT
7013 /* Set the factory defined MAC address initially */
7014 dev->addr_len = ETH_ALEN;
7015 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7016
b41477f3
AR
7017 /* reset Nic and bring it to known state */
7018 s2io_reset(sp);
7019
1da177e4 7020 /*
20346722 7021 * Initialize the tasklet status and link state flags
541ae68f 7022 * and the card state parameter
1da177e4
LT
7023 */
7024 atomic_set(&(sp->card_state), 0);
7025 sp->tasklet_status = 0;
7026 sp->link_state = 0;
7027
1da177e4
LT
7028 /* Initialize spinlocks */
7029 spin_lock_init(&sp->tx_lock);
db874e65
SS
7030
7031 if (!napi)
7032 spin_lock_init(&sp->put_lock);
7ba013ac 7033 spin_lock_init(&sp->rx_lock);
1da177e4 7034
20346722 7035 /*
7036 * SXE-002: Configure link and activity LED to init state
7037 * on driver load.
1da177e4
LT
7038 */
7039 subid = sp->pdev->subsystem_device;
7040 if ((subid & 0xFF) >= 0x07) {
7041 val64 = readq(&bar0->gpio_control);
7042 val64 |= 0x0000800000000000ULL;
7043 writeq(val64, &bar0->gpio_control);
7044 val64 = 0x0411040400000000ULL;
7045 writeq(val64, (void __iomem *) bar0 + 0x2700);
7046 val64 = readq(&bar0->gpio_control);
7047 }
7048
7049 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7050
7051 if (register_netdev(dev)) {
7052 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7053 ret = -ENODEV;
7054 goto register_failed;
7055 }
9dc737a7 7056 s2io_vpd_read(sp);
9dc737a7 7057 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
b41477f3
AR
7058 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7059 sp->product_name, get_xena_rev_id(sp->pdev));
7060 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7061 s2io_driver_version);
9dc737a7 7062 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7063 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f 7064 sp->def_mac_addr[0].mac_addr[0],
7065 sp->def_mac_addr[0].mac_addr[1],
7066 sp->def_mac_addr[0].mac_addr[2],
7067 sp->def_mac_addr[0].mac_addr[3],
7068 sp->def_mac_addr[0].mac_addr[4],
7069 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7070 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7071 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7072 mode = s2io_print_pci_mode(sp);
541ae68f 7073 if (mode < 0) {
9dc737a7 7074 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7075 ret = -EBADSLT;
9dc737a7 7076 unregister_netdev(dev);
541ae68f 7077 goto set_swap_failed;
7078 }
541ae68f 7079 }
9dc737a7
AR
7080 switch(sp->rxd_mode) {
7081 case RXD_MODE_1:
7082 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7083 dev->name);
7084 break;
7085 case RXD_MODE_3B:
7086 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7087 dev->name);
7088 break;
7089 case RXD_MODE_3A:
7090 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7091 dev->name);
7092 break;
7093 }
db874e65
SS
7094
7095 if (napi)
7096 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7097 switch(sp->intr_type) {
7098 case INTA:
7099 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7100 break;
7101 case MSI:
7102 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7103 break;
7104 case MSI_X:
7105 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7106 break;
7107 }
7d3d0439
RA
7108 if (sp->lro)
7109 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7110 dev->name);
db874e65
SS
7111 if (ufo)
7112 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7113 " enabled\n", dev->name);
7ba013ac 7114 /* Initialize device name */
9dc737a7 7115 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7116
b6e3f982 7117 /* Initialize bimodal Interrupts */
7118 sp->config.bimodal = bimodal;
7119 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7120 sp->config.bimodal = 0;
7121 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7122 dev->name);
7123 }
7124
20346722 7125 /*
7126 * Make Link state as off at this point, when the Link change
7127 * interrupt comes the state will be automatically changed to
1da177e4
LT
7128 * the right state.
7129 */
7130 netif_carrier_off(dev);
1da177e4
LT
7131
7132 return 0;
7133
7134 register_failed:
7135 set_swap_failed:
7136 iounmap(sp->bar1);
7137 bar1_remap_failed:
7138 iounmap(sp->bar0);
7139 bar0_remap_failed:
7140 mem_alloc_failed:
7141 free_shared_mem(sp);
7142 pci_disable_device(pdev);
cc6e7c44
RA
7143 if (dev_intr_type != MSI_X)
7144 pci_release_regions(pdev);
7145 else {
7146 release_mem_region(pci_resource_start(pdev, 0),
7147 pci_resource_len(pdev, 0));
7148 release_mem_region(pci_resource_start(pdev, 2),
7149 pci_resource_len(pdev, 2));
7150 }
1da177e4
LT
7151 pci_set_drvdata(pdev, NULL);
7152 free_netdev(dev);
7153
7154 return ret;
7155}
7156
7157/**
20346722 7158 * s2io_rem_nic - Free the PCI device
1da177e4 7159 * @pdev: structure containing the PCI related information of the device.
20346722 7160 * Description: This function is called by the Pci subsystem to release a
1da177e4 7161 * PCI device and free up all resource held up by the device. This could
20346722 7162 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7163 * from memory.
7164 */
7165
7166static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7167{
7168 struct net_device *dev =
7169 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7170 struct s2io_nic *sp;
1da177e4
LT
7171
7172 if (dev == NULL) {
7173 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7174 return;
7175 }
7176
7177 sp = dev->priv;
7178 unregister_netdev(dev);
7179
7180 free_shared_mem(sp);
7181 iounmap(sp->bar0);
7182 iounmap(sp->bar1);
cc6e7c44
RA
7183 if (sp->intr_type != MSI_X)
7184 pci_release_regions(pdev);
7185 else {
7186 release_mem_region(pci_resource_start(pdev, 0),
7187 pci_resource_len(pdev, 0));
7188 release_mem_region(pci_resource_start(pdev, 2),
7189 pci_resource_len(pdev, 2));
7190 }
1da177e4 7191 pci_set_drvdata(pdev, NULL);
1da177e4 7192 free_netdev(dev);
19a60522 7193 pci_disable_device(pdev);
1da177e4
LT
7194}
7195
7196/**
7197 * s2io_starter - Entry point for the driver
7198 * Description: This function is the entry point for the driver. It verifies
7199 * the module loadable parameters and initializes PCI configuration space.
7200 */
7201
7202int __init s2io_starter(void)
7203{
29917620 7204 return pci_register_driver(&s2io_driver);
1da177e4
LT
7205}
7206
7207/**
20346722 7208 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7209 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7210 */
7211
372cc597 7212static __exit void s2io_closer(void)
1da177e4
LT
7213{
7214 pci_unregister_driver(&s2io_driver);
7215 DBG_PRINT(INIT_DBG, "cleanup done\n");
7216}
7217
7218module_init(s2io_starter);
7219module_exit(s2io_closer);
7d3d0439 7220
6aa20a22 7221static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7222 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7223{
7224 int ip_off;
7225 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7226
7227 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7228 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7229 __FUNCTION__);
7230 return -1;
7231 }
7232
7233 /* TODO:
7234 * By default the VLAN field in the MAC is stripped by the card, if this
7235 * feature is turned off in rx_pa_cfg register, then the ip_off field
7236 * has to be shifted by a further 2 bytes
7237 */
7238 switch (l2_type) {
7239 case 0: /* DIX type */
7240 case 4: /* DIX type with VLAN */
7241 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7242 break;
7243 /* LLC, SNAP etc are considered non-mergeable */
7244 default:
7245 return -1;
7246 }
7247
7248 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7249 ip_len = (u8)((*ip)->ihl);
7250 ip_len <<= 2;
7251 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7252
7253 return 0;
7254}
7255
1ee6dd77 7256static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7257 struct tcphdr *tcp)
7258{
7259 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7260 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7261 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7262 return -1;
7263 return 0;
7264}
7265
7266static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7267{
7268 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7269}
7270
1ee6dd77 7271static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7272 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7273{
7274 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7275 lro->l2h = l2h;
7276 lro->iph = ip;
7277 lro->tcph = tcp;
7278 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7279 lro->tcp_ack = ntohl(tcp->ack_seq);
7280 lro->sg_num = 1;
7281 lro->total_len = ntohs(ip->tot_len);
7282 lro->frags_len = 0;
6aa20a22 7283 /*
7d3d0439
RA
7284 * check if we saw TCP timestamp. Other consistency checks have
7285 * already been done.
7286 */
7287 if (tcp->doff == 8) {
7288 u32 *ptr;
7289 ptr = (u32 *)(tcp+1);
7290 lro->saw_ts = 1;
7291 lro->cur_tsval = *(ptr+1);
7292 lro->cur_tsecr = *(ptr+2);
7293 }
7294 lro->in_use = 1;
7295}
7296
1ee6dd77 7297static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7298{
7299 struct iphdr *ip = lro->iph;
7300 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7301 __sum16 nchk;
1ee6dd77 7302 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7303 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7304
7305 /* Update L3 header */
7306 ip->tot_len = htons(lro->total_len);
7307 ip->check = 0;
7308 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7309 ip->check = nchk;
7310
7311 /* Update L4 header */
7312 tcp->ack_seq = lro->tcp_ack;
7313 tcp->window = lro->window;
7314
7315 /* Update tsecr field if this session has timestamps enabled */
7316 if (lro->saw_ts) {
7317 u32 *ptr = (u32 *)(tcp + 1);
7318 *(ptr+2) = lro->cur_tsecr;
7319 }
7320
7321 /* Update counters required for calculation of
7322 * average no. of packets aggregated.
7323 */
7324 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7325 statinfo->sw_stat.num_aggregations++;
7326}
7327
1ee6dd77 7328static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7329 struct tcphdr *tcp, u32 l4_pyld)
7330{
7331 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7332 lro->total_len += l4_pyld;
7333 lro->frags_len += l4_pyld;
7334 lro->tcp_next_seq += l4_pyld;
7335 lro->sg_num++;
7336
7337 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7338 lro->tcp_ack = tcp->ack_seq;
7339 lro->window = tcp->window;
6aa20a22 7340
7d3d0439
RA
7341 if (lro->saw_ts) {
7342 u32 *ptr;
7343 /* Update tsecr and tsval from this packet */
7344 ptr = (u32 *) (tcp + 1);
6aa20a22 7345 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7346 lro->cur_tsecr = *(ptr + 2);
7347 }
7348}
7349
1ee6dd77 7350static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7351 struct tcphdr *tcp, u32 tcp_pyld_len)
7352{
7d3d0439
RA
7353 u8 *ptr;
7354
79dc1901
AM
7355 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7356
7d3d0439
RA
7357 if (!tcp_pyld_len) {
7358 /* Runt frame or a pure ack */
7359 return -1;
7360 }
7361
7362 if (ip->ihl != 5) /* IP has options */
7363 return -1;
7364
75c30b13
AR
7365 /* If we see CE codepoint in IP header, packet is not mergeable */
7366 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7367 return -1;
7368
7369 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7370 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7371 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7372 /*
7373 * Currently recognize only the ack control word and
7374 * any other control field being set would result in
7375 * flushing the LRO session
7376 */
7377 return -1;
7378 }
7379
6aa20a22 7380 /*
7d3d0439
RA
7381 * Allow only one TCP timestamp option. Don't aggregate if
7382 * any other options are detected.
7383 */
7384 if (tcp->doff != 5 && tcp->doff != 8)
7385 return -1;
7386
7387 if (tcp->doff == 8) {
6aa20a22 7388 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7389 while (*ptr == TCPOPT_NOP)
7390 ptr++;
7391 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7392 return -1;
7393
7394 /* Ensure timestamp value increases monotonically */
7395 if (l_lro)
7396 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7397 return -1;
7398
7399 /* timestamp echo reply should be non-zero */
6aa20a22 7400 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7401 return -1;
7402 }
7403
7404 return 0;
7405}
7406
7407static int
1ee6dd77
RB
7408s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7409 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7410{
7411 struct iphdr *ip;
7412 struct tcphdr *tcph;
7413 int ret = 0, i;
7414
7415 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7416 rxdp))) {
7417 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7418 ip->saddr, ip->daddr);
7419 } else {
7420 return ret;
7421 }
7422
7423 tcph = (struct tcphdr *)*tcp;
7424 *tcp_len = get_l4_pyld_length(ip, tcph);
7425 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7426 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7427 if (l_lro->in_use) {
7428 if (check_for_socket_match(l_lro, ip, tcph))
7429 continue;
7430 /* Sock pair matched */
7431 *lro = l_lro;
7432
7433 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7434 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7435 "0x%x, actual 0x%x\n", __FUNCTION__,
7436 (*lro)->tcp_next_seq,
7437 ntohl(tcph->seq));
7438
7439 sp->mac_control.stats_info->
7440 sw_stat.outof_sequence_pkts++;
7441 ret = 2;
7442 break;
7443 }
7444
7445 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7446 ret = 1; /* Aggregate */
7447 else
7448 ret = 2; /* Flush both */
7449 break;
7450 }
7451 }
7452
7453 if (ret == 0) {
7454 /* Before searching for available LRO objects,
7455 * check if the pkt is L3/L4 aggregatable. If not
7456 * don't create new LRO session. Just send this
7457 * packet up.
7458 */
7459 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7460 return 5;
7461 }
7462
7463 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7464 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7465 if (!(l_lro->in_use)) {
7466 *lro = l_lro;
7467 ret = 3; /* Begin anew */
7468 break;
7469 }
7470 }
7471 }
7472
7473 if (ret == 0) { /* sessions exceeded */
7474 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7475 __FUNCTION__);
7476 *lro = NULL;
7477 return ret;
7478 }
7479
7480 switch (ret) {
7481 case 3:
7482 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7483 break;
7484 case 2:
7485 update_L3L4_header(sp, *lro);
7486 break;
7487 case 1:
7488 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7489 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7490 update_L3L4_header(sp, *lro);
7491 ret = 4; /* Flush the LRO */
7492 }
7493 break;
7494 default:
7495 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7496 __FUNCTION__);
7497 break;
7498 }
7499
7500 return ret;
7501}
7502
1ee6dd77 7503static void clear_lro_session(struct lro *lro)
7d3d0439 7504{
1ee6dd77 7505 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
7506
7507 memset(lro, 0, lro_struct_size);
7508}
7509
7510static void queue_rx_frame(struct sk_buff *skb)
7511{
7512 struct net_device *dev = skb->dev;
7513
7514 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
7515 if (napi)
7516 netif_receive_skb(skb);
7517 else
7518 netif_rx(skb);
7d3d0439
RA
7519}
7520
1ee6dd77
RB
7521static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7522 struct sk_buff *skb,
7d3d0439
RA
7523 u32 tcp_len)
7524{
75c30b13 7525 struct sk_buff *first = lro->parent;
7d3d0439
RA
7526
7527 first->len += tcp_len;
7528 first->data_len = lro->frags_len;
7529 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
7530 if (skb_shinfo(first)->frag_list)
7531 lro->last_frag->next = skb;
7d3d0439
RA
7532 else
7533 skb_shinfo(first)->frag_list = skb;
372cc597 7534 first->truesize += skb->truesize;
75c30b13 7535 lro->last_frag = skb;
7d3d0439
RA
7536 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7537 return;
7538}
This page took 0.669645 seconds and 5 git commands to generate.