asic3: platform_get_irq() may return signed unnoticed
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
1da177e4
LT
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
66#include <linux/skbuff.h>
67#include <linux/init.h>
68#include <linux/delay.h>
69#include <linux/stddef.h>
70#include <linux/ioctl.h>
71#include <linux/timex.h>
1da177e4 72#include <linux/ethtool.h>
1da177e4 73#include <linux/workqueue.h>
be3a6b02 74#include <linux/if_vlan.h>
7d3d0439
RA
75#include <linux/ip.h>
76#include <linux/tcp.h>
77#include <net/tcp.h>
1da177e4 78
1da177e4
LT
79#include <asm/system.h>
80#include <asm/uaccess.h>
20346722 81#include <asm/io.h>
fe931395 82#include <asm/div64.h>
330ce0de 83#include <asm/irq.h>
1da177e4
LT
84
85/* local include */
86#include "s2io.h"
87#include "s2io-regs.h"
88
29d0a2b0 89#define DRV_VERSION "2.0.26.25"
6c1792f4 90
1da177e4 91/* S2io Driver name & version. */
20346722 92static char s2io_driver_name[] = "Neterion";
6c1792f4 93static char s2io_driver_version[] = DRV_VERSION;
1da177e4 94
6d517a27
VP
95static int rxd_size[2] = {32,48};
96static int rxd_count[2] = {127,85};
da6971d8 97
1ee6dd77 98static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 99{
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106}
107
20346722 108/*
1da177e4
LT
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
541ae68f 113#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
117
118#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 120
92b84437
SS
121static inline int is_s2io_card_up(const struct s2io_nic * sp)
122{
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124}
125
1da177e4
LT
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
fa1f0cb3 135static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
fa1f0cb3
SS
229 {"rxf_wr_cnt"}
230};
231
232static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
248 {"link_fault_cnt"}
249};
250
251static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
bd1034f0
AR
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
8116f3cf
SS
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
43b7c451
SH
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
1da177e4
LT
324};
325
4c3616cd
AMR
326#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3
SS
329
330#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4 335
4c3616cd 336#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
1da177e4
LT
337#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
25fff88e 339#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
2fd37688
SS
345/* copy mac addr to def_mac_addr array */
346static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347{
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354}
be3a6b02 355/* Add the vlan */
356static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
358{
2fda096d 359 int i;
1ee6dd77 360 struct s2io_nic *nic = dev->priv;
2fda096d
SR
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
364
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
be3a6b02 367
be3a6b02 368 nic->vlgrp = grp;
2fda096d
SR
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
be3a6b02 372}
373
926930b2 374/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 375static int vlan_strip_flag;
926930b2 376
cdb5bf02
SH
377/* Unregister the vlan */
378static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
379{
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
385
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
388
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
391
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
395}
396
20346722 397/*
1da177e4
LT
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
400 */
401
1da177e4 402#define END_SIGN 0x0
f71e1309 403static const u64 herc_act_dtx_cfg[] = {
541ae68f 404 /* Set address */
e960fc5c 405 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 406 /* Write data */
e960fc5c 407 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
e960fc5c 413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
541ae68f 417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
422};
423
f71e1309 424static const u64 xena_dtx_cfg[] = {
c92ca04b 425 /* Set address */
1da177e4 426 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
1da177e4 434 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
437 END_SIGN
438};
439
20346722 440/*
1da177e4
LT
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
443 */
f71e1309 444static const u64 fix_mac[] = {
1da177e4
LT
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
460};
461
b41477f3
AR
462MODULE_LICENSE("GPL");
463MODULE_VERSION(DRV_VERSION);
464
465
1da177e4 466/* Module Loadable parameters. */
6cfc482b 467S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 468S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 469S2IO_PARM_INT(multiq, 0);
b41477f3
AR
470S2IO_PARM_INT(rx_ring_mode, 1);
471S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472S2IO_PARM_INT(rmac_pause_time, 0x100);
473S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475S2IO_PARM_INT(shared_splits, 0);
476S2IO_PARM_INT(tmac_util_period, 5);
477S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 478S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
479/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 481/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 482S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 483/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 484S2IO_PARM_INT(intr_type, 2);
7d3d0439 485/* Large receive offload feature */
43b7c451
SH
486static unsigned int lro_enable;
487module_param_named(lro, lro_enable, uint, 0);
488
7d3d0439
RA
489/* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
491 */
b41477f3 492S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 493S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
494
495S2IO_PARM_INT(napi, 1);
496S2IO_PARM_INT(ufo, 0);
926930b2 497S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
498
499static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
505
506module_param_array(tx_fifo_len, uint, NULL, 0);
507module_param_array(rx_ring_sz, uint, NULL, 0);
508module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 509
20346722 510/*
1da177e4 511 * S2IO device table.
20346722 512 * This table lists all the devices that this driver supports.
1da177e4
LT
513 */
514static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722 520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
523 {0,}
524};
525
526MODULE_DEVICE_TABLE(pci, s2io_tbl);
527
d796fdb7
LV
528static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
532};
533
1da177e4
LT
534static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
d796fdb7 539 .err_handler = &s2io_err_handler,
1da177e4
LT
540};
541
542/* A simplifier macro used both by init and free shared_mem Fns(). */
543#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
544
3a3d5756
SH
545/* netqueue manipulation helper functions */
546static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
547{
fd2ea0a7
DM
548 if (!sp->config.multiq) {
549 int i;
550
3a3d5756
SH
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 553 }
fd2ea0a7 554 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
555}
556
557static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
558{
fd2ea0a7 559 if (!sp->config.multiq)
3a3d5756
SH
560 sp->mac_control.fifos[fifo_no].queue_state =
561 FIFO_QUEUE_STOP;
fd2ea0a7
DM
562
563 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
564}
565
566static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
567{
fd2ea0a7
DM
568 if (!sp->config.multiq) {
569 int i;
570
3a3d5756
SH
571 for (i = 0; i < sp->config.tx_fifo_num; i++)
572 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 573 }
fd2ea0a7 574 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
575}
576
577static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
578{
fd2ea0a7 579 if (!sp->config.multiq)
3a3d5756
SH
580 sp->mac_control.fifos[fifo_no].queue_state =
581 FIFO_QUEUE_START;
fd2ea0a7
DM
582
583 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
584}
585
586static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
587{
fd2ea0a7
DM
588 if (!sp->config.multiq) {
589 int i;
590
3a3d5756
SH
591 for (i = 0; i < sp->config.tx_fifo_num; i++)
592 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 593 }
fd2ea0a7 594 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
595}
596
597static inline void s2io_wake_tx_queue(
598 struct fifo_info *fifo, int cnt, u8 multiq)
599{
600
3a3d5756
SH
601 if (multiq) {
602 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
603 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 604 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
605 if (netif_queue_stopped(fifo->dev)) {
606 fifo->queue_state = FIFO_QUEUE_START;
607 netif_wake_queue(fifo->dev);
608 }
609 }
610}
611
1da177e4
LT
612/**
613 * init_shared_mem - Allocation and Initialization of Memory
614 * @nic: Device private variable.
20346722 615 * Description: The function allocates all the memory areas shared
616 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
617 * Rx descriptors and the statistics block.
618 */
619
620static int init_shared_mem(struct s2io_nic *nic)
621{
622 u32 size;
623 void *tmp_v_addr, *tmp_v_addr_next;
624 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 625 struct RxD_block *pre_rxd_blk = NULL;
372cc597 626 int i, j, blk_cnt;
1da177e4
LT
627 int lst_size, lst_per_page;
628 struct net_device *dev = nic->dev;
8ae418cf 629 unsigned long tmp;
1ee6dd77 630 struct buffAdd *ba;
1da177e4 631
1ee6dd77 632 struct mac_info *mac_control;
1da177e4 633 struct config_param *config;
491976b2 634 unsigned long long mem_allocated = 0;
1da177e4
LT
635
636 mac_control = &nic->mac_control;
637 config = &nic->config;
638
639
640 /* Allocation and initialization of TXDLs in FIOFs */
641 size = 0;
642 for (i = 0; i < config->tx_fifo_num; i++) {
643 size += config->tx_cfg[i].fifo_len;
644 }
645 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 646 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 647 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 648 return -EINVAL;
1da177e4
LT
649 }
650
2fda096d
SR
651 size = 0;
652 for (i = 0; i < config->tx_fifo_num; i++) {
653 size = config->tx_cfg[i].fifo_len;
654 /*
655 * Legal values are from 2 to 8192
656 */
657 if (size < 2) {
658 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
659 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
660 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
661 "are 2 to 8192\n");
662 return -EINVAL;
663 }
664 }
665
1ee6dd77 666 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
667 lst_per_page = PAGE_SIZE / lst_size;
668
669 for (i = 0; i < config->tx_fifo_num; i++) {
670 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 671 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
bd684e43 672 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
20346722 673 GFP_KERNEL);
674 if (!mac_control->fifos[i].list_info) {
0c61ed5f 675 DBG_PRINT(INFO_DBG,
1da177e4
LT
676 "Malloc failed for list_info\n");
677 return -ENOMEM;
678 }
491976b2 679 mem_allocated += list_holder_size;
1da177e4
LT
680 }
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
683 lst_per_page);
20346722 684 mac_control->fifos[i].tx_curr_put_info.offset = 0;
685 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 686 config->tx_cfg[i].fifo_len - 1;
20346722 687 mac_control->fifos[i].tx_curr_get_info.offset = 0;
688 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 689 config->tx_cfg[i].fifo_len - 1;
20346722 690 mac_control->fifos[i].fifo_no = i;
691 mac_control->fifos[i].nic = nic;
fed5eccd 692 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
3a3d5756 693 mac_control->fifos[i].dev = dev;
20346722 694
1da177e4
LT
695 for (j = 0; j < page_num; j++) {
696 int k = 0;
697 dma_addr_t tmp_p;
698 void *tmp_v;
699 tmp_v = pci_alloc_consistent(nic->pdev,
700 PAGE_SIZE, &tmp_p);
701 if (!tmp_v) {
0c61ed5f 702 DBG_PRINT(INFO_DBG,
1da177e4 703 "pci_alloc_consistent ");
0c61ed5f 704 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
705 return -ENOMEM;
706 }
776bd20f 707 /* If we got a zero DMA address(can happen on
708 * certain platforms like PPC), reallocate.
709 * Store virtual address of page we don't want,
710 * to be freed later.
711 */
712 if (!tmp_p) {
713 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 714 DBG_PRINT(INIT_DBG,
776bd20f 715 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 716 DBG_PRINT(INIT_DBG,
6b4d617d 717 "Virtual address %p\n", tmp_v);
776bd20f 718 tmp_v = pci_alloc_consistent(nic->pdev,
719 PAGE_SIZE, &tmp_p);
720 if (!tmp_v) {
0c61ed5f 721 DBG_PRINT(INFO_DBG,
776bd20f 722 "pci_alloc_consistent ");
0c61ed5f 723 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
776bd20f 724 return -ENOMEM;
725 }
491976b2 726 mem_allocated += PAGE_SIZE;
776bd20f 727 }
1da177e4
LT
728 while (k < lst_per_page) {
729 int l = (j * lst_per_page) + k;
730 if (l == config->tx_cfg[i].fifo_len)
20346722 731 break;
732 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 733 tmp_v + (k * lst_size);
20346722 734 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
735 tmp_p + (k * lst_size);
736 k++;
737 }
738 }
739 }
1da177e4 740
2fda096d
SR
741 for (i = 0; i < config->tx_fifo_num; i++) {
742 size = config->tx_cfg[i].fifo_len;
743 mac_control->fifos[i].ufo_in_band_v
744 = kcalloc(size, sizeof(u64), GFP_KERNEL);
745 if (!mac_control->fifos[i].ufo_in_band_v)
746 return -ENOMEM;
747 mem_allocated += (size * sizeof(u64));
748 }
fed5eccd 749
1da177e4
LT
750 /* Allocation and initialization of RXDs in Rings */
751 size = 0;
752 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
753 if (config->rx_cfg[i].num_rxd %
754 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
755 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
756 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
757 i);
758 DBG_PRINT(ERR_DBG, "RxDs per Block");
759 return FAILURE;
760 }
761 size += config->rx_cfg[i].num_rxd;
20346722 762 mac_control->rings[i].block_count =
da6971d8
AR
763 config->rx_cfg[i].num_rxd /
764 (rxd_count[nic->rxd_mode] + 1 );
765 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
766 mac_control->rings[i].block_count;
1da177e4 767 }
da6971d8 768 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 769 size = (size * (sizeof(struct RxD1)));
da6971d8 770 else
1ee6dd77 771 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
772
773 for (i = 0; i < config->rx_ring_num; i++) {
20346722 774 mac_control->rings[i].rx_curr_get_info.block_index = 0;
775 mac_control->rings[i].rx_curr_get_info.offset = 0;
776 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 777 config->rx_cfg[i].num_rxd - 1;
20346722 778 mac_control->rings[i].rx_curr_put_info.block_index = 0;
779 mac_control->rings[i].rx_curr_put_info.offset = 0;
780 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 781 config->rx_cfg[i].num_rxd - 1;
20346722 782 mac_control->rings[i].nic = nic;
783 mac_control->rings[i].ring_no = i;
0425b46a 784 mac_control->rings[i].lro = lro_enable;
20346722 785
da6971d8
AR
786 blk_cnt = config->rx_cfg[i].num_rxd /
787 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
788 /* Allocating all the Rx blocks */
789 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 790 struct rx_block_info *rx_blocks;
da6971d8
AR
791 int l;
792
793 rx_blocks = &mac_control->rings[i].rx_blocks[j];
794 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
795 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
796 &tmp_p_addr);
797 if (tmp_v_addr == NULL) {
798 /*
20346722 799 * In case of failure, free_shared_mem()
800 * is called, which should free any
801 * memory that was alloced till the
1da177e4
LT
802 * failure happened.
803 */
da6971d8 804 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
805 return -ENOMEM;
806 }
491976b2 807 mem_allocated += size;
1da177e4 808 memset(tmp_v_addr, 0, size);
da6971d8
AR
809 rx_blocks->block_virt_addr = tmp_v_addr;
810 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 811 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
812 rxd_count[nic->rxd_mode],
813 GFP_KERNEL);
372cc597
SS
814 if (!rx_blocks->rxds)
815 return -ENOMEM;
8a4bdbaa 816 mem_allocated +=
491976b2 817 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
da6971d8
AR
818 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
819 rx_blocks->rxds[l].virt_addr =
820 rx_blocks->block_virt_addr +
821 (rxd_size[nic->rxd_mode] * l);
822 rx_blocks->rxds[l].dma_addr =
823 rx_blocks->block_dma_addr +
824 (rxd_size[nic->rxd_mode] * l);
825 }
1da177e4
LT
826 }
827 /* Interlinking all Rx Blocks */
828 for (j = 0; j < blk_cnt; j++) {
20346722 829 tmp_v_addr =
830 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 831 tmp_v_addr_next =
20346722 832 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 833 blk_cnt].block_virt_addr;
20346722 834 tmp_p_addr =
835 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 836 tmp_p_addr_next =
20346722 837 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
838 blk_cnt].block_dma_addr;
839
1ee6dd77 840 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
841 pre_rxd_blk->reserved_2_pNext_RxD_block =
842 (unsigned long) tmp_v_addr_next;
1da177e4
LT
843 pre_rxd_blk->pNext_RxD_Blk_physical =
844 (u64) tmp_p_addr_next;
845 }
846 }
6d517a27 847 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
848 /*
849 * Allocation of Storages for buffer addresses in 2BUFF mode
850 * and the buffers as well.
851 */
852 for (i = 0; i < config->rx_ring_num; i++) {
853 blk_cnt = config->rx_cfg[i].num_rxd /
854 (rxd_count[nic->rxd_mode]+ 1);
855 mac_control->rings[i].ba =
1ee6dd77 856 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 857 GFP_KERNEL);
da6971d8 858 if (!mac_control->rings[i].ba)
1da177e4 859 return -ENOMEM;
491976b2 860 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
da6971d8
AR
861 for (j = 0; j < blk_cnt; j++) {
862 int k = 0;
863 mac_control->rings[i].ba[j] =
1ee6dd77 864 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
865 (rxd_count[nic->rxd_mode] + 1)),
866 GFP_KERNEL);
867 if (!mac_control->rings[i].ba[j])
1da177e4 868 return -ENOMEM;
491976b2
SH
869 mem_allocated += (sizeof(struct buffAdd) * \
870 (rxd_count[nic->rxd_mode] + 1));
da6971d8
AR
871 while (k != rxd_count[nic->rxd_mode]) {
872 ba = &mac_control->rings[i].ba[j][k];
873
874 ba->ba_0_org = (void *) kmalloc
875 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
876 if (!ba->ba_0_org)
877 return -ENOMEM;
8a4bdbaa 878 mem_allocated +=
491976b2 879 (BUF0_LEN + ALIGN_SIZE);
da6971d8
AR
880 tmp = (unsigned long)ba->ba_0_org;
881 tmp += ALIGN_SIZE;
882 tmp &= ~((unsigned long) ALIGN_SIZE);
883 ba->ba_0 = (void *) tmp;
884
885 ba->ba_1_org = (void *) kmalloc
886 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
887 if (!ba->ba_1_org)
888 return -ENOMEM;
8a4bdbaa 889 mem_allocated
491976b2 890 += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
891 tmp = (unsigned long) ba->ba_1_org;
892 tmp += ALIGN_SIZE;
893 tmp &= ~((unsigned long) ALIGN_SIZE);
894 ba->ba_1 = (void *) tmp;
895 k++;
896 }
1da177e4
LT
897 }
898 }
899 }
1da177e4
LT
900
901 /* Allocation and initialization of Statistics block */
1ee6dd77 902 size = sizeof(struct stat_block);
1da177e4
LT
903 mac_control->stats_mem = pci_alloc_consistent
904 (nic->pdev, size, &mac_control->stats_mem_phy);
905
906 if (!mac_control->stats_mem) {
20346722 907 /*
908 * In case of failure, free_shared_mem() is called, which
909 * should free any memory that was alloced till the
1da177e4
LT
910 * failure happened.
911 */
912 return -ENOMEM;
913 }
491976b2 914 mem_allocated += size;
1da177e4
LT
915 mac_control->stats_mem_sz = size;
916
917 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 918 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 919 memset(tmp_v_addr, 0, size);
1da177e4
LT
920 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
921 (unsigned long long) tmp_p_addr);
491976b2 922 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
923 return SUCCESS;
924}
925
20346722 926/**
927 * free_shared_mem - Free the allocated Memory
1da177e4
LT
928 * @nic: Device private variable.
929 * Description: This function is to free all memory locations allocated by
930 * the init_shared_mem() function and return it to the kernel.
931 */
932
933static void free_shared_mem(struct s2io_nic *nic)
934{
935 int i, j, blk_cnt, size;
936 void *tmp_v_addr;
937 dma_addr_t tmp_p_addr;
1ee6dd77 938 struct mac_info *mac_control;
1da177e4
LT
939 struct config_param *config;
940 int lst_size, lst_per_page;
8910b49f 941 struct net_device *dev;
491976b2 942 int page_num = 0;
1da177e4
LT
943
944 if (!nic)
945 return;
946
8910b49f
MG
947 dev = nic->dev;
948
1da177e4
LT
949 mac_control = &nic->mac_control;
950 config = &nic->config;
951
1ee6dd77 952 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
953 lst_per_page = PAGE_SIZE / lst_size;
954
955 for (i = 0; i < config->tx_fifo_num; i++) {
491976b2
SH
956 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
957 lst_per_page);
1da177e4
LT
958 for (j = 0; j < page_num; j++) {
959 int mem_blks = (j * lst_per_page);
776bd20f 960 if (!mac_control->fifos[i].list_info)
6aa20a22 961 return;
776bd20f 962 if (!mac_control->fifos[i].list_info[mem_blks].
963 list_virt_addr)
1da177e4
LT
964 break;
965 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722 966 mac_control->fifos[i].
967 list_info[mem_blks].
1da177e4 968 list_virt_addr,
20346722 969 mac_control->fifos[i].
970 list_info[mem_blks].
1da177e4 971 list_phy_addr);
8a4bdbaa 972 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 973 += PAGE_SIZE;
1da177e4 974 }
776bd20f 975 /* If we got a zero DMA address during allocation,
976 * free the page now
977 */
978 if (mac_control->zerodma_virt_addr) {
979 pci_free_consistent(nic->pdev, PAGE_SIZE,
980 mac_control->zerodma_virt_addr,
981 (dma_addr_t)0);
6aa20a22 982 DBG_PRINT(INIT_DBG,
6b4d617d
AM
983 "%s: Freeing TxDL with zero DMA addr. ",
984 dev->name);
985 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
986 mac_control->zerodma_virt_addr);
8a4bdbaa 987 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 988 += PAGE_SIZE;
776bd20f 989 }
20346722 990 kfree(mac_control->fifos[i].list_info);
8a4bdbaa 991 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 992 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1da177e4
LT
993 }
994
1da177e4 995 size = SIZE_OF_BLOCK;
1da177e4 996 for (i = 0; i < config->rx_ring_num; i++) {
20346722 997 blk_cnt = mac_control->rings[i].block_count;
1da177e4 998 for (j = 0; j < blk_cnt; j++) {
20346722 999 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1000 block_virt_addr;
1001 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1002 block_dma_addr;
1da177e4
LT
1003 if (tmp_v_addr == NULL)
1004 break;
1005 pci_free_consistent(nic->pdev, size,
1006 tmp_v_addr, tmp_p_addr);
491976b2 1007 nic->mac_control.stats_info->sw_stat.mem_freed += size;
da6971d8 1008 kfree(mac_control->rings[i].rx_blocks[j].rxds);
8a4bdbaa 1009 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1010 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1da177e4
LT
1011 }
1012 }
1013
6d517a27 1014 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1015 /* Freeing buffer storage addresses in 2BUFF mode. */
1016 for (i = 0; i < config->rx_ring_num; i++) {
1017 blk_cnt = config->rx_cfg[i].num_rxd /
1018 (rxd_count[nic->rxd_mode] + 1);
1019 for (j = 0; j < blk_cnt; j++) {
1020 int k = 0;
1021 if (!mac_control->rings[i].ba[j])
1022 continue;
1023 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 1024 struct buffAdd *ba =
da6971d8
AR
1025 &mac_control->rings[i].ba[j][k];
1026 kfree(ba->ba_0_org);
491976b2
SH
1027 nic->mac_control.stats_info->sw_stat.\
1028 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1029 kfree(ba->ba_1_org);
491976b2
SH
1030 nic->mac_control.stats_info->sw_stat.\
1031 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1032 k++;
1033 }
1034 kfree(mac_control->rings[i].ba[j]);
9caab458
SS
1035 nic->mac_control.stats_info->sw_stat.mem_freed +=
1036 (sizeof(struct buffAdd) *
1037 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1038 }
da6971d8 1039 kfree(mac_control->rings[i].ba);
8a4bdbaa 1040 nic->mac_control.stats_info->sw_stat.mem_freed +=
491976b2 1041 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1042 }
1da177e4 1043 }
1da177e4 1044
2fda096d
SR
1045 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1046 if (mac_control->fifos[i].ufo_in_band_v) {
1047 nic->mac_control.stats_info->sw_stat.mem_freed
1048 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1049 kfree(mac_control->fifos[i].ufo_in_band_v);
1050 }
1051 }
1052
1da177e4 1053 if (mac_control->stats_mem) {
2fda096d
SR
1054 nic->mac_control.stats_info->sw_stat.mem_freed +=
1055 mac_control->stats_mem_sz;
1da177e4
LT
1056 pci_free_consistent(nic->pdev,
1057 mac_control->stats_mem_sz,
1058 mac_control->stats_mem,
1059 mac_control->stats_mem_phy);
491976b2 1060 }
1da177e4
LT
1061}
1062
541ae68f 1063/**
1064 * s2io_verify_pci_mode -
1065 */
1066
1ee6dd77 1067static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1068{
1ee6dd77 1069 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1070 register u64 val64 = 0;
1071 int mode;
1072
1073 val64 = readq(&bar0->pci_mode);
1074 mode = (u8)GET_PCI_MODE(val64);
1075
1076 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1077 return -1; /* Unknown PCI mode */
1078 return mode;
1079}
1080
c92ca04b
AR
1081#define NEC_VENID 0x1033
1082#define NEC_DEVID 0x0125
1083static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1084{
1085 struct pci_dev *tdev = NULL;
26d36b64
AC
1086 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1087 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1088 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1089 pci_dev_put(tdev);
c92ca04b 1090 return 1;
7ad62dbc 1091 }
c92ca04b
AR
1092 }
1093 }
1094 return 0;
1095}
541ae68f 1096
7b32a312 1097static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1098/**
1099 * s2io_print_pci_mode -
1100 */
1ee6dd77 1101static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1102{
1ee6dd77 1103 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1104 register u64 val64 = 0;
1105 int mode;
1106 struct config_param *config = &nic->config;
1107
1108 val64 = readq(&bar0->pci_mode);
1109 mode = (u8)GET_PCI_MODE(val64);
1110
1111 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1112 return -1; /* Unknown PCI mode */
1113
c92ca04b
AR
1114 config->bus_speed = bus_speed[mode];
1115
1116 if (s2io_on_nec_bridge(nic->pdev)) {
1117 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1118 nic->dev->name);
1119 return mode;
1120 }
1121
541ae68f 1122 if (val64 & PCI_MODE_32_BITS) {
1123 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1124 } else {
1125 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1126 }
1127
1128 switch(mode) {
1129 case PCI_MODE_PCI_33:
1130 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f 1131 break;
1132 case PCI_MODE_PCI_66:
1133 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f 1134 break;
1135 case PCI_MODE_PCIX_M1_66:
1136 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f 1137 break;
1138 case PCI_MODE_PCIX_M1_100:
1139 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f 1140 break;
1141 case PCI_MODE_PCIX_M1_133:
1142 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f 1143 break;
1144 case PCI_MODE_PCIX_M2_66:
1145 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f 1146 break;
1147 case PCI_MODE_PCIX_M2_100:
1148 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f 1149 break;
1150 case PCI_MODE_PCIX_M2_133:
1151 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f 1152 break;
1153 default:
1154 return -1; /* Unsupported bus speed */
1155 }
1156
1157 return mode;
1158}
1159
b7c5678f
RV
1160/**
1161 * init_tti - Initialization transmit traffic interrupt scheme
1162 * @nic: device private variable
1163 * @link: link status (UP/DOWN) used to enable/disable continuous
1164 * transmit interrupts
1165 * Description: The function configures transmit traffic interrupts
1166 * Return Value: SUCCESS on success and
1167 * '-1' on failure
1168 */
1169
0d66afe7 1170static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1171{
1172 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1173 register u64 val64 = 0;
1174 int i;
1175 struct config_param *config;
1176
1177 config = &nic->config;
1178
1179 for (i = 0; i < config->tx_fifo_num; i++) {
1180 /*
1181 * TTI Initialization. Default Tx timer gets us about
1182 * 250 interrupts per sec. Continuous interrupts are enabled
1183 * by default.
1184 */
1185 if (nic->device_type == XFRAME_II_DEVICE) {
1186 int count = (nic->config.bus_speed * 125)/2;
1187 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1188 } else
1189 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1190
1191 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1192 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1193 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1194 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1195 if (i == 0)
1196 if (use_continuous_tx_intrs && (link == LINK_UP))
1197 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1198 writeq(val64, &bar0->tti_data1_mem);
1199
ac731ab6
SH
1200 if (nic->config.intr_type == MSI_X) {
1201 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1202 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1203 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1204 TTI_DATA2_MEM_TX_UFC_D(0x300);
1205 } else {
1206 if ((nic->config.tx_steering_type ==
1207 TX_DEFAULT_STEERING) &&
1208 (config->tx_fifo_num > 1) &&
1209 (i >= nic->udp_fifo_idx) &&
1210 (i < (nic->udp_fifo_idx +
1211 nic->total_udp_fifos)))
1212 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1213 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1214 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1215 TTI_DATA2_MEM_TX_UFC_D(0x120);
1216 else
1217 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1218 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1219 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1220 TTI_DATA2_MEM_TX_UFC_D(0x80);
1221 }
b7c5678f
RV
1222
1223 writeq(val64, &bar0->tti_data2_mem);
1224
1225 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1226 TTI_CMD_MEM_OFFSET(i);
1227 writeq(val64, &bar0->tti_command_mem);
1228
1229 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1230 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1231 return FAILURE;
1232 }
1233
1234 return SUCCESS;
1235}
1236
20346722 1237/**
1238 * init_nic - Initialization of hardware
b7c5678f 1239 * @nic: device private variable
20346722 1240 * Description: The function sequentially configures every block
1241 * of the H/W from their reset values.
1242 * Return Value: SUCCESS on success and
1da177e4
LT
1243 * '-1' on failure (endian settings incorrect).
1244 */
1245
1246static int init_nic(struct s2io_nic *nic)
1247{
1ee6dd77 1248 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1249 struct net_device *dev = nic->dev;
1250 register u64 val64 = 0;
1251 void __iomem *add;
1252 u32 time;
1253 int i, j;
1ee6dd77 1254 struct mac_info *mac_control;
1da177e4 1255 struct config_param *config;
c92ca04b 1256 int dtx_cnt = 0;
1da177e4 1257 unsigned long long mem_share;
20346722 1258 int mem_size;
1da177e4
LT
1259
1260 mac_control = &nic->mac_control;
1261 config = &nic->config;
1262
5e25b9dd 1263 /* to set the swapper controle on the card */
20346722 1264 if(s2io_set_swapper(nic)) {
1da177e4 1265 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
9f74ffde 1266 return -EIO;
1da177e4
LT
1267 }
1268
541ae68f 1269 /*
1270 * Herc requires EOI to be removed from reset before XGXS, so..
1271 */
1272 if (nic->device_type & XFRAME_II_DEVICE) {
1273 val64 = 0xA500000000ULL;
1274 writeq(val64, &bar0->sw_reset);
1275 msleep(500);
1276 val64 = readq(&bar0->sw_reset);
1277 }
1278
1da177e4
LT
1279 /* Remove XGXS from reset state */
1280 val64 = 0;
1281 writeq(val64, &bar0->sw_reset);
1da177e4 1282 msleep(500);
20346722 1283 val64 = readq(&bar0->sw_reset);
1da177e4 1284
7962024e
SH
1285 /* Ensure that it's safe to access registers by checking
1286 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1287 */
1288 if (nic->device_type == XFRAME_II_DEVICE) {
1289 for (i = 0; i < 50; i++) {
1290 val64 = readq(&bar0->adapter_status);
1291 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1292 break;
1293 msleep(10);
1294 }
1295 if (i == 50)
1296 return -ENODEV;
1297 }
1298
1da177e4
LT
1299 /* Enable Receiving broadcasts */
1300 add = &bar0->mac_cfg;
1301 val64 = readq(&bar0->mac_cfg);
1302 val64 |= MAC_RMAC_BCAST_ENABLE;
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304 writel((u32) val64, add);
1305 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1306 writel((u32) (val64 >> 32), (add + 4));
1307
1308 /* Read registers in all blocks */
1309 val64 = readq(&bar0->mac_int_mask);
1310 val64 = readq(&bar0->mc_int_mask);
1311 val64 = readq(&bar0->xgxs_int_mask);
1312
1313 /* Set MTU */
1314 val64 = dev->mtu;
1315 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1316
541ae68f 1317 if (nic->device_type & XFRAME_II_DEVICE) {
1318 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1319 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1320 &bar0->dtx_control, UF);
541ae68f 1321 if (dtx_cnt & 0x1)
1322 msleep(1); /* Necessary!! */
1da177e4
LT
1323 dtx_cnt++;
1324 }
541ae68f 1325 } else {
c92ca04b
AR
1326 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1327 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1328 &bar0->dtx_control, UF);
1329 val64 = readq(&bar0->dtx_control);
1330 dtx_cnt++;
1da177e4
LT
1331 }
1332 }
1333
1334 /* Tx DMA Initialization */
1335 val64 = 0;
1336 writeq(val64, &bar0->tx_fifo_partition_0);
1337 writeq(val64, &bar0->tx_fifo_partition_1);
1338 writeq(val64, &bar0->tx_fifo_partition_2);
1339 writeq(val64, &bar0->tx_fifo_partition_3);
1340
1341
1342 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1343 val64 |=
b7c5678f 1344 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1da177e4 1345 13) | vBIT(config->tx_cfg[i].fifo_priority,
b7c5678f 1346 ((j * 32) + 5), 3);
1da177e4
LT
1347
1348 if (i == (config->tx_fifo_num - 1)) {
1349 if (i % 2 == 0)
1350 i++;
1351 }
1352
1353 switch (i) {
1354 case 1:
1355 writeq(val64, &bar0->tx_fifo_partition_0);
1356 val64 = 0;
b7c5678f 1357 j = 0;
1da177e4
LT
1358 break;
1359 case 3:
1360 writeq(val64, &bar0->tx_fifo_partition_1);
1361 val64 = 0;
b7c5678f 1362 j = 0;
1da177e4
LT
1363 break;
1364 case 5:
1365 writeq(val64, &bar0->tx_fifo_partition_2);
1366 val64 = 0;
b7c5678f 1367 j = 0;
1da177e4
LT
1368 break;
1369 case 7:
1370 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1371 val64 = 0;
1372 j = 0;
1373 break;
1374 default:
1375 j++;
1da177e4
LT
1376 break;
1377 }
1378 }
1379
5e25b9dd 1380 /*
1381 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1382 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1383 */
541ae68f 1384 if ((nic->device_type == XFRAME_I_DEVICE) &&
44c10138 1385 (nic->pdev->revision < 4))
5e25b9dd 1386 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1387
1da177e4
LT
1388 val64 = readq(&bar0->tx_fifo_partition_0);
1389 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1390 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1391
20346722 1392 /*
1393 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1394 * integrity checking.
1395 */
1396 val64 = readq(&bar0->tx_pa_cfg);
1397 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1398 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1399 writeq(val64, &bar0->tx_pa_cfg);
1400
1401 /* Rx DMA intialization. */
1402 val64 = 0;
1403 for (i = 0; i < config->rx_ring_num; i++) {
1404 val64 |=
1405 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1406 3);
1407 }
1408 writeq(val64, &bar0->rx_queue_priority);
1409
20346722 1410 /*
1411 * Allocating equal share of memory to all the
1da177e4
LT
1412 * configured Rings.
1413 */
1414 val64 = 0;
541ae68f 1415 if (nic->device_type & XFRAME_II_DEVICE)
1416 mem_size = 32;
1417 else
1418 mem_size = 64;
1419
1da177e4
LT
1420 for (i = 0; i < config->rx_ring_num; i++) {
1421 switch (i) {
1422 case 0:
20346722 1423 mem_share = (mem_size / config->rx_ring_num +
1424 mem_size % config->rx_ring_num);
1da177e4
LT
1425 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1426 continue;
1427 case 1:
20346722 1428 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1429 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1430 continue;
1431 case 2:
20346722 1432 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1433 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1434 continue;
1435 case 3:
20346722 1436 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1437 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1438 continue;
1439 case 4:
20346722 1440 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1441 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1442 continue;
1443 case 5:
20346722 1444 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1445 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1446 continue;
1447 case 6:
20346722 1448 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1449 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1450 continue;
1451 case 7:
20346722 1452 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1453 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1454 continue;
1455 }
1456 }
1457 writeq(val64, &bar0->rx_queue_cfg);
1458
20346722 1459 /*
5e25b9dd 1460 * Filling Tx round robin registers
b7c5678f 1461 * as per the number of FIFOs for equal scheduling priority
1da177e4 1462 */
5e25b9dd 1463 switch (config->tx_fifo_num) {
1464 case 1:
b7c5678f 1465 val64 = 0x0;
5e25b9dd 1466 writeq(val64, &bar0->tx_w_round_robin_0);
1467 writeq(val64, &bar0->tx_w_round_robin_1);
1468 writeq(val64, &bar0->tx_w_round_robin_2);
1469 writeq(val64, &bar0->tx_w_round_robin_3);
1470 writeq(val64, &bar0->tx_w_round_robin_4);
1471 break;
1472 case 2:
b7c5678f 1473 val64 = 0x0001000100010001ULL;
5e25b9dd 1474 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1475 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1476 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1477 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1478 val64 = 0x0001000100000000ULL;
5e25b9dd 1479 writeq(val64, &bar0->tx_w_round_robin_4);
1480 break;
1481 case 3:
b7c5678f 1482 val64 = 0x0001020001020001ULL;
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1484 val64 = 0x0200010200010200ULL;
5e25b9dd 1485 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1486 val64 = 0x0102000102000102ULL;
5e25b9dd 1487 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1488 val64 = 0x0001020001020001ULL;
5e25b9dd 1489 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1490 val64 = 0x0200010200000000ULL;
5e25b9dd 1491 writeq(val64, &bar0->tx_w_round_robin_4);
1492 break;
1493 case 4:
b7c5678f 1494 val64 = 0x0001020300010203ULL;
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1498 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1499 val64 = 0x0001020300000000ULL;
5e25b9dd 1500 writeq(val64, &bar0->tx_w_round_robin_4);
1501 break;
1502 case 5:
b7c5678f 1503 val64 = 0x0001020304000102ULL;
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1505 val64 = 0x0304000102030400ULL;
5e25b9dd 1506 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1507 val64 = 0x0102030400010203ULL;
5e25b9dd 1508 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1509 val64 = 0x0400010203040001ULL;
5e25b9dd 1510 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1511 val64 = 0x0203040000000000ULL;
5e25b9dd 1512 writeq(val64, &bar0->tx_w_round_robin_4);
1513 break;
1514 case 6:
b7c5678f 1515 val64 = 0x0001020304050001ULL;
5e25b9dd 1516 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1517 val64 = 0x0203040500010203ULL;
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1519 val64 = 0x0405000102030405ULL;
5e25b9dd 1520 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1521 val64 = 0x0001020304050001ULL;
5e25b9dd 1522 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1523 val64 = 0x0203040500000000ULL;
5e25b9dd 1524 writeq(val64, &bar0->tx_w_round_robin_4);
1525 break;
1526 case 7:
b7c5678f 1527 val64 = 0x0001020304050600ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1529 val64 = 0x0102030405060001ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1531 val64 = 0x0203040506000102ULL;
5e25b9dd 1532 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1533 val64 = 0x0304050600010203ULL;
5e25b9dd 1534 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1535 val64 = 0x0405060000000000ULL;
5e25b9dd 1536 writeq(val64, &bar0->tx_w_round_robin_4);
1537 break;
1538 case 8:
b7c5678f 1539 val64 = 0x0001020304050607ULL;
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1541 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1542 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1543 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1544 val64 = 0x0001020300000000ULL;
5e25b9dd 1545 writeq(val64, &bar0->tx_w_round_robin_4);
1546 break;
1547 }
1548
b41477f3 1549 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1550 val64 = readq(&bar0->tx_fifo_partition_0);
1551 val64 |= (TX_FIFO_PARTITION_EN);
1552 writeq(val64, &bar0->tx_fifo_partition_0);
1553
5e25b9dd 1554 /* Filling the Rx round robin registers as per the
0425b46a
SH
1555 * number of Rings and steering based on QoS with
1556 * equal priority.
1557 */
5e25b9dd 1558 switch (config->rx_ring_num) {
1559 case 1:
0425b46a
SH
1560 val64 = 0x0;
1561 writeq(val64, &bar0->rx_w_round_robin_0);
1562 writeq(val64, &bar0->rx_w_round_robin_1);
1563 writeq(val64, &bar0->rx_w_round_robin_2);
1564 writeq(val64, &bar0->rx_w_round_robin_3);
1565 writeq(val64, &bar0->rx_w_round_robin_4);
1566
5e25b9dd 1567 val64 = 0x8080808080808080ULL;
1568 writeq(val64, &bar0->rts_qos_steering);
1569 break;
1570 case 2:
0425b46a 1571 val64 = 0x0001000100010001ULL;
5e25b9dd 1572 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1573 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1574 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1575 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1576 val64 = 0x0001000100000000ULL;
5e25b9dd 1577 writeq(val64, &bar0->rx_w_round_robin_4);
1578
1579 val64 = 0x8080808040404040ULL;
1580 writeq(val64, &bar0->rts_qos_steering);
1581 break;
1582 case 3:
0425b46a 1583 val64 = 0x0001020001020001ULL;
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1585 val64 = 0x0200010200010200ULL;
5e25b9dd 1586 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1587 val64 = 0x0102000102000102ULL;
5e25b9dd 1588 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1589 val64 = 0x0001020001020001ULL;
5e25b9dd 1590 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1591 val64 = 0x0200010200000000ULL;
5e25b9dd 1592 writeq(val64, &bar0->rx_w_round_robin_4);
1593
1594 val64 = 0x8080804040402020ULL;
1595 writeq(val64, &bar0->rts_qos_steering);
1596 break;
1597 case 4:
0425b46a 1598 val64 = 0x0001020300010203ULL;
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1600 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1601 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1602 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1603 val64 = 0x0001020300000000ULL;
5e25b9dd 1604 writeq(val64, &bar0->rx_w_round_robin_4);
1605
1606 val64 = 0x8080404020201010ULL;
1607 writeq(val64, &bar0->rts_qos_steering);
1608 break;
1609 case 5:
0425b46a 1610 val64 = 0x0001020304000102ULL;
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1612 val64 = 0x0304000102030400ULL;
5e25b9dd 1613 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1614 val64 = 0x0102030400010203ULL;
5e25b9dd 1615 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1616 val64 = 0x0400010203040001ULL;
5e25b9dd 1617 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1618 val64 = 0x0203040000000000ULL;
5e25b9dd 1619 writeq(val64, &bar0->rx_w_round_robin_4);
1620
1621 val64 = 0x8080404020201008ULL;
1622 writeq(val64, &bar0->rts_qos_steering);
1623 break;
1624 case 6:
0425b46a 1625 val64 = 0x0001020304050001ULL;
5e25b9dd 1626 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1627 val64 = 0x0203040500010203ULL;
5e25b9dd 1628 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1629 val64 = 0x0405000102030405ULL;
5e25b9dd 1630 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1631 val64 = 0x0001020304050001ULL;
5e25b9dd 1632 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1633 val64 = 0x0203040500000000ULL;
5e25b9dd 1634 writeq(val64, &bar0->rx_w_round_robin_4);
1635
1636 val64 = 0x8080404020100804ULL;
1637 writeq(val64, &bar0->rts_qos_steering);
1638 break;
1639 case 7:
0425b46a 1640 val64 = 0x0001020304050600ULL;
5e25b9dd 1641 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1642 val64 = 0x0102030405060001ULL;
5e25b9dd 1643 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1644 val64 = 0x0203040506000102ULL;
5e25b9dd 1645 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1646 val64 = 0x0304050600010203ULL;
5e25b9dd 1647 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1648 val64 = 0x0405060000000000ULL;
5e25b9dd 1649 writeq(val64, &bar0->rx_w_round_robin_4);
1650
1651 val64 = 0x8080402010080402ULL;
1652 writeq(val64, &bar0->rts_qos_steering);
1653 break;
1654 case 8:
0425b46a 1655 val64 = 0x0001020304050607ULL;
5e25b9dd 1656 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1657 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1658 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1659 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1660 val64 = 0x0001020300000000ULL;
5e25b9dd 1661 writeq(val64, &bar0->rx_w_round_robin_4);
1662
1663 val64 = 0x8040201008040201ULL;
1664 writeq(val64, &bar0->rts_qos_steering);
1665 break;
1666 }
1da177e4
LT
1667
1668 /* UDP Fix */
1669 val64 = 0;
20346722 1670 for (i = 0; i < 8; i++)
1da177e4
LT
1671 writeq(val64, &bar0->rts_frm_len_n[i]);
1672
5e25b9dd 1673 /* Set the default rts frame length for the rings configured */
1674 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1675 for (i = 0 ; i < config->rx_ring_num ; i++)
1676 writeq(val64, &bar0->rts_frm_len_n[i]);
1677
1678 /* Set the frame length for the configured rings
1679 * desired by the user
1680 */
1681 for (i = 0; i < config->rx_ring_num; i++) {
1682 /* If rts_frm_len[i] == 0 then it is assumed that user not
1683 * specified frame length steering.
1684 * If the user provides the frame length then program
1685 * the rts_frm_len register for those values or else
1686 * leave it as it is.
1687 */
1688 if (rts_frm_len[i] != 0) {
1689 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1690 &bar0->rts_frm_len_n[i]);
1691 }
1692 }
8a4bdbaa 1693
9fc93a41
SS
1694 /* Disable differentiated services steering logic */
1695 for (i = 0; i < 64; i++) {
1696 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1697 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1698 dev->name);
1699 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1700 return -ENODEV;
9fc93a41
SS
1701 }
1702 }
1703
20346722 1704 /* Program statistics memory */
1da177e4 1705 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1706
541ae68f 1707 if (nic->device_type == XFRAME_II_DEVICE) {
1708 val64 = STAT_BC(0x320);
1709 writeq(val64, &bar0->stat_byte_cnt);
1710 }
1711
20346722 1712 /*
1da177e4
LT
1713 * Initializing the sampling rate for the device to calculate the
1714 * bandwidth utilization.
1715 */
1716 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1717 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1718 writeq(val64, &bar0->mac_link_util);
1719
20346722 1720 /*
1721 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1722 * Scheme.
1723 */
1da177e4 1724
b7c5678f
RV
1725 /* Initialize TTI */
1726 if (SUCCESS != init_tti(nic, nic->last_link_state))
1727 return -ENODEV;
1da177e4 1728
8a4bdbaa
SS
1729 /* RTI Initialization */
1730 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1731 /*
8a4bdbaa
SS
1732 * Programmed to generate Apprx 500 Intrs per
1733 * second
1734 */
1735 int count = (nic->config.bus_speed * 125)/4;
1736 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1737 } else
1738 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1739 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1740 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1741 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1742
1743 writeq(val64, &bar0->rti_data1_mem);
1744
1745 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1746 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1747 if (nic->config.intr_type == MSI_X)
1748 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1749 RTI_DATA2_MEM_RX_UFC_D(0x40));
1750 else
1751 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1752 RTI_DATA2_MEM_RX_UFC_D(0x80));
1753 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1754
8a4bdbaa
SS
1755 for (i = 0; i < config->rx_ring_num; i++) {
1756 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1757 | RTI_CMD_MEM_OFFSET(i);
1758 writeq(val64, &bar0->rti_command_mem);
1da177e4 1759
8a4bdbaa
SS
1760 /*
1761 * Once the operation completes, the Strobe bit of the
1762 * command register will be reset. We poll for this
1763 * particular condition. We wait for a maximum of 500ms
1764 * for the operation to complete, if it's not complete
1765 * by then we return error.
1766 */
1767 time = 0;
1768 while (TRUE) {
1769 val64 = readq(&bar0->rti_command_mem);
1770 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1771 break;
b6e3f982 1772
8a4bdbaa
SS
1773 if (time > 10) {
1774 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1775 dev->name);
9f74ffde 1776 return -ENODEV;
b6e3f982 1777 }
8a4bdbaa
SS
1778 time++;
1779 msleep(50);
1da177e4 1780 }
1da177e4
LT
1781 }
1782
20346722 1783 /*
1784 * Initializing proper values as Pause threshold into all
1da177e4
LT
1785 * the 8 Queues on Rx side.
1786 */
1787 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1788 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1789
1790 /* Disable RMAC PAD STRIPPING */
509a2671 1791 add = &bar0->mac_cfg;
1da177e4
LT
1792 val64 = readq(&bar0->mac_cfg);
1793 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795 writel((u32) (val64), add);
1796 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1797 writel((u32) (val64 >> 32), (add + 4));
1798 val64 = readq(&bar0->mac_cfg);
1799
7d3d0439
RA
1800 /* Enable FCS stripping by adapter */
1801 add = &bar0->mac_cfg;
1802 val64 = readq(&bar0->mac_cfg);
1803 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1804 if (nic->device_type == XFRAME_II_DEVICE)
1805 writeq(val64, &bar0->mac_cfg);
1806 else {
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808 writel((u32) (val64), add);
1809 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1810 writel((u32) (val64 >> 32), (add + 4));
1811 }
1812
20346722 1813 /*
1814 * Set the time value to be inserted in the pause frame
1da177e4
LT
1815 * generated by xena.
1816 */
1817 val64 = readq(&bar0->rmac_pause_cfg);
1818 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1819 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1820 writeq(val64, &bar0->rmac_pause_cfg);
1821
20346722 1822 /*
1da177e4
LT
1823 * Set the Threshold Limit for Generating the pause frame
1824 * If the amount of data in any Queue exceeds ratio of
1825 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1826 * pause frame is generated
1827 */
1828 val64 = 0;
1829 for (i = 0; i < 4; i++) {
1830 val64 |=
1831 (((u64) 0xFF00 | nic->mac_control.
1832 mc_pause_threshold_q0q3)
1833 << (i * 2 * 8));
1834 }
1835 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1836
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
1839 val64 |=
1840 (((u64) 0xFF00 | nic->mac_control.
1841 mc_pause_threshold_q4q7)
1842 << (i * 2 * 8));
1843 }
1844 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1845
20346722 1846 /*
1847 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1848 * exceeded the limit pointed by shared_splits
1849 */
1850 val64 = readq(&bar0->pic_control);
1851 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1852 writeq(val64, &bar0->pic_control);
1853
863c11a9
AR
1854 if (nic->config.bus_speed == 266) {
1855 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1856 writeq(0x0, &bar0->read_retry_delay);
1857 writeq(0x0, &bar0->write_retry_delay);
1858 }
1859
541ae68f 1860 /*
1861 * Programming the Herc to split every write transaction
1862 * that does not start on an ADB to reduce disconnects.
1863 */
1864 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1865 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1866 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1867 writeq(val64, &bar0->misc_control);
1868 val64 = readq(&bar0->pic_control2);
b7b5a128 1869 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1870 writeq(val64, &bar0->pic_control2);
541ae68f 1871 }
c92ca04b
AR
1872 if (strstr(nic->product_name, "CX4")) {
1873 val64 = TMAC_AVG_IPG(0x17);
1874 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1875 }
1876
1da177e4
LT
1877 return SUCCESS;
1878}
a371a07d 1879#define LINK_UP_DOWN_INTERRUPT 1
1880#define MAC_RMAC_ERR_TIMER 2
1881
1ee6dd77 1882static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1883{
1884 if (nic->device_type == XFRAME_II_DEVICE)
1885 return LINK_UP_DOWN_INTERRUPT;
1886 else
1887 return MAC_RMAC_ERR_TIMER;
1888}
8116f3cf 1889
9caab458
SS
1890/**
1891 * do_s2io_write_bits - update alarm bits in alarm register
1892 * @value: alarm bits
1893 * @flag: interrupt status
1894 * @addr: address value
1895 * Description: update alarm bits in alarm register
1896 * Return Value:
1897 * NONE.
1898 */
1899static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1900{
1901 u64 temp64;
1902
1903 temp64 = readq(addr);
1904
1905 if(flag == ENABLE_INTRS)
1906 temp64 &= ~((u64) value);
1907 else
1908 temp64 |= ((u64) value);
1909 writeq(temp64, addr);
1910}
1da177e4 1911
43b7c451 1912static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1913{
1914 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1915 register u64 gen_int_mask = 0;
01e16faa 1916 u64 interruptible;
9caab458 1917
01e16faa 1918 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458
SS
1919 if (mask & TX_DMA_INTR) {
1920
1921 gen_int_mask |= TXDMA_INT_M;
1922
1923 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1924 TXDMA_PCC_INT | TXDMA_TTI_INT |
1925 TXDMA_LSO_INT | TXDMA_TPA_INT |
1926 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1927
1928 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1929 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1930 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1931 &bar0->pfc_err_mask);
1932
1933 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1934 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1935 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1936
1937 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1938 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1939 PCC_N_SERR | PCC_6_COF_OV_ERR |
1940 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1941 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1942 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1943
1944 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1945 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1946
1947 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1948 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1949 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1950 flag, &bar0->lso_err_mask);
1951
1952 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1953 flag, &bar0->tpa_err_mask);
1954
1955 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1956
1957 }
1958
1959 if (mask & TX_MAC_INTR) {
1960 gen_int_mask |= TXMAC_INT_M;
1961 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1962 &bar0->mac_int_mask);
1963 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1964 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1965 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1966 flag, &bar0->mac_tmac_err_mask);
1967 }
1968
1969 if (mask & TX_XGXS_INTR) {
1970 gen_int_mask |= TXXGXS_INT_M;
1971 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1972 &bar0->xgxs_int_mask);
1973 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1974 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1975 flag, &bar0->xgxs_txgxs_err_mask);
1976 }
1977
1978 if (mask & RX_DMA_INTR) {
1979 gen_int_mask |= RXDMA_INT_M;
1980 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1981 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1982 flag, &bar0->rxdma_int_mask);
1983 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1984 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1985 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1986 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1987 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1988 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1989 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1990 &bar0->prc_pcix_err_mask);
1991 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1992 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1993 &bar0->rpa_err_mask);
1994 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1995 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1996 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1997 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1998 flag, &bar0->rda_err_mask);
1999 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2000 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2001 flag, &bar0->rti_err_mask);
2002 }
2003
2004 if (mask & RX_MAC_INTR) {
2005 gen_int_mask |= RXMAC_INT_M;
2006 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2007 &bar0->mac_int_mask);
01e16faa 2008 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
9caab458 2009 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
01e16faa
SH
2010 RMAC_DOUBLE_ECC_ERR;
2011 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2012 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2013 do_s2io_write_bits(interruptible,
9caab458
SS
2014 flag, &bar0->mac_rmac_err_mask);
2015 }
2016
2017 if (mask & RX_XGXS_INTR)
2018 {
2019 gen_int_mask |= RXXGXS_INT_M;
2020 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2021 &bar0->xgxs_int_mask);
2022 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2023 &bar0->xgxs_rxgxs_err_mask);
2024 }
2025
2026 if (mask & MC_INTR) {
2027 gen_int_mask |= MC_INT_M;
2028 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2029 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2030 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2031 &bar0->mc_err_mask);
2032 }
2033 nic->general_int_mask = gen_int_mask;
2034
2035 /* Remove this line when alarm interrupts are enabled */
2036 nic->general_int_mask = 0;
2037}
20346722 2038/**
2039 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2040 * @nic: device private variable,
2041 * @mask: A mask indicating which Intr block must be modified and,
2042 * @flag: A flag indicating whether to enable or disable the Intrs.
2043 * Description: This function will either disable or enable the interrupts
20346722 2044 * depending on the flag argument. The mask argument can be used to
2045 * enable/disable any Intr block.
1da177e4
LT
2046 * Return Value: NONE.
2047 */
2048
2049static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2050{
1ee6dd77 2051 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2052 register u64 temp64 = 0, intr_mask = 0;
2053
2054 intr_mask = nic->general_int_mask;
1da177e4
LT
2055
2056 /* Top level interrupt classification */
2057 /* PIC Interrupts */
9caab458 2058 if (mask & TX_PIC_INTR) {
1da177e4 2059 /* Enable PIC Intrs in the general intr mask register */
9caab458 2060 intr_mask |= TXPIC_INT_M;
1da177e4 2061 if (flag == ENABLE_INTRS) {
20346722 2062 /*
a371a07d 2063 * If Hercules adapter enable GPIO otherwise
b41477f3 2064 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2065 * interrupts for now.
2066 * TODO
1da177e4 2067 */
a371a07d 2068 if (s2io_link_fault_indication(nic) ==
2069 LINK_UP_DOWN_INTERRUPT ) {
9caab458
SS
2070 do_s2io_write_bits(PIC_INT_GPIO, flag,
2071 &bar0->pic_int_mask);
2072 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2073 &bar0->gpio_int_mask);
2074 } else
a371a07d 2075 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2076 } else if (flag == DISABLE_INTRS) {
20346722 2077 /*
2078 * Disable PIC Intrs in the general
2079 * intr mask register
1da177e4
LT
2080 */
2081 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2082 }
2083 }
2084
1da177e4
LT
2085 /* Tx traffic interrupts */
2086 if (mask & TX_TRAFFIC_INTR) {
9caab458 2087 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2088 if (flag == ENABLE_INTRS) {
20346722 2089 /*
1da177e4 2090 * Enable all the Tx side interrupts
20346722 2091 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2092 */
2093 writeq(0x0, &bar0->tx_traffic_mask);
2094 } else if (flag == DISABLE_INTRS) {
20346722 2095 /*
2096 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2097 * register.
2098 */
2099 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2100 }
2101 }
2102
2103 /* Rx traffic interrupts */
2104 if (mask & RX_TRAFFIC_INTR) {
9caab458 2105 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2106 if (flag == ENABLE_INTRS) {
1da177e4
LT
2107 /* writing 0 Enables all 8 RX interrupt levels */
2108 writeq(0x0, &bar0->rx_traffic_mask);
2109 } else if (flag == DISABLE_INTRS) {
20346722 2110 /*
2111 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2112 * register.
2113 */
2114 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2115 }
2116 }
9caab458
SS
2117
2118 temp64 = readq(&bar0->general_int_mask);
2119 if (flag == ENABLE_INTRS)
2120 temp64 &= ~((u64) intr_mask);
2121 else
2122 temp64 = DISABLE_ALL_INTRS;
2123 writeq(temp64, &bar0->general_int_mask);
2124
2125 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2126}
2127
19a60522
SS
2128/**
2129 * verify_pcc_quiescent- Checks for PCC quiescent state
2130 * Return: 1 If PCC is quiescence
2131 * 0 If PCC is not quiescence
2132 */
1ee6dd77 2133static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2134{
19a60522 2135 int ret = 0, herc;
1ee6dd77 2136 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2137 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2138
19a60522 2139 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2140
2141 if (flag == FALSE) {
44c10138 2142 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2143 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2144 ret = 1;
19a60522
SS
2145 } else {
2146 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2147 ret = 1;
20346722 2148 }
2149 } else {
44c10138 2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2151 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2152 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2153 ret = 1;
5e25b9dd 2154 } else {
2155 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2156 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2157 ret = 1;
20346722 2158 }
2159 }
2160
2161 return ret;
2162}
2163/**
2164 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2165 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2166 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2167 * differs and the calling function passes the input argument flag to
2168 * indicate this.
20346722 2169 * Return: 1 If xena is quiescence
1da177e4
LT
2170 * 0 If Xena is not quiescence
2171 */
2172
1ee6dd77 2173static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2174{
19a60522 2175 int mode;
1ee6dd77 2176 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2177 u64 val64 = readq(&bar0->adapter_status);
2178 mode = s2io_verify_pci_mode(sp);
1da177e4 2179
19a60522
SS
2180 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2181 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2182 return 0;
2183 }
2184 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2185 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2186 return 0;
2187 }
2188 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2189 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2193 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2197 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2201 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2205 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2209 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2210 return 0;
1da177e4
LT
2211 }
2212
19a60522
SS
2213 /*
2214 * In PCI 33 mode, the P_PLL is not used, and therefore,
2215 * the the P_PLL_LOCK bit in the adapter_status register will
2216 * not be asserted.
2217 */
2218 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2219 sp->device_type == XFRAME_II_DEVICE && mode !=
2220 PCI_MODE_PCI_33) {
2221 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2222 return 0;
2223 }
2224 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2225 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2226 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2227 return 0;
2228 }
2229 return 1;
1da177e4
LT
2230}
2231
2232/**
2233 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2234 * @sp: Pointer to device specifc structure
20346722 2235 * Description :
1da177e4
LT
2236 * New procedure to clear mac address reading problems on Alpha platforms
2237 *
2238 */
2239
1ee6dd77 2240static void fix_mac_address(struct s2io_nic * sp)
1da177e4 2241{
1ee6dd77 2242 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2243 u64 val64;
2244 int i = 0;
2245
2246 while (fix_mac[i] != END_SIGN) {
2247 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2248 udelay(10);
1da177e4
LT
2249 val64 = readq(&bar0->gpio_control);
2250 }
2251}
2252
2253/**
20346722 2254 * start_nic - Turns the device on
1da177e4 2255 * @nic : device private variable.
20346722 2256 * Description:
2257 * This function actually turns the device on. Before this function is
2258 * called,all Registers are configured from their reset states
2259 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2260 * calling this function, the device interrupts are cleared and the NIC is
2261 * literally switched on by writing into the adapter control register.
20346722 2262 * Return Value:
1da177e4
LT
2263 * SUCCESS on success and -1 on failure.
2264 */
2265
2266static int start_nic(struct s2io_nic *nic)
2267{
1ee6dd77 2268 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2269 struct net_device *dev = nic->dev;
2270 register u64 val64 = 0;
20346722 2271 u16 subid, i;
1ee6dd77 2272 struct mac_info *mac_control;
1da177e4
LT
2273 struct config_param *config;
2274
2275 mac_control = &nic->mac_control;
2276 config = &nic->config;
2277
2278 /* PRC Initialization and configuration */
2279 for (i = 0; i < config->rx_ring_num; i++) {
20346722 2280 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
2281 &bar0->prc_rxd0_n[i]);
2282
2283 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2284 if (nic->rxd_mode == RXD_MODE_1)
2285 val64 |= PRC_CTRL_RC_ENABLED;
2286 else
2287 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2288 if (nic->device_type == XFRAME_II_DEVICE)
2289 val64 |= PRC_CTRL_GROUP_READS;
2290 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2291 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2292 writeq(val64, &bar0->prc_ctrl_n[i]);
2293 }
2294
da6971d8
AR
2295 if (nic->rxd_mode == RXD_MODE_3B) {
2296 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2297 val64 = readq(&bar0->rx_pa_cfg);
2298 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2299 writeq(val64, &bar0->rx_pa_cfg);
2300 }
1da177e4 2301
926930b2
SS
2302 if (vlan_tag_strip == 0) {
2303 val64 = readq(&bar0->rx_pa_cfg);
2304 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2305 writeq(val64, &bar0->rx_pa_cfg);
2306 vlan_strip_flag = 0;
2307 }
2308
20346722 2309 /*
1da177e4
LT
2310 * Enabling MC-RLDRAM. After enabling the device, we timeout
2311 * for around 100ms, which is approximately the time required
2312 * for the device to be ready for operation.
2313 */
2314 val64 = readq(&bar0->mc_rldram_mrs);
2315 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2316 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2317 val64 = readq(&bar0->mc_rldram_mrs);
2318
20346722 2319 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2320
2321 /* Enabling ECC Protection. */
2322 val64 = readq(&bar0->adapter_control);
2323 val64 &= ~ADAPTER_ECC_EN;
2324 writeq(val64, &bar0->adapter_control);
2325
20346722 2326 /*
2327 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2328 * it.
2329 */
2330 val64 = readq(&bar0->adapter_status);
19a60522 2331 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2332 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2333 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2334 (unsigned long long) val64);
2335 return FAILURE;
2336 }
2337
20346722 2338 /*
1da177e4 2339 * With some switches, link might be already up at this point.
20346722 2340 * Because of this weird behavior, when we enable laser,
2341 * we may not get link. We need to handle this. We cannot
2342 * figure out which switch is misbehaving. So we are forced to
2343 * make a global change.
1da177e4
LT
2344 */
2345
2346 /* Enabling Laser. */
2347 val64 = readq(&bar0->adapter_control);
2348 val64 |= ADAPTER_EOI_TX_ON;
2349 writeq(val64, &bar0->adapter_control);
2350
c92ca04b
AR
2351 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2352 /*
2353 * Dont see link state interrupts initally on some switches,
2354 * so directly scheduling the link state task here.
2355 */
2356 schedule_work(&nic->set_link_task);
2357 }
1da177e4
LT
2358 /* SXE-002: Initialize link and activity LED */
2359 subid = nic->pdev->subsystem_device;
541ae68f 2360 if (((subid & 0xFF) >= 0x07) &&
2361 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2362 val64 = readq(&bar0->gpio_control);
2363 val64 |= 0x0000800000000000ULL;
2364 writeq(val64, &bar0->gpio_control);
2365 val64 = 0x0411040400000000ULL;
509a2671 2366 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2367 }
2368
1da177e4
LT
2369 return SUCCESS;
2370}
fed5eccd
AR
2371/**
2372 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2373 */
1ee6dd77
RB
2374static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2375 TxD *txdlp, int get_off)
fed5eccd 2376{
1ee6dd77 2377 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2378 struct sk_buff *skb;
1ee6dd77 2379 struct TxD *txds;
fed5eccd
AR
2380 u16 j, frg_cnt;
2381
2382 txds = txdlp;
2fda096d 2383 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
fed5eccd
AR
2384 pci_unmap_single(nic->pdev, (dma_addr_t)
2385 txds->Buffer_Pointer, sizeof(u64),
2386 PCI_DMA_TODEVICE);
2387 txds++;
2388 }
2389
2390 skb = (struct sk_buff *) ((unsigned long)
2391 txds->Host_Control);
2392 if (!skb) {
1ee6dd77 2393 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2394 return NULL;
2395 }
2396 pci_unmap_single(nic->pdev, (dma_addr_t)
2397 txds->Buffer_Pointer,
2398 skb->len - skb->data_len,
2399 PCI_DMA_TODEVICE);
2400 frg_cnt = skb_shinfo(skb)->nr_frags;
2401 if (frg_cnt) {
2402 txds++;
2403 for (j = 0; j < frg_cnt; j++, txds++) {
2404 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2405 if (!txds->Buffer_Pointer)
2406 break;
6aa20a22 2407 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2408 txds->Buffer_Pointer,
2409 frag->size, PCI_DMA_TODEVICE);
2410 }
2411 }
1ee6dd77 2412 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2413 return(skb);
2414}
1da177e4 2415
20346722 2416/**
2417 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2418 * @nic : device private variable.
20346722 2419 * Description:
1da177e4 2420 * Free all queued Tx buffers.
20346722 2421 * Return Value: void
1da177e4
LT
2422*/
2423
2424static void free_tx_buffers(struct s2io_nic *nic)
2425{
2426 struct net_device *dev = nic->dev;
2427 struct sk_buff *skb;
1ee6dd77 2428 struct TxD *txdp;
1da177e4 2429 int i, j;
1ee6dd77 2430 struct mac_info *mac_control;
1da177e4 2431 struct config_param *config;
fed5eccd 2432 int cnt = 0;
1da177e4
LT
2433
2434 mac_control = &nic->mac_control;
2435 config = &nic->config;
2436
2437 for (i = 0; i < config->tx_fifo_num; i++) {
2fda096d
SR
2438 unsigned long flags;
2439 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
b35b3b49 2440 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
491976b2
SH
2441 txdp = (struct TxD *) \
2442 mac_control->fifos[i].list_info[j].list_virt_addr;
fed5eccd
AR
2443 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 if (skb) {
8a4bdbaa 2445 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2446 += skb->truesize;
fed5eccd
AR
2447 dev_kfree_skb(skb);
2448 cnt++;
1da177e4 2449 }
1da177e4
LT
2450 }
2451 DBG_PRINT(INTR_DBG,
2452 "%s:forcibly freeing %d skbs on FIFO%d\n",
2453 dev->name, cnt, i);
20346722 2454 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2455 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2fda096d 2456 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
1da177e4
LT
2457 }
2458}
2459
20346722 2460/**
2461 * stop_nic - To stop the nic
1da177e4 2462 * @nic ; device private variable.
20346722 2463 * Description:
2464 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2465 * function does. This function is called to stop the device.
2466 * Return Value:
2467 * void.
2468 */
2469
2470static void stop_nic(struct s2io_nic *nic)
2471{
1ee6dd77 2472 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2473 register u64 val64 = 0;
5d3213cc 2474 u16 interruptible;
1ee6dd77 2475 struct mac_info *mac_control;
1da177e4
LT
2476 struct config_param *config;
2477
2478 mac_control = &nic->mac_control;
2479 config = &nic->config;
2480
2481 /* Disable all interrupts */
9caab458 2482 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2483 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2484 interruptible |= TX_PIC_INTR;
1da177e4
LT
2485 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2486
5d3213cc
AR
2487 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2488 val64 = readq(&bar0->adapter_control);
2489 val64 &= ~(ADAPTER_CNTL_EN);
2490 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2491}
2492
20346722 2493/**
2494 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2495 * @ring_info: per ring structure
3f78d885
SH
2496 * @from_card_up: If this is true, we will map the buffer to get
2497 * the dma address for buf0 and buf1 to give it to the card.
2498 * Else we will sync the already mapped buffer to give it to the card.
20346722 2499 * Description:
1da177e4
LT
2500 * The function allocates Rx side skbs and puts the physical
2501 * address of these buffers into the RxD buffer pointers, so that the NIC
2502 * can DMA the received frame into these locations.
2503 * The NIC supports 3 receive modes, viz
2504 * 1. single buffer,
2505 * 2. three buffer and
2506 * 3. Five buffer modes.
20346722 2507 * Each mode defines how many fragments the received frame will be split
2508 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2509 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2510 * is split into 3 fragments. As of now only single buffer mode is
2511 * supported.
2512 * Return Value:
2513 * SUCCESS on success or an appropriate -ve value on failure.
2514 */
2515
3f78d885 2516static int fill_rx_buffers(struct ring_info *ring, int from_card_up)
1da177e4 2517{
1da177e4 2518 struct sk_buff *skb;
1ee6dd77 2519 struct RxD_t *rxdp;
0425b46a 2520 int off, size, block_no, block_no1;
1da177e4 2521 u32 alloc_tab = 0;
20346722 2522 u32 alloc_cnt;
20346722 2523 u64 tmp;
1ee6dd77 2524 struct buffAdd *ba;
1ee6dd77 2525 struct RxD_t *first_rxdp = NULL;
363dc367 2526 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2527 int rxd_index = 0;
6d517a27
VP
2528 struct RxD1 *rxdp1;
2529 struct RxD3 *rxdp3;
0425b46a 2530 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2531
0425b46a 2532 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2533
0425b46a 2534 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2535 while (alloc_tab < alloc_cnt) {
0425b46a 2536 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2537
0425b46a
SH
2538 off = ring->rx_curr_put_info.offset;
2539
2540 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2541
2542 rxd_index = off + 1;
2543 if (block_no)
2544 rxd_index += (block_no * ring->rxd_count);
da6971d8 2545
7d2e3cb7 2546 if ((block_no == block_no1) &&
0425b46a
SH
2547 (off == ring->rx_curr_get_info.offset) &&
2548 (rxdp->Host_Control)) {
da6971d8 2549 DBG_PRINT(INTR_DBG, "%s: Get and Put",
0425b46a 2550 ring->dev->name);
1da177e4
LT
2551 DBG_PRINT(INTR_DBG, " info equated\n");
2552 goto end;
2553 }
0425b46a
SH
2554 if (off && (off == ring->rxd_count)) {
2555 ring->rx_curr_put_info.block_index++;
2556 if (ring->rx_curr_put_info.block_index ==
2557 ring->block_count)
2558 ring->rx_curr_put_info.block_index = 0;
2559 block_no = ring->rx_curr_put_info.block_index;
2560 off = 0;
2561 ring->rx_curr_put_info.offset = off;
2562 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2563 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2564 ring->dev->name, rxdp);
2565
1da177e4 2566 }
c9fcbf47 2567
da6971d8 2568 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
0425b46a 2569 ((ring->rxd_mode == RXD_MODE_3B) &&
b7b5a128 2570 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2571 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2572 goto end;
2573 }
da6971d8 2574 /* calculate size of skb based on ring mode */
0425b46a 2575 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
da6971d8 2576 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2577 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2578 size += NET_IP_ALIGN;
da6971d8 2579 else
0425b46a 2580 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2581
da6971d8
AR
2582 /* allocate skb */
2583 skb = dev_alloc_skb(size);
2584 if(!skb) {
0425b46a 2585 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2586 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b 2587 if (first_rxdp) {
2588 wmb();
2589 first_rxdp->Control_1 |= RXD_OWN_XENA;
2590 }
0425b46a 2591 stats->mem_alloc_fail_cnt++;
7d2e3cb7 2592
da6971d8
AR
2593 return -ENOMEM ;
2594 }
0425b46a
SH
2595 stats->mem_allocated += skb->truesize;
2596
2597 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2598 /* 1 buffer mode - normal operation mode */
6d517a27 2599 rxdp1 = (struct RxD1*)rxdp;
1ee6dd77 2600 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2601 skb_reserve(skb, NET_IP_ALIGN);
6d517a27 2602 rxdp1->Buffer0_ptr = pci_map_single
0425b46a 2603 (ring->pdev, skb->data, size - NET_IP_ALIGN,
863c11a9 2604 PCI_DMA_FROMDEVICE);
64c42f69 2605 if(pci_dma_mapping_error(rxdp1->Buffer0_ptr))
491abf25
VP
2606 goto pci_map_failed;
2607
8a4bdbaa 2608 rxdp->Control_2 =
491976b2 2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
0425b46a
SH
2610 rxdp->Host_Control = (unsigned long) (skb);
2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2612 /*
6d517a27
VP
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
da6971d8 2615 * byte aligned receive buffers.
da6971d8
AR
2616 */
2617
6d517a27 2618 rxdp3 = (struct RxD3*)rxdp;
491976b2 2619 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2622 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2623 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2626
0425b46a 2627 ba = &ring->ba[block_no][off];
da6971d8
AR
2628 skb_reserve(skb, BUF0_LEN);
2629 tmp = (u64)(unsigned long) skb->data;
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
27a884dc 2633 skb_reset_tail_pointer(skb);
da6971d8 2634
3f78d885 2635 if (from_card_up) {
6d517a27 2636 rxdp3->Buffer0_ptr =
0425b46a
SH
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN, PCI_DMA_FROMDEVICE);
3f78d885
SH
2639 if (pci_dma_mapping_error(rxdp3->Buffer0_ptr))
2640 goto pci_map_failed;
2641 } else
0425b46a 2642 pci_dma_sync_single_for_device(ring->pdev,
6d517a27 2643 (dma_addr_t) rxdp3->Buffer0_ptr,
75c30b13 2644 BUF0_LEN, PCI_DMA_FROMDEVICE);
491abf25 2645
da6971d8 2646 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2647 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2648 /* Two buffer mode */
2649
2650 /*
6aa20a22 2651 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2652 * L4 payload
2653 */
6d517a27 2654 rxdp3->Buffer2_ptr = pci_map_single
0425b46a 2655 (ring->pdev, skb->data, ring->mtu + 4,
da6971d8
AR
2656 PCI_DMA_FROMDEVICE);
2657
64c42f69 2658 if (pci_dma_mapping_error(rxdp3->Buffer2_ptr))
491abf25
VP
2659 goto pci_map_failed;
2660
3f78d885 2661 if (from_card_up) {
0425b46a
SH
2662 rxdp3->Buffer1_ptr =
2663 pci_map_single(ring->pdev,
75c30b13
AR
2664 ba->ba_1, BUF1_LEN,
2665 PCI_DMA_FROMDEVICE);
0425b46a 2666
3f78d885
SH
2667 if (pci_dma_mapping_error
2668 (rxdp3->Buffer1_ptr)) {
2669 pci_unmap_single
2670 (ring->pdev,
2671 (dma_addr_t)(unsigned long)
2672 skb->data,
2673 ring->mtu + 4,
2674 PCI_DMA_FROMDEVICE);
2675 goto pci_map_failed;
2676 }
75c30b13 2677 }
da6971d8
AR
2678 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2679 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
0425b46a 2680 (ring->mtu + 4);
da6971d8 2681 }
b7b5a128 2682 rxdp->Control_2 |= s2BIT(0);
0425b46a 2683 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2684 }
303bcb4b 2685 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2686 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2687 off++;
0425b46a 2688 if (off == (ring->rxd_count + 1))
da6971d8 2689 off = 0;
0425b46a 2690 ring->rx_curr_put_info.offset = off;
20346722 2691
da6971d8 2692 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2693 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2694 if (first_rxdp) {
2695 wmb();
2696 first_rxdp->Control_1 |= RXD_OWN_XENA;
2697 }
2698 first_rxdp = rxdp;
2699 }
0425b46a 2700 ring->rx_bufs_left += 1;
1da177e4
LT
2701 alloc_tab++;
2702 }
2703
2704 end:
303bcb4b 2705 /* Transfer ownership of first descriptor to adapter just before
2706 * exiting. Before that, use memory barrier so that ownership
2707 * and other fields are seen by adapter correctly.
2708 */
2709 if (first_rxdp) {
2710 wmb();
2711 first_rxdp->Control_1 |= RXD_OWN_XENA;
2712 }
2713
1da177e4 2714 return SUCCESS;
491abf25
VP
2715pci_map_failed:
2716 stats->pci_map_fail_cnt++;
2717 stats->mem_freed += skb->truesize;
2718 dev_kfree_skb_irq(skb);
2719 return -ENOMEM;
1da177e4
LT
2720}
2721
da6971d8
AR
2722static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2723{
2724 struct net_device *dev = sp->dev;
2725 int j;
2726 struct sk_buff *skb;
1ee6dd77
RB
2727 struct RxD_t *rxdp;
2728 struct mac_info *mac_control;
2729 struct buffAdd *ba;
6d517a27
VP
2730 struct RxD1 *rxdp1;
2731 struct RxD3 *rxdp3;
da6971d8
AR
2732
2733 mac_control = &sp->mac_control;
2734 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2735 rxdp = mac_control->rings[ring_no].
2736 rx_blocks[blk].rxds[j].virt_addr;
2737 skb = (struct sk_buff *)
2738 ((unsigned long) rxdp->Host_Control);
2739 if (!skb) {
2740 continue;
2741 }
2742 if (sp->rxd_mode == RXD_MODE_1) {
6d517a27 2743 rxdp1 = (struct RxD1*)rxdp;
da6971d8 2744 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2745 rxdp1->Buffer0_ptr,
2746 dev->mtu +
2747 HEADER_ETHERNET_II_802_3_SIZE
2748 + HEADER_802_2_SIZE +
2749 HEADER_SNAP_SIZE,
2750 PCI_DMA_FROMDEVICE);
1ee6dd77 2751 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2752 } else if(sp->rxd_mode == RXD_MODE_3B) {
6d517a27 2753 rxdp3 = (struct RxD3*)rxdp;
da6971d8
AR
2754 ba = &mac_control->rings[ring_no].
2755 ba[blk][j];
2756 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2757 rxdp3->Buffer0_ptr,
2758 BUF0_LEN,
da6971d8
AR
2759 PCI_DMA_FROMDEVICE);
2760 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2761 rxdp3->Buffer1_ptr,
2762 BUF1_LEN,
da6971d8
AR
2763 PCI_DMA_FROMDEVICE);
2764 pci_unmap_single(sp->pdev, (dma_addr_t)
6d517a27
VP
2765 rxdp3->Buffer2_ptr,
2766 dev->mtu + 4,
da6971d8 2767 PCI_DMA_FROMDEVICE);
1ee6dd77 2768 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2769 }
491976b2 2770 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2771 dev_kfree_skb(skb);
0425b46a 2772 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2773 }
2774}
2775
1da177e4 2776/**
20346722 2777 * free_rx_buffers - Frees all Rx buffers
1da177e4 2778 * @sp: device private variable.
20346722 2779 * Description:
1da177e4
LT
2780 * This function will free all Rx buffers allocated by host.
2781 * Return Value:
2782 * NONE.
2783 */
2784
2785static void free_rx_buffers(struct s2io_nic *sp)
2786{
2787 struct net_device *dev = sp->dev;
da6971d8 2788 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2789 struct mac_info *mac_control;
1da177e4 2790 struct config_param *config;
1da177e4
LT
2791
2792 mac_control = &sp->mac_control;
2793 config = &sp->config;
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2796 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2797 free_rxd_blk(sp,i,blk);
1da177e4 2798
20346722 2799 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2800 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2801 mac_control->rings[i].rx_curr_put_info.offset = 0;
2802 mac_control->rings[i].rx_curr_get_info.offset = 0;
0425b46a 2803 mac_control->rings[i].rx_bufs_left = 0;
1da177e4
LT
2804 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2805 dev->name, buf_cnt, i);
2806 }
2807}
2808
f61e0a35
SH
2809static int s2io_chk_rx_buffers(struct ring_info *ring)
2810{
3f78d885 2811 if (fill_rx_buffers(ring, 0) == -ENOMEM) {
f61e0a35
SH
2812 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2813 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2814 }
2815 return 0;
2816}
2817
1da177e4
LT
2818/**
2819 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2820 * @napi : pointer to the napi structure.
20346722 2821 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2822 * during one pass through the 'Poll" function.
2823 * Description:
2824 * Comes into picture only if NAPI support has been incorporated. It does
2825 * the same thing that rx_intr_handler does, but not in a interrupt context
2826 * also It will process only a given number of packets.
2827 * Return value:
2828 * 0 on success and 1 if there are No Rx packets to be processed.
2829 */
2830
f61e0a35 2831static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2832{
f61e0a35
SH
2833 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2834 struct net_device *dev = ring->dev;
1da177e4 2835 struct config_param *config;
f61e0a35
SH
2836 struct mac_info *mac_control;
2837 int pkts_processed = 0;
1a79d1c3
AV
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
f61e0a35 2840 struct s2io_nic *nic = dev->priv;
1ee6dd77 2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2842 int budget_org = budget;
1da177e4 2843
1da177e4 2844 config = &nic->config;
f61e0a35 2845 mac_control = &nic->mac_control;
1da177e4 2846
f61e0a35
SH
2847 if (unlikely(!is_s2io_card_up(nic)))
2848 return 0;
1da177e4 2849
f61e0a35
SH
2850 pkts_processed = rx_intr_handler(ring, budget);
2851 s2io_chk_rx_buffers(ring);
1da177e4 2852
f61e0a35
SH
2853 if (pkts_processed < budget_org) {
2854 netif_rx_complete(dev, napi);
2855 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2856 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2857 addr += 7 - ring->ring_no;
2858 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2859 writeb(val8, addr);
2860 val8 = readb(addr);
1da177e4 2861 }
f61e0a35
SH
2862 return pkts_processed;
2863}
2864static int s2io_poll_inta(struct napi_struct *napi, int budget)
2865{
2866 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2867 struct ring_info *ring;
2868 struct net_device *dev = nic->dev;
2869 struct config_param *config;
2870 struct mac_info *mac_control;
2871 int pkts_processed = 0;
2872 int ring_pkts_processed, i;
2873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2874 int budget_org = budget;
1da177e4 2875
f61e0a35
SH
2876 config = &nic->config;
2877 mac_control = &nic->mac_control;
1da177e4 2878
f61e0a35
SH
2879 if (unlikely(!is_s2io_card_up(nic)))
2880 return 0;
1da177e4 2881
1da177e4 2882 for (i = 0; i < config->rx_ring_num; i++) {
f61e0a35
SH
2883 ring = &mac_control->rings[i];
2884 ring_pkts_processed = rx_intr_handler(ring, budget);
2885 s2io_chk_rx_buffers(ring);
2886 pkts_processed += ring_pkts_processed;
2887 budget -= ring_pkts_processed;
2888 if (budget <= 0)
1da177e4 2889 break;
1da177e4 2890 }
f61e0a35
SH
2891 if (pkts_processed < budget_org) {
2892 netif_rx_complete(dev, napi);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0->rx_traffic_mask);
2895 readl(&bar0->rx_traffic_mask);
2896 }
2897 return pkts_processed;
1da177e4 2898}
20346722 2899
b41477f3 2900#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2901/**
b41477f3 2902 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2903 * @dev : pointer to the device structure.
2904 * Description:
b41477f3
AR
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
612eff0e 2909 */
612eff0e
BH
2910static void s2io_netpoll(struct net_device *dev)
2911{
1ee6dd77
RB
2912 struct s2io_nic *nic = dev->priv;
2913 struct mac_info *mac_control;
612eff0e 2914 struct config_param *config;
1ee6dd77 2915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2916 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2917 int i;
2918
d796fdb7
LV
2919 if (pci_channel_offline(nic->pdev))
2920 return;
2921
612eff0e
BH
2922 disable_irq(dev->irq);
2923
612eff0e
BH
2924 mac_control = &nic->mac_control;
2925 config = &nic->config;
2926
612eff0e 2927 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2928 writeq(val64, &bar0->tx_traffic_int);
2929
6aa20a22 2930 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2933 */
2934 for (i = 0; i < config->tx_fifo_num; i++)
2935 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2936
b41477f3 2937 /* check for received packet and indicate up to network */
612eff0e 2938 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 2939 rx_intr_handler(&mac_control->rings[i], 0);
612eff0e
BH
2940
2941 for (i = 0; i < config->rx_ring_num; i++) {
3f78d885 2942 if (fill_rx_buffers(&mac_control->rings[i], 0) == -ENOMEM) {
0c61ed5f
RV
2943 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2944 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2945 break;
2946 }
2947 }
612eff0e
BH
2948 enable_irq(dev->irq);
2949 return;
2950}
2951#endif
2952
20346722 2953/**
1da177e4 2954 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2955 * @ring_info: per ring structure.
2956 * @budget: budget for napi processing.
20346722 2957 * Description:
2958 * If the interrupt is because of a received frame or if the
1da177e4 2959 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2960 * called. It picks out the RxD at which place the last Rx processing had
2961 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2962 * the offset.
2963 * Return Value:
f61e0a35 2964 * No. of napi packets processed.
1da177e4 2965 */
f61e0a35 2966static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2967{
c9fcbf47 2968 int get_block, put_block;
1ee6dd77
RB
2969 struct rx_curr_get_info get_info, put_info;
2970 struct RxD_t *rxdp;
1da177e4 2971 struct sk_buff *skb;
f61e0a35 2972 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2973 int i;
6d517a27
VP
2974 struct RxD1* rxdp1;
2975 struct RxD3* rxdp3;
7d3d0439 2976
20346722 2977 get_info = ring_data->rx_curr_get_info;
2978 get_block = get_info.block_index;
1ee6dd77 2979 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2980 put_block = put_info.block_index;
da6971d8 2981 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2982
da6971d8 2983 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2984 /*
2985 * If your are next to put index then it's
2986 * FIFO full condition
2987 */
da6971d8
AR
2988 if ((get_block == put_block) &&
2989 (get_info.offset + 1) == put_info.offset) {
0425b46a
SH
2990 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2991 ring_data->dev->name);
da6971d8
AR
2992 break;
2993 }
20346722 2994 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2995 if (skb == NULL) {
2996 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 2997 ring_data->dev->name);
20346722 2998 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
f61e0a35 2999 return 0;
1da177e4 3000 }
0425b46a 3001 if (ring_data->rxd_mode == RXD_MODE_1) {
6d517a27 3002 rxdp1 = (struct RxD1*)rxdp;
0425b46a 3003 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3004 rxdp1->Buffer0_ptr,
0425b46a 3005 ring_data->mtu +
6d517a27
VP
3006 HEADER_ETHERNET_II_802_3_SIZE +
3007 HEADER_802_2_SIZE +
3008 HEADER_SNAP_SIZE,
3009 PCI_DMA_FROMDEVICE);
0425b46a 3010 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
6d517a27 3011 rxdp3 = (struct RxD3*)rxdp;
0425b46a 3012 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
6d517a27
VP
3013 rxdp3->Buffer0_ptr,
3014 BUF0_LEN, PCI_DMA_FROMDEVICE);
0425b46a 3015 pci_unmap_single(ring_data->pdev, (dma_addr_t)
6d517a27 3016 rxdp3->Buffer2_ptr,
0425b46a 3017 ring_data->mtu + 4,
6d517a27 3018 PCI_DMA_FROMDEVICE);
da6971d8 3019 }
863c11a9 3020 prefetch(skb->data);
20346722 3021 rx_osm_handler(ring_data, rxdp);
3022 get_info.offset++;
da6971d8
AR
3023 ring_data->rx_curr_get_info.offset = get_info.offset;
3024 rxdp = ring_data->rx_blocks[get_block].
3025 rxds[get_info.offset].virt_addr;
0425b46a 3026 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3027 get_info.offset = 0;
da6971d8 3028 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3029 get_block++;
da6971d8
AR
3030 if (get_block == ring_data->block_count)
3031 get_block = 0;
3032 ring_data->rx_curr_get_info.block_index = get_block;
20346722 3033 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3034 }
1da177e4 3035
f61e0a35
SH
3036 if (ring_data->nic->config.napi) {
3037 budget--;
3038 napi_pkts++;
3039 if (!budget)
0425b46a
SH
3040 break;
3041 }
20346722 3042 pkt_cnt++;
1da177e4
LT
3043 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3044 break;
3045 }
0425b46a 3046 if (ring_data->lro) {
7d3d0439
RA
3047 /* Clear all LRO sessions before exiting */
3048 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 3049 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3050 if (lro->in_use) {
0425b46a 3051 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3052 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3053 clear_lro_session(lro);
3054 }
3055 }
3056 }
f61e0a35 3057 return(napi_pkts);
1da177e4 3058}
20346722 3059
3060/**
1da177e4
LT
3061 * tx_intr_handler - Transmit interrupt handler
3062 * @nic : device private variable
20346722 3063 * Description:
3064 * If an interrupt was raised to indicate DMA complete of the
3065 * Tx packet, this function is called. It identifies the last TxD
3066 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3067 * DMA'ed into the NICs internal memory.
3068 * Return Value:
3069 * NONE
3070 */
3071
1ee6dd77 3072static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3073{
1ee6dd77 3074 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3075 struct tx_curr_get_info get_info, put_info;
3a3d5756 3076 struct sk_buff *skb = NULL;
1ee6dd77 3077 struct TxD *txdlp;
3a3d5756 3078 int pkt_cnt = 0;
2fda096d 3079 unsigned long flags = 0;
f9046eb3 3080 u8 err_mask;
1da177e4 3081
2fda096d
SR
3082 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3083 return;
3084
20346722 3085 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
3086 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3087 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722 3088 list_virt_addr;
3089 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3090 (get_info.offset != put_info.offset) &&
3091 (txdlp->Host_Control)) {
3092 /* Check for TxD errors */
3093 if (txdlp->Control_1 & TXD_T_CODE) {
3094 unsigned long long err;
3095 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3096 if (err & 0x1) {
3097 nic->mac_control.stats_info->sw_stat.
3098 parity_err_cnt++;
3099 }
491976b2
SH
3100
3101 /* update t_code statistics */
f9046eb3
OH
3102 err_mask = err >> 48;
3103 switch(err_mask) {
491976b2
SH
3104 case 2:
3105 nic->mac_control.stats_info->sw_stat.
3106 tx_buf_abort_cnt++;
3107 break;
3108
3109 case 3:
3110 nic->mac_control.stats_info->sw_stat.
3111 tx_desc_abort_cnt++;
3112 break;
3113
3114 case 7:
3115 nic->mac_control.stats_info->sw_stat.
3116 tx_parity_err_cnt++;
3117 break;
3118
3119 case 10:
3120 nic->mac_control.stats_info->sw_stat.
3121 tx_link_loss_cnt++;
3122 break;
3123
3124 case 15:
3125 nic->mac_control.stats_info->sw_stat.
3126 tx_list_proc_err_cnt++;
3127 break;
3128 }
20346722 3129 }
1da177e4 3130
fed5eccd 3131 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3132 if (skb == NULL) {
2fda096d 3133 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
20346722 3134 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3135 __FUNCTION__);
3136 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3137 return;
3138 }
3a3d5756 3139 pkt_cnt++;
20346722 3140
20346722 3141 /* Updating the statistics block */
20346722 3142 nic->stats.tx_bytes += skb->len;
491976b2 3143 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722 3144 dev_kfree_skb_irq(skb);
3145
3146 get_info.offset++;
863c11a9
AR
3147 if (get_info.offset == get_info.fifo_len + 1)
3148 get_info.offset = 0;
1ee6dd77 3149 txdlp = (struct TxD *) fifo_data->list_info
20346722 3150 [get_info.offset].list_virt_addr;
3151 fifo_data->tx_curr_get_info.offset =
3152 get_info.offset;
1da177e4
LT
3153 }
3154
3a3d5756 3155 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3156
3157 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3158}
3159
bd1034f0
AR
3160/**
3161 * s2io_mdio_write - Function to write in to MDIO registers
3162 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3163 * @addr : address value
3164 * @value : data value
3165 * @dev : pointer to net_device structure
3166 * Description:
3167 * This function is used to write values to the MDIO registers
3168 * NONE
3169 */
3170static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3171{
3172 u64 val64 = 0x0;
1ee6dd77
RB
3173 struct s2io_nic *sp = dev->priv;
3174 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3175
3176 //address transaction
3177 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3178 | MDIO_MMD_DEV_ADDR(mmd_type)
3179 | MDIO_MMS_PRT_ADDR(0x0);
3180 writeq(val64, &bar0->mdio_control);
3181 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3182 writeq(val64, &bar0->mdio_control);
3183 udelay(100);
3184
3185 //Data transaction
3186 val64 = 0x0;
3187 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3188 | MDIO_MMD_DEV_ADDR(mmd_type)
3189 | MDIO_MMS_PRT_ADDR(0x0)
3190 | MDIO_MDIO_DATA(value)
3191 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3192 writeq(val64, &bar0->mdio_control);
3193 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3194 writeq(val64, &bar0->mdio_control);
3195 udelay(100);
3196
3197 val64 = 0x0;
3198 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3199 | MDIO_MMD_DEV_ADDR(mmd_type)
3200 | MDIO_MMS_PRT_ADDR(0x0)
3201 | MDIO_OP(MDIO_OP_READ_TRANS);
3202 writeq(val64, &bar0->mdio_control);
3203 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3204 writeq(val64, &bar0->mdio_control);
3205 udelay(100);
3206
3207}
3208
3209/**
3210 * s2io_mdio_read - Function to write in to MDIO registers
3211 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3212 * @addr : address value
3213 * @dev : pointer to net_device structure
3214 * Description:
3215 * This function is used to read values to the MDIO registers
3216 * NONE
3217 */
3218static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3219{
3220 u64 val64 = 0x0;
3221 u64 rval64 = 0x0;
1ee6dd77
RB
3222 struct s2io_nic *sp = dev->priv;
3223 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3224
3225 /* address transaction */
3226 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3227 | MDIO_MMD_DEV_ADDR(mmd_type)
3228 | MDIO_MMS_PRT_ADDR(0x0);
3229 writeq(val64, &bar0->mdio_control);
3230 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3231 writeq(val64, &bar0->mdio_control);
3232 udelay(100);
3233
3234 /* Data transaction */
3235 val64 = 0x0;
3236 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3237 | MDIO_MMD_DEV_ADDR(mmd_type)
3238 | MDIO_MMS_PRT_ADDR(0x0)
3239 | MDIO_OP(MDIO_OP_READ_TRANS);
3240 writeq(val64, &bar0->mdio_control);
3241 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3242 writeq(val64, &bar0->mdio_control);
3243 udelay(100);
3244
3245 /* Read the value from regs */
3246 rval64 = readq(&bar0->mdio_control);
3247 rval64 = rval64 & 0xFFFF0000;
3248 rval64 = rval64 >> 16;
3249 return rval64;
3250}
3251/**
3252 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3253 * @counter : couter value to be updated
3254 * @flag : flag to indicate the status
3255 * @type : counter type
3256 * Description:
3257 * This function is to check the status of the xpak counters value
3258 * NONE
3259 */
3260
3261static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3262{
3263 u64 mask = 0x3;
3264 u64 val64;
3265 int i;
3266 for(i = 0; i <index; i++)
3267 mask = mask << 0x2;
3268
3269 if(flag > 0)
3270 {
3271 *counter = *counter + 1;
3272 val64 = *regs_stat & mask;
3273 val64 = val64 >> (index * 0x2);
3274 val64 = val64 + 1;
3275 if(val64 == 3)
3276 {
3277 switch(type)
3278 {
3279 case 1:
3280 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3281 "service. Excessive temperatures may "
3282 "result in premature transceiver "
3283 "failure \n");
3284 break;
3285 case 2:
3286 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3287 "service Excessive bias currents may "
3288 "indicate imminent laser diode "
3289 "failure \n");
3290 break;
3291 case 3:
3292 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3293 "service Excessive laser output "
3294 "power may saturate far-end "
3295 "receiver\n");
3296 break;
3297 default:
3298 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3299 "type \n");
3300 }
3301 val64 = 0x0;
3302 }
3303 val64 = val64 << (index * 0x2);
3304 *regs_stat = (*regs_stat & (~mask)) | (val64);
3305
3306 } else {
3307 *regs_stat = *regs_stat & (~mask);
3308 }
3309}
3310
3311/**
3312 * s2io_updt_xpak_counter - Function to update the xpak counters
3313 * @dev : pointer to net_device struct
3314 * Description:
3315 * This function is to upate the status of the xpak counters value
3316 * NONE
3317 */
3318static void s2io_updt_xpak_counter(struct net_device *dev)
3319{
3320 u16 flag = 0x0;
3321 u16 type = 0x0;
3322 u16 val16 = 0x0;
3323 u64 val64 = 0x0;
3324 u64 addr = 0x0;
3325
1ee6dd77
RB
3326 struct s2io_nic *sp = dev->priv;
3327 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3328
3329 /* Check the communication with the MDIO slave */
3330 addr = 0x0000;
3331 val64 = 0x0;
3332 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3333 if((val64 == 0xFFFF) || (val64 == 0x0000))
3334 {
3335 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3336 "Returned %llx\n", (unsigned long long)val64);
3337 return;
3338 }
3339
3340 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3341 if(val64 != 0x2040)
3342 {
3343 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3344 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3345 (unsigned long long)val64);
3346 return;
3347 }
3348
3349 /* Loading the DOM register to MDIO register */
3350 addr = 0xA100;
3351 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3352 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3353
3354 /* Reading the Alarm flags */
3355 addr = 0xA070;
3356 val64 = 0x0;
3357 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3358
3359 flag = CHECKBIT(val64, 0x7);
3360 type = 1;
3361 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3362 &stat_info->xpak_stat.xpak_regs_stat,
3363 0x0, flag, type);
3364
3365 if(CHECKBIT(val64, 0x6))
3366 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3367
3368 flag = CHECKBIT(val64, 0x3);
3369 type = 2;
3370 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3371 &stat_info->xpak_stat.xpak_regs_stat,
3372 0x2, flag, type);
3373
3374 if(CHECKBIT(val64, 0x2))
3375 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3376
3377 flag = CHECKBIT(val64, 0x1);
3378 type = 3;
3379 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3380 &stat_info->xpak_stat.xpak_regs_stat,
3381 0x4, flag, type);
3382
3383 if(CHECKBIT(val64, 0x0))
3384 stat_info->xpak_stat.alarm_laser_output_power_low++;
3385
3386 /* Reading the Warning flags */
3387 addr = 0xA074;
3388 val64 = 0x0;
3389 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3390
3391 if(CHECKBIT(val64, 0x7))
3392 stat_info->xpak_stat.warn_transceiver_temp_high++;
3393
3394 if(CHECKBIT(val64, 0x6))
3395 stat_info->xpak_stat.warn_transceiver_temp_low++;
3396
3397 if(CHECKBIT(val64, 0x3))
3398 stat_info->xpak_stat.warn_laser_bias_current_high++;
3399
3400 if(CHECKBIT(val64, 0x2))
3401 stat_info->xpak_stat.warn_laser_bias_current_low++;
3402
3403 if(CHECKBIT(val64, 0x1))
3404 stat_info->xpak_stat.warn_laser_output_power_high++;
3405
3406 if(CHECKBIT(val64, 0x0))
3407 stat_info->xpak_stat.warn_laser_output_power_low++;
3408}
3409
20346722 3410/**
1da177e4 3411 * wait_for_cmd_complete - waits for a command to complete.
20346722 3412 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3413 * s2io_nic structure.
20346722 3414 * Description: Function that waits for a command to Write into RMAC
3415 * ADDR DATA registers to be completed and returns either success or
3416 * error depending on whether the command was complete or not.
1da177e4
LT
3417 * Return value:
3418 * SUCCESS on success and FAILURE on failure.
3419 */
3420
9fc93a41
SS
3421static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3422 int bit_state)
1da177e4 3423{
9fc93a41 3424 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3425 u64 val64;
3426
9fc93a41
SS
3427 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3428 return FAILURE;
3429
3430 do {
c92ca04b 3431 val64 = readq(addr);
9fc93a41
SS
3432 if (bit_state == S2IO_BIT_RESET) {
3433 if (!(val64 & busy_bit)) {
3434 ret = SUCCESS;
3435 break;
3436 }
3437 } else {
3438 if (!(val64 & busy_bit)) {
3439 ret = SUCCESS;
3440 break;
3441 }
1da177e4 3442 }
c92ca04b
AR
3443
3444 if(in_interrupt())
9fc93a41 3445 mdelay(delay);
c92ca04b 3446 else
9fc93a41 3447 msleep(delay);
c92ca04b 3448
9fc93a41
SS
3449 if (++cnt >= 10)
3450 delay = 50;
3451 } while (cnt < 20);
1da177e4
LT
3452 return ret;
3453}
19a60522
SS
3454/*
3455 * check_pci_device_id - Checks if the device id is supported
3456 * @id : device id
3457 * Description: Function to check if the pci device id is supported by driver.
3458 * Return value: Actual device id if supported else PCI_ANY_ID
3459 */
3460static u16 check_pci_device_id(u16 id)
3461{
3462 switch (id) {
3463 case PCI_DEVICE_ID_HERC_WIN:
3464 case PCI_DEVICE_ID_HERC_UNI:
3465 return XFRAME_II_DEVICE;
3466 case PCI_DEVICE_ID_S2IO_UNI:
3467 case PCI_DEVICE_ID_S2IO_WIN:
3468 return XFRAME_I_DEVICE;
3469 default:
3470 return PCI_ANY_ID;
3471 }
3472}
1da177e4 3473
20346722 3474/**
3475 * s2io_reset - Resets the card.
1da177e4
LT
3476 * @sp : private member of the device structure.
3477 * Description: Function to Reset the card. This function then also
20346722 3478 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3479 * the card reset also resets the configuration space.
3480 * Return value:
3481 * void.
3482 */
3483
1ee6dd77 3484static void s2io_reset(struct s2io_nic * sp)
1da177e4 3485{
1ee6dd77 3486 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3487 u64 val64;
5e25b9dd 3488 u16 subid, pci_cmd;
19a60522
SS
3489 int i;
3490 u16 val16;
491976b2
SH
3491 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3492 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3493
19a60522
SS
3494 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3495 __FUNCTION__, sp->dev->name);
1da177e4 3496
0b1f7ebe 3497 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3498 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3499
1da177e4
LT
3500 val64 = SW_RESET_ALL;
3501 writeq(val64, &bar0->sw_reset);
c92ca04b
AR
3502 if (strstr(sp->product_name, "CX4")) {
3503 msleep(750);
3504 }
19a60522
SS
3505 msleep(250);
3506 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3507
19a60522
SS
3508 /* Restore the PCI state saved during initialization. */
3509 pci_restore_state(sp->pdev);
3510 pci_read_config_word(sp->pdev, 0x2, &val16);
3511 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3512 break;
3513 msleep(200);
3514 }
1da177e4 3515
19a60522
SS
3516 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3517 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3518 }
3519
3520 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3521
3522 s2io_init_pci(sp);
1da177e4 3523
20346722 3524 /* Set swapper to enable I/O register access */
3525 s2io_set_swapper(sp);
3526
faa4f796
SH
3527 /* restore mac_addr entries */
3528 do_s2io_restore_unicast_mc(sp);
3529
cc6e7c44
RA
3530 /* Restore the MSIX table entries from local variables */
3531 restore_xmsi_data(sp);
3532
5e25b9dd 3533 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3534 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3535 /* Clear "detected parity error" bit */
303bcb4b 3536 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3537
303bcb4b 3538 /* Clearing PCIX Ecc status register */
3539 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3540
303bcb4b 3541 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3542 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3543 }
5e25b9dd 3544
20346722 3545 /* Reset device statistics maintained by OS */
3546 memset(&sp->stats, 0, sizeof (struct net_device_stats));
8a4bdbaa 3547
491976b2
SH
3548 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3549 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3550 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3551 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3552 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3553 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3554 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3555 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3556 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3557 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3558 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3559 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3560 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3561 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3562 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3563 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3564 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3565 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3566 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3567
1da177e4
LT
3568 /* SXE-002: Configure link and activity LED to turn it off */
3569 subid = sp->pdev->subsystem_device;
541ae68f 3570 if (((subid & 0xFF) >= 0x07) &&
3571 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3572 val64 = readq(&bar0->gpio_control);
3573 val64 |= 0x0000800000000000ULL;
3574 writeq(val64, &bar0->gpio_control);
3575 val64 = 0x0411040400000000ULL;
509a2671 3576 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3577 }
3578
541ae68f 3579 /*
3580 * Clear spurious ECC interrupts that would have occured on
3581 * XFRAME II cards after reset.
3582 */
3583 if (sp->device_type == XFRAME_II_DEVICE) {
3584 val64 = readq(&bar0->pcc_err_reg);
3585 writeq(val64, &bar0->pcc_err_reg);
3586 }
3587
1da177e4
LT
3588 sp->device_enabled_once = FALSE;
3589}
3590
3591/**
20346722 3592 * s2io_set_swapper - to set the swapper controle on the card
3593 * @sp : private member of the device structure,
1da177e4 3594 * pointer to the s2io_nic structure.
20346722 3595 * Description: Function to set the swapper control on the card
1da177e4
LT
3596 * correctly depending on the 'endianness' of the system.
3597 * Return value:
3598 * SUCCESS on success and FAILURE on failure.
3599 */
3600
1ee6dd77 3601static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3602{
3603 struct net_device *dev = sp->dev;
1ee6dd77 3604 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3605 u64 val64, valt, valr;
3606
20346722 3607 /*
1da177e4
LT
3608 * Set proper endian settings and verify the same by reading
3609 * the PIF Feed-back register.
3610 */
3611
3612 val64 = readq(&bar0->pif_rd_swapper_fb);
3613 if (val64 != 0x0123456789ABCDEFULL) {
3614 int i = 0;
3615 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3616 0x8100008181000081ULL, /* FE=1, SE=0 */
3617 0x4200004242000042ULL, /* FE=0, SE=1 */
3618 0}; /* FE=0, SE=0 */
3619
3620 while(i<4) {
3621 writeq(value[i], &bar0->swapper_ctrl);
3622 val64 = readq(&bar0->pif_rd_swapper_fb);
3623 if (val64 == 0x0123456789ABCDEFULL)
3624 break;
3625 i++;
3626 }
3627 if (i == 4) {
3628 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3629 dev->name);
3630 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3631 (unsigned long long) val64);
3632 return FAILURE;
3633 }
3634 valr = value[i];
3635 } else {
3636 valr = readq(&bar0->swapper_ctrl);
3637 }
3638
3639 valt = 0x0123456789ABCDEFULL;
3640 writeq(valt, &bar0->xmsi_address);
3641 val64 = readq(&bar0->xmsi_address);
3642
3643 if(val64 != valt) {
3644 int i = 0;
3645 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3646 0x0081810000818100ULL, /* FE=1, SE=0 */
3647 0x0042420000424200ULL, /* FE=0, SE=1 */
3648 0}; /* FE=0, SE=0 */
3649
3650 while(i<4) {
3651 writeq((value[i] | valr), &bar0->swapper_ctrl);
3652 writeq(valt, &bar0->xmsi_address);
3653 val64 = readq(&bar0->xmsi_address);
3654 if(val64 == valt)
3655 break;
3656 i++;
3657 }
3658 if(i == 4) {
20346722 3659 unsigned long long x = val64;
1da177e4 3660 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3661 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3662 return FAILURE;
3663 }
3664 }
3665 val64 = readq(&bar0->swapper_ctrl);
3666 val64 &= 0xFFFF000000000000ULL;
3667
3668#ifdef __BIG_ENDIAN
20346722 3669 /*
3670 * The device by default set to a big endian format, so a
1da177e4
LT
3671 * big endian driver need not set anything.
3672 */
3673 val64 |= (SWAPPER_CTRL_TXP_FE |
3674 SWAPPER_CTRL_TXP_SE |
3675 SWAPPER_CTRL_TXD_R_FE |
3676 SWAPPER_CTRL_TXD_W_FE |
3677 SWAPPER_CTRL_TXF_R_FE |
3678 SWAPPER_CTRL_RXD_R_FE |
3679 SWAPPER_CTRL_RXD_W_FE |
3680 SWAPPER_CTRL_RXF_W_FE |
3681 SWAPPER_CTRL_XMSI_FE |
1da177e4 3682 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3683 if (sp->config.intr_type == INTA)
cc6e7c44 3684 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3685 writeq(val64, &bar0->swapper_ctrl);
3686#else
20346722 3687 /*
1da177e4 3688 * Initially we enable all bits to make it accessible by the
20346722 3689 * driver, then we selectively enable only those bits that
1da177e4
LT
3690 * we want to set.
3691 */
3692 val64 |= (SWAPPER_CTRL_TXP_FE |
3693 SWAPPER_CTRL_TXP_SE |
3694 SWAPPER_CTRL_TXD_R_FE |
3695 SWAPPER_CTRL_TXD_R_SE |
3696 SWAPPER_CTRL_TXD_W_FE |
3697 SWAPPER_CTRL_TXD_W_SE |
3698 SWAPPER_CTRL_TXF_R_FE |
3699 SWAPPER_CTRL_RXD_R_FE |
3700 SWAPPER_CTRL_RXD_R_SE |
3701 SWAPPER_CTRL_RXD_W_FE |
3702 SWAPPER_CTRL_RXD_W_SE |
3703 SWAPPER_CTRL_RXF_W_FE |
3704 SWAPPER_CTRL_XMSI_FE |
1da177e4 3705 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
eaae7f72 3706 if (sp->config.intr_type == INTA)
cc6e7c44 3707 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3708 writeq(val64, &bar0->swapper_ctrl);
3709#endif
3710 val64 = readq(&bar0->swapper_ctrl);
3711
20346722 3712 /*
3713 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3714 * feedback register.
3715 */
3716 val64 = readq(&bar0->pif_rd_swapper_fb);
3717 if (val64 != 0x0123456789ABCDEFULL) {
3718 /* Endian settings are incorrect, calls for another dekko. */
3719 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3720 dev->name);
3721 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3722 (unsigned long long) val64);
3723 return FAILURE;
3724 }
3725
3726 return SUCCESS;
3727}
3728
1ee6dd77 3729static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3730{
1ee6dd77 3731 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3732 u64 val64;
3733 int ret = 0, cnt = 0;
3734
3735 do {
3736 val64 = readq(&bar0->xmsi_access);
b7b5a128 3737 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3738 break;
3739 mdelay(1);
3740 cnt++;
3741 } while(cnt < 5);
3742 if (cnt == 5) {
3743 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3744 ret = 1;
3745 }
3746
3747 return ret;
3748}
3749
1ee6dd77 3750static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3751{
1ee6dd77 3752 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3753 u64 val64;
f61e0a35
SH
3754 int i, msix_index;
3755
3756
3757 if (nic->device_type == XFRAME_I_DEVICE)
3758 return;
cc6e7c44 3759
75c30b13 3760 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35 3761 msix_index = (i) ? ((i-1) * 8 + 1): 0;
cc6e7c44
RA
3762 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3763 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3764 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3765 writeq(val64, &bar0->xmsi_access);
f61e0a35 3766 if (wait_for_msix_trans(nic, msix_index)) {
cc6e7c44
RA
3767 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3768 continue;
3769 }
3770 }
3771}
3772
1ee6dd77 3773static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3774{
1ee6dd77 3775 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3776 u64 val64, addr, data;
f61e0a35
SH
3777 int i, msix_index;
3778
3779 if (nic->device_type == XFRAME_I_DEVICE)
3780 return;
cc6e7c44
RA
3781
3782 /* Store and display */
75c30b13 3783 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
f61e0a35
SH
3784 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3785 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3786 writeq(val64, &bar0->xmsi_access);
f61e0a35 3787 if (wait_for_msix_trans(nic, msix_index)) {
cc6e7c44
RA
3788 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3789 continue;
3790 }
3791 addr = readq(&bar0->xmsi_address);
3792 data = readq(&bar0->xmsi_data);
3793 if (addr && data) {
3794 nic->msix_info[i].addr = addr;
3795 nic->msix_info[i].data = data;
3796 }
3797 }
3798}
3799
1ee6dd77 3800static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3801{
1ee6dd77 3802 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3803 u64 rx_mat;
cc6e7c44
RA
3804 u16 msi_control; /* Temp variable */
3805 int ret, i, j, msix_indx = 1;
3806
f61e0a35 3807 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
cc6e7c44 3808 GFP_KERNEL);
bd684e43 3809 if (!nic->entries) {
491976b2
SH
3810 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3811 __FUNCTION__);
c53d4945 3812 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3813 return -ENOMEM;
3814 }
8a4bdbaa 3815 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3816 += (nic->num_entries * sizeof(struct msix_entry));
3817
3818 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3819
3820 nic->s2io_entries =
f61e0a35 3821 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
cc6e7c44 3822 GFP_KERNEL);
bd684e43 3823 if (!nic->s2io_entries) {
8a4bdbaa 3824 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
491976b2 3825 __FUNCTION__);
c53d4945 3826 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3827 kfree(nic->entries);
8a4bdbaa 3828 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3829 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3830 return -ENOMEM;
3831 }
8a4bdbaa 3832 nic->mac_control.stats_info->sw_stat.mem_allocated
f61e0a35
SH
3833 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3834 memset(nic->s2io_entries, 0,
3835 nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44 3836
ac731ab6
SH
3837 nic->entries[0].entry = 0;
3838 nic->s2io_entries[0].entry = 0;
3839 nic->s2io_entries[0].in_use = MSIX_FLG;
3840 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3841 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3842
f61e0a35
SH
3843 for (i = 1; i < nic->num_entries; i++) {
3844 nic->entries[i].entry = ((i - 1) * 8) + 1;
3845 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3846 nic->s2io_entries[i].arg = NULL;
3847 nic->s2io_entries[i].in_use = 0;
3848 }
3849
8a4bdbaa 3850 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3851 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3852 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3853 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3854 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3855 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3856 msix_indx += 8;
cc6e7c44 3857 }
8a4bdbaa 3858 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3859 readq(&bar0->rx_mat);
cc6e7c44 3860
f61e0a35 3861 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3862 /* We fail init if error or we get less vectors than min required */
cc6e7c44
RA
3863 if (ret) {
3864 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3865 kfree(nic->entries);
8a4bdbaa 3866 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3867 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44 3868 kfree(nic->s2io_entries);
8a4bdbaa 3869 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3870 += (nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3871 nic->entries = NULL;
3872 nic->s2io_entries = NULL;
3873 return -ENOMEM;
3874 }
3875
3876 /*
3877 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3878 * in the herc NIC. (Temp change, needs to be removed later)
3879 */
3880 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3881 msi_control |= 0x1; /* Enable MSI */
3882 pci_write_config_word(nic->pdev, 0x42, msi_control);
3883
3884 return 0;
3885}
3886
8abc4d5b 3887/* Handle software interrupt used during MSI(X) test */
33390a70 3888static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3889{
3890 struct s2io_nic *sp = dev_id;
3891
3892 sp->msi_detected = 1;
3893 wake_up(&sp->msi_wait);
3894
3895 return IRQ_HANDLED;
3896}
3897
3898/* Test interrupt path by forcing a a software IRQ */
33390a70 3899static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3900{
3901 struct pci_dev *pdev = sp->pdev;
3902 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3903 int err;
3904 u64 val64, saved64;
3905
3906 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3907 sp->name, sp);
3908 if (err) {
3909 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3910 sp->dev->name, pci_name(pdev), pdev->irq);
3911 return err;
3912 }
3913
3914 init_waitqueue_head (&sp->msi_wait);
3915 sp->msi_detected = 0;
3916
3917 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3918 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3919 val64 |= SCHED_INT_CTRL_TIMER_EN;
3920 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3921 writeq(val64, &bar0->scheduled_int_ctrl);
3922
3923 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3924
3925 if (!sp->msi_detected) {
3926 /* MSI(X) test failed, go back to INTx mode */
2450022a 3927 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
8abc4d5b
SS
3928 "using MSI(X) during test\n", sp->dev->name,
3929 pci_name(pdev));
3930
3931 err = -EOPNOTSUPP;
3932 }
3933
3934 free_irq(sp->entries[1].vector, sp);
3935
3936 writeq(saved64, &bar0->scheduled_int_ctrl);
3937
3938 return err;
3939}
18b2b7bd
SH
3940
3941static void remove_msix_isr(struct s2io_nic *sp)
3942{
3943 int i;
3944 u16 msi_control;
3945
f61e0a35 3946 for (i = 0; i < sp->num_entries; i++) {
18b2b7bd
SH
3947 if (sp->s2io_entries[i].in_use ==
3948 MSIX_REGISTERED_SUCCESS) {
3949 int vector = sp->entries[i].vector;
3950 void *arg = sp->s2io_entries[i].arg;
3951 free_irq(vector, arg);
3952 }
3953 }
3954
3955 kfree(sp->entries);
3956 kfree(sp->s2io_entries);
3957 sp->entries = NULL;
3958 sp->s2io_entries = NULL;
3959
3960 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3961 msi_control &= 0xFFFE; /* Disable MSI */
3962 pci_write_config_word(sp->pdev, 0x42, msi_control);
3963
3964 pci_disable_msix(sp->pdev);
3965}
3966
3967static void remove_inta_isr(struct s2io_nic *sp)
3968{
3969 struct net_device *dev = sp->dev;
3970
3971 free_irq(sp->pdev->irq, dev);
3972}
3973
1da177e4
LT
3974/* ********************************************************* *
3975 * Functions defined below concern the OS part of the driver *
3976 * ********************************************************* */
3977
20346722 3978/**
1da177e4
LT
3979 * s2io_open - open entry point of the driver
3980 * @dev : pointer to the device structure.
3981 * Description:
3982 * This function is the open entry point of the driver. It mainly calls a
3983 * function to allocate Rx buffers and inserts them into the buffer
20346722 3984 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3985 * Return value:
3986 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3987 * file on failure.
3988 */
3989
ac1f60db 3990static int s2io_open(struct net_device *dev)
1da177e4 3991{
1ee6dd77 3992 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3993 int err = 0;
3994
20346722 3995 /*
3996 * Make sure you have link off by default every time
1da177e4
LT
3997 * Nic is initialized
3998 */
3999 netif_carrier_off(dev);
0b1f7ebe 4000 sp->last_link_state = 0;
1da177e4
LT
4001
4002 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4003 err = s2io_card_up(sp);
4004 if (err) {
1da177e4
LT
4005 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4006 dev->name);
e6a8fee2 4007 goto hw_init_failed;
1da177e4
LT
4008 }
4009
2fd37688 4010 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4011 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4012 s2io_card_down(sp);
20346722 4013 err = -ENODEV;
e6a8fee2 4014 goto hw_init_failed;
1da177e4 4015 }
3a3d5756 4016 s2io_start_all_tx_queue(sp);
1da177e4 4017 return 0;
20346722 4018
20346722 4019hw_init_failed:
eaae7f72 4020 if (sp->config.intr_type == MSI_X) {
491976b2 4021 if (sp->entries) {
cc6e7c44 4022 kfree(sp->entries);
8a4bdbaa 4023 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4024 += (sp->num_entries * sizeof(struct msix_entry));
491976b2
SH
4025 }
4026 if (sp->s2io_entries) {
cc6e7c44 4027 kfree(sp->s2io_entries);
8a4bdbaa 4028 sp->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 4029 += (sp->num_entries * sizeof(struct s2io_msix_entry));
491976b2 4030 }
cc6e7c44 4031 }
20346722 4032 return err;
1da177e4
LT
4033}
4034
4035/**
4036 * s2io_close -close entry point of the driver
4037 * @dev : device pointer.
4038 * Description:
4039 * This is the stop entry point of the driver. It needs to undo exactly
4040 * whatever was done by the open entry point,thus it's usually referred to
4041 * as the close function.Among other things this function mainly stops the
4042 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4043 * Return value:
4044 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4045 * file on failure.
4046 */
4047
ac1f60db 4048static int s2io_close(struct net_device *dev)
1da177e4 4049{
1ee6dd77 4050 struct s2io_nic *sp = dev->priv;
faa4f796
SH
4051 struct config_param *config = &sp->config;
4052 u64 tmp64;
4053 int offset;
cc6e7c44 4054
9f74ffde
SH
4055 /* Return if the device is already closed *
4056 * Can happen when s2io_card_up failed in change_mtu *
4057 */
4058 if (!is_s2io_card_up(sp))
4059 return 0;
4060
3a3d5756 4061 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4062 /* delete all populated mac entries */
4063 for (offset = 1; offset < config->max_mc_addr; offset++) {
4064 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4065 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4066 do_s2io_delete_unicast_mc(sp, tmp64);
4067 }
4068
e6a8fee2 4069 s2io_card_down(sp);
cc6e7c44 4070
1da177e4
LT
4071 return 0;
4072}
4073
4074/**
4075 * s2io_xmit - Tx entry point of te driver
4076 * @skb : the socket buffer containing the Tx data.
4077 * @dev : device pointer.
4078 * Description :
4079 * This function is the Tx entry point of the driver. S2IO NIC supports
4080 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4081 * NOTE: when device cant queue the pkt,just the trans_start variable will
4082 * not be upadted.
4083 * Return value:
4084 * 0 on success & 1 on failure.
4085 */
4086
ac1f60db 4087static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4088{
1ee6dd77 4089 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4090 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4091 register u64 val64;
1ee6dd77
RB
4092 struct TxD *txdp;
4093 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4094 unsigned long flags = 0;
be3a6b02 4095 u16 vlan_tag = 0;
2fda096d 4096 struct fifo_info *fifo = NULL;
1ee6dd77 4097 struct mac_info *mac_control;
1da177e4 4098 struct config_param *config;
6cfc482b 4099 int do_spin_lock = 1;
75c30b13 4100 int offload_type;
6cfc482b 4101 int enable_per_list_interrupt = 0;
491abf25 4102 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4103
4104 mac_control = &sp->mac_control;
4105 config = &sp->config;
4106
20346722 4107 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4108
4109 if (unlikely(skb->len <= 0)) {
4110 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4111 dev_kfree_skb_any(skb);
4112 return 0;
2fda096d 4113 }
491976b2 4114
92b84437 4115 if (!is_s2io_card_up(sp)) {
20346722 4116 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4117 dev->name);
20346722 4118 dev_kfree_skb(skb);
4119 return 0;
1da177e4
LT
4120 }
4121
4122 queue = 0;
3a3d5756 4123 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4124 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4125 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4126 if (skb->protocol == htons(ETH_P_IP)) {
4127 struct iphdr *ip;
4128 struct tcphdr *th;
4129 ip = ip_hdr(skb);
4130
4131 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4132 th = (struct tcphdr *)(((unsigned char *)ip) +
4133 ip->ihl*4);
4134
4135 if (ip->protocol == IPPROTO_TCP) {
4136 queue_len = sp->total_tcp_fifos;
4137 queue = (ntohs(th->source) +
4138 ntohs(th->dest)) &
4139 sp->fifo_selector[queue_len - 1];
4140 if (queue >= queue_len)
4141 queue = queue_len - 1;
4142 } else if (ip->protocol == IPPROTO_UDP) {
4143 queue_len = sp->total_udp_fifos;
4144 queue = (ntohs(th->source) +
4145 ntohs(th->dest)) &
4146 sp->fifo_selector[queue_len - 1];
4147 if (queue >= queue_len)
4148 queue = queue_len - 1;
4149 queue += sp->udp_fifo_idx;
4150 if (skb->len > 1024)
4151 enable_per_list_interrupt = 1;
4152 do_spin_lock = 0;
4153 }
4154 }
4155 }
4156 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4157 /* get fifo number based on skb->priority value */
4158 queue = config->fifo_mapping
4159 [skb->priority & (MAX_TX_FIFOS - 1)];
4160 fifo = &mac_control->fifos[queue];
3a3d5756 4161
6cfc482b
SH
4162 if (do_spin_lock)
4163 spin_lock_irqsave(&fifo->tx_lock, flags);
4164 else {
4165 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4166 return NETDEV_TX_LOCKED;
4167 }
be3a6b02 4168
3a3d5756
SH
4169 if (sp->config.multiq) {
4170 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4171 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4172 return NETDEV_TX_BUSY;
4173 }
b19fa1fa 4174 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4175 if (netif_queue_stopped(dev)) {
4176 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4177 return NETDEV_TX_BUSY;
4178 }
4179 }
4180
2fda096d
SR
4181 put_off = (u16) fifo->tx_curr_put_info.offset;
4182 get_off = (u16) fifo->tx_curr_get_info.offset;
4183 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
20346722 4184
2fda096d 4185 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4186 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
4187 if (txdp->Host_Control ||
4188 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4189 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4190 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4191 dev_kfree_skb(skb);
2fda096d 4192 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4193 return 0;
4194 }
0b1f7ebe 4195
75c30b13 4196 offload_type = s2io_offload_type(skb);
75c30b13 4197 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4198 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4199 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4200 }
84fa7933 4201 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
4202 txdp->Control_2 |=
4203 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4204 TXD_TX_CKO_UDP_EN);
4205 }
fed5eccd
AR
4206 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4207 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4208 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4209 if (enable_per_list_interrupt)
4210 if (put_off & (queue_len >> 5))
4211 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4212 if (vlan_tag) {
be3a6b02 4213 txdp->Control_2 |= TXD_VLAN_ENABLE;
4214 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4215 }
4216
fed5eccd 4217 frg_len = skb->len - skb->data_len;
75c30b13 4218 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4219 int ufo_size;
4220
75c30b13 4221 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4222 ufo_size &= ~7;
4223 txdp->Control_1 |= TXD_UFO_EN;
4224 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4225 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4226#ifdef __BIG_ENDIAN
3459feb8 4227 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4228 fifo->ufo_in_band_v[put_off] =
3459feb8 4229 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4230#else
2fda096d 4231 fifo->ufo_in_band_v[put_off] =
3459feb8 4232 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4233#endif
2fda096d 4234 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4235 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
2fda096d 4236 fifo->ufo_in_band_v,
fed5eccd 4237 sizeof(u64), PCI_DMA_TODEVICE);
64c42f69 4238 if (pci_dma_mapping_error(txdp->Buffer_Pointer))
491abf25 4239 goto pci_map_failed;
fed5eccd 4240 txdp++;
fed5eccd 4241 }
1da177e4 4242
fed5eccd
AR
4243 txdp->Buffer_Pointer = pci_map_single
4244 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
64c42f69 4245 if (pci_dma_mapping_error(txdp->Buffer_Pointer))
491abf25
VP
4246 goto pci_map_failed;
4247
fed5eccd
AR
4248 txdp->Host_Control = (unsigned long) skb;
4249 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4250 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4251 txdp->Control_1 |= TXD_UFO_EN;
4252
4253 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4254 /* For fragmented SKB. */
4255 for (i = 0; i < frg_cnt; i++) {
4256 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4257 /* A '0' length fragment will be ignored */
4258 if (!frag->size)
4259 continue;
1da177e4
LT
4260 txdp++;
4261 txdp->Buffer_Pointer = (u64) pci_map_page
4262 (sp->pdev, frag->page, frag->page_offset,
4263 frag->size, PCI_DMA_TODEVICE);
efd51b5c 4264 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4265 if (offload_type == SKB_GSO_UDP)
fed5eccd 4266 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4267 }
4268 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4269
75c30b13 4270 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4271 frg_cnt++; /* as Txd0 was used for inband header */
4272
1da177e4 4273 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4274 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4275 writeq(val64, &tx_fifo->TxDL_Pointer);
4276
4277 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4278 TX_FIFO_LAST_LIST);
75c30b13 4279 if (offload_type)
fed5eccd 4280 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4281
1da177e4
LT
4282 writeq(val64, &tx_fifo->List_Control);
4283
303bcb4b 4284 mmiowb();
4285
1da177e4 4286 put_off++;
2fda096d 4287 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4288 put_off = 0;
2fda096d 4289 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4290
4291 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4292 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4293 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4294 DBG_PRINT(TX_DBG,
4295 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4296 put_off, get_off);
3a3d5756 4297 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4298 }
491976b2 4299 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
1da177e4 4300 dev->trans_start = jiffies;
2fda096d 4301 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4302
f6f4bfa3
SH
4303 if (sp->config.intr_type == MSI_X)
4304 tx_intr_handler(fifo);
4305
491abf25
VP
4306 return 0;
4307pci_map_failed:
4308 stats->pci_map_fail_cnt++;
3a3d5756 4309 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4310 stats->mem_freed += skb->truesize;
4311 dev_kfree_skb(skb);
2fda096d 4312 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
4313 return 0;
4314}
4315
25fff88e 4316static void
4317s2io_alarm_handle(unsigned long data)
4318{
1ee6dd77 4319 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4320 struct net_device *dev = sp->dev;
25fff88e 4321
8116f3cf 4322 s2io_handle_errors(dev);
25fff88e 4323 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4324}
4325
7d12e780 4326static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4327{
1ee6dd77
RB
4328 struct ring_info *ring = (struct ring_info *)dev_id;
4329 struct s2io_nic *sp = ring->nic;
f61e0a35
SH
4330 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4331 struct net_device *dev = sp->dev;
cc6e7c44 4332
f61e0a35 4333 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4334 return IRQ_HANDLED;
92b84437 4335
f61e0a35 4336 if (sp->config.napi) {
1a79d1c3
AV
4337 u8 __iomem *addr = NULL;
4338 u8 val8 = 0;
f61e0a35 4339
1a79d1c3 4340 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4341 addr += (7 - ring->ring_no);
4342 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4343 writeb(val8, addr);
4344 val8 = readb(addr);
4345 netif_rx_schedule(dev, &ring->napi);
4346 } else {
4347 rx_intr_handler(ring, 0);
4348 s2io_chk_rx_buffers(ring);
4349 }
7d3d0439 4350
cc6e7c44
RA
4351 return IRQ_HANDLED;
4352}
4353
7d12e780 4354static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4355{
ac731ab6
SH
4356 int i;
4357 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4358 struct s2io_nic *sp = fifos->nic;
4359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4360 struct config_param *config = &sp->config;
4361 u64 reason;
cc6e7c44 4362
ac731ab6
SH
4363 if (unlikely(!is_s2io_card_up(sp)))
4364 return IRQ_NONE;
4365
4366 reason = readq(&bar0->general_int_status);
4367 if (unlikely(reason == S2IO_MINUS_ONE))
4368 /* Nothing much can be done. Get out */
92b84437 4369 return IRQ_HANDLED;
92b84437 4370
01e16faa
SH
4371 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4372 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4373
01e16faa
SH
4374 if (reason & GEN_INTR_TXPIC)
4375 s2io_txpic_intr_handle(sp);
ac731ab6 4376
01e16faa
SH
4377 if (reason & GEN_INTR_TXTRAFFIC)
4378 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4379
01e16faa
SH
4380 for (i = 0; i < config->tx_fifo_num; i++)
4381 tx_intr_handler(&fifos[i]);
ac731ab6 4382
01e16faa
SH
4383 writeq(sp->general_int_mask, &bar0->general_int_mask);
4384 readl(&bar0->general_int_status);
4385 return IRQ_HANDLED;
4386 }
4387 /* The interrupt was not raised by us */
4388 return IRQ_NONE;
cc6e7c44 4389}
ac731ab6 4390
1ee6dd77 4391static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4392{
1ee6dd77 4393 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4394 u64 val64;
4395
4396 val64 = readq(&bar0->pic_int_status);
4397 if (val64 & PIC_INT_GPIO) {
4398 val64 = readq(&bar0->gpio_int_reg);
4399 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4400 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4401 /*
4402 * This is unstable state so clear both up/down
4403 * interrupt and adapter to re-evaluate the link state.
4404 */
a371a07d 4405 val64 |= GPIO_INT_REG_LINK_DOWN;
4406 val64 |= GPIO_INT_REG_LINK_UP;
4407 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4408 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4409 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4410 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4411 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4412 }
c92ca04b
AR
4413 else if (val64 & GPIO_INT_REG_LINK_UP) {
4414 val64 = readq(&bar0->adapter_status);
c92ca04b 4415 /* Enable Adapter */
19a60522
SS
4416 val64 = readq(&bar0->adapter_control);
4417 val64 |= ADAPTER_CNTL_EN;
4418 writeq(val64, &bar0->adapter_control);
4419 val64 |= ADAPTER_LED_ON;
4420 writeq(val64, &bar0->adapter_control);
4421 if (!sp->device_enabled_once)
4422 sp->device_enabled_once = 1;
c92ca04b 4423
19a60522
SS
4424 s2io_link(sp, LINK_UP);
4425 /*
4426 * unmask link down interrupt and mask link-up
4427 * intr
4428 */
4429 val64 = readq(&bar0->gpio_int_mask);
4430 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4431 val64 |= GPIO_INT_MASK_LINK_UP;
4432 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4433
c92ca04b
AR
4434 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4435 val64 = readq(&bar0->adapter_status);
19a60522
SS
4436 s2io_link(sp, LINK_DOWN);
4437 /* Link is down so unmaks link up interrupt */
4438 val64 = readq(&bar0->gpio_int_mask);
4439 val64 &= ~GPIO_INT_MASK_LINK_UP;
4440 val64 |= GPIO_INT_MASK_LINK_DOWN;
4441 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4442
4443 /* turn off LED */
4444 val64 = readq(&bar0->adapter_control);
4445 val64 = val64 &(~ADAPTER_LED_ON);
4446 writeq(val64, &bar0->adapter_control);
a371a07d 4447 }
4448 }
c92ca04b 4449 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4450}
4451
8116f3cf
SS
4452/**
4453 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454 * @value: alarm bits
4455 * @addr: address value
4456 * @cnt: counter variable
4457 * Description: Check for alarm and increment the counter
4458 * Return Value:
4459 * 1 - if alarm bit set
4460 * 0 - if alarm bit is not set
4461 */
43b7c451 4462static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
8116f3cf
SS
4463 unsigned long long *cnt)
4464{
4465 u64 val64;
4466 val64 = readq(addr);
4467 if ( val64 & value ) {
4468 writeq(val64, addr);
4469 (*cnt)++;
4470 return 1;
4471 }
4472 return 0;
4473
4474}
4475
4476/**
4477 * s2io_handle_errors - Xframe error indication handler
4478 * @nic: device private variable
4479 * Description: Handle alarms such as loss of link, single or
4480 * double ECC errors, critical and serious errors.
4481 * Return Value:
4482 * NONE
4483 */
4484static void s2io_handle_errors(void * dev_id)
4485{
4486 struct net_device *dev = (struct net_device *) dev_id;
4487 struct s2io_nic *sp = dev->priv;
4488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489 u64 temp64 = 0,val64=0;
4490 int i = 0;
4491
4492 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4493 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4494
92b84437 4495 if (!is_s2io_card_up(sp))
8116f3cf
SS
4496 return;
4497
4498 if (pci_channel_offline(sp->pdev))
4499 return;
4500
4501 memset(&sw_stat->ring_full_cnt, 0,
4502 sizeof(sw_stat->ring_full_cnt));
4503
4504 /* Handling the XPAK counters update */
4505 if(stats->xpak_timer_count < 72000) {
4506 /* waiting for an hour */
4507 stats->xpak_timer_count++;
4508 } else {
4509 s2io_updt_xpak_counter(dev);
4510 /* reset the count to zero */
4511 stats->xpak_timer_count = 0;
4512 }
4513
4514 /* Handling link status change error Intr */
4515 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4516 val64 = readq(&bar0->mac_rmac_err_reg);
4517 writeq(val64, &bar0->mac_rmac_err_reg);
4518 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4519 schedule_work(&sp->set_link_task);
4520 }
4521
4522 /* In case of a serious error, the device will be Reset. */
4523 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4524 &sw_stat->serious_err_cnt))
4525 goto reset;
4526
4527 /* Check for data parity error */
4528 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4529 &sw_stat->parity_err_cnt))
4530 goto reset;
4531
4532 /* Check for ring full counter */
4533 if (sp->device_type == XFRAME_II_DEVICE) {
4534 val64 = readq(&bar0->ring_bump_counter1);
4535 for (i=0; i<4; i++) {
4536 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4537 temp64 >>= 64 - ((i+1)*16);
4538 sw_stat->ring_full_cnt[i] += temp64;
4539 }
4540
4541 val64 = readq(&bar0->ring_bump_counter2);
4542 for (i=0; i<4; i++) {
4543 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4544 temp64 >>= 64 - ((i+1)*16);
4545 sw_stat->ring_full_cnt[i+4] += temp64;
4546 }
4547 }
4548
4549 val64 = readq(&bar0->txdma_int_status);
4550 /*check for pfc_err*/
4551 if (val64 & TXDMA_PFC_INT) {
4552 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4553 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4554 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4555 &sw_stat->pfc_err_cnt))
4556 goto reset;
4557 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4558 &sw_stat->pfc_err_cnt);
4559 }
4560
4561 /*check for tda_err*/
4562 if (val64 & TXDMA_TDA_INT) {
4563 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4564 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4565 &sw_stat->tda_err_cnt))
4566 goto reset;
4567 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4568 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4569 }
4570 /*check for pcc_err*/
4571 if (val64 & TXDMA_PCC_INT) {
4572 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4573 | PCC_N_SERR | PCC_6_COF_OV_ERR
4574 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4575 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4576 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4577 &sw_stat->pcc_err_cnt))
4578 goto reset;
4579 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4580 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4581 }
4582
4583 /*check for tti_err*/
4584 if (val64 & TXDMA_TTI_INT) {
4585 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4586 &sw_stat->tti_err_cnt))
4587 goto reset;
4588 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4589 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4590 }
4591
4592 /*check for lso_err*/
4593 if (val64 & TXDMA_LSO_INT) {
4594 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4595 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4596 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4597 goto reset;
4598 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4599 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4600 }
4601
4602 /*check for tpa_err*/
4603 if (val64 & TXDMA_TPA_INT) {
4604 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4605 &sw_stat->tpa_err_cnt))
4606 goto reset;
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4608 &sw_stat->tpa_err_cnt);
4609 }
4610
4611 /*check for sm_err*/
4612 if (val64 & TXDMA_SM_INT) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
4615 goto reset;
4616 }
4617
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
4623 goto reset;
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4625 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
4628 }
4629
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
4639 }
4640
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4644 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4645 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4648 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4651 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4652 &sw_stat->prc_pcix_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4655 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt);
4657 }
4658
4659 if (val64 & RXDMA_INT_RPA_INT_M) {
4660 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4661 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4662 goto reset;
4663 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4664 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4665 }
4666
4667 if (val64 & RXDMA_INT_RDA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4670 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4671 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4674 | RDA_MISC_ERR | RDA_PCIX_ERR,
4675 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4676 }
4677
4678 if (val64 & RXDMA_INT_RTI_INT_M) {
4679 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4680 &sw_stat->rti_err_cnt))
4681 goto reset;
4682 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4683 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4684 }
4685
4686 val64 = readq(&bar0->mac_int_status);
4687 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4688 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4689 &bar0->mac_rmac_err_reg,
4690 &sw_stat->mac_rmac_err_cnt))
4691 goto reset;
4692 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4693 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4694 &sw_stat->mac_rmac_err_cnt);
4695 }
4696
4697 val64 = readq(&bar0->xgxs_int_status);
4698 if (val64 & XGXS_INT_STATUS_RXGXS) {
4699 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4700 &bar0->xgxs_rxgxs_err_reg,
4701 &sw_stat->xgxs_rxgxs_err_cnt))
4702 goto reset;
4703 }
4704
4705 val64 = readq(&bar0->mc_int_status);
4706 if(val64 & MC_INT_STATUS_MC_INT) {
4707 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4708 &sw_stat->mc_err_cnt))
4709 goto reset;
4710
4711 /* Handling Ecc errors */
4712 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4713 writeq(val64, &bar0->mc_err_reg);
4714 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4715 sw_stat->double_ecc_errs++;
4716 if (sp->device_type != XFRAME_II_DEVICE) {
4717 /*
4718 * Reset XframeI only if critical error
4719 */
4720 if (val64 &
4721 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4722 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4723 goto reset;
4724 }
4725 } else
4726 sw_stat->single_ecc_errs++;
4727 }
4728 }
4729 return;
4730
4731reset:
3a3d5756 4732 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4733 schedule_work(&sp->rst_timer_task);
4734 sw_stat->soft_reset_cnt++;
4735 return;
4736}
4737
1da177e4
LT
4738/**
4739 * s2io_isr - ISR handler of the device .
4740 * @irq: the irq of the device.
4741 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4742 * Description: This function is the ISR handler of the device. It
4743 * identifies the reason for the interrupt and calls the relevant
4744 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4745 * recv buffers, if their numbers are below the panic value which is
4746 * presently set to 25% of the original number of rcv buffers allocated.
4747 * Return value:
20346722 4748 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4749 * IRQ_NONE: will be returned if interrupt is not from our device
4750 */
7d12e780 4751static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4752{
4753 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4754 struct s2io_nic *sp = dev->priv;
4755 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4756 int i;
19a60522 4757 u64 reason = 0;
1ee6dd77 4758 struct mac_info *mac_control;
1da177e4
LT
4759 struct config_param *config;
4760
d796fdb7
LV
4761 /* Pretend we handled any irq's from a disconnected card */
4762 if (pci_channel_offline(sp->pdev))
4763 return IRQ_NONE;
4764
596c5c97 4765 if (!is_s2io_card_up(sp))
92b84437 4766 return IRQ_NONE;
92b84437 4767
1da177e4
LT
4768 mac_control = &sp->mac_control;
4769 config = &sp->config;
4770
20346722 4771 /*
1da177e4
LT
4772 * Identify the cause for interrupt and call the appropriate
4773 * interrupt handler. Causes for the interrupt could be;
4774 * 1. Rx of packet.
4775 * 2. Tx complete.
4776 * 3. Link down.
1da177e4
LT
4777 */
4778 reason = readq(&bar0->general_int_status);
4779
596c5c97
SS
4780 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4781 /* Nothing much can be done. Get out */
4782 return IRQ_HANDLED;
1da177e4 4783 }
5d3213cc 4784
596c5c97
SS
4785 if (reason & (GEN_INTR_RXTRAFFIC |
4786 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4787 {
4788 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4789
4790 if (config->napi) {
4791 if (reason & GEN_INTR_RXTRAFFIC) {
f61e0a35
SH
4792 netif_rx_schedule(dev, &sp->napi);
4793 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4795 readl(&bar0->rx_traffic_int);
db874e65 4796 }
596c5c97
SS
4797 } else {
4798 /*
4799 * rx_traffic_int reg is an R1 register, writing all 1's
4800 * will ensure that the actual interrupt causing bit
4801 * get's cleared and hence a read can be avoided.
4802 */
4803 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4804 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97
SS
4805
4806 for (i = 0; i < config->rx_ring_num; i++)
f61e0a35 4807 rx_intr_handler(&mac_control->rings[i], 0);
db874e65 4808 }
596c5c97 4809
db874e65 4810 /*
596c5c97 4811 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4812 * will ensure that the actual interrupt causing bit get's
4813 * cleared and hence a read can be avoided.
4814 */
596c5c97
SS
4815 if (reason & GEN_INTR_TXTRAFFIC)
4816 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4817
596c5c97
SS
4818 for (i = 0; i < config->tx_fifo_num; i++)
4819 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4820
596c5c97
SS
4821 if (reason & GEN_INTR_TXPIC)
4822 s2io_txpic_intr_handle(sp);
fe113638 4823
596c5c97
SS
4824 /*
4825 * Reallocate the buffers from the interrupt handler itself.
4826 */
4827 if (!config->napi) {
4828 for (i = 0; i < config->rx_ring_num; i++)
0425b46a 4829 s2io_chk_rx_buffers(&mac_control->rings[i]);
596c5c97
SS
4830 }
4831 writeq(sp->general_int_mask, &bar0->general_int_mask);
4832 readl(&bar0->general_int_status);
20346722 4833
596c5c97 4834 return IRQ_HANDLED;
db874e65 4835
596c5c97
SS
4836 }
4837 else if (!reason) {
4838 /* The interrupt was not raised by us */
4839 return IRQ_NONE;
4840 }
db874e65 4841
1da177e4
LT
4842 return IRQ_HANDLED;
4843}
4844
7ba013ac 4845/**
4846 * s2io_updt_stats -
4847 */
1ee6dd77 4848static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4849{
1ee6dd77 4850 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4851 u64 val64;
4852 int cnt = 0;
4853
92b84437 4854 if (is_s2io_card_up(sp)) {
7ba013ac 4855 /* Apprx 30us on a 133 MHz bus */
4856 val64 = SET_UPDT_CLICKS(10) |
4857 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4858 writeq(val64, &bar0->stat_cfg);
4859 do {
4860 udelay(100);
4861 val64 = readq(&bar0->stat_cfg);
b7b5a128 4862 if (!(val64 & s2BIT(0)))
7ba013ac 4863 break;
4864 cnt++;
4865 if (cnt == 5)
4866 break; /* Updt failed */
4867 } while(1);
8a4bdbaa 4868 }
7ba013ac 4869}
4870
1da177e4 4871/**
20346722 4872 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4873 * @dev : pointer to the device structure.
4874 * Description:
20346722 4875 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4876 * structure and returns a pointer to the same.
4877 * Return value:
4878 * pointer to the updated net_device_stats structure.
4879 */
4880
ac1f60db 4881static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4882{
1ee6dd77
RB
4883 struct s2io_nic *sp = dev->priv;
4884 struct mac_info *mac_control;
1da177e4 4885 struct config_param *config;
0425b46a 4886 int i;
1da177e4 4887
20346722 4888
1da177e4
LT
4889 mac_control = &sp->mac_control;
4890 config = &sp->config;
4891
7ba013ac 4892 /* Configure Stats for immediate updt */
4893 s2io_updt_stats(sp);
4894
4895 sp->stats.tx_packets =
4896 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722 4897 sp->stats.tx_errors =
4898 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4899 sp->stats.rx_errors =
ee705dba 4900 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722 4901 sp->stats.multicast =
4902 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4903 sp->stats.rx_length_errors =
ee705dba 4904 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4905
0425b46a
SH
4906 /* collect per-ring rx_packets and rx_bytes */
4907 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4908 for (i = 0; i < config->rx_ring_num; i++) {
4909 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4910 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4911 }
4912
1da177e4
LT
4913 return (&sp->stats);
4914}
4915
4916/**
4917 * s2io_set_multicast - entry point for multicast address enable/disable.
4918 * @dev : pointer to the device structure
4919 * Description:
20346722 4920 * This function is a driver entry point which gets called by the kernel
4921 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4922 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4923 * determine, if multicast address must be enabled or if promiscuous mode
4924 * is to be disabled etc.
4925 * Return value:
4926 * void.
4927 */
4928
4929static void s2io_set_multicast(struct net_device *dev)
4930{
4931 int i, j, prev_cnt;
4932 struct dev_mc_list *mclist;
1ee6dd77
RB
4933 struct s2io_nic *sp = dev->priv;
4934 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4935 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4936 0xfeffffffffffULL;
faa4f796 4937 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4938 void __iomem *add;
faa4f796 4939 struct config_param *config = &sp->config;
1da177e4
LT
4940
4941 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4942 /* Enable all Multicast addresses */
4943 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4944 &bar0->rmac_addr_data0_mem);
4945 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4946 &bar0->rmac_addr_data1_mem);
4947 val64 = RMAC_ADDR_CMD_MEM_WE |
4948 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 4949 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4950 writeq(val64, &bar0->rmac_addr_cmd_mem);
4951 /* Wait till command completes */
c92ca04b 4952 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4953 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4954 S2IO_BIT_RESET);
1da177e4
LT
4955
4956 sp->m_cast_flg = 1;
faa4f796 4957 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4958 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4959 /* Disable all Multicast addresses */
4960 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4961 &bar0->rmac_addr_data0_mem);
5e25b9dd 4962 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4963 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4964 val64 = RMAC_ADDR_CMD_MEM_WE |
4965 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4967 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968 /* Wait till command completes */
c92ca04b 4969 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4970 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971 S2IO_BIT_RESET);
1da177e4
LT
4972
4973 sp->m_cast_flg = 0;
4974 sp->all_multi_pos = 0;
4975 }
4976
4977 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4978 /* Put the NIC into promiscuous mode */
4979 add = &bar0->mac_cfg;
4980 val64 = readq(&bar0->mac_cfg);
4981 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4982
4983 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4984 writel((u32) val64, add);
4985 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4986 writel((u32) (val64 >> 32), (add + 4));
4987
926930b2
SS
4988 if (vlan_tag_strip != 1) {
4989 val64 = readq(&bar0->rx_pa_cfg);
4990 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4991 writeq(val64, &bar0->rx_pa_cfg);
4992 vlan_strip_flag = 0;
4993 }
4994
1da177e4
LT
4995 val64 = readq(&bar0->mac_cfg);
4996 sp->promisc_flg = 1;
776bd20f 4997 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4998 dev->name);
4999 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5000 /* Remove the NIC from promiscuous mode */
5001 add = &bar0->mac_cfg;
5002 val64 = readq(&bar0->mac_cfg);
5003 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5004
5005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5006 writel((u32) val64, add);
5007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5008 writel((u32) (val64 >> 32), (add + 4));
5009
926930b2
SS
5010 if (vlan_tag_strip != 0) {
5011 val64 = readq(&bar0->rx_pa_cfg);
5012 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5013 writeq(val64, &bar0->rx_pa_cfg);
5014 vlan_strip_flag = 1;
5015 }
5016
1da177e4
LT
5017 val64 = readq(&bar0->mac_cfg);
5018 sp->promisc_flg = 0;
776bd20f 5019 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5020 dev->name);
5021 }
5022
5023 /* Update individual M_CAST address list */
5024 if ((!sp->m_cast_flg) && dev->mc_count) {
5025 if (dev->mc_count >
faa4f796 5026 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5027 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5028 dev->name);
5029 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5030 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5031 return;
5032 }
5033
5034 prev_cnt = sp->mc_addr_count;
5035 sp->mc_addr_count = dev->mc_count;
5036
5037 /* Clear out the previous list of Mc in the H/W. */
5038 for (i = 0; i < prev_cnt; i++) {
5039 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5040 &bar0->rmac_addr_data0_mem);
5041 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5042 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5043 val64 = RMAC_ADDR_CMD_MEM_WE |
5044 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5045 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5046 (config->mc_start_offset + i);
1da177e4
LT
5047 writeq(val64, &bar0->rmac_addr_cmd_mem);
5048
5049 /* Wait for command completes */
c92ca04b 5050 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5051 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5052 S2IO_BIT_RESET)) {
1da177e4
LT
5053 DBG_PRINT(ERR_DBG, "%s: Adding ",
5054 dev->name);
5055 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5056 return;
5057 }
5058 }
5059
5060 /* Create the new Rx filter list and update the same in H/W. */
5061 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5062 i++, mclist = mclist->next) {
5063 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5064 ETH_ALEN);
a7a80d5a 5065 mac_addr = 0;
1da177e4
LT
5066 for (j = 0; j < ETH_ALEN; j++) {
5067 mac_addr |= mclist->dmi_addr[j];
5068 mac_addr <<= 8;
5069 }
5070 mac_addr >>= 8;
5071 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5072 &bar0->rmac_addr_data0_mem);
5073 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 5074 &bar0->rmac_addr_data1_mem);
1da177e4
LT
5075 val64 = RMAC_ADDR_CMD_MEM_WE |
5076 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5077 RMAC_ADDR_CMD_MEM_OFFSET
faa4f796 5078 (i + config->mc_start_offset);
1da177e4
LT
5079 writeq(val64, &bar0->rmac_addr_cmd_mem);
5080
5081 /* Wait for command completes */
c92ca04b 5082 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
5083 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5084 S2IO_BIT_RESET)) {
1da177e4
LT
5085 DBG_PRINT(ERR_DBG, "%s: Adding ",
5086 dev->name);
5087 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5088 return;
5089 }
5090 }
5091 }
5092}
5093
faa4f796
SH
5094/* read from CAM unicast & multicast addresses and store it in
5095 * def_mac_addr structure
5096 */
5097void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5098{
5099 int offset;
5100 u64 mac_addr = 0x0;
5101 struct config_param *config = &sp->config;
5102
5103 /* store unicast & multicast mac addresses */
5104 for (offset = 0; offset < config->max_mc_addr; offset++) {
5105 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5106 /* if read fails disable the entry */
5107 if (mac_addr == FAILURE)
5108 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5109 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5110 }
5111}
5112
5113/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5114static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5115{
5116 int offset;
5117 struct config_param *config = &sp->config;
5118 /* restore unicast mac address */
5119 for (offset = 0; offset < config->max_mac_addr; offset++)
5120 do_s2io_prog_unicast(sp->dev,
5121 sp->def_mac_addr[offset].mac_addr);
5122
5123 /* restore multicast mac address */
5124 for (offset = config->mc_start_offset;
5125 offset < config->max_mc_addr; offset++)
5126 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5127}
5128
5129/* add a multicast MAC address to CAM */
5130static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5131{
5132 int i;
5133 u64 mac_addr = 0;
5134 struct config_param *config = &sp->config;
5135
5136 for (i = 0; i < ETH_ALEN; i++) {
5137 mac_addr <<= 8;
5138 mac_addr |= addr[i];
5139 }
5140 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5141 return SUCCESS;
5142
5143 /* check if the multicast mac already preset in CAM */
5144 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5145 u64 tmp64;
5146 tmp64 = do_s2io_read_unicast_mc(sp, i);
5147 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5148 break;
5149
5150 if (tmp64 == mac_addr)
5151 return SUCCESS;
5152 }
5153 if (i == config->max_mc_addr) {
5154 DBG_PRINT(ERR_DBG,
5155 "CAM full no space left for multicast MAC\n");
5156 return FAILURE;
5157 }
5158 /* Update the internal structure with this new mac address */
5159 do_s2io_copy_mac_addr(sp, i, mac_addr);
5160
5161 return (do_s2io_add_mac(sp, mac_addr, i));
5162}
5163
5164/* add MAC address to CAM */
5165static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5166{
5167 u64 val64;
5168 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5169
5170 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5171 &bar0->rmac_addr_data0_mem);
5172
5173 val64 =
5174 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5175 RMAC_ADDR_CMD_MEM_OFFSET(off);
5176 writeq(val64, &bar0->rmac_addr_cmd_mem);
5177
5178 /* Wait till command completes */
5179 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5180 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5181 S2IO_BIT_RESET)) {
faa4f796 5182 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5183 return FAILURE;
5184 }
5185 return SUCCESS;
5186}
faa4f796
SH
5187/* deletes a specified unicast/multicast mac entry from CAM */
5188static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5189{
5190 int offset;
5191 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5192 struct config_param *config = &sp->config;
5193
5194 for (offset = 1;
5195 offset < config->max_mc_addr; offset++) {
5196 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5197 if (tmp64 == addr) {
5198 /* disable the entry by writing 0xffffffffffffULL */
5199 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5200 return FAILURE;
5201 /* store the new mac list from CAM */
5202 do_s2io_store_unicast_mc(sp);
5203 return SUCCESS;
5204 }
5205 }
5206 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5207 (unsigned long long)addr);
5208 return FAILURE;
5209}
5210
5211/* read mac entries from CAM */
5212static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5213{
5214 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5215 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5216
5217 /* read mac addr */
5218 val64 =
5219 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5220 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5221 writeq(val64, &bar0->rmac_addr_cmd_mem);
5222
5223 /* Wait till command completes */
5224 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5225 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5226 S2IO_BIT_RESET)) {
5227 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5228 return FAILURE;
5229 }
5230 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5231 return (tmp64 >> 16);
5232}
2fd37688
SS
5233
5234/**
5235 * s2io_set_mac_addr driver entry point
5236 */
faa4f796 5237
2fd37688
SS
5238static int s2io_set_mac_addr(struct net_device *dev, void *p)
5239{
5240 struct sockaddr *addr = p;
5241
5242 if (!is_valid_ether_addr(addr->sa_data))
5243 return -EINVAL;
5244
5245 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5246
5247 /* store the MAC address in CAM */
5248 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5249}
1da177e4 5250/**
2fd37688 5251 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5252 * @dev : pointer to the device structure.
5253 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5254 * Description : This procedure will program the Xframe to receive
1da177e4 5255 * frames with new Mac Address
20346722 5256 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5257 * as defined in errno.h file on failure.
5258 */
faa4f796 5259
2fd37688 5260static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5261{
1ee6dd77 5262 struct s2io_nic *sp = dev->priv;
2fd37688 5263 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5264 int i;
faa4f796
SH
5265 u64 tmp64;
5266 struct config_param *config = &sp->config;
1da177e4 5267
20346722 5268 /*
2fd37688
SS
5269 * Set the new MAC address as the new unicast filter and reflect this
5270 * change on the device address registered with the OS. It will be
5271 * at offset 0.
5272 */
1da177e4
LT
5273 for (i = 0; i < ETH_ALEN; i++) {
5274 mac_addr <<= 8;
5275 mac_addr |= addr[i];
2fd37688
SS
5276 perm_addr <<= 8;
5277 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5278 }
5279
2fd37688
SS
5280 /* check if the dev_addr is different than perm_addr */
5281 if (mac_addr == perm_addr)
d8d70caf
SS
5282 return SUCCESS;
5283
faa4f796
SH
5284 /* check if the mac already preset in CAM */
5285 for (i = 1; i < config->max_mac_addr; i++) {
5286 tmp64 = do_s2io_read_unicast_mc(sp, i);
5287 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5288 break;
5289
5290 if (tmp64 == mac_addr) {
5291 DBG_PRINT(INFO_DBG,
5292 "MAC addr:0x%llx already present in CAM\n",
5293 (unsigned long long)mac_addr);
5294 return SUCCESS;
5295 }
5296 }
5297 if (i == config->max_mac_addr) {
5298 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5299 return FAILURE;
5300 }
d8d70caf 5301 /* Update the internal structure with this new mac address */
faa4f796
SH
5302 do_s2io_copy_mac_addr(sp, i, mac_addr);
5303 return (do_s2io_add_mac(sp, mac_addr, i));
1da177e4
LT
5304}
5305
5306/**
20346722 5307 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5308 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5309 * @info: pointer to the structure with parameters given by ethtool to set
5310 * link information.
5311 * Description:
20346722 5312 * The function sets different link parameters provided by the user onto
1da177e4
LT
5313 * the NIC.
5314 * Return value:
5315 * 0 on success.
5316*/
5317
5318static int s2io_ethtool_sset(struct net_device *dev,
5319 struct ethtool_cmd *info)
5320{
1ee6dd77 5321 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5322 if ((info->autoneg == AUTONEG_ENABLE) ||
5323 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5324 return -EINVAL;
5325 else {
5326 s2io_close(sp->dev);
5327 s2io_open(sp->dev);
5328 }
5329
5330 return 0;
5331}
5332
5333/**
20346722 5334 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5335 * @sp : private member of the device structure, pointer to the
5336 * s2io_nic structure.
5337 * @info : pointer to the structure with parameters given by ethtool
5338 * to return link information.
5339 * Description:
5340 * Returns link specific information like speed, duplex etc.. to ethtool.
5341 * Return value :
5342 * return 0 on success.
5343 */
5344
5345static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5346{
1ee6dd77 5347 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5348 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5349 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5350 info->port = PORT_FIBRE;
1a7eb72b
SS
5351
5352 /* info->transceiver */
5353 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5354
5355 if (netif_carrier_ok(sp->dev)) {
5356 info->speed = 10000;
5357 info->duplex = DUPLEX_FULL;
5358 } else {
5359 info->speed = -1;
5360 info->duplex = -1;
5361 }
5362
5363 info->autoneg = AUTONEG_DISABLE;
5364 return 0;
5365}
5366
5367/**
20346722 5368 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5369 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5370 * s2io_nic structure.
5371 * @info : pointer to the structure with parameters given by ethtool to
5372 * return driver information.
5373 * Description:
5374 * Returns driver specefic information like name, version etc.. to ethtool.
5375 * Return value:
5376 * void
5377 */
5378
5379static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5380 struct ethtool_drvinfo *info)
5381{
1ee6dd77 5382 struct s2io_nic *sp = dev->priv;
1da177e4 5383
dbc2309d
JL
5384 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5385 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5386 strncpy(info->fw_version, "", sizeof(info->fw_version));
5387 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5388 info->regdump_len = XENA_REG_SPACE;
5389 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5390}
5391
5392/**
5393 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5394 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5395 * s2io_nic structure.
20346722 5396 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5397 * dumping the registers.
5398 * @reg_space: The input argumnet into which all the registers are dumped.
5399 * Description:
5400 * Dumps the entire register space of xFrame NIC into the user given
5401 * buffer area.
5402 * Return value :
5403 * void .
5404*/
5405
5406static void s2io_ethtool_gregs(struct net_device *dev,
5407 struct ethtool_regs *regs, void *space)
5408{
5409 int i;
5410 u64 reg;
5411 u8 *reg_space = (u8 *) space;
1ee6dd77 5412 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5413
5414 regs->len = XENA_REG_SPACE;
5415 regs->version = sp->pdev->subsystem_device;
5416
5417 for (i = 0; i < regs->len; i += 8) {
5418 reg = readq(sp->bar0 + i);
5419 memcpy((reg_space + i), &reg, 8);
5420 }
5421}
5422
5423/**
5424 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5425 * @data : address of the private member of the device structure, which
1da177e4 5426 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 5427 * Description: This is actually the timer function that alternates the
5428 * adapter LED bit of the adapter control bit to set/reset every time on
5429 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
5430 * once every second.
5431*/
5432static void s2io_phy_id(unsigned long data)
5433{
1ee6dd77
RB
5434 struct s2io_nic *sp = (struct s2io_nic *) data;
5435 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5436 u64 val64 = 0;
5437 u16 subid;
5438
5439 subid = sp->pdev->subsystem_device;
541ae68f 5440 if ((sp->device_type == XFRAME_II_DEVICE) ||
5441 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5442 val64 = readq(&bar0->gpio_control);
5443 val64 ^= GPIO_CTRL_GPIO_0;
5444 writeq(val64, &bar0->gpio_control);
5445 } else {
5446 val64 = readq(&bar0->adapter_control);
5447 val64 ^= ADAPTER_LED_ON;
5448 writeq(val64, &bar0->adapter_control);
5449 }
5450
5451 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5452}
5453
5454/**
5455 * s2io_ethtool_idnic - To physically identify the nic on the system.
5456 * @sp : private member of the device structure, which is a pointer to the
5457 * s2io_nic structure.
20346722 5458 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5459 * ethtool.
5460 * Description: Used to physically identify the NIC on the system.
20346722 5461 * The Link LED will blink for a time specified by the user for
1da177e4 5462 * identification.
20346722 5463 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5464 * identification is possible only if it's link is up.
5465 * Return value:
5466 * int , returns 0 on success
5467 */
5468
5469static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5470{
5471 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
5472 struct s2io_nic *sp = dev->priv;
5473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5474 u16 subid;
5475
5476 subid = sp->pdev->subsystem_device;
5477 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f 5478 if ((sp->device_type == XFRAME_I_DEVICE) &&
5479 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5480 val64 = readq(&bar0->adapter_control);
5481 if (!(val64 & ADAPTER_CNTL_EN)) {
5482 printk(KERN_ERR
5483 "Adapter Link down, cannot blink LED\n");
5484 return -EFAULT;
5485 }
5486 }
5487 if (sp->id_timer.function == NULL) {
5488 init_timer(&sp->id_timer);
5489 sp->id_timer.function = s2io_phy_id;
5490 sp->id_timer.data = (unsigned long) sp;
5491 }
5492 mod_timer(&sp->id_timer, jiffies);
5493 if (data)
20346722 5494 msleep_interruptible(data * HZ);
1da177e4 5495 else
20346722 5496 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5497 del_timer_sync(&sp->id_timer);
5498
541ae68f 5499 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5500 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5501 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5502 }
5503
5504 return 0;
5505}
5506
0cec35eb
SH
5507static void s2io_ethtool_gringparam(struct net_device *dev,
5508 struct ethtool_ringparam *ering)
5509{
5510 struct s2io_nic *sp = dev->priv;
5511 int i,tx_desc_count=0,rx_desc_count=0;
5512
5513 if (sp->rxd_mode == RXD_MODE_1)
5514 ering->rx_max_pending = MAX_RX_DESC_1;
5515 else if (sp->rxd_mode == RXD_MODE_3B)
5516 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5517
5518 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5519 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5520 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5521
0cec35eb
SH
5522 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5523 ering->tx_pending = tx_desc_count;
5524 rx_desc_count = 0;
8a4bdbaa 5525 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5526 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5527
0cec35eb
SH
5528 ering->rx_pending = rx_desc_count;
5529
5530 ering->rx_mini_max_pending = 0;
5531 ering->rx_mini_pending = 0;
5532 if(sp->rxd_mode == RXD_MODE_1)
5533 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5534 else if (sp->rxd_mode == RXD_MODE_3B)
5535 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5536 ering->rx_jumbo_pending = rx_desc_count;
5537}
5538
1da177e4
LT
5539/**
5540 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5541 * @sp : private member of the device structure, which is a pointer to the
5542 * s2io_nic structure.
1da177e4
LT
5543 * @ep : pointer to the structure with pause parameters given by ethtool.
5544 * Description:
5545 * Returns the Pause frame generation and reception capability of the NIC.
5546 * Return value:
5547 * void
5548 */
5549static void s2io_ethtool_getpause_data(struct net_device *dev,
5550 struct ethtool_pauseparam *ep)
5551{
5552 u64 val64;
1ee6dd77
RB
5553 struct s2io_nic *sp = dev->priv;
5554 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5555
5556 val64 = readq(&bar0->rmac_pause_cfg);
5557 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5558 ep->tx_pause = TRUE;
5559 if (val64 & RMAC_PAUSE_RX_ENABLE)
5560 ep->rx_pause = TRUE;
5561 ep->autoneg = FALSE;
5562}
5563
5564/**
5565 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5566 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5567 * s2io_nic structure.
5568 * @ep : pointer to the structure with pause parameters given by ethtool.
5569 * Description:
5570 * It can be used to set or reset Pause frame generation or reception
5571 * support of the NIC.
5572 * Return value:
5573 * int, returns 0 on Success
5574 */
5575
5576static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 5577 struct ethtool_pauseparam *ep)
1da177e4
LT
5578{
5579 u64 val64;
1ee6dd77
RB
5580 struct s2io_nic *sp = dev->priv;
5581 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5582
5583 val64 = readq(&bar0->rmac_pause_cfg);
5584 if (ep->tx_pause)
5585 val64 |= RMAC_PAUSE_GEN_ENABLE;
5586 else
5587 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5588 if (ep->rx_pause)
5589 val64 |= RMAC_PAUSE_RX_ENABLE;
5590 else
5591 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5592 writeq(val64, &bar0->rmac_pause_cfg);
5593 return 0;
5594}
5595
5596/**
5597 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5598 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5599 * s2io_nic structure.
5600 * @off : offset at which the data must be written
5601 * @data : Its an output parameter where the data read at the given
20346722 5602 * offset is stored.
1da177e4 5603 * Description:
20346722 5604 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5605 * read data.
5606 * NOTE: Will allow to read only part of the EEPROM visible through the
5607 * I2C bus.
5608 * Return value:
5609 * -1 on failure and 0 on success.
5610 */
5611
5612#define S2IO_DEV_ID 5
1ee6dd77 5613static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
5614{
5615 int ret = -1;
5616 u32 exit_cnt = 0;
5617 u64 val64;
1ee6dd77 5618 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5619
ad4ebed0 5620 if (sp->device_type == XFRAME_I_DEVICE) {
5621 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5622 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5623 I2C_CONTROL_CNTL_START;
5624 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5625
ad4ebed0 5626 while (exit_cnt < 5) {
5627 val64 = readq(&bar0->i2c_control);
5628 if (I2C_CONTROL_CNTL_END(val64)) {
5629 *data = I2C_CONTROL_GET_DATA(val64);
5630 ret = 0;
5631 break;
5632 }
5633 msleep(50);
5634 exit_cnt++;
1da177e4 5635 }
1da177e4
LT
5636 }
5637
ad4ebed0 5638 if (sp->device_type == XFRAME_II_DEVICE) {
5639 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5640 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5641 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5642 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5643 val64 |= SPI_CONTROL_REQ;
5644 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5645 while (exit_cnt < 5) {
5646 val64 = readq(&bar0->spi_control);
5647 if (val64 & SPI_CONTROL_NACK) {
5648 ret = 1;
5649 break;
5650 } else if (val64 & SPI_CONTROL_DONE) {
5651 *data = readq(&bar0->spi_data);
5652 *data &= 0xffffff;
5653 ret = 0;
5654 break;
5655 }
5656 msleep(50);
5657 exit_cnt++;
5658 }
5659 }
1da177e4
LT
5660 return ret;
5661}
5662
5663/**
5664 * write_eeprom - actually writes the relevant part of the data value.
5665 * @sp : private member of the device structure, which is a pointer to the
5666 * s2io_nic structure.
5667 * @off : offset at which the data must be written
5668 * @data : The data that is to be written
20346722 5669 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5670 * the Eeprom. (max of 3)
5671 * Description:
5672 * Actually writes the relevant part of the data value into the Eeprom
5673 * through the I2C bus.
5674 * Return value:
5675 * 0 on success, -1 on failure.
5676 */
5677
1ee6dd77 5678static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
5679{
5680 int exit_cnt = 0, ret = -1;
5681 u64 val64;
1ee6dd77 5682 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5683
ad4ebed0 5684 if (sp->device_type == XFRAME_I_DEVICE) {
5685 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5686 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5687 I2C_CONTROL_CNTL_START;
5688 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5689
5690 while (exit_cnt < 5) {
5691 val64 = readq(&bar0->i2c_control);
5692 if (I2C_CONTROL_CNTL_END(val64)) {
5693 if (!(val64 & I2C_CONTROL_NACK))
5694 ret = 0;
5695 break;
5696 }
5697 msleep(50);
5698 exit_cnt++;
5699 }
5700 }
1da177e4 5701
ad4ebed0 5702 if (sp->device_type == XFRAME_II_DEVICE) {
5703 int write_cnt = (cnt == 8) ? 0 : cnt;
5704 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5705
5706 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5707 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5708 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5709 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710 val64 |= SPI_CONTROL_REQ;
5711 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 while (exit_cnt < 5) {
5713 val64 = readq(&bar0->spi_control);
5714 if (val64 & SPI_CONTROL_NACK) {
5715 ret = 1;
5716 break;
5717 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5718 ret = 0;
ad4ebed0 5719 break;
5720 }
5721 msleep(50);
5722 exit_cnt++;
1da177e4 5723 }
1da177e4 5724 }
1da177e4
LT
5725 return ret;
5726}
1ee6dd77 5727static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5728{
b41477f3
AR
5729 u8 *vpd_data;
5730 u8 data;
9dc737a7
AR
5731 int i=0, cnt, fail = 0;
5732 int vpd_addr = 0x80;
5733
5734 if (nic->device_type == XFRAME_II_DEVICE) {
5735 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5736 vpd_addr = 0x80;
5737 }
5738 else {
5739 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5740 vpd_addr = 0x50;
5741 }
19a60522 5742 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5743
b41477f3 5744 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5745 if (!vpd_data) {
5746 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5747 return;
c53d4945 5748 }
491976b2 5749 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5750
9dc737a7
AR
5751 for (i = 0; i < 256; i +=4 ) {
5752 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5753 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5754 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5755 for (cnt = 0; cnt <5; cnt++) {
5756 msleep(2);
5757 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5758 if (data == 0x80)
5759 break;
5760 }
5761 if (cnt >= 5) {
5762 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5763 fail = 1;
5764 break;
5765 }
5766 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5767 (u32 *)&vpd_data[i]);
5768 }
19a60522
SS
5769
5770 if(!fail) {
5771 /* read serial number of adapter */
5772 for (cnt = 0; cnt < 256; cnt++) {
5773 if ((vpd_data[cnt] == 'S') &&
5774 (vpd_data[cnt+1] == 'N') &&
5775 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5776 memset(nic->serial_num, 0, VPD_STRING_LEN);
5777 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5778 vpd_data[cnt+2]);
5779 break;
5780 }
5781 }
5782 }
5783
5784 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5785 memset(nic->product_name, 0, vpd_data[1]);
5786 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5787 }
b41477f3 5788 kfree(vpd_data);
491976b2 5789 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5790}
5791
1da177e4
LT
5792/**
5793 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5794 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5795 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5796 * containing all relevant information.
5797 * @data_buf : user defined value to be written into Eeprom.
5798 * Description: Reads the values stored in the Eeprom at given offset
5799 * for a given length. Stores these values int the input argument data
5800 * buffer 'data_buf' and returns these to the caller (ethtool.)
5801 * Return value:
5802 * int 0 on success
5803 */
5804
5805static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5806 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5807{
ad4ebed0 5808 u32 i, valid;
5809 u64 data;
1ee6dd77 5810 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5811
5812 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5813
5814 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5815 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5816
5817 for (i = 0; i < eeprom->len; i += 4) {
5818 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5819 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5820 return -EFAULT;
5821 }
5822 valid = INV(data);
5823 memcpy((data_buf + i), &valid, 4);
5824 }
5825 return 0;
5826}
5827
5828/**
5829 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5830 * @sp : private member of the device structure, which is a pointer to the
5831 * s2io_nic structure.
20346722 5832 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5833 * containing all relevant information.
5834 * @data_buf ; user defined value to be written into Eeprom.
5835 * Description:
5836 * Tries to write the user provided value in the Eeprom, at the offset
5837 * given by the user.
5838 * Return value:
5839 * 0 on success, -EFAULT on failure.
5840 */
5841
5842static int s2io_ethtool_seeprom(struct net_device *dev,
5843 struct ethtool_eeprom *eeprom,
5844 u8 * data_buf)
5845{
5846 int len = eeprom->len, cnt = 0;
ad4ebed0 5847 u64 valid = 0, data;
1ee6dd77 5848 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5849
5850 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5851 DBG_PRINT(ERR_DBG,
5852 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5853 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5854 eeprom->magic);
5855 return -EFAULT;
5856 }
5857
5858 while (len) {
5859 data = (u32) data_buf[cnt] & 0x000000FF;
5860 if (data) {
5861 valid = (u32) (data << 24);
5862 } else
5863 valid = data;
5864
5865 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5866 DBG_PRINT(ERR_DBG,
5867 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5868 DBG_PRINT(ERR_DBG,
5869 "write into the specified offset\n");
5870 return -EFAULT;
5871 }
5872 cnt++;
5873 len--;
5874 }
5875
5876 return 0;
5877}
5878
5879/**
20346722 5880 * s2io_register_test - reads and writes into all clock domains.
5881 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5882 * s2io_nic structure.
5883 * @data : variable that returns the result of each of the test conducted b
5884 * by the driver.
5885 * Description:
5886 * Read and write into all clock domains. The NIC has 3 clock domains,
5887 * see that registers in all the three regions are accessible.
5888 * Return value:
5889 * 0 on success.
5890 */
5891
1ee6dd77 5892static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5893{
1ee6dd77 5894 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5895 u64 val64 = 0, exp_val;
1da177e4
LT
5896 int fail = 0;
5897
20346722 5898 val64 = readq(&bar0->pif_rd_swapper_fb);
5899 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5900 fail = 1;
5901 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5902 }
5903
5904 val64 = readq(&bar0->rmac_pause_cfg);
5905 if (val64 != 0xc000ffff00000000ULL) {
5906 fail = 1;
5907 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5908 }
5909
5910 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5911 if (sp->device_type == XFRAME_II_DEVICE)
5912 exp_val = 0x0404040404040404ULL;
5913 else
5914 exp_val = 0x0808080808080808ULL;
5915 if (val64 != exp_val) {
1da177e4
LT
5916 fail = 1;
5917 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5918 }
5919
5920 val64 = readq(&bar0->xgxs_efifo_cfg);
5921 if (val64 != 0x000000001923141EULL) {
5922 fail = 1;
5923 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5924 }
5925
5926 val64 = 0x5A5A5A5A5A5A5A5AULL;
5927 writeq(val64, &bar0->xmsi_data);
5928 val64 = readq(&bar0->xmsi_data);
5929 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5930 fail = 1;
5931 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5932 }
5933
5934 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5935 writeq(val64, &bar0->xmsi_data);
5936 val64 = readq(&bar0->xmsi_data);
5937 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5938 fail = 1;
5939 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5940 }
5941
5942 *data = fail;
ad4ebed0 5943 return fail;
1da177e4
LT
5944}
5945
5946/**
20346722 5947 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5948 * @sp : private member of the device structure, which is a pointer to the
5949 * s2io_nic structure.
5950 * @data:variable that returns the result of each of the test conducted by
5951 * the driver.
5952 * Description:
20346722 5953 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5954 * register.
5955 * Return value:
5956 * 0 on success.
5957 */
5958
1ee6dd77 5959static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5960{
5961 int fail = 0;
ad4ebed0 5962 u64 ret_data, org_4F0, org_7F0;
5963 u8 saved_4F0 = 0, saved_7F0 = 0;
5964 struct net_device *dev = sp->dev;
1da177e4
LT
5965
5966 /* Test Write Error at offset 0 */
ad4ebed0 5967 /* Note that SPI interface allows write access to all areas
5968 * of EEPROM. Hence doing all negative testing only for Xframe I.
5969 */
5970 if (sp->device_type == XFRAME_I_DEVICE)
5971 if (!write_eeprom(sp, 0, 0, 3))
5972 fail = 1;
5973
5974 /* Save current values at offsets 0x4F0 and 0x7F0 */
5975 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5976 saved_4F0 = 1;
5977 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5978 saved_7F0 = 1;
1da177e4
LT
5979
5980 /* Test Write at offset 4f0 */
ad4ebed0 5981 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5982 fail = 1;
5983 if (read_eeprom(sp, 0x4F0, &ret_data))
5984 fail = 1;
5985
ad4ebed0 5986 if (ret_data != 0x012345) {
26b7625c
AM
5987 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5988 "Data written %llx Data read %llx\n",
5989 dev->name, (unsigned long long)0x12345,
5990 (unsigned long long)ret_data);
1da177e4 5991 fail = 1;
ad4ebed0 5992 }
1da177e4
LT
5993
5994 /* Reset the EEPROM data go FFFF */
ad4ebed0 5995 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5996
5997 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5998 if (sp->device_type == XFRAME_I_DEVICE)
5999 if (!write_eeprom(sp, 0x07C, 0, 3))
6000 fail = 1;
1da177e4 6001
ad4ebed0 6002 /* Test Write Request at offset 0x7f0 */
6003 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6004 fail = 1;
ad4ebed0 6005 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6006 fail = 1;
6007
ad4ebed0 6008 if (ret_data != 0x012345) {
26b7625c
AM
6009 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6010 "Data written %llx Data read %llx\n",
6011 dev->name, (unsigned long long)0x12345,
6012 (unsigned long long)ret_data);
1da177e4 6013 fail = 1;
ad4ebed0 6014 }
1da177e4
LT
6015
6016 /* Reset the EEPROM data go FFFF */
ad4ebed0 6017 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6018
ad4ebed0 6019 if (sp->device_type == XFRAME_I_DEVICE) {
6020 /* Test Write Error at offset 0x80 */
6021 if (!write_eeprom(sp, 0x080, 0, 3))
6022 fail = 1;
1da177e4 6023
ad4ebed0 6024 /* Test Write Error at offset 0xfc */
6025 if (!write_eeprom(sp, 0x0FC, 0, 3))
6026 fail = 1;
1da177e4 6027
ad4ebed0 6028 /* Test Write Error at offset 0x100 */
6029 if (!write_eeprom(sp, 0x100, 0, 3))
6030 fail = 1;
1da177e4 6031
ad4ebed0 6032 /* Test Write Error at offset 4ec */
6033 if (!write_eeprom(sp, 0x4EC, 0, 3))
6034 fail = 1;
6035 }
6036
6037 /* Restore values at offsets 0x4F0 and 0x7F0 */
6038 if (saved_4F0)
6039 write_eeprom(sp, 0x4F0, org_4F0, 3);
6040 if (saved_7F0)
6041 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6042
6043 *data = fail;
ad4ebed0 6044 return fail;
1da177e4
LT
6045}
6046
6047/**
6048 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6049 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6050 * s2io_nic structure.
20346722 6051 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6052 * the driver.
6053 * Description:
6054 * This invokes the MemBist test of the card. We give around
6055 * 2 secs time for the Test to complete. If it's still not complete
20346722 6056 * within this peiod, we consider that the test failed.
1da177e4
LT
6057 * Return value:
6058 * 0 on success and -1 on failure.
6059 */
6060
1ee6dd77 6061static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
6062{
6063 u8 bist = 0;
6064 int cnt = 0, ret = -1;
6065
6066 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6067 bist |= PCI_BIST_START;
6068 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6069
6070 while (cnt < 20) {
6071 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6072 if (!(bist & PCI_BIST_START)) {
6073 *data = (bist & PCI_BIST_CODE_MASK);
6074 ret = 0;
6075 break;
6076 }
6077 msleep(100);
6078 cnt++;
6079 }
6080
6081 return ret;
6082}
6083
6084/**
20346722 6085 * s2io-link_test - verifies the link state of the nic
6086 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6087 * s2io_nic structure.
6088 * @data: variable that returns the result of each of the test conducted by
6089 * the driver.
6090 * Description:
20346722 6091 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6092 * argument 'data' appropriately.
6093 * Return value:
6094 * 0 on success.
6095 */
6096
1ee6dd77 6097static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6098{
1ee6dd77 6099 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6100 u64 val64;
6101
6102 val64 = readq(&bar0->adapter_status);
c92ca04b 6103 if(!(LINK_IS_UP(val64)))
1da177e4 6104 *data = 1;
c92ca04b
AR
6105 else
6106 *data = 0;
1da177e4 6107
b41477f3 6108 return *data;
1da177e4
LT
6109}
6110
6111/**
20346722 6112 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6113 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6114 * s2io_nic structure.
20346722 6115 * @data - variable that returns the result of each of the test
1da177e4
LT
6116 * conducted by the driver.
6117 * Description:
20346722 6118 * This is one of the offline test that tests the read and write
1da177e4
LT
6119 * access to the RldRam chip on the NIC.
6120 * Return value:
6121 * 0 on success.
6122 */
6123
1ee6dd77 6124static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 6125{
1ee6dd77 6126 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6127 u64 val64;
ad4ebed0 6128 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6129
6130 val64 = readq(&bar0->adapter_control);
6131 val64 &= ~ADAPTER_ECC_EN;
6132 writeq(val64, &bar0->adapter_control);
6133
6134 val64 = readq(&bar0->mc_rldram_test_ctrl);
6135 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6136 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6137
6138 val64 = readq(&bar0->mc_rldram_mrs);
6139 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6140 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6141
6142 val64 |= MC_RLDRAM_MRS_ENABLE;
6143 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6144
6145 while (iteration < 2) {
6146 val64 = 0x55555555aaaa0000ULL;
6147 if (iteration == 1) {
6148 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6149 }
6150 writeq(val64, &bar0->mc_rldram_test_d0);
6151
6152 val64 = 0xaaaa5a5555550000ULL;
6153 if (iteration == 1) {
6154 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6155 }
6156 writeq(val64, &bar0->mc_rldram_test_d1);
6157
6158 val64 = 0x55aaaaaaaa5a0000ULL;
6159 if (iteration == 1) {
6160 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6161 }
6162 writeq(val64, &bar0->mc_rldram_test_d2);
6163
ad4ebed0 6164 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6165 writeq(val64, &bar0->mc_rldram_test_add);
6166
ad4ebed0 6167 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6168 MC_RLDRAM_TEST_GO;
6169 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6170
6171 for (cnt = 0; cnt < 5; cnt++) {
6172 val64 = readq(&bar0->mc_rldram_test_ctrl);
6173 if (val64 & MC_RLDRAM_TEST_DONE)
6174 break;
6175 msleep(200);
6176 }
6177
6178 if (cnt == 5)
6179 break;
6180
ad4ebed0 6181 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6182 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6183
6184 for (cnt = 0; cnt < 5; cnt++) {
6185 val64 = readq(&bar0->mc_rldram_test_ctrl);
6186 if (val64 & MC_RLDRAM_TEST_DONE)
6187 break;
6188 msleep(500);
6189 }
6190
6191 if (cnt == 5)
6192 break;
6193
6194 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6195 if (!(val64 & MC_RLDRAM_TEST_PASS))
6196 test_fail = 1;
1da177e4
LT
6197
6198 iteration++;
6199 }
6200
ad4ebed0 6201 *data = test_fail;
1da177e4 6202
ad4ebed0 6203 /* Bring the adapter out of test mode */
6204 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6205
6206 return test_fail;
1da177e4
LT
6207}
6208
6209/**
6210 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6211 * @sp : private member of the device structure, which is a pointer to the
6212 * s2io_nic structure.
6213 * @ethtest : pointer to a ethtool command specific structure that will be
6214 * returned to the user.
20346722 6215 * @data : variable that returns the result of each of the test
1da177e4
LT
6216 * conducted by the driver.
6217 * Description:
6218 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6219 * the health of the card.
6220 * Return value:
6221 * void
6222 */
6223
6224static void s2io_ethtool_test(struct net_device *dev,
6225 struct ethtool_test *ethtest,
6226 uint64_t * data)
6227{
1ee6dd77 6228 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6229 int orig_state = netif_running(sp->dev);
6230
6231 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6232 /* Offline Tests. */
20346722 6233 if (orig_state)
1da177e4 6234 s2io_close(sp->dev);
1da177e4
LT
6235
6236 if (s2io_register_test(sp, &data[0]))
6237 ethtest->flags |= ETH_TEST_FL_FAILED;
6238
6239 s2io_reset(sp);
1da177e4
LT
6240
6241 if (s2io_rldram_test(sp, &data[3]))
6242 ethtest->flags |= ETH_TEST_FL_FAILED;
6243
6244 s2io_reset(sp);
1da177e4
LT
6245
6246 if (s2io_eeprom_test(sp, &data[1]))
6247 ethtest->flags |= ETH_TEST_FL_FAILED;
6248
6249 if (s2io_bist_test(sp, &data[4]))
6250 ethtest->flags |= ETH_TEST_FL_FAILED;
6251
6252 if (orig_state)
6253 s2io_open(sp->dev);
6254
6255 data[2] = 0;
6256 } else {
6257 /* Online Tests. */
6258 if (!orig_state) {
6259 DBG_PRINT(ERR_DBG,
6260 "%s: is not up, cannot run test\n",
6261 dev->name);
6262 data[0] = -1;
6263 data[1] = -1;
6264 data[2] = -1;
6265 data[3] = -1;
6266 data[4] = -1;
6267 }
6268
6269 if (s2io_link_test(sp, &data[2]))
6270 ethtest->flags |= ETH_TEST_FL_FAILED;
6271
6272 data[0] = 0;
6273 data[1] = 0;
6274 data[3] = 0;
6275 data[4] = 0;
6276 }
6277}
6278
6279static void s2io_get_ethtool_stats(struct net_device *dev,
6280 struct ethtool_stats *estats,
6281 u64 * tmp_stats)
6282{
8116f3cf 6283 int i = 0, k;
1ee6dd77
RB
6284 struct s2io_nic *sp = dev->priv;
6285 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6286
7ba013ac 6287 s2io_updt_stats(sp);
541ae68f 6288 tmp_stats[i++] =
6289 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6290 le32_to_cpu(stat_info->tmac_frms);
6291 tmp_stats[i++] =
6292 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6293 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6294 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f 6295 tmp_stats[i++] =
6296 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6297 le32_to_cpu(stat_info->tmac_mcst_frms);
6298 tmp_stats[i++] =
6299 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6300 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6301 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
6302 tmp_stats[i++] =
6303 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6304 le32_to_cpu(stat_info->tmac_ttl_octets);
6305 tmp_stats[i++] =
6306 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6307 le32_to_cpu(stat_info->tmac_ucst_frms);
6308 tmp_stats[i++] =
6309 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6310 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f 6311 tmp_stats[i++] =
6312 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6313 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 6314 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6315 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f 6316 tmp_stats[i++] =
6317 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6318 le32_to_cpu(stat_info->tmac_vld_ip);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6321 le32_to_cpu(stat_info->tmac_drop_ip);
6322 tmp_stats[i++] =
6323 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6324 le32_to_cpu(stat_info->tmac_icmp);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6328 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f 6329 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_udp);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6333 le32_to_cpu(stat_info->rmac_vld_frms);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6336 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6337 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6338 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f 6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6341 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6344 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6345 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6346 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6347 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6348 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
6349 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6350 tmp_stats[i++] =
6351 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6352 le32_to_cpu(stat_info->rmac_ttl_octets);
6353 tmp_stats[i++] =
6354 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6355 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6358 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f 6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6361 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6364 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f 6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6369 le32_to_cpu(stat_info->rmac_usized_frms);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6372 le32_to_cpu(stat_info->rmac_osized_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6375 le32_to_cpu(stat_info->rmac_frag_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6378 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
6379 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6380 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6381 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6384 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6387 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6389 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6392 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6395 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6396 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f 6399 le32_to_cpu(stat_info->rmac_udp);
6400 tmp_stats[i++] =
6401 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6402 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
6403 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6404 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6408 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6409 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6410 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6412 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6413 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6414 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6415 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6416 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6417 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6418 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6419 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f 6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6422 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f 6425 tmp_stats[i++] =
6426 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6427 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6428 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6429 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6430 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6431 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6432 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6433 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6434 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6447
6448 /* Enhanced statistics exist only for Hercules */
6449 if(sp->device_type == XFRAME_II_DEVICE) {
6450 tmp_stats[i++] =
6451 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6452 tmp_stats[i++] =
6453 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6454 tmp_stats[i++] =
6455 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6456 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6457 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6458 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6459 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6460 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6469 }
6470
7ba013ac 6471 tmp_stats[i++] = 0;
6472 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6473 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6474 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6475 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6476 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6477 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6478 for (k = 0; k < MAX_RX_RINGS; k++)
6479 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6480 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6481 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6482 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6483 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6484 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6485 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6486 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6487 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6488 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6489 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6490 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6491 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6492 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6494 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6495 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6496 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6497 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6498 int count = 0;
6aa20a22 6499 /*
bd1034f0
AR
6500 * Since 64-bit divide does not work on all platforms,
6501 * do repeated subtraction.
6502 */
6503 while (tmp >= stat_info->sw_stat.num_aggregations) {
6504 tmp -= stat_info->sw_stat.num_aggregations;
6505 count++;
6506 }
6507 tmp_stats[i++] = count;
fe931395 6508 }
bd1034f0
AR
6509 else
6510 tmp_stats[i++] = 0;
c53d4945 6511 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6512 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6513 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6514 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6515 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6516 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6517 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6518 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6519 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6520
6521 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6522 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6523 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6524 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6525 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6526
6527 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6528 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6532 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6533 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6534 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6536 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6537 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6538 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6553}
6554
ac1f60db 6555static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
6556{
6557 return (XENA_REG_SPACE);
6558}
6559
6560
ac1f60db 6561static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 6562{
1ee6dd77 6563 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6564
6565 return (sp->rx_csum);
6566}
ac1f60db
AB
6567
6568static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6569{
1ee6dd77 6570 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6571
6572 if (data)
6573 sp->rx_csum = 1;
6574 else
6575 sp->rx_csum = 0;
6576
6577 return 0;
6578}
ac1f60db
AB
6579
6580static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
6581{
6582 return (XENA_EEPROM_SPACE);
6583}
6584
b9f2c044 6585static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6586{
b9f2c044
JG
6587 struct s2io_nic *sp = dev->priv;
6588
6589 switch (sset) {
6590 case ETH_SS_TEST:
6591 return S2IO_TEST_LEN;
6592 case ETH_SS_STATS:
6593 switch(sp->device_type) {
6594 case XFRAME_I_DEVICE:
6595 return XFRAME_I_STAT_LEN;
6596 case XFRAME_II_DEVICE:
6597 return XFRAME_II_STAT_LEN;
6598 default:
6599 return 0;
6600 }
6601 default:
6602 return -EOPNOTSUPP;
6603 }
1da177e4 6604}
ac1f60db
AB
6605
6606static void s2io_ethtool_get_strings(struct net_device *dev,
6607 u32 stringset, u8 * data)
1da177e4 6608{
fa1f0cb3
SS
6609 int stat_size = 0;
6610 struct s2io_nic *sp = dev->priv;
6611
1da177e4
LT
6612 switch (stringset) {
6613 case ETH_SS_TEST:
6614 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6615 break;
6616 case ETH_SS_STATS:
fa1f0cb3
SS
6617 stat_size = sizeof(ethtool_xena_stats_keys);
6618 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6619 if(sp->device_type == XFRAME_II_DEVICE) {
6620 memcpy(data + stat_size,
6621 &ethtool_enhanced_stats_keys,
6622 sizeof(ethtool_enhanced_stats_keys));
6623 stat_size += sizeof(ethtool_enhanced_stats_keys);
6624 }
6625
6626 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6627 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6628 }
6629}
1da177e4 6630
ac1f60db 6631static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6632{
6633 if (data)
6634 dev->features |= NETIF_F_IP_CSUM;
6635 else
6636 dev->features &= ~NETIF_F_IP_CSUM;
6637
6638 return 0;
6639}
6640
75c30b13
AR
6641static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6642{
6643 return (dev->features & NETIF_F_TSO) != 0;
6644}
6645static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6646{
6647 if (data)
6648 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6649 else
6650 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6651
6652 return 0;
6653}
1da177e4 6654
7282d491 6655static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6656 .get_settings = s2io_ethtool_gset,
6657 .set_settings = s2io_ethtool_sset,
6658 .get_drvinfo = s2io_ethtool_gdrvinfo,
6659 .get_regs_len = s2io_ethtool_get_regs_len,
6660 .get_regs = s2io_ethtool_gregs,
6661 .get_link = ethtool_op_get_link,
6662 .get_eeprom_len = s2io_get_eeprom_len,
6663 .get_eeprom = s2io_ethtool_geeprom,
6664 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6665 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6666 .get_pauseparam = s2io_ethtool_getpause_data,
6667 .set_pauseparam = s2io_ethtool_setpause_data,
6668 .get_rx_csum = s2io_ethtool_get_rx_csum,
6669 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6670 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6671 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6672 .get_tso = s2io_ethtool_op_get_tso,
6673 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6674 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6675 .self_test = s2io_ethtool_test,
6676 .get_strings = s2io_ethtool_get_strings,
6677 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6678 .get_ethtool_stats = s2io_get_ethtool_stats,
6679 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6680};
6681
6682/**
20346722 6683 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6684 * @dev : Device pointer.
6685 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6686 * a proprietary structure used to pass information to the driver.
6687 * @cmd : This is used to distinguish between the different commands that
6688 * can be passed to the IOCTL functions.
6689 * Description:
20346722 6690 * Currently there are no special functionality supported in IOCTL, hence
6691 * function always return EOPNOTSUPPORTED
1da177e4
LT
6692 */
6693
ac1f60db 6694static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6695{
6696 return -EOPNOTSUPP;
6697}
6698
6699/**
6700 * s2io_change_mtu - entry point to change MTU size for the device.
6701 * @dev : device pointer.
6702 * @new_mtu : the new MTU size for the device.
6703 * Description: A driver entry point to change MTU size for the device.
6704 * Before changing the MTU the device must be stopped.
6705 * Return value:
6706 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6707 * file on failure.
6708 */
6709
ac1f60db 6710static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6711{
1ee6dd77 6712 struct s2io_nic *sp = dev->priv;
9f74ffde 6713 int ret = 0;
1da177e4
LT
6714
6715 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6716 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6717 dev->name);
6718 return -EPERM;
6719 }
6720
1da177e4 6721 dev->mtu = new_mtu;
d8892c6e 6722 if (netif_running(dev)) {
3a3d5756 6723 s2io_stop_all_tx_queue(sp);
e6a8fee2 6724 s2io_card_down(sp);
9f74ffde
SH
6725 ret = s2io_card_up(sp);
6726 if (ret) {
d8892c6e 6727 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6728 __FUNCTION__);
9f74ffde 6729 return ret;
d8892c6e 6730 }
3a3d5756 6731 s2io_wake_all_tx_queue(sp);
d8892c6e 6732 } else { /* Device is down */
1ee6dd77 6733 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6734 u64 val64 = new_mtu;
6735
6736 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6737 }
1da177e4 6738
9f74ffde 6739 return ret;
1da177e4
LT
6740}
6741
1da177e4
LT
6742/**
6743 * s2io_set_link - Set the LInk status
6744 * @data: long pointer to device private structue
6745 * Description: Sets the link status for the adapter
6746 */
6747
c4028958 6748static void s2io_set_link(struct work_struct *work)
1da177e4 6749{
1ee6dd77 6750 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 6751 struct net_device *dev = nic->dev;
1ee6dd77 6752 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6753 register u64 val64;
6754 u16 subid;
6755
22747d6b
FR
6756 rtnl_lock();
6757
6758 if (!netif_running(dev))
6759 goto out_unlock;
6760
92b84437 6761 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6762 /* The card is being reset, no point doing anything */
22747d6b 6763 goto out_unlock;
1da177e4
LT
6764 }
6765
6766 subid = nic->pdev->subsystem_device;
a371a07d 6767 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6768 /*
6769 * Allow a small delay for the NICs self initiated
6770 * cleanup to complete.
6771 */
6772 msleep(100);
6773 }
1da177e4
LT
6774
6775 val64 = readq(&bar0->adapter_status);
19a60522
SS
6776 if (LINK_IS_UP(val64)) {
6777 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6778 if (verify_xena_quiescence(nic)) {
6779 val64 = readq(&bar0->adapter_control);
6780 val64 |= ADAPTER_CNTL_EN;
1da177e4 6781 writeq(val64, &bar0->adapter_control);
19a60522
SS
6782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6783 nic->device_type, subid)) {
6784 val64 = readq(&bar0->gpio_control);
6785 val64 |= GPIO_CTRL_GPIO_0;
6786 writeq(val64, &bar0->gpio_control);
6787 val64 = readq(&bar0->gpio_control);
6788 } else {
6789 val64 |= ADAPTER_LED_ON;
6790 writeq(val64, &bar0->adapter_control);
a371a07d 6791 }
1da177e4 6792 nic->device_enabled_once = TRUE;
19a60522
SS
6793 } else {
6794 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6795 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6796 s2io_stop_all_tx_queue(nic);
1da177e4 6797 }
19a60522 6798 }
92c48799
SS
6799 val64 = readq(&bar0->adapter_control);
6800 val64 |= ADAPTER_LED_ON;
6801 writeq(val64, &bar0->adapter_control);
6802 s2io_link(nic, LINK_UP);
19a60522
SS
6803 } else {
6804 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6805 subid)) {
6806 val64 = readq(&bar0->gpio_control);
6807 val64 &= ~GPIO_CTRL_GPIO_0;
6808 writeq(val64, &bar0->gpio_control);
6809 val64 = readq(&bar0->gpio_control);
1da177e4 6810 }
92c48799
SS
6811 /* turn off LED */
6812 val64 = readq(&bar0->adapter_control);
6813 val64 = val64 &(~ADAPTER_LED_ON);
6814 writeq(val64, &bar0->adapter_control);
19a60522 6815 s2io_link(nic, LINK_DOWN);
1da177e4 6816 }
92b84437 6817 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6818
6819out_unlock:
d8d70caf 6820 rtnl_unlock();
1da177e4
LT
6821}
6822
1ee6dd77
RB
6823static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6824 struct buffAdd *ba,
6825 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6826 u64 *temp2, int size)
5d3213cc
AR
6827{
6828 struct net_device *dev = sp->dev;
491abf25 6829 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6830
6831 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6832 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6833 /* allocate skb */
6834 if (*skb) {
6835 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6836 /*
6837 * As Rx frame are not going to be processed,
6838 * using same mapped address for the Rxd
6839 * buffer pointer
6840 */
6d517a27 6841 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6842 } else {
6843 *skb = dev_alloc_skb(size);
6844 if (!(*skb)) {
0c61ed5f 6845 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6846 DBG_PRINT(INFO_DBG, "memory to allocate ");
6847 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6848 sp->mac_control.stats_info->sw_stat. \
6849 mem_alloc_fail_cnt++;
5d3213cc
AR
6850 return -ENOMEM ;
6851 }
8a4bdbaa 6852 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6853 += (*skb)->truesize;
5d3213cc
AR
6854 /* storing the mapped addr in a temp variable
6855 * such it will be used for next rxd whose
6856 * Host Control is NULL
6857 */
6d517a27 6858 rxdp1->Buffer0_ptr = *temp0 =
5d3213cc
AR
6859 pci_map_single( sp->pdev, (*skb)->data,
6860 size - NET_IP_ALIGN,
6861 PCI_DMA_FROMDEVICE);
64c42f69 6862 if (pci_dma_mapping_error(rxdp1->Buffer0_ptr))
491abf25 6863 goto memalloc_failed;
5d3213cc
AR
6864 rxdp->Host_Control = (unsigned long) (*skb);
6865 }
6866 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6867 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6868 /* Two buffer Mode */
6869 if (*skb) {
6d517a27
VP
6870 rxdp3->Buffer2_ptr = *temp2;
6871 rxdp3->Buffer0_ptr = *temp0;
6872 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6873 } else {
6874 *skb = dev_alloc_skb(size);
2ceaac75 6875 if (!(*skb)) {
c53d4945
SH
6876 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6877 DBG_PRINT(INFO_DBG, "memory to allocate ");
6878 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6879 sp->mac_control.stats_info->sw_stat. \
6880 mem_alloc_fail_cnt++;
2ceaac75
DR
6881 return -ENOMEM;
6882 }
8a4bdbaa 6883 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6884 += (*skb)->truesize;
6d517a27 6885 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6886 pci_map_single(sp->pdev, (*skb)->data,
6887 dev->mtu + 4,
6888 PCI_DMA_FROMDEVICE);
64c42f69 6889 if (pci_dma_mapping_error(rxdp3->Buffer2_ptr))
491abf25 6890 goto memalloc_failed;
6d517a27 6891 rxdp3->Buffer0_ptr = *temp0 =
5d3213cc
AR
6892 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6893 PCI_DMA_FROMDEVICE);
64c42f69 6894 if (pci_dma_mapping_error(rxdp3->Buffer0_ptr)) {
491abf25 6895 pci_unmap_single (sp->pdev,
3e847423 6896 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6897 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6898 goto memalloc_failed;
6899 }
5d3213cc
AR
6900 rxdp->Host_Control = (unsigned long) (*skb);
6901
6902 /* Buffer-1 will be dummy buffer not used */
6d517a27 6903 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6904 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
5d3213cc 6905 PCI_DMA_FROMDEVICE);
64c42f69 6906 if (pci_dma_mapping_error(rxdp3->Buffer1_ptr)) {
491abf25 6907 pci_unmap_single (sp->pdev,
3e847423
AV
6908 (dma_addr_t)rxdp3->Buffer0_ptr,
6909 BUF0_LEN, PCI_DMA_FROMDEVICE);
6910 pci_unmap_single (sp->pdev,
6911 (dma_addr_t)rxdp3->Buffer2_ptr,
491abf25
VP
6912 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6913 goto memalloc_failed;
6914 }
5d3213cc
AR
6915 }
6916 }
6917 return 0;
491abf25
VP
6918 memalloc_failed:
6919 stats->pci_map_fail_cnt++;
6920 stats->mem_freed += (*skb)->truesize;
6921 dev_kfree_skb(*skb);
6922 return -ENOMEM;
5d3213cc 6923}
491abf25 6924
1ee6dd77
RB
6925static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6926 int size)
5d3213cc
AR
6927{
6928 struct net_device *dev = sp->dev;
6929 if (sp->rxd_mode == RXD_MODE_1) {
6930 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6931 } else if (sp->rxd_mode == RXD_MODE_3B) {
6932 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6933 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6934 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
5d3213cc
AR
6935 }
6936}
6937
1ee6dd77 6938static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6939{
6940 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6941 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6942 struct config_param *config = &sp->config;
6943 struct net_device *dev = sp->dev;
1ee6dd77 6944 struct RxD_t *rxdp = NULL;
5d3213cc 6945 struct sk_buff *skb = NULL;
1ee6dd77 6946 struct buffAdd *ba = NULL;
5d3213cc
AR
6947 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6948
6949 /* Calculate the size based on ring mode */
6950 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6951 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6952 if (sp->rxd_mode == RXD_MODE_1)
6953 size += NET_IP_ALIGN;
6954 else if (sp->rxd_mode == RXD_MODE_3B)
6955 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6956
6957 for (i = 0; i < config->rx_ring_num; i++) {
6958 blk_cnt = config->rx_cfg[i].num_rxd /
6959 (rxd_count[sp->rxd_mode] +1);
6960
6961 for (j = 0; j < blk_cnt; j++) {
6962 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6963 rxdp = mac_control->rings[i].
6964 rx_blocks[j].rxds[k].virt_addr;
6d517a27 6965 if(sp->rxd_mode == RXD_MODE_3B)
5d3213cc 6966 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6967 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6968 &skb,(u64 *)&temp0_64,
6969 (u64 *)&temp1_64,
ac1f90d6 6970 (u64 *)&temp2_64,
20cbe73c 6971 size) == -ENOMEM) {
ac1f90d6
SS
6972 return 0;
6973 }
5d3213cc
AR
6974
6975 set_rxd_buffer_size(sp, rxdp, size);
6976 wmb();
6977 /* flip the Ownership bit to Hardware */
6978 rxdp->Control_1 |= RXD_OWN_XENA;
6979 }
6980 }
6981 }
6982 return 0;
6983
6984}
6985
1ee6dd77 6986static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6987{
e6a8fee2 6988 int ret = 0;
c92ca04b 6989 struct net_device *dev = sp->dev;
e6a8fee2 6990 int err = 0;
1da177e4 6991
eaae7f72 6992 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6993 ret = s2io_enable_msi_x(sp);
6994 if (ret) {
6995 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6996 sp->config.intr_type = INTA;
20346722 6997 }
1da177e4 6998
1ee6dd77 6999 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 7000 store_xmsi_data(sp);
c92ca04b 7001
e6a8fee2 7002 /* After proper initialization of H/W, register ISR */
eaae7f72 7003 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7004 int i, msix_rx_cnt = 0;
7005
f61e0a35
SH
7006 for (i = 0; i < sp->num_entries; i++) {
7007 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7008 if (sp->s2io_entries[i].type ==
ac731ab6
SH
7009 MSIX_RING_TYPE) {
7010 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7011 dev->name, i);
7012 err = request_irq(sp->entries[i].vector,
7013 s2io_msix_ring_handle, 0,
7014 sp->desc[i],
7015 sp->s2io_entries[i].arg);
7016 } else if (sp->s2io_entries[i].type ==
7017 MSIX_ALARM_TYPE) {
7018 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
e6a8fee2 7019 dev->name, i);
ac731ab6
SH
7020 err = request_irq(sp->entries[i].vector,
7021 s2io_msix_fifo_handle, 0,
7022 sp->desc[i],
7023 sp->s2io_entries[i].arg);
7024
fb6a825b 7025 }
ac731ab6
SH
7026 /* if either data or addr is zero print it. */
7027 if (!(sp->msix_info[i].addr &&
fb6a825b 7028 sp->msix_info[i].data)) {
ac731ab6
SH
7029 DBG_PRINT(ERR_DBG,
7030 "%s @Addr:0x%llx Data:0x%llx\n",
7031 sp->desc[i],
fb6a825b
SS
7032 (unsigned long long)
7033 sp->msix_info[i].addr,
3459feb8 7034 (unsigned long long)
ac731ab6
SH
7035 ntohl(sp->msix_info[i].data));
7036 } else
fb6a825b 7037 msix_rx_cnt++;
ac731ab6
SH
7038 if (err) {
7039 remove_msix_isr(sp);
7040
7041 DBG_PRINT(ERR_DBG,
7042 "%s:MSI-X-%d registration "
7043 "failed\n", dev->name, i);
7044
7045 DBG_PRINT(ERR_DBG,
7046 "%s: Defaulting to INTA\n",
7047 dev->name);
7048 sp->config.intr_type = INTA;
7049 break;
fb6a825b 7050 }
ac731ab6
SH
7051 sp->s2io_entries[i].in_use =
7052 MSIX_REGISTERED_SUCCESS;
c92ca04b 7053 }
e6a8fee2 7054 }
18b2b7bd 7055 if (!err) {
18b2b7bd 7056 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
ac731ab6
SH
7057 --msix_rx_cnt);
7058 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7059 " through alarm vector\n");
18b2b7bd 7060 }
e6a8fee2 7061 }
eaae7f72 7062 if (sp->config.intr_type == INTA) {
e6a8fee2
AR
7063 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7064 sp->name, dev);
7065 if (err) {
7066 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7067 dev->name);
7068 return -1;
7069 }
7070 }
7071 return 0;
7072}
1ee6dd77 7073static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2 7074{
18b2b7bd
SH
7075 if (sp->config.intr_type == MSI_X)
7076 remove_msix_isr(sp);
7077 else
7078 remove_inta_isr(sp);
e6a8fee2
AR
7079}
7080
d796fdb7 7081static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
e6a8fee2
AR
7082{
7083 int cnt = 0;
1ee6dd77 7084 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7085 register u64 val64 = 0;
5f490c96
SH
7086 struct config_param *config;
7087 config = &sp->config;
e6a8fee2 7088
9f74ffde
SH
7089 if (!is_s2io_card_up(sp))
7090 return;
7091
e6a8fee2
AR
7092 del_timer_sync(&sp->alarm_timer);
7093 /* If s2io_set_link task is executing, wait till it completes. */
92b84437 7094 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
e6a8fee2
AR
7095 msleep(50);
7096 }
92b84437 7097 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7098
5f490c96 7099 /* Disable napi */
f61e0a35
SH
7100 if (sp->config.napi) {
7101 int off = 0;
7102 if (config->intr_type == MSI_X) {
7103 for (; off < sp->config.rx_ring_num; off++)
7104 napi_disable(&sp->mac_control.rings[off].napi);
7105 }
7106 else
7107 napi_disable(&sp->napi);
7108 }
5f490c96 7109
e6a8fee2 7110 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7111 if (do_io)
7112 stop_nic(sp);
e6a8fee2
AR
7113
7114 s2io_rem_isr(sp);
1da177e4 7115
01e16faa
SH
7116 /* stop the tx queue, indicate link down */
7117 s2io_link(sp, LINK_DOWN);
7118
1da177e4 7119 /* Check if the device is Quiescent and then Reset the NIC */
d796fdb7 7120 while(do_io) {
5d3213cc
AR
7121 /* As per the HW requirement we need to replenish the
7122 * receive buffer to avoid the ring bump. Since there is
7123 * no intention of processing the Rx frame at this pointwe are
7124 * just settting the ownership bit of rxd in Each Rx
7125 * ring to HW and set the appropriate buffer size
7126 * based on the ring mode
7127 */
7128 rxd_owner_bit_reset(sp);
7129
1da177e4 7130 val64 = readq(&bar0->adapter_status);
19a60522
SS
7131 if (verify_xena_quiescence(sp)) {
7132 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
7133 break;
7134 }
7135
7136 msleep(50);
7137 cnt++;
7138 if (cnt == 10) {
7139 DBG_PRINT(ERR_DBG,
7140 "s2io_close:Device not Quiescent ");
7141 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7142 (unsigned long long) val64);
7143 break;
7144 }
d796fdb7
LV
7145 }
7146 if (do_io)
7147 s2io_reset(sp);
1da177e4 7148
7ba013ac 7149 /* Free all Tx buffers */
1da177e4 7150 free_tx_buffers(sp);
7ba013ac 7151
7152 /* Free all Rx buffers */
1da177e4
LT
7153 free_rx_buffers(sp);
7154
92b84437 7155 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7156}
7157
d796fdb7
LV
7158static void s2io_card_down(struct s2io_nic * sp)
7159{
7160 do_s2io_card_down(sp, 1);
7161}
7162
1ee6dd77 7163static int s2io_card_up(struct s2io_nic * sp)
1da177e4 7164{
cc6e7c44 7165 int i, ret = 0;
1ee6dd77 7166 struct mac_info *mac_control;
1da177e4
LT
7167 struct config_param *config;
7168 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 7169 u16 interruptible;
1da177e4
LT
7170
7171 /* Initialize the H/W I/O registers */
9f74ffde
SH
7172 ret = init_nic(sp);
7173 if (ret != 0) {
1da177e4
LT
7174 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7175 dev->name);
9f74ffde
SH
7176 if (ret != -EIO)
7177 s2io_reset(sp);
7178 return ret;
1da177e4
LT
7179 }
7180
20346722 7181 /*
7182 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7183 * Rx ring and initializing buffers into 30 Rx blocks
7184 */
7185 mac_control = &sp->mac_control;
7186 config = &sp->config;
7187
7188 for (i = 0; i < config->rx_ring_num; i++) {
0425b46a 7189 mac_control->rings[i].mtu = dev->mtu;
3f78d885 7190 ret = fill_rx_buffers(&mac_control->rings[i], 1);
0425b46a 7191 if (ret) {
1da177e4
LT
7192 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7193 dev->name);
7194 s2io_reset(sp);
7195 free_rx_buffers(sp);
7196 return -ENOMEM;
7197 }
7198 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
0425b46a 7199 mac_control->rings[i].rx_bufs_left);
1da177e4 7200 }
5f490c96
SH
7201
7202 /* Initialise napi */
f61e0a35
SH
7203 if (config->napi) {
7204 int i;
7205 if (config->intr_type == MSI_X) {
7206 for (i = 0; i < sp->config.rx_ring_num; i++)
7207 napi_enable(&sp->mac_control.rings[i].napi);
7208 } else {
7209 napi_enable(&sp->napi);
7210 }
7211 }
5f490c96 7212
19a60522
SS
7213 /* Maintain the state prior to the open */
7214 if (sp->promisc_flg)
7215 sp->promisc_flg = 0;
7216 if (sp->m_cast_flg) {
7217 sp->m_cast_flg = 0;
7218 sp->all_multi_pos= 0;
7219 }
1da177e4
LT
7220
7221 /* Setting its receive mode */
7222 s2io_set_multicast(dev);
7223
7d3d0439 7224 if (sp->lro) {
b41477f3 7225 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
7226 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7227 /* Check if we can use(if specified) user provided value */
7228 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7229 sp->lro_max_aggr_per_sess = lro_max_pkts;
7230 }
7231
1da177e4
LT
7232 /* Enable Rx Traffic and interrupts on the NIC */
7233 if (start_nic(sp)) {
7234 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7235 s2io_reset(sp);
e6a8fee2
AR
7236 free_rx_buffers(sp);
7237 return -ENODEV;
7238 }
7239
7240 /* Add interrupt service routine */
7241 if (s2io_add_isr(sp) != 0) {
eaae7f72 7242 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7243 s2io_rem_isr(sp);
7244 s2io_reset(sp);
1da177e4
LT
7245 free_rx_buffers(sp);
7246 return -ENODEV;
7247 }
7248
25fff88e 7249 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7250
01e16faa
SH
7251 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7252
e6a8fee2 7253 /* Enable select interrupts */
9caab458 7254 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7255 if (sp->config.intr_type != INTA) {
7256 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7257 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7258 } else {
e6a8fee2 7259 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7260 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7261 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7262 }
7263
1da177e4
LT
7264 return 0;
7265}
7266
20346722 7267/**
1da177e4
LT
7268 * s2io_restart_nic - Resets the NIC.
7269 * @data : long pointer to the device private structure
7270 * Description:
7271 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7272 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7273 * the run time of the watch dog routine which is run holding a
7274 * spin lock.
7275 */
7276
c4028958 7277static void s2io_restart_nic(struct work_struct *work)
1da177e4 7278{
1ee6dd77 7279 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7280 struct net_device *dev = sp->dev;
1da177e4 7281
22747d6b
FR
7282 rtnl_lock();
7283
7284 if (!netif_running(dev))
7285 goto out_unlock;
7286
e6a8fee2 7287 s2io_card_down(sp);
1da177e4
LT
7288 if (s2io_card_up(sp)) {
7289 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7290 dev->name);
7291 }
3a3d5756 7292 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7293 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7294 dev->name);
22747d6b
FR
7295out_unlock:
7296 rtnl_unlock();
1da177e4
LT
7297}
7298
20346722 7299/**
7300 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7301 * @dev : Pointer to net device structure
7302 * Description:
7303 * This function is triggered if the Tx Queue is stopped
7304 * for a pre-defined amount of time when the Interface is still up.
7305 * If the Interface is jammed in such a situation, the hardware is
7306 * reset (by s2io_close) and restarted again (by s2io_open) to
7307 * overcome any problem that might have been caused in the hardware.
7308 * Return value:
7309 * void
7310 */
7311
7312static void s2io_tx_watchdog(struct net_device *dev)
7313{
1ee6dd77 7314 struct s2io_nic *sp = dev->priv;
1da177e4
LT
7315
7316 if (netif_carrier_ok(dev)) {
c53d4945 7317 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7318 schedule_work(&sp->rst_timer_task);
bd1034f0 7319 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7320 }
7321}
7322
7323/**
7324 * rx_osm_handler - To perform some OS related operations on SKB.
7325 * @sp: private member of the device structure,pointer to s2io_nic structure.
7326 * @skb : the socket buffer pointer.
7327 * @len : length of the packet
7328 * @cksum : FCS checksum of the frame.
7329 * @ring_no : the ring from which this RxD was extracted.
20346722 7330 * Description:
b41477f3 7331 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7332 * some OS related operations on the SKB before passing it to the upper
7333 * layers. It mainly checks if the checksum is OK, if so adds it to the
7334 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7335 * to the upper layer. If the checksum is wrong, it increments the Rx
7336 * packet error count, frees the SKB and returns error.
7337 * Return value:
7338 * SUCCESS on success and -1 on failure.
7339 */
1ee6dd77 7340static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7341{
1ee6dd77 7342 struct s2io_nic *sp = ring_data->nic;
0425b46a 7343 struct net_device *dev = (struct net_device *) ring_data->dev;
20346722 7344 struct sk_buff *skb = (struct sk_buff *)
7345 ((unsigned long) rxdp->Host_Control);
7346 int ring_no = ring_data->ring_no;
1da177e4 7347 u16 l3_csum, l4_csum;
863c11a9 7348 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 7349 struct lro *lro;
f9046eb3 7350 u8 err_mask;
da6971d8 7351
20346722 7352 skb->dev = dev;
c92ca04b 7353
863c11a9 7354 if (err) {
bd1034f0
AR
7355 /* Check for parity error */
7356 if (err & 0x1) {
7357 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7358 }
f9046eb3
OH
7359 err_mask = err >> 48;
7360 switch(err_mask) {
491976b2
SH
7361 case 1:
7362 sp->mac_control.stats_info->sw_stat.
7363 rx_parity_err_cnt++;
7364 break;
7365
7366 case 2:
7367 sp->mac_control.stats_info->sw_stat.
7368 rx_abort_cnt++;
7369 break;
7370
7371 case 3:
7372 sp->mac_control.stats_info->sw_stat.
7373 rx_parity_abort_cnt++;
7374 break;
7375
7376 case 4:
7377 sp->mac_control.stats_info->sw_stat.
7378 rx_rda_fail_cnt++;
7379 break;
7380
7381 case 5:
7382 sp->mac_control.stats_info->sw_stat.
7383 rx_unkn_prot_cnt++;
7384 break;
7385
7386 case 6:
7387 sp->mac_control.stats_info->sw_stat.
7388 rx_fcs_err_cnt++;
7389 break;
bd1034f0 7390
491976b2
SH
7391 case 7:
7392 sp->mac_control.stats_info->sw_stat.
7393 rx_buf_size_err_cnt++;
7394 break;
7395
7396 case 8:
7397 sp->mac_control.stats_info->sw_stat.
7398 rx_rxd_corrupt_cnt++;
7399 break;
7400
7401 case 15:
7402 sp->mac_control.stats_info->sw_stat.
7403 rx_unkn_err_cnt++;
7404 break;
7405 }
863c11a9
AR
7406 /*
7407 * Drop the packet if bad transfer code. Exception being
7408 * 0x5, which could be due to unsupported IPv6 extension header.
7409 * In this case, we let stack handle the packet.
7410 * Note that in this case, since checksum will be incorrect,
7411 * stack will validate the same.
7412 */
f9046eb3
OH
7413 if (err_mask != 0x5) {
7414 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7415 dev->name, err_mask);
863c11a9 7416 sp->stats.rx_crc_errors++;
8a4bdbaa 7417 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7418 += skb->truesize;
863c11a9 7419 dev_kfree_skb(skb);
0425b46a 7420 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7421 rxdp->Host_Control = 0;
7422 return 0;
7423 }
20346722 7424 }
1da177e4 7425
20346722 7426 /* Updating statistics */
0425b46a 7427 ring_data->rx_packets++;
20346722 7428 rxdp->Host_Control = 0;
da6971d8
AR
7429 if (sp->rxd_mode == RXD_MODE_1) {
7430 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7431
0425b46a 7432 ring_data->rx_bytes += len;
da6971d8
AR
7433 skb_put(skb, len);
7434
6d517a27 7435 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7436 int get_block = ring_data->rx_curr_get_info.block_index;
7437 int get_off = ring_data->rx_curr_get_info.offset;
7438 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7439 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7440 unsigned char *buff = skb_push(skb, buf0_len);
7441
1ee6dd77 7442 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7443 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7444 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7445 skb_put(skb, buf2_len);
da6971d8 7446 }
20346722 7447
0425b46a
SH
7448 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7449 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 7450 (sp->rx_csum)) {
7451 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7452 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7453 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7454 /*
1da177e4
LT
7455 * NIC verifies if the Checksum of the received
7456 * frame is Ok or not and accordingly returns
7457 * a flag in the RxD.
7458 */
7459 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7460 if (ring_data->lro) {
7d3d0439
RA
7461 u32 tcp_len;
7462 u8 *tcp;
7463 int ret = 0;
7464
0425b46a
SH
7465 ret = s2io_club_tcp_session(ring_data,
7466 skb->data, &tcp, &tcp_len, &lro,
7467 rxdp, sp);
7d3d0439
RA
7468 switch (ret) {
7469 case 3: /* Begin anew */
7470 lro->parent = skb;
7471 goto aggregate;
7472 case 1: /* Aggregate */
7473 {
7474 lro_append_pkt(sp, lro,
7475 skb, tcp_len);
7476 goto aggregate;
7477 }
7478 case 4: /* Flush session */
7479 {
7480 lro_append_pkt(sp, lro,
7481 skb, tcp_len);
cdb5bf02
SH
7482 queue_rx_frame(lro->parent,
7483 lro->vlan_tag);
7d3d0439
RA
7484 clear_lro_session(lro);
7485 sp->mac_control.stats_info->
7486 sw_stat.flush_max_pkts++;
7487 goto aggregate;
7488 }
7489 case 2: /* Flush both */
7490 lro->parent->data_len =
7491 lro->frags_len;
7492 sp->mac_control.stats_info->
7493 sw_stat.sending_both++;
cdb5bf02
SH
7494 queue_rx_frame(lro->parent,
7495 lro->vlan_tag);
7d3d0439
RA
7496 clear_lro_session(lro);
7497 goto send_up;
7498 case 0: /* sessions exceeded */
c92ca04b
AR
7499 case -1: /* non-TCP or not
7500 * L2 aggregatable
7501 */
7d3d0439
RA
7502 case 5: /*
7503 * First pkt in session not
7504 * L3/L4 aggregatable
7505 */
7506 break;
7507 default:
7508 DBG_PRINT(ERR_DBG,
7509 "%s: Samadhana!!\n",
7510 __FUNCTION__);
7511 BUG();
7512 }
7513 }
1da177e4 7514 } else {
20346722 7515 /*
7516 * Packet with erroneous checksum, let the
1da177e4
LT
7517 * upper layers deal with it.
7518 */
7519 skb->ip_summed = CHECKSUM_NONE;
7520 }
cdb5bf02 7521 } else
1da177e4 7522 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7523
491976b2 7524 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7525send_up:
cdb5bf02 7526 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
1da177e4 7527 dev->last_rx = jiffies;
7d3d0439 7528aggregate:
0425b46a 7529 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7530 return SUCCESS;
7531}
7532
7533/**
7534 * s2io_link - stops/starts the Tx queue.
7535 * @sp : private member of the device structure, which is a pointer to the
7536 * s2io_nic structure.
7537 * @link : inidicates whether link is UP/DOWN.
7538 * Description:
7539 * This function stops/starts the Tx queue depending on whether the link
20346722 7540 * status of the NIC is is down or up. This is called by the Alarm
7541 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7542 * Return value:
7543 * void.
7544 */
7545
1ee6dd77 7546static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
7547{
7548 struct net_device *dev = (struct net_device *) sp->dev;
7549
7550 if (link != sp->last_link_state) {
b7c5678f 7551 init_tti(sp, link);
1da177e4
LT
7552 if (link == LINK_DOWN) {
7553 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7554 s2io_stop_all_tx_queue(sp);
1da177e4 7555 netif_carrier_off(dev);
491976b2 7556 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
8a4bdbaa 7557 sp->mac_control.stats_info->sw_stat.link_up_time =
491976b2
SH
7558 jiffies - sp->start_time;
7559 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7560 } else {
7561 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7562 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
8a4bdbaa 7563 sp->mac_control.stats_info->sw_stat.link_down_time =
491976b2
SH
7564 jiffies - sp->start_time;
7565 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7566 netif_carrier_on(dev);
3a3d5756 7567 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7568 }
7569 }
7570 sp->last_link_state = link;
491976b2 7571 sp->start_time = jiffies;
1da177e4
LT
7572}
7573
20346722 7574/**
7575 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7576 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7577 * s2io_nic structure.
7578 * Description:
7579 * This function initializes a few of the PCI and PCI-X configuration registers
7580 * with recommended values.
7581 * Return value:
7582 * void
7583 */
7584
1ee6dd77 7585static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 7586{
20346722 7587 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7588
7589 /* Enable Data Parity Error Recovery in PCI-X command register. */
7590 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7591 &(pcix_cmd));
1da177e4 7592 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7593 (pcix_cmd | 1));
1da177e4 7594 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7595 &(pcix_cmd));
1da177e4
LT
7596
7597 /* Set the PErr Response bit in PCI command register. */
7598 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7599 pci_write_config_word(sp->pdev, PCI_COMMAND,
7600 (pci_cmd | PCI_COMMAND_PARITY));
7601 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7602}
7603
3a3d5756
SH
7604static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7605 u8 *dev_multiq)
9dc737a7 7606{
2fda096d 7607 if ((tx_fifo_num > MAX_TX_FIFOS) ||
6cfc482b 7608 (tx_fifo_num < 1)) {
2fda096d
SR
7609 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7610 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7611
7612 if (tx_fifo_num < 1)
7613 tx_fifo_num = 1;
7614 else
7615 tx_fifo_num = MAX_TX_FIFOS;
7616
2fda096d
SR
7617 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7618 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7619 }
2fda096d 7620
6cfc482b 7621 if (multiq)
3a3d5756 7622 *dev_multiq = multiq;
6cfc482b
SH
7623
7624 if (tx_steering_type && (1 == tx_fifo_num)) {
7625 if (tx_steering_type != TX_DEFAULT_STEERING)
7626 DBG_PRINT(ERR_DBG,
7627 "s2io: Tx steering is not supported with "
7628 "one fifo. Disabling Tx steering.\n");
7629 tx_steering_type = NO_STEERING;
7630 }
7631
7632 if ((tx_steering_type < NO_STEERING) ||
7633 (tx_steering_type > TX_DEFAULT_STEERING)) {
7634 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7635 "supported\n");
7636 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7637 tx_steering_type = NO_STEERING;
3a3d5756
SH
7638 }
7639
0425b46a
SH
7640 if (rx_ring_num > MAX_RX_RINGS) {
7641 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
9dc737a7 7642 "supported\n");
0425b46a
SH
7643 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7644 MAX_RX_RINGS);
7645 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7646 }
0425b46a 7647
eccb8628 7648 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7649 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7650 "Defaulting to INTA\n");
7651 *dev_intr_type = INTA;
7652 }
596c5c97 7653
9dc737a7
AR
7654 if ((*dev_intr_type == MSI_X) &&
7655 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7656 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7657 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
7658 "Defaulting to INTA\n");
7659 *dev_intr_type = INTA;
7660 }
fb6a825b 7661
6d517a27 7662 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7663 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7664 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7665 rx_ring_mode = 1;
9dc737a7
AR
7666 }
7667 return SUCCESS;
7668}
7669
9fc93a41
SS
7670/**
7671 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7672 * or Traffic class respectively.
b7c5678f 7673 * @nic: device private variable
9fc93a41
SS
7674 * Description: The function configures the receive steering to
7675 * desired receive ring.
7676 * Return Value: SUCCESS on success and
7677 * '-1' on failure (endian settings incorrect).
7678 */
7679static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7680{
7681 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7682 register u64 val64 = 0;
7683
7684 if (ds_codepoint > 63)
7685 return FAILURE;
7686
7687 val64 = RTS_DS_MEM_DATA(ring);
7688 writeq(val64, &bar0->rts_ds_mem_data);
7689
7690 val64 = RTS_DS_MEM_CTRL_WE |
7691 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7692 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7693
7694 writeq(val64, &bar0->rts_ds_mem_ctrl);
7695
7696 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7697 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7698 S2IO_BIT_RESET);
7699}
7700
1da177e4 7701/**
20346722 7702 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7703 * @pdev : structure containing the PCI related information of the device.
7704 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7705 * Description:
7706 * The function initializes an adapter identified by the pci_dec structure.
20346722 7707 * All OS related initialization including memory and device structure and
7708 * initlaization of the device private variable is done. Also the swapper
7709 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7710 * registers of the device.
7711 * Return value:
7712 * returns 0 on success and negative on failure.
7713 */
7714
7715static int __devinit
7716s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7717{
1ee6dd77 7718 struct s2io_nic *sp;
1da177e4 7719 struct net_device *dev;
1da177e4
LT
7720 int i, j, ret;
7721 int dma_flag = FALSE;
7722 u32 mac_up, mac_down;
7723 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7724 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7725 u16 subid;
1ee6dd77 7726 struct mac_info *mac_control;
1da177e4 7727 struct config_param *config;
541ae68f 7728 int mode;
cc6e7c44 7729 u8 dev_intr_type = intr_type;
3a3d5756 7730 u8 dev_multiq = 0;
0795af57 7731 DECLARE_MAC_BUF(mac);
1da177e4 7732
3a3d5756
SH
7733 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7734 if (ret)
9dc737a7 7735 return ret;
1da177e4
LT
7736
7737 if ((ret = pci_enable_device(pdev))) {
7738 DBG_PRINT(ERR_DBG,
7739 "s2io_init_nic: pci_enable_device failed\n");
7740 return ret;
7741 }
7742
1e7f0bd8 7743 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7744 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7745 dma_flag = TRUE;
1da177e4 7746 if (pci_set_consistent_dma_mask
1e7f0bd8 7747 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
7748 DBG_PRINT(ERR_DBG,
7749 "Unable to obtain 64bit DMA for \
7750 consistent allocations\n");
7751 pci_disable_device(pdev);
7752 return -ENOMEM;
7753 }
1e7f0bd8 7754 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
7755 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7756 } else {
7757 pci_disable_device(pdev);
7758 return -ENOMEM;
7759 }
eccb8628
VP
7760 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7761 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7762 pci_disable_device(pdev);
7763 return -ENODEV;
1da177e4 7764 }
3a3d5756 7765 if (dev_multiq)
6cfc482b 7766 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7767 else
b19fa1fa 7768 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7769 if (dev == NULL) {
7770 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7771 pci_disable_device(pdev);
7772 pci_release_regions(pdev);
7773 return -ENODEV;
7774 }
7775
7776 pci_set_master(pdev);
7777 pci_set_drvdata(pdev, dev);
1da177e4
LT
7778 SET_NETDEV_DEV(dev, &pdev->dev);
7779
7780 /* Private member variable initialized to s2io NIC structure */
7781 sp = dev->priv;
1ee6dd77 7782 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7783 sp->dev = dev;
7784 sp->pdev = pdev;
1da177e4 7785 sp->high_dma_flag = dma_flag;
1da177e4 7786 sp->device_enabled_once = FALSE;
da6971d8
AR
7787 if (rx_ring_mode == 1)
7788 sp->rxd_mode = RXD_MODE_1;
7789 if (rx_ring_mode == 2)
7790 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7791
eaae7f72 7792 sp->config.intr_type = dev_intr_type;
1da177e4 7793
541ae68f 7794 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7795 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7796 sp->device_type = XFRAME_II_DEVICE;
7797 else
7798 sp->device_type = XFRAME_I_DEVICE;
7799
43b7c451 7800 sp->lro = lro_enable;
6aa20a22 7801
1da177e4
LT
7802 /* Initialize some PCI/PCI-X fields of the NIC. */
7803 s2io_init_pci(sp);
7804
20346722 7805 /*
1da177e4 7806 * Setting the device configuration parameters.
20346722 7807 * Most of these parameters can be specified by the user during
7808 * module insertion as they are module loadable parameters. If
7809 * these parameters are not not specified during load time, they
1da177e4
LT
7810 * are initialized with default values.
7811 */
7812 mac_control = &sp->mac_control;
7813 config = &sp->config;
7814
596c5c97 7815 config->napi = napi;
6cfc482b 7816 config->tx_steering_type = tx_steering_type;
596c5c97 7817
1da177e4 7818 /* Tx side parameters. */
6cfc482b
SH
7819 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7820 config->tx_fifo_num = MAX_TX_FIFOS;
7821 else
7822 config->tx_fifo_num = tx_fifo_num;
7823
7824 /* Initialize the fifos used for tx steering */
7825 if (config->tx_fifo_num < 5) {
7826 if (config->tx_fifo_num == 1)
7827 sp->total_tcp_fifos = 1;
7828 else
7829 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7830 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7831 sp->total_udp_fifos = 1;
7832 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7833 } else {
7834 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7835 FIFO_OTHER_MAX_NUM);
7836 sp->udp_fifo_idx = sp->total_tcp_fifos;
7837 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7838 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7839 }
7840
3a3d5756 7841 config->multiq = dev_multiq;
6cfc482b 7842 for (i = 0; i < config->tx_fifo_num; i++) {
1da177e4
LT
7843 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7844 config->tx_cfg[i].fifo_priority = i;
7845 }
7846
20346722 7847 /* mapping the QoS priority to the configured fifos */
7848 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7849 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7850
6cfc482b
SH
7851 /* map the hashing selector table to the configured fifos */
7852 for (i = 0; i < config->tx_fifo_num; i++)
7853 sp->fifo_selector[i] = fifo_selector[i];
7854
7855
1da177e4
LT
7856 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7857 for (i = 0; i < config->tx_fifo_num; i++) {
7858 config->tx_cfg[i].f_no_snoop =
7859 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7860 if (config->tx_cfg[i].fifo_len < 65) {
7861 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7862 break;
7863 }
7864 }
fed5eccd
AR
7865 /* + 2 because one Txd for skb->data and one Txd for UFO */
7866 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7867
7868 /* Rx side parameters. */
1da177e4 7869 config->rx_ring_num = rx_ring_num;
0425b46a 7870 for (i = 0; i < config->rx_ring_num; i++) {
1da177e4 7871 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7872 (rxd_count[sp->rxd_mode] + 1);
1da177e4 7873 config->rx_cfg[i].ring_priority = i;
0425b46a
SH
7874 mac_control->rings[i].rx_bufs_left = 0;
7875 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7876 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7877 mac_control->rings[i].pdev = sp->pdev;
7878 mac_control->rings[i].dev = sp->dev;
1da177e4
LT
7879 }
7880
7881 for (i = 0; i < rx_ring_num; i++) {
7882 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7883 config->rx_cfg[i].f_no_snoop =
7884 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7885 }
7886
7887 /* Setting Mac Control parameters */
7888 mac_control->rmac_pause_time = rmac_pause_time;
7889 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7890 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7891
7892
1da177e4
LT
7893 /* initialize the shared memory used by the NIC and the host */
7894 if (init_shared_mem(sp)) {
7895 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7896 dev->name);
1da177e4
LT
7897 ret = -ENOMEM;
7898 goto mem_alloc_failed;
7899 }
7900
7901 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7902 pci_resource_len(pdev, 0));
7903 if (!sp->bar0) {
19a60522 7904 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7905 dev->name);
7906 ret = -ENOMEM;
7907 goto bar0_remap_failed;
7908 }
7909
7910 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7911 pci_resource_len(pdev, 2));
7912 if (!sp->bar1) {
19a60522 7913 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7914 dev->name);
7915 ret = -ENOMEM;
7916 goto bar1_remap_failed;
7917 }
7918
7919 dev->irq = pdev->irq;
7920 dev->base_addr = (unsigned long) sp->bar0;
7921
7922 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7923 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7924 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7925 (sp->bar1 + (j * 0x00020000));
7926 }
7927
7928 /* Driver entry points */
7929 dev->open = &s2io_open;
7930 dev->stop = &s2io_close;
7931 dev->hard_start_xmit = &s2io_xmit;
7932 dev->get_stats = &s2io_get_stats;
7933 dev->set_multicast_list = &s2io_set_multicast;
7934 dev->do_ioctl = &s2io_ioctl;
2fd37688 7935 dev->set_mac_address = &s2io_set_mac_addr;
1da177e4
LT
7936 dev->change_mtu = &s2io_change_mtu;
7937 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7938 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7939 dev->vlan_rx_register = s2io_vlan_rx_register;
cdb5bf02 7940 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7941
1da177e4
LT
7942 /*
7943 * will use eth_mac_addr() for dev->set_mac_address
7944 * mac address will be set every time dev->open() is called
7945 */
612eff0e
BH
7946#ifdef CONFIG_NET_POLL_CONTROLLER
7947 dev->poll_controller = s2io_netpoll;
7948#endif
7949
1da177e4
LT
7950 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7951 if (sp->high_dma_flag == TRUE)
7952 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7953 dev->features |= NETIF_F_TSO;
f83ef8c0 7954 dev->features |= NETIF_F_TSO6;
db874e65 7955 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7956 dev->features |= NETIF_F_UFO;
7957 dev->features |= NETIF_F_HW_CSUM;
7958 }
1da177e4
LT
7959 dev->tx_timeout = &s2io_tx_watchdog;
7960 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7961 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7962 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7963
e960fc5c 7964 pci_save_state(sp->pdev);
1da177e4
LT
7965
7966 /* Setting swapper control on the NIC, for proper reset operation */
7967 if (s2io_set_swapper(sp)) {
7968 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7969 dev->name);
7970 ret = -EAGAIN;
7971 goto set_swap_failed;
7972 }
7973
541ae68f 7974 /* Verify if the Herc works on the slot its placed into */
7975 if (sp->device_type & XFRAME_II_DEVICE) {
7976 mode = s2io_verify_pci_mode(sp);
7977 if (mode < 0) {
7978 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7979 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7980 ret = -EBADSLT;
7981 goto set_swap_failed;
7982 }
7983 }
7984
f61e0a35
SH
7985 if (sp->config.intr_type == MSI_X) {
7986 sp->num_entries = config->rx_ring_num + 1;
7987 ret = s2io_enable_msi_x(sp);
7988
7989 if (!ret) {
7990 ret = s2io_test_msi(sp);
7991 /* rollback MSI-X, will re-enable during add_isr() */
7992 remove_msix_isr(sp);
7993 }
7994 if (ret) {
7995
7996 DBG_PRINT(ERR_DBG,
7997 "%s: MSI-X requested but failed to enable\n",
7998 dev->name);
7999 sp->config.intr_type = INTA;
8000 }
8001 }
8002
8003 if (config->intr_type == MSI_X) {
8004 for (i = 0; i < config->rx_ring_num ; i++)
8005 netif_napi_add(dev, &mac_control->rings[i].napi,
8006 s2io_poll_msix, 64);
8007 } else {
8008 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8009 }
8010
541ae68f 8011 /* Not needed for Herc */
8012 if (sp->device_type & XFRAME_I_DEVICE) {
8013 /*
8014 * Fix for all "FFs" MAC address problems observed on
8015 * Alpha platforms
8016 */
8017 fix_mac_address(sp);
8018 s2io_reset(sp);
8019 }
1da177e4
LT
8020
8021 /*
1da177e4
LT
8022 * MAC address initialization.
8023 * For now only one mac address will be read and used.
8024 */
8025 bar0 = sp->bar0;
8026 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796 8027 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8028 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8029 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 8030 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
8031 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8032 mac_down = (u32) tmp64;
8033 mac_up = (u32) (tmp64 >> 32);
8034
1da177e4
LT
8035 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8036 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8037 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8038 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8039 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8040 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8041
1da177e4
LT
8042 /* Set the factory defined MAC address initially */
8043 dev->addr_len = ETH_ALEN;
8044 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8045 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8046
faa4f796
SH
8047 /* initialize number of multicast & unicast MAC entries variables */
8048 if (sp->device_type == XFRAME_I_DEVICE) {
8049 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8050 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8051 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8052 } else if (sp->device_type == XFRAME_II_DEVICE) {
8053 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8054 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8055 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8056 }
8057
8058 /* store mac addresses from CAM to s2io_nic structure */
8059 do_s2io_store_unicast_mc(sp);
8060
f61e0a35
SH
8061 /* Configure MSIX vector for number of rings configured plus one */
8062 if ((sp->device_type == XFRAME_II_DEVICE) &&
8063 (config->intr_type == MSI_X))
8064 sp->num_entries = config->rx_ring_num + 1;
8065
c77dd43e
SS
8066 /* Store the values of the MSIX table in the s2io_nic structure */
8067 store_xmsi_data(sp);
b41477f3
AR
8068 /* reset Nic and bring it to known state */
8069 s2io_reset(sp);
8070
1da177e4 8071 /*
99993af6 8072 * Initialize link state flags
541ae68f 8073 * and the card state parameter
1da177e4 8074 */
92b84437 8075 sp->state = 0;
1da177e4 8076
1da177e4 8077 /* Initialize spinlocks */
2fda096d
SR
8078 for (i = 0; i < sp->config.tx_fifo_num; i++)
8079 spin_lock_init(&mac_control->fifos[i].tx_lock);
db874e65 8080
20346722 8081 /*
8082 * SXE-002: Configure link and activity LED to init state
8083 * on driver load.
1da177e4
LT
8084 */
8085 subid = sp->pdev->subsystem_device;
8086 if ((subid & 0xFF) >= 0x07) {
8087 val64 = readq(&bar0->gpio_control);
8088 val64 |= 0x0000800000000000ULL;
8089 writeq(val64, &bar0->gpio_control);
8090 val64 = 0x0411040400000000ULL;
8091 writeq(val64, (void __iomem *) bar0 + 0x2700);
8092 val64 = readq(&bar0->gpio_control);
8093 }
8094
8095 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8096
8097 if (register_netdev(dev)) {
8098 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8099 ret = -ENODEV;
8100 goto register_failed;
8101 }
9dc737a7 8102 s2io_vpd_read(sp);
0c61ed5f 8103 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
b41477f3 8104 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
44c10138 8105 sp->product_name, pdev->revision);
b41477f3
AR
8106 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8107 s2io_driver_version);
0795af57
JP
8108 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8109 dev->name, print_mac(mac, dev->dev_addr));
19a60522 8110 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8111 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8112 mode = s2io_print_pci_mode(sp);
541ae68f 8113 if (mode < 0) {
9dc737a7 8114 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8115 ret = -EBADSLT;
9dc737a7 8116 unregister_netdev(dev);
541ae68f 8117 goto set_swap_failed;
8118 }
541ae68f 8119 }
9dc737a7
AR
8120 switch(sp->rxd_mode) {
8121 case RXD_MODE_1:
8122 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8123 dev->name);
8124 break;
8125 case RXD_MODE_3B:
8126 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8127 dev->name);
8128 break;
9dc737a7 8129 }
db874e65 8130
f61e0a35
SH
8131 switch (sp->config.napi) {
8132 case 0:
8133 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8134 break;
8135 case 1:
db874e65 8136 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8137 break;
8138 }
3a3d5756
SH
8139
8140 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8141 sp->config.tx_fifo_num);
8142
0425b46a
SH
8143 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8144 sp->config.rx_ring_num);
8145
eaae7f72 8146 switch(sp->config.intr_type) {
9dc737a7
AR
8147 case INTA:
8148 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8149 break;
9dc737a7
AR
8150 case MSI_X:
8151 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8152 break;
8153 }
3a3d5756
SH
8154 if (sp->config.multiq) {
8155 for (i = 0; i < sp->config.tx_fifo_num; i++)
8156 mac_control->fifos[i].multiq = config->multiq;
8157 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8158 dev->name);
8159 } else
8160 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8161 dev->name);
8162
6cfc482b
SH
8163 switch (sp->config.tx_steering_type) {
8164 case NO_STEERING:
8165 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8166 " transmit\n", dev->name);
8167 break;
8168 case TX_PRIORITY_STEERING:
8169 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8170 " transmit\n", dev->name);
8171 break;
8172 case TX_DEFAULT_STEERING:
8173 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8174 " transmit\n", dev->name);
8175 }
8176
7d3d0439
RA
8177 if (sp->lro)
8178 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8179 dev->name);
db874e65
SS
8180 if (ufo)
8181 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8182 " enabled\n", dev->name);
7ba013ac 8183 /* Initialize device name */
9dc737a7 8184 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8185
20346722 8186 /*
8187 * Make Link state as off at this point, when the Link change
8188 * interrupt comes the state will be automatically changed to
1da177e4
LT
8189 * the right state.
8190 */
8191 netif_carrier_off(dev);
1da177e4
LT
8192
8193 return 0;
8194
8195 register_failed:
8196 set_swap_failed:
8197 iounmap(sp->bar1);
8198 bar1_remap_failed:
8199 iounmap(sp->bar0);
8200 bar0_remap_failed:
8201 mem_alloc_failed:
8202 free_shared_mem(sp);
8203 pci_disable_device(pdev);
eccb8628 8204 pci_release_regions(pdev);
1da177e4
LT
8205 pci_set_drvdata(pdev, NULL);
8206 free_netdev(dev);
8207
8208 return ret;
8209}
8210
8211/**
20346722 8212 * s2io_rem_nic - Free the PCI device
1da177e4 8213 * @pdev: structure containing the PCI related information of the device.
20346722 8214 * Description: This function is called by the Pci subsystem to release a
1da177e4 8215 * PCI device and free up all resource held up by the device. This could
20346722 8216 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8217 * from memory.
8218 */
8219
8220static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8221{
8222 struct net_device *dev =
8223 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 8224 struct s2io_nic *sp;
1da177e4
LT
8225
8226 if (dev == NULL) {
8227 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8228 return;
8229 }
8230
22747d6b
FR
8231 flush_scheduled_work();
8232
1da177e4
LT
8233 sp = dev->priv;
8234 unregister_netdev(dev);
8235
8236 free_shared_mem(sp);
8237 iounmap(sp->bar0);
8238 iounmap(sp->bar1);
eccb8628 8239 pci_release_regions(pdev);
1da177e4 8240 pci_set_drvdata(pdev, NULL);
1da177e4 8241 free_netdev(dev);
19a60522 8242 pci_disable_device(pdev);
1da177e4
LT
8243}
8244
8245/**
8246 * s2io_starter - Entry point for the driver
8247 * Description: This function is the entry point for the driver. It verifies
8248 * the module loadable parameters and initializes PCI configuration space.
8249 */
8250
43b7c451 8251static int __init s2io_starter(void)
1da177e4 8252{
29917620 8253 return pci_register_driver(&s2io_driver);
1da177e4
LT
8254}
8255
8256/**
20346722 8257 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8258 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8259 */
8260
372cc597 8261static __exit void s2io_closer(void)
1da177e4
LT
8262{
8263 pci_unregister_driver(&s2io_driver);
8264 DBG_PRINT(INIT_DBG, "cleanup done\n");
8265}
8266
8267module_init(s2io_starter);
8268module_exit(s2io_closer);
7d3d0439 8269
6aa20a22 8270static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
cdb5bf02
SH
8271 struct tcphdr **tcp, struct RxD_t *rxdp,
8272 struct s2io_nic *sp)
7d3d0439
RA
8273{
8274 int ip_off;
8275 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8276
8277 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8278 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8279 __FUNCTION__);
8280 return -1;
8281 }
8282
cdb5bf02
SH
8283 /* Checking for DIX type or DIX type with VLAN */
8284 if ((l2_type == 0)
8285 || (l2_type == 4)) {
8286 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8287 /*
8288 * If vlan stripping is disabled and the frame is VLAN tagged,
8289 * shift the offset by the VLAN header size bytes.
8290 */
8291 if ((!vlan_strip_flag) &&
8292 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8293 ip_off += HEADER_VLAN_SIZE;
8294 } else {
7d3d0439 8295 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8296 return -1;
7d3d0439
RA
8297 }
8298
8299 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8300 ip_len = (u8)((*ip)->ihl);
8301 ip_len <<= 2;
8302 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8303
8304 return 0;
8305}
8306
1ee6dd77 8307static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8308 struct tcphdr *tcp)
8309{
8310 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8311 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8312 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8313 return -1;
8314 return 0;
8315}
8316
8317static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8318{
8319 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8320}
8321
1ee6dd77 8322static void initiate_new_session(struct lro *lro, u8 *l2h,
cdb5bf02 8323 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439
RA
8324{
8325 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8326 lro->l2h = l2h;
8327 lro->iph = ip;
8328 lro->tcph = tcp;
8329 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8330 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8331 lro->sg_num = 1;
8332 lro->total_len = ntohs(ip->tot_len);
8333 lro->frags_len = 0;
cdb5bf02 8334 lro->vlan_tag = vlan_tag;
6aa20a22 8335 /*
7d3d0439
RA
8336 * check if we saw TCP timestamp. Other consistency checks have
8337 * already been done.
8338 */
8339 if (tcp->doff == 8) {
c8855953
SR
8340 __be32 *ptr;
8341 ptr = (__be32 *)(tcp+1);
7d3d0439 8342 lro->saw_ts = 1;
c8855953 8343 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8344 lro->cur_tsecr = *(ptr+2);
8345 }
8346 lro->in_use = 1;
8347}
8348
1ee6dd77 8349static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8350{
8351 struct iphdr *ip = lro->iph;
8352 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8353 __sum16 nchk;
1ee6dd77 8354 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
8355 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8356
8357 /* Update L3 header */
8358 ip->tot_len = htons(lro->total_len);
8359 ip->check = 0;
8360 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8361 ip->check = nchk;
8362
8363 /* Update L4 header */
8364 tcp->ack_seq = lro->tcp_ack;
8365 tcp->window = lro->window;
8366
8367 /* Update tsecr field if this session has timestamps enabled */
8368 if (lro->saw_ts) {
c8855953 8369 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8370 *(ptr+2) = lro->cur_tsecr;
8371 }
8372
8373 /* Update counters required for calculation of
8374 * average no. of packets aggregated.
8375 */
8376 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8377 statinfo->sw_stat.num_aggregations++;
8378}
8379
1ee6dd77 8380static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8381 struct tcphdr *tcp, u32 l4_pyld)
8382{
8383 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8384 lro->total_len += l4_pyld;
8385 lro->frags_len += l4_pyld;
8386 lro->tcp_next_seq += l4_pyld;
8387 lro->sg_num++;
8388
8389 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8390 lro->tcp_ack = tcp->ack_seq;
8391 lro->window = tcp->window;
6aa20a22 8392
7d3d0439 8393 if (lro->saw_ts) {
c8855953 8394 __be32 *ptr;
7d3d0439 8395 /* Update tsecr and tsval from this packet */
c8855953
SR
8396 ptr = (__be32 *)(tcp+1);
8397 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8398 lro->cur_tsecr = *(ptr + 2);
8399 }
8400}
8401
1ee6dd77 8402static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8403 struct tcphdr *tcp, u32 tcp_pyld_len)
8404{
7d3d0439
RA
8405 u8 *ptr;
8406
79dc1901
AM
8407 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8408
7d3d0439
RA
8409 if (!tcp_pyld_len) {
8410 /* Runt frame or a pure ack */
8411 return -1;
8412 }
8413
8414 if (ip->ihl != 5) /* IP has options */
8415 return -1;
8416
75c30b13
AR
8417 /* If we see CE codepoint in IP header, packet is not mergeable */
8418 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8419 return -1;
8420
8421 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 8422 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 8423 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8424 /*
8425 * Currently recognize only the ack control word and
8426 * any other control field being set would result in
8427 * flushing the LRO session
8428 */
8429 return -1;
8430 }
8431
6aa20a22 8432 /*
7d3d0439
RA
8433 * Allow only one TCP timestamp option. Don't aggregate if
8434 * any other options are detected.
8435 */
8436 if (tcp->doff != 5 && tcp->doff != 8)
8437 return -1;
8438
8439 if (tcp->doff == 8) {
6aa20a22 8440 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8441 while (*ptr == TCPOPT_NOP)
8442 ptr++;
8443 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8444 return -1;
8445
8446 /* Ensure timestamp value increases monotonically */
8447 if (l_lro)
c8855953 8448 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8449 return -1;
8450
8451 /* timestamp echo reply should be non-zero */
c8855953 8452 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8453 return -1;
8454 }
8455
8456 return 0;
8457}
8458
8459static int
0425b46a
SH
8460s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8461 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8462 struct s2io_nic *sp)
7d3d0439
RA
8463{
8464 struct iphdr *ip;
8465 struct tcphdr *tcph;
8466 int ret = 0, i;
cdb5bf02 8467 u16 vlan_tag = 0;
7d3d0439
RA
8468
8469 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
cdb5bf02 8470 rxdp, sp))) {
7d3d0439
RA
8471 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8472 ip->saddr, ip->daddr);
cdb5bf02 8473 } else
7d3d0439 8474 return ret;
7d3d0439 8475
cdb5bf02 8476 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8477 tcph = (struct tcphdr *)*tcp;
8478 *tcp_len = get_l4_pyld_length(ip, tcph);
8479 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8480 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8481 if (l_lro->in_use) {
8482 if (check_for_socket_match(l_lro, ip, tcph))
8483 continue;
8484 /* Sock pair matched */
8485 *lro = l_lro;
8486
8487 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8488 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8489 "0x%x, actual 0x%x\n", __FUNCTION__,
8490 (*lro)->tcp_next_seq,
8491 ntohl(tcph->seq));
8492
8493 sp->mac_control.stats_info->
8494 sw_stat.outof_sequence_pkts++;
8495 ret = 2;
8496 break;
8497 }
8498
8499 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8500 ret = 1; /* Aggregate */
8501 else
8502 ret = 2; /* Flush both */
8503 break;
8504 }
8505 }
8506
8507 if (ret == 0) {
8508 /* Before searching for available LRO objects,
8509 * check if the pkt is L3/L4 aggregatable. If not
8510 * don't create new LRO session. Just send this
8511 * packet up.
8512 */
8513 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8514 return 5;
8515 }
8516
8517 for (i=0; i<MAX_LRO_SESSIONS; i++) {
0425b46a 8518 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8519 if (!(l_lro->in_use)) {
8520 *lro = l_lro;
8521 ret = 3; /* Begin anew */
8522 break;
8523 }
8524 }
8525 }
8526
8527 if (ret == 0) { /* sessions exceeded */
8528 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8529 __FUNCTION__);
8530 *lro = NULL;
8531 return ret;
8532 }
8533
8534 switch (ret) {
8535 case 3:
cdb5bf02
SH
8536 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8537 vlan_tag);
7d3d0439
RA
8538 break;
8539 case 2:
8540 update_L3L4_header(sp, *lro);
8541 break;
8542 case 1:
8543 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8544 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8545 update_L3L4_header(sp, *lro);
8546 ret = 4; /* Flush the LRO */
8547 }
8548 break;
8549 default:
8550 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8551 __FUNCTION__);
8552 break;
8553 }
8554
8555 return ret;
8556}
8557
1ee6dd77 8558static void clear_lro_session(struct lro *lro)
7d3d0439 8559{
1ee6dd77 8560 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8561
8562 memset(lro, 0, lro_struct_size);
8563}
8564
cdb5bf02 8565static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8566{
8567 struct net_device *dev = skb->dev;
cdb5bf02 8568 struct s2io_nic *sp = dev->priv;
7d3d0439
RA
8569
8570 skb->protocol = eth_type_trans(skb, dev);
cdb5bf02
SH
8571 if (sp->vlgrp && vlan_tag
8572 && (vlan_strip_flag)) {
8573 /* Queueing the vlan frame to the upper layer */
8574 if (sp->config.napi)
8575 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8576 else
8577 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8578 } else {
8579 if (sp->config.napi)
8580 netif_receive_skb(skb);
8581 else
8582 netif_rx(skb);
8583 }
7d3d0439
RA
8584}
8585
1ee6dd77
RB
8586static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8587 struct sk_buff *skb,
7d3d0439
RA
8588 u32 tcp_len)
8589{
75c30b13 8590 struct sk_buff *first = lro->parent;
7d3d0439
RA
8591
8592 first->len += tcp_len;
8593 first->data_len = lro->frags_len;
8594 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8595 if (skb_shinfo(first)->frag_list)
8596 lro->last_frag->next = skb;
7d3d0439
RA
8597 else
8598 skb_shinfo(first)->frag_list = skb;
372cc597 8599 first->truesize += skb->truesize;
75c30b13 8600 lro->last_frag = skb;
7d3d0439
RA
8601 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8602 return;
8603}
d796fdb7
LV
8604
8605/**
8606 * s2io_io_error_detected - called when PCI error is detected
8607 * @pdev: Pointer to PCI device
8453d43f 8608 * @state: The current pci connection state
d796fdb7
LV
8609 *
8610 * This function is called after a PCI bus error affecting
8611 * this device has been detected.
8612 */
8613static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8614 pci_channel_state_t state)
8615{
8616 struct net_device *netdev = pci_get_drvdata(pdev);
8617 struct s2io_nic *sp = netdev->priv;
8618
8619 netif_device_detach(netdev);
8620
8621 if (netif_running(netdev)) {
8622 /* Bring down the card, while avoiding PCI I/O */
8623 do_s2io_card_down(sp, 0);
d796fdb7
LV
8624 }
8625 pci_disable_device(pdev);
8626
8627 return PCI_ERS_RESULT_NEED_RESET;
8628}
8629
8630/**
8631 * s2io_io_slot_reset - called after the pci bus has been reset.
8632 * @pdev: Pointer to PCI device
8633 *
8634 * Restart the card from scratch, as if from a cold-boot.
8635 * At this point, the card has exprienced a hard reset,
8636 * followed by fixups by BIOS, and has its config space
8637 * set up identically to what it was at cold boot.
8638 */
8639static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8640{
8641 struct net_device *netdev = pci_get_drvdata(pdev);
8642 struct s2io_nic *sp = netdev->priv;
8643
8644 if (pci_enable_device(pdev)) {
8645 printk(KERN_ERR "s2io: "
8646 "Cannot re-enable PCI device after reset.\n");
8647 return PCI_ERS_RESULT_DISCONNECT;
8648 }
8649
8650 pci_set_master(pdev);
8651 s2io_reset(sp);
8652
8653 return PCI_ERS_RESULT_RECOVERED;
8654}
8655
8656/**
8657 * s2io_io_resume - called when traffic can start flowing again.
8658 * @pdev: Pointer to PCI device
8659 *
8660 * This callback is called when the error recovery driver tells
8661 * us that its OK to resume normal operation.
8662 */
8663static void s2io_io_resume(struct pci_dev *pdev)
8664{
8665 struct net_device *netdev = pci_get_drvdata(pdev);
8666 struct s2io_nic *sp = netdev->priv;
8667
8668 if (netif_running(netdev)) {
8669 if (s2io_card_up(sp)) {
8670 printk(KERN_ERR "s2io: "
8671 "Can't bring device back up after reset.\n");
8672 return;
8673 }
8674
8675 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8676 s2io_card_down(sp);
8677 printk(KERN_ERR "s2io: "
8678 "Can't resetore mac addr after reset.\n");
8679 return;
8680 }
8681 }
8682
8683 netif_device_attach(netdev);
fd2ea0a7 8684 netif_tx_wake_all_queues(netdev);
d796fdb7 8685}
This page took 1.31123 seconds and 5 git commands to generate.