s2io: remove unused code
[deliverable/linux.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
926bd900 3 * Copyright(c) 2002-2010 Exar Corp.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722 14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722 30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
958de193 41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
6cef2b8e
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
1da177e4
LT
59#include <linux/module.h>
60#include <linux/types.h>
61#include <linux/errno.h>
62#include <linux/ioport.h>
63#include <linux/pci.h>
1e7f0bd8 64#include <linux/dma-mapping.h>
1da177e4
LT
65#include <linux/kernel.h>
66#include <linux/netdevice.h>
67#include <linux/etherdevice.h>
40239396 68#include <linux/mdio.h>
1da177e4
LT
69#include <linux/skbuff.h>
70#include <linux/init.h>
71#include <linux/delay.h>
72#include <linux/stddef.h>
73#include <linux/ioctl.h>
74#include <linux/timex.h>
1da177e4 75#include <linux/ethtool.h>
1da177e4 76#include <linux/workqueue.h>
be3a6b02 77#include <linux/if_vlan.h>
7d3d0439
RA
78#include <linux/ip.h>
79#include <linux/tcp.h>
d44570e4
JP
80#include <linux/uaccess.h>
81#include <linux/io.h>
5a0e3ad6 82#include <linux/slab.h>
7d3d0439 83#include <net/tcp.h>
1da177e4 84
1da177e4 85#include <asm/system.h>
fe931395 86#include <asm/div64.h>
330ce0de 87#include <asm/irq.h>
1da177e4
LT
88
89/* local include */
90#include "s2io.h"
91#include "s2io-regs.h"
92
958de193 93#define DRV_VERSION "2.0.26.26"
6c1792f4 94
1da177e4 95/* S2io Driver name & version. */
20346722 96static char s2io_driver_name[] = "Neterion";
6c1792f4 97static char s2io_driver_version[] = DRV_VERSION;
1da177e4 98
d44570e4
JP
99static int rxd_size[2] = {32, 48};
100static int rxd_count[2] = {127, 85};
da6971d8 101
1ee6dd77 102static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd 103{
104 int ret;
105
106 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 107 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd 108
109 return ret;
110}
111
20346722 112/*
1da177e4
LT
113 * Cards with following subsystem_id have a link state indication
114 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115 * macro below identifies these cards given the subsystem_id.
116 */
d44570e4
JP
117#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
118 (dev_type == XFRAME_I_DEVICE) ? \
119 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
120 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
121
122#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 124
d44570e4 125static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
126{
127 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128}
129
1da177e4 130/* Ethtool related variables and Macros. */
6fce365d 131static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
132 "Register test\t(offline)",
133 "Eeprom test\t(offline)",
134 "Link test\t(online)",
135 "RLDRAM test\t(offline)",
136 "BIST Test\t(offline)"
137};
138
6fce365d 139static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
140 {"tmac_frms"},
141 {"tmac_data_octets"},
142 {"tmac_drop_frms"},
143 {"tmac_mcst_frms"},
144 {"tmac_bcst_frms"},
145 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
146 {"tmac_ttl_octets"},
147 {"tmac_ucst_frms"},
148 {"tmac_nucst_frms"},
1da177e4 149 {"tmac_any_err_frms"},
bd1034f0 150 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
151 {"tmac_vld_ip_octets"},
152 {"tmac_vld_ip"},
153 {"tmac_drop_ip"},
154 {"tmac_icmp"},
155 {"tmac_rst_tcp"},
156 {"tmac_tcp"},
157 {"tmac_udp"},
158 {"rmac_vld_frms"},
159 {"rmac_data_octets"},
160 {"rmac_fcs_err_frms"},
161 {"rmac_drop_frms"},
162 {"rmac_vld_mcst_frms"},
163 {"rmac_vld_bcst_frms"},
164 {"rmac_in_rng_len_err_frms"},
bd1034f0 165 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
166 {"rmac_long_frms"},
167 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
168 {"rmac_unsup_ctrl_frms"},
169 {"rmac_ttl_octets"},
170 {"rmac_accepted_ucst_frms"},
171 {"rmac_accepted_nucst_frms"},
1da177e4 172 {"rmac_discarded_frms"},
bd1034f0
AR
173 {"rmac_drop_events"},
174 {"rmac_ttl_less_fb_octets"},
175 {"rmac_ttl_frms"},
1da177e4
LT
176 {"rmac_usized_frms"},
177 {"rmac_osized_frms"},
178 {"rmac_frag_frms"},
179 {"rmac_jabber_frms"},
bd1034f0
AR
180 {"rmac_ttl_64_frms"},
181 {"rmac_ttl_65_127_frms"},
182 {"rmac_ttl_128_255_frms"},
183 {"rmac_ttl_256_511_frms"},
184 {"rmac_ttl_512_1023_frms"},
185 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
186 {"rmac_ip"},
187 {"rmac_ip_octets"},
188 {"rmac_hdr_err_ip"},
189 {"rmac_drop_ip"},
190 {"rmac_icmp"},
191 {"rmac_tcp"},
192 {"rmac_udp"},
193 {"rmac_err_drp_udp"},
bd1034f0
AR
194 {"rmac_xgmii_err_sym"},
195 {"rmac_frms_q0"},
196 {"rmac_frms_q1"},
197 {"rmac_frms_q2"},
198 {"rmac_frms_q3"},
199 {"rmac_frms_q4"},
200 {"rmac_frms_q5"},
201 {"rmac_frms_q6"},
202 {"rmac_frms_q7"},
203 {"rmac_full_q0"},
204 {"rmac_full_q1"},
205 {"rmac_full_q2"},
206 {"rmac_full_q3"},
207 {"rmac_full_q4"},
208 {"rmac_full_q5"},
209 {"rmac_full_q6"},
210 {"rmac_full_q7"},
1da177e4 211 {"rmac_pause_cnt"},
bd1034f0
AR
212 {"rmac_xgmii_data_err_cnt"},
213 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
214 {"rmac_accepted_ip"},
215 {"rmac_err_tcp"},
bd1034f0
AR
216 {"rd_req_cnt"},
217 {"new_rd_req_cnt"},
218 {"new_rd_req_rtry_cnt"},
219 {"rd_rtry_cnt"},
220 {"wr_rtry_rd_ack_cnt"},
221 {"wr_req_cnt"},
222 {"new_wr_req_cnt"},
223 {"new_wr_req_rtry_cnt"},
224 {"wr_rtry_cnt"},
225 {"wr_disc_cnt"},
226 {"rd_rtry_wr_ack_cnt"},
227 {"txp_wr_cnt"},
228 {"txd_rd_cnt"},
229 {"txd_wr_cnt"},
230 {"rxd_rd_cnt"},
231 {"rxd_wr_cnt"},
232 {"txf_rd_cnt"},
fa1f0cb3
SS
233 {"rxf_wr_cnt"}
234};
235
6fce365d 236static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
237 {"rmac_ttl_1519_4095_frms"},
238 {"rmac_ttl_4096_8191_frms"},
239 {"rmac_ttl_8192_max_frms"},
240 {"rmac_ttl_gt_max_frms"},
241 {"rmac_osized_alt_frms"},
242 {"rmac_jabber_alt_frms"},
243 {"rmac_gt_max_alt_frms"},
244 {"rmac_vlan_frms"},
245 {"rmac_len_discard"},
246 {"rmac_fcs_discard"},
247 {"rmac_pf_discard"},
248 {"rmac_da_discard"},
249 {"rmac_red_discard"},
250 {"rmac_rts_discard"},
251 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
252 {"link_fault_cnt"}
253};
254
6fce365d 255static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac 256 {"\n DRIVER STATISTICS"},
257 {"single_bit_ecc_errs"},
258 {"double_bit_ecc_errs"},
bd1034f0
AR
259 {"parity_err_cnt"},
260 {"serious_err_cnt"},
261 {"soft_reset_cnt"},
262 {"fifo_full_cnt"},
8116f3cf
SS
263 {"ring_0_full_cnt"},
264 {"ring_1_full_cnt"},
265 {"ring_2_full_cnt"},
266 {"ring_3_full_cnt"},
267 {"ring_4_full_cnt"},
268 {"ring_5_full_cnt"},
269 {"ring_6_full_cnt"},
270 {"ring_7_full_cnt"},
43b7c451
SH
271 {"alarm_transceiver_temp_high"},
272 {"alarm_transceiver_temp_low"},
273 {"alarm_laser_bias_current_high"},
274 {"alarm_laser_bias_current_low"},
275 {"alarm_laser_output_power_high"},
276 {"alarm_laser_output_power_low"},
277 {"warn_transceiver_temp_high"},
278 {"warn_transceiver_temp_low"},
279 {"warn_laser_bias_current_high"},
280 {"warn_laser_bias_current_low"},
281 {"warn_laser_output_power_high"},
282 {"warn_laser_output_power_low"},
283 {"lro_aggregated_pkts"},
284 {"lro_flush_both_count"},
285 {"lro_out_of_sequence_pkts"},
286 {"lro_flush_due_to_max_pkts"},
287 {"lro_avg_aggr_pkts"},
288 {"mem_alloc_fail_cnt"},
289 {"pci_map_fail_cnt"},
290 {"watchdog_timer_cnt"},
291 {"mem_allocated"},
292 {"mem_freed"},
293 {"link_up_cnt"},
294 {"link_down_cnt"},
295 {"link_up_time"},
296 {"link_down_time"},
297 {"tx_tcode_buf_abort_cnt"},
298 {"tx_tcode_desc_abort_cnt"},
299 {"tx_tcode_parity_err_cnt"},
300 {"tx_tcode_link_loss_cnt"},
301 {"tx_tcode_list_proc_err_cnt"},
302 {"rx_tcode_parity_err_cnt"},
303 {"rx_tcode_abort_cnt"},
304 {"rx_tcode_parity_abort_cnt"},
305 {"rx_tcode_rda_fail_cnt"},
306 {"rx_tcode_unkn_prot_cnt"},
307 {"rx_tcode_fcs_err_cnt"},
308 {"rx_tcode_buf_size_err_cnt"},
309 {"rx_tcode_rxd_corrupt_cnt"},
310 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
311 {"tda_err_cnt"},
312 {"pfc_err_cnt"},
313 {"pcc_err_cnt"},
314 {"tti_err_cnt"},
315 {"tpa_err_cnt"},
316 {"sm_err_cnt"},
317 {"lso_err_cnt"},
318 {"mac_tmac_err_cnt"},
319 {"mac_rmac_err_cnt"},
320 {"xgxs_txgxs_err_cnt"},
321 {"xgxs_rxgxs_err_cnt"},
322 {"rc_err_cnt"},
323 {"prc_pcix_err_cnt"},
324 {"rpa_err_cnt"},
325 {"rda_err_cnt"},
326 {"rti_err_cnt"},
327 {"mc_err_cnt"}
1da177e4
LT
328};
329
4c3616cd
AMR
330#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
331#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
332#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 333
d44570e4
JP
334#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 336
d44570e4
JP
337#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 339
4c3616cd 340#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 341#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 342
d44570e4
JP
343#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
344 init_timer(&timer); \
345 timer.function = handle; \
346 timer.data = (unsigned long)arg; \
347 mod_timer(&timer, (jiffies + exp)) \
25fff88e 348
2fd37688
SS
349/* copy mac addr to def_mac_addr array */
350static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351{
352 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358}
04025095 359
be3a6b02 360/* Add the vlan */
361static void s2io_vlan_rx_register(struct net_device *dev,
04025095 362 struct vlan_group *grp)
be3a6b02 363{
2fda096d 364 int i;
4cf1653a 365 struct s2io_nic *nic = netdev_priv(dev);
2fda096d 366 unsigned long flags[MAX_TX_FIFOS];
2fda096d 367 struct config_param *config = &nic->config;
ffb5df6c 368 struct mac_info *mac_control = &nic->mac_control;
2fda096d 369
13d866a9
JP
370 for (i = 0; i < config->tx_fifo_num; i++) {
371 struct fifo_info *fifo = &mac_control->fifos[i];
372
373 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374 }
be3a6b02 375
be3a6b02 376 nic->vlgrp = grp;
13d866a9
JP
377
378 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379 struct fifo_info *fifo = &mac_control->fifos[i];
380
381 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382 }
be3a6b02 383}
384
cdb5bf02 385/* Unregister the vlan */
04025095 386static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
387{
388 int i;
4cf1653a 389 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02 390 unsigned long flags[MAX_TX_FIFOS];
cdb5bf02 391 struct config_param *config = &nic->config;
ffb5df6c 392 struct mac_info *mac_control = &nic->mac_control;
cdb5bf02 393
13d866a9
JP
394 for (i = 0; i < config->tx_fifo_num; i++) {
395 struct fifo_info *fifo = &mac_control->fifos[i];
396
397 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398 }
cdb5bf02
SH
399
400 if (nic->vlgrp)
401 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
13d866a9
JP
403 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404 struct fifo_info *fifo = &mac_control->fifos[i];
405
406 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407 }
cdb5bf02
SH
408}
409
20346722 410/*
1da177e4
LT
411 * Constants to be programmed into the Xena's registers, to configure
412 * the XAUI.
413 */
414
1da177e4 415#define END_SIGN 0x0
f71e1309 416static const u64 herc_act_dtx_cfg[] = {
541ae68f 417 /* Set address */
e960fc5c 418 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 419 /* Write data */
e960fc5c 420 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f 421 /* Set address */
422 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423 /* Write data */
424 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425 /* Set address */
e960fc5c 426 0x801205150D440000ULL, 0x801205150D4400E0ULL,
427 /* Write data */
428 0x801205150D440004ULL, 0x801205150D4400E4ULL,
429 /* Set address */
541ae68f 430 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431 /* Write data */
432 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433 /* Done */
434 END_SIGN
435};
436
f71e1309 437static const u64 xena_dtx_cfg[] = {
c92ca04b 438 /* Set address */
1da177e4 439 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
440 /* Write data */
441 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442 /* Set address */
443 0x8001051500000000ULL, 0x80010515000000E0ULL,
444 /* Write data */
445 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446 /* Set address */
1da177e4 447 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
448 /* Write data */
449 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
450 END_SIGN
451};
452
20346722 453/*
1da177e4
LT
454 * Constants for Fixing the MacAddress problem seen mostly on
455 * Alpha machines.
456 */
f71e1309 457static const u64 fix_mac[] = {
1da177e4
LT
458 0x0060000000000000ULL, 0x0060600000000000ULL,
459 0x0040600000000000ULL, 0x0000600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0060600000000000ULL,
470 0x0020600000000000ULL, 0x0000600000000000ULL,
471 0x0040600000000000ULL, 0x0060600000000000ULL,
472 END_SIGN
473};
474
b41477f3
AR
475MODULE_LICENSE("GPL");
476MODULE_VERSION(DRV_VERSION);
477
478
1da177e4 479/* Module Loadable parameters. */
6cfc482b 480S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 481S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 482S2IO_PARM_INT(multiq, 0);
b41477f3
AR
483S2IO_PARM_INT(rx_ring_mode, 1);
484S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485S2IO_PARM_INT(rmac_pause_time, 0x100);
486S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488S2IO_PARM_INT(shared_splits, 0);
489S2IO_PARM_INT(tmac_util_period, 5);
490S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 491S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
492/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 494/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 495S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 496/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 497S2IO_PARM_INT(intr_type, 2);
7d3d0439 498/* Large receive offload feature */
958de193 499static unsigned int lro_enable = 1;
43b7c451
SH
500module_param_named(lro, lro_enable, uint, 0);
501
7d3d0439
RA
502/* Max pkts to be aggregated by LRO at one time. If not specified,
503 * aggregation happens until we hit max IP pkt size(64K)
504 */
b41477f3 505S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 506S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
507
508S2IO_PARM_INT(napi, 1);
509S2IO_PARM_INT(ufo, 0);
926930b2 510S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
511
512static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 513{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 514static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 515{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 516static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 517{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
518
519module_param_array(tx_fifo_len, uint, NULL, 0);
520module_param_array(rx_ring_sz, uint, NULL, 0);
521module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 522
20346722 523/*
1da177e4 524 * S2IO device table.
20346722 525 * This table lists all the devices that this driver supports.
1da177e4 526 */
a3aa1884 527static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
528 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529 PCI_ANY_ID, PCI_ANY_ID},
530 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531 PCI_ANY_ID, PCI_ANY_ID},
532 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
533 PCI_ANY_ID, PCI_ANY_ID},
534 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
536 {0,}
537};
538
539MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
d796fdb7
LV
541static struct pci_error_handlers s2io_err_handler = {
542 .error_detected = s2io_io_error_detected,
543 .slot_reset = s2io_io_slot_reset,
544 .resume = s2io_io_resume,
545};
546
1da177e4 547static struct pci_driver s2io_driver = {
d44570e4
JP
548 .name = "S2IO",
549 .id_table = s2io_tbl,
550 .probe = s2io_init_nic,
551 .remove = __devexit_p(s2io_rem_nic),
552 .err_handler = &s2io_err_handler,
1da177e4
LT
553};
554
555/* A simplifier macro used both by init and free shared_mem Fns(). */
556#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
3a3d5756
SH
558/* netqueue manipulation helper functions */
559static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560{
fd2ea0a7
DM
561 if (!sp->config.multiq) {
562 int i;
563
3a3d5756
SH
564 for (i = 0; i < sp->config.tx_fifo_num; i++)
565 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 566 }
fd2ea0a7 567 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
568}
569
570static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571{
fd2ea0a7 572 if (!sp->config.multiq)
3a3d5756
SH
573 sp->mac_control.fifos[fifo_no].queue_state =
574 FIFO_QUEUE_STOP;
fd2ea0a7
DM
575
576 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
577}
578
579static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580{
fd2ea0a7
DM
581 if (!sp->config.multiq) {
582 int i;
583
3a3d5756
SH
584 for (i = 0; i < sp->config.tx_fifo_num; i++)
585 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 586 }
fd2ea0a7 587 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
588}
589
590static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591{
fd2ea0a7 592 if (!sp->config.multiq)
3a3d5756
SH
593 sp->mac_control.fifos[fifo_no].queue_state =
594 FIFO_QUEUE_START;
fd2ea0a7
DM
595
596 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
597}
598
599static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600{
fd2ea0a7
DM
601 if (!sp->config.multiq) {
602 int i;
603
3a3d5756
SH
604 for (i = 0; i < sp->config.tx_fifo_num; i++)
605 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 606 }
fd2ea0a7 607 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
608}
609
610static inline void s2io_wake_tx_queue(
611 struct fifo_info *fifo, int cnt, u8 multiq)
612{
613
3a3d5756
SH
614 if (multiq) {
615 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 617 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
618 if (netif_queue_stopped(fifo->dev)) {
619 fifo->queue_state = FIFO_QUEUE_START;
620 netif_wake_queue(fifo->dev);
621 }
622 }
623}
624
1da177e4
LT
625/**
626 * init_shared_mem - Allocation and Initialization of Memory
627 * @nic: Device private variable.
20346722 628 * Description: The function allocates all the memory areas shared
629 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
630 * Rx descriptors and the statistics block.
631 */
632
633static int init_shared_mem(struct s2io_nic *nic)
634{
635 u32 size;
636 void *tmp_v_addr, *tmp_v_addr_next;
637 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 638 struct RxD_block *pre_rxd_blk = NULL;
372cc597 639 int i, j, blk_cnt;
1da177e4
LT
640 int lst_size, lst_per_page;
641 struct net_device *dev = nic->dev;
8ae418cf 642 unsigned long tmp;
1ee6dd77 643 struct buffAdd *ba;
ffb5df6c
JP
644 struct config_param *config = &nic->config;
645 struct mac_info *mac_control = &nic->mac_control;
491976b2 646 unsigned long long mem_allocated = 0;
1da177e4 647
13d866a9 648 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
651 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653 size += tx_cfg->fifo_len;
1da177e4
LT
654 }
655 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
656 DBG_PRINT(ERR_DBG,
657 "Too many TxDs requested: %d, max supported: %d\n",
658 size, MAX_AVAILABLE_TXDS);
b41477f3 659 return -EINVAL;
1da177e4
LT
660 }
661
2fda096d
SR
662 size = 0;
663 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
664 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666 size = tx_cfg->fifo_len;
2fda096d
SR
667 /*
668 * Legal values are from 2 to 8192
669 */
670 if (size < 2) {
9e39f7c5
JP
671 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672 "Valid lengths are 2 through 8192\n",
673 i, size);
2fda096d
SR
674 return -EINVAL;
675 }
676 }
677
1ee6dd77 678 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
679 lst_per_page = PAGE_SIZE / lst_size;
680
681 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
686
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
d44570e4 689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
690 return -ENOMEM;
691 }
491976b2 692 mem_allocated += list_holder_size;
1da177e4
LT
693 }
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
13d866a9
JP
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
20346722 708
1da177e4
LT
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
9e39f7c5
JP
716 DBG_PRINT(INFO_DBG,
717 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
718 return -ENOMEM;
719 }
776bd20f 720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
724 */
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 727 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
728 "%s: Zero DMA address for TxDL. "
729 "Virtual address %p\n",
730 dev->name, tmp_v);
776bd20f 731 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 732 PAGE_SIZE, &tmp_p);
776bd20f 733 if (!tmp_v) {
0c61ed5f 734 DBG_PRINT(INFO_DBG,
9e39f7c5 735 "pci_alloc_consistent failed for TxDL\n");
776bd20f 736 return -ENOMEM;
737 }
491976b2 738 mem_allocated += PAGE_SIZE;
776bd20f 739 }
1da177e4
LT
740 while (k < lst_per_page) {
741 int l = (j * lst_per_page) + k;
13d866a9 742 if (l == tx_cfg->fifo_len)
20346722 743 break;
13d866a9 744 fifo->list_info[l].list_virt_addr =
d44570e4 745 tmp_v + (k * lst_size);
13d866a9 746 fifo->list_info[l].list_phy_addr =
d44570e4 747 tmp_p + (k * lst_size);
1da177e4
LT
748 k++;
749 }
750 }
751 }
1da177e4 752
2fda096d 753 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
754 struct fifo_info *fifo = &mac_control->fifos[i];
755 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757 size = tx_cfg->fifo_len;
758 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759 if (!fifo->ufo_in_band_v)
2fda096d
SR
760 return -ENOMEM;
761 mem_allocated += (size * sizeof(u64));
762 }
fed5eccd 763
1da177e4
LT
764 /* Allocation and initialization of RXDs in Rings */
765 size = 0;
766 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
767 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768 struct ring_info *ring = &mac_control->rings[i];
769
770 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
771 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772 "multiple of RxDs per Block\n",
773 dev->name, i);
1da177e4
LT
774 return FAILURE;
775 }
13d866a9
JP
776 size += rx_cfg->num_rxd;
777 ring->block_count = rx_cfg->num_rxd /
d44570e4 778 (rxd_count[nic->rxd_mode] + 1);
13d866a9 779 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 780 }
da6971d8 781 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 782 size = (size * (sizeof(struct RxD1)));
da6971d8 783 else
1ee6dd77 784 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
785
786 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
787 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788 struct ring_info *ring = &mac_control->rings[i];
789
790 ring->rx_curr_get_info.block_index = 0;
791 ring->rx_curr_get_info.offset = 0;
792 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793 ring->rx_curr_put_info.block_index = 0;
794 ring->rx_curr_put_info.offset = 0;
795 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->nic = nic;
797 ring->ring_no = i;
13d866a9
JP
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 802 struct rx_block_info *rx_blocks;
da6971d8
AR
803 int l;
804
13d866a9 805 rx_blocks = &ring->rx_blocks[j];
d44570e4 806 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
20346722 811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
1da177e4
LT
814 * failure happened.
815 */
da6971d8 816 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
817 return -ENOMEM;
818 }
491976b2 819 mem_allocated += size;
1da177e4 820 memset(tmp_v_addr, 0, size);
4f870320
JP
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
da6971d8
AR
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
4f870320 829 mem_allocated += size;
d44570e4 830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
1da177e4
LT
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 846
d44570e4 847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 848 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 849 (unsigned long)tmp_v_addr_next;
1da177e4 850 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 851 (u64)tmp_p_addr_next;
1da177e4
LT
852 }
853 }
6d517a27 854 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
d44570e4 864 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 867 if (!ring->ba)
1da177e4 868 return -ENOMEM;
4f870320 869 mem_allocated += size;
da6971d8
AR
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
4f870320
JP
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 876 if (!ring->ba[j])
1da177e4 877 return -ENOMEM;
4f870320 878 mem_allocated += size;
da6971d8 879 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 880 ba = &ring->ba[j][k];
4f870320
JP
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
883 if (!ba->ba_0_org)
884 return -ENOMEM;
4f870320 885 mem_allocated += size;
da6971d8
AR
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
d44570e4
JP
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
da6971d8 890
4f870320
JP
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
893 if (!ba->ba_1_org)
894 return -ENOMEM;
4f870320 895 mem_allocated += size;
d44570e4 896 tmp = (unsigned long)ba->ba_1_org;
da6971d8 897 tmp += ALIGN_SIZE;
d44570e4
JP
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
da6971d8
AR
900 k++;
901 }
1da177e4
LT
902 }
903 }
904 }
1da177e4
LT
905
906 /* Allocation and initialization of Statistics block */
1ee6dd77 907 size = sizeof(struct stat_block);
d44570e4
JP
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
1da177e4
LT
911
912 if (!mac_control->stats_mem) {
20346722 913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
1da177e4
LT
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
491976b2 920 mem_allocated += size;
1da177e4
LT
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
d44570e4 924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 925 memset(tmp_v_addr, 0, size);
3a22813a
BL
926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
929 return SUCCESS;
930}
931
20346722 932/**
933 * free_shared_mem - Free the allocated Memory
1da177e4
LT
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939static void free_shared_mem(struct s2io_nic *nic)
940{
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
1da177e4 944 int lst_size, lst_per_page;
8910b49f 945 struct net_device *dev;
491976b2 946 int page_num = 0;
ffb5df6c
JP
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
1da177e4
LT
951
952 if (!nic)
953 return;
954
8910b49f
MG
955 dev = nic->dev;
956
1da177e4 957 config = &nic->config;
ffb5df6c
JP
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
1da177e4 961
d44570e4 962 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
13d866a9
JP
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
6aa20a22 975 return;
13d866a9
JP
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
1da177e4
LT
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
981 fli->list_virt_addr,
982 fli->list_phy_addr);
ffb5df6c 983 swstats->mem_freed += PAGE_SIZE;
1da177e4 984 }
776bd20f 985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
6aa20a22 992 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 996 swstats->mem_freed += PAGE_SIZE;
776bd20f 997 }
13d866a9 998 kfree(fifo->list_info);
82c2d023 999 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 1000 sizeof(struct list_info_hold);
1da177e4
LT
1001 }
1002
1da177e4 1003 size = SIZE_OF_BLOCK;
1da177e4 1004 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1da177e4 1008 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
ffb5df6c 1015 swstats->mem_freed += size;
13d866a9 1016 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1da177e4
LT
1019 }
1020 }
1021
6d517a27 1022 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
13d866a9 1032 if (!ring->ba[j])
da6971d8
AR
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1035 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1036 kfree(ba->ba_0_org);
ffb5df6c
JP
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
da6971d8 1039 kfree(ba->ba_1_org);
ffb5df6c
JP
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
1042 k++;
1043 }
13d866a9 1044 kfree(ring->ba[j]);
ffb5df6c
JP
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1da177e4 1047 }
13d866a9 1048 kfree(ring->ba);
ffb5df6c
JP
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1da177e4 1051 }
1da177e4 1052 }
1da177e4 1053
2fda096d 1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
13d866a9 1061 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1062 }
1063 }
1064
1da177e4 1065 if (mac_control->stats_mem) {
ffb5df6c 1066 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
491976b2 1071 }
1da177e4
LT
1072}
1073
541ae68f 1074/**
1075 * s2io_verify_pci_mode -
1076 */
1077
1ee6dd77 1078static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1079{
1ee6dd77 1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
d44570e4 1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090}
1091
c92ca04b
AR
1092#define NEC_VENID 0x1033
1093#define NEC_DEVID 0x0125
1094static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095{
1096 struct pci_dev *tdev = NULL;
26d36b64
AC
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1099 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1100 pci_dev_put(tdev);
c92ca04b 1101 return 1;
7ad62dbc 1102 }
c92ca04b
AR
1103 }
1104 }
1105 return 0;
1106}
541ae68f 1107
7b32a312 1108static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f 1109/**
1110 * s2io_print_pci_mode -
1111 */
1ee6dd77 1112static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1113{
1ee6dd77 1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f 1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
9e39f7c5 1118 const char *pcimode;
541ae68f 1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
d44570e4 1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f 1124 return -1; /* Unknown PCI mode */
1125
c92ca04b
AR
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1130 nic->dev->name);
c92ca04b
AR
1131 return mode;
1132 }
1133
d44570e4
JP
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
9e39f7c5 1136 pcimode = "33MHz PCI bus";
d44570e4
JP
1137 break;
1138 case PCI_MODE_PCI_66:
9e39f7c5 1139 pcimode = "66MHz PCI bus";
d44570e4
JP
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1142 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1145 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1148 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1151 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1154 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1157 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1158 break;
1159 default:
9e39f7c5
JP
1160 pcimode = "unsupported bus!";
1161 mode = -1;
541ae68f 1162 }
1163
9e39f7c5
JP
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
541ae68f 1167 return mode;
1168}
1169
b7c5678f
RV
1170/**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
0d66afe7 1180static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1181{
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
ffb5df6c 1185 struct config_param *config = &nic->config;
b7c5678f
RV
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1206 writeq(val64, &bar0->tti_data1_mem);
1207
ac731ab6
SH
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
d44570e4
JP
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
ac731ab6
SH
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
b7c5678f
RV
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
d44570e4
JP
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245}
1246
20346722 1247/**
1248 * init_nic - Initialization of hardware
b7c5678f 1249 * @nic: device private variable
20346722 1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1da177e4
LT
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256static int init_nic(struct s2io_nic *nic)
1257{
1ee6dd77 1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
c92ca04b 1264 int dtx_cnt = 0;
1da177e4 1265 unsigned long long mem_share;
20346722 1266 int mem_size;
ffb5df6c
JP
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1269
5e25b9dd 1270 /* to set the swapper controle on the card */
d44570e4
JP
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1273 return -EIO;
1da177e4
LT
1274 }
1275
541ae68f 1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1da177e4
LT
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1da177e4 1289 msleep(500);
20346722 1290 val64 = readq(&bar0->sw_reset);
1da177e4 1291
7962024e
SH
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1da177e4
LT
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1311 writel((u32)val64, add);
1da177e4
LT
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
541ae68f 1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1327 &bar0->dtx_control, UF);
541ae68f 1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1da177e4
LT
1330 dtx_cnt++;
1331 }
541ae68f 1332 } else {
c92ca04b
AR
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1da177e4
LT
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1da177e4 1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
b7c5678f 1363 j = 0;
1da177e4
LT
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
b7c5678f 1368 j = 0;
1da177e4
LT
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
b7c5678f 1373 j = 0;
1da177e4
LT
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1da177e4
LT
1382 break;
1383 }
1384 }
1385
5e25b9dd 1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
d44570e4 1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd 1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1da177e4
LT
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1396
20346722 1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
20346722 1417 /*
1418 * Allocating equal share of memory to all the
1da177e4
LT
1419 * configured Rings.
1420 */
1421 val64 = 0;
541ae68f 1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1da177e4
LT
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
20346722 1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1da177e4
LT
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
20346722 1435 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
20346722 1439 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
20346722 1443 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
20346722 1447 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
20346722 1451 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
20346722 1455 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
20346722 1459 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
20346722 1466 /*
5e25b9dd 1467 * Filling Tx round robin registers
b7c5678f 1468 * as per the number of FIFOs for equal scheduling priority
1da177e4 1469 */
5e25b9dd 1470 switch (config->tx_fifo_num) {
1471 case 1:
b7c5678f 1472 val64 = 0x0;
5e25b9dd 1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
b7c5678f 1480 val64 = 0x0001000100010001ULL;
5e25b9dd 1481 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1485 val64 = 0x0001000100000000ULL;
5e25b9dd 1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
b7c5678f 1489 val64 = 0x0001020001020001ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1491 val64 = 0x0200010200010200ULL;
5e25b9dd 1492 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1493 val64 = 0x0102000102000102ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1495 val64 = 0x0001020001020001ULL;
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1497 val64 = 0x0200010200000000ULL;
5e25b9dd 1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
b7c5678f 1501 val64 = 0x0001020300010203ULL;
5e25b9dd 1502 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1506 val64 = 0x0001020300000000ULL;
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
b7c5678f 1510 val64 = 0x0001020304000102ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1512 val64 = 0x0304000102030400ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1514 val64 = 0x0102030400010203ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1516 val64 = 0x0400010203040001ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1518 val64 = 0x0203040000000000ULL;
5e25b9dd 1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
b7c5678f 1522 val64 = 0x0001020304050001ULL;
5e25b9dd 1523 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1524 val64 = 0x0203040500010203ULL;
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1526 val64 = 0x0405000102030405ULL;
5e25b9dd 1527 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1528 val64 = 0x0001020304050001ULL;
5e25b9dd 1529 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1530 val64 = 0x0203040500000000ULL;
5e25b9dd 1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
b7c5678f 1534 val64 = 0x0001020304050600ULL;
5e25b9dd 1535 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1536 val64 = 0x0102030405060001ULL;
5e25b9dd 1537 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1538 val64 = 0x0203040506000102ULL;
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1540 val64 = 0x0304050600010203ULL;
5e25b9dd 1541 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1542 val64 = 0x0405060000000000ULL;
5e25b9dd 1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
b7c5678f 1546 val64 = 0x0001020304050607ULL;
5e25b9dd 1547 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1549 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1551 val64 = 0x0001020300000000ULL;
5e25b9dd 1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
b41477f3 1556 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
5e25b9dd 1561 /* Filling the Rx round robin registers as per the
0425b46a
SH
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
5e25b9dd 1565 switch (config->rx_ring_num) {
1566 case 1:
0425b46a
SH
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
5e25b9dd 1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
0425b46a 1578 val64 = 0x0001000100010001ULL;
5e25b9dd 1579 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1583 val64 = 0x0001000100000000ULL;
5e25b9dd 1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
0425b46a 1590 val64 = 0x0001020001020001ULL;
5e25b9dd 1591 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1592 val64 = 0x0200010200010200ULL;
5e25b9dd 1593 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1594 val64 = 0x0102000102000102ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1596 val64 = 0x0001020001020001ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1598 val64 = 0x0200010200000000ULL;
5e25b9dd 1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
0425b46a 1605 val64 = 0x0001020300010203ULL;
5e25b9dd 1606 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1607 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1610 val64 = 0x0001020300000000ULL;
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
0425b46a 1617 val64 = 0x0001020304000102ULL;
5e25b9dd 1618 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1619 val64 = 0x0304000102030400ULL;
5e25b9dd 1620 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1621 val64 = 0x0102030400010203ULL;
5e25b9dd 1622 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1623 val64 = 0x0400010203040001ULL;
5e25b9dd 1624 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1625 val64 = 0x0203040000000000ULL;
5e25b9dd 1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
0425b46a 1632 val64 = 0x0001020304050001ULL;
5e25b9dd 1633 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1634 val64 = 0x0203040500010203ULL;
5e25b9dd 1635 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1636 val64 = 0x0405000102030405ULL;
5e25b9dd 1637 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1638 val64 = 0x0001020304050001ULL;
5e25b9dd 1639 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1640 val64 = 0x0203040500000000ULL;
5e25b9dd 1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
0425b46a 1647 val64 = 0x0001020304050600ULL;
5e25b9dd 1648 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1649 val64 = 0x0102030405060001ULL;
5e25b9dd 1650 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1651 val64 = 0x0203040506000102ULL;
5e25b9dd 1652 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1653 val64 = 0x0304050600010203ULL;
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1655 val64 = 0x0405060000000000ULL;
5e25b9dd 1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
0425b46a 1662 val64 = 0x0001020304050607ULL;
5e25b9dd 1663 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1664 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1665 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1666 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1667 val64 = 0x0001020300000000ULL;
5e25b9dd 1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1da177e4
LT
1674
1675 /* UDP Fix */
1676 val64 = 0;
20346722 1677 for (i = 0; i < 8; i++)
1da177e4
LT
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
5e25b9dd 1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1697 &bar0->rts_frm_len_n[i]);
5e25b9dd 1698 }
1699 }
8a4bdbaa 1700
9fc93a41
SS
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
9f74ffde 1707 return -ENODEV;
9fc93a41
SS
1708 }
1709 }
1710
20346722 1711 /* Program statistics memory */
1da177e4 1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1713
541ae68f 1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
20346722 1719 /*
1da177e4
LT
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1725 writeq(val64, &bar0->mac_link_util);
1726
20346722 1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1729 * Scheme.
1730 */
1da177e4 1731
b7c5678f
RV
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1da177e4 1735
8a4bdbaa
SS
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1738 /*
8a4bdbaa
SS
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1758 else
d44570e4
JP
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1761 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1762
8a4bdbaa 1763 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1767 writeq(val64, &bar0->rti_command_mem);
1da177e4 1768
8a4bdbaa
SS
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
f957bcf0 1777 while (true) {
8a4bdbaa
SS
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
b6e3f982 1781
8a4bdbaa 1782 if (time > 10) {
9e39f7c5 1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1784 dev->name);
9f74ffde 1785 return -ENODEV;
b6e3f982 1786 }
8a4bdbaa
SS
1787 time++;
1788 msleep(50);
1da177e4 1789 }
1da177e4
LT
1790 }
1791
20346722 1792 /*
1793 * Initializing proper values as Pause threshold into all
1da177e4
LT
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
509a2671 1800 add = &bar0->mac_cfg;
1da177e4
LT
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
7d3d0439
RA
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
20346722 1822 /*
1823 * Set the time value to be inserted in the pause frame
1da177e4
LT
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
20346722 1831 /*
1da177e4
LT
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
d44570e4
JP
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1da177e4
LT
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
d44570e4
JP
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1da177e4
LT
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
20346722 1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
863c11a9
AR
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
541ae68f 1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
b7b5a128 1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1877 writeq(val64, &bar0->pic_control2);
541ae68f 1878 }
c92ca04b
AR
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d 1882 }
1883
1da177e4
LT
1884 return SUCCESS;
1885}
a371a07d 1886#define LINK_UP_DOWN_INTERRUPT 1
1887#define MAC_RMAC_ERR_TIMER 2
1888
1ee6dd77 1889static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1890{
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895}
8116f3cf 1896
9caab458
SS
1897/**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907{
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
d44570e4
JP
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
9caab458 1914 else
d44570e4 1915 temp64 |= ((u64)value);
9caab458
SS
1916 writeq(temp64, addr);
1917}
1da177e4 1918
43b7c451 1919static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1920{
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
01e16faa 1923 u64 interruptible;
9caab458 1924
01e16faa 1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1926 if (mask & TX_DMA_INTR) {
9caab458
SS
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
9caab458
SS
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
9caab458
SS
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
9caab458
SS
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1960 flag, &bar0->tpa_err_mask);
9caab458
SS
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1968 &bar0->mac_int_mask);
9caab458 1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1978 &bar0->xgxs_int_mask);
9caab458 1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
9caab458 1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
9caab458 1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
9caab458 2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
9caab458 2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
9caab458
SS
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
d44570e4 2021 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2022 }
2023
d44570e4 2024 if (mask & RX_XGXS_INTR) {
9caab458
SS
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2027 &bar0->xgxs_int_mask);
9caab458 2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2029 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
d44570e4
JP
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
9caab458 2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
9caab458
SS
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044}
d44570e4 2045
20346722 2046/**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
20346722 2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
1da177e4
LT
2054 * Return Value: NONE.
2055 */
2056
2057static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058{
1ee6dd77 2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
1da177e4
LT
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
9caab458 2066 if (mask & TX_PIC_INTR) {
1da177e4 2067 /* Enable PIC Intrs in the general intr mask register */
9caab458 2068 intr_mask |= TXPIC_INT_M;
1da177e4 2069 if (flag == ENABLE_INTRS) {
20346722 2070 /*
a371a07d 2071 * If Hercules adapter enable GPIO otherwise
b41477f3 2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722 2073 * interrupts for now.
2074 * TODO
1da177e4 2075 */
a371a07d 2076 if (s2io_link_fault_indication(nic) ==
d44570e4 2077 LINK_UP_DOWN_INTERRUPT) {
9caab458 2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2079 &bar0->pic_int_mask);
9caab458 2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2081 &bar0->gpio_int_mask);
9caab458 2082 } else
a371a07d 2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2084 } else if (flag == DISABLE_INTRS) {
20346722 2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
1da177e4
LT
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2090 }
2091 }
2092
1da177e4
LT
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
9caab458 2095 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2096 if (flag == ENABLE_INTRS) {
20346722 2097 /*
1da177e4 2098 * Enable all the Tx side interrupts
20346722 2099 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
20346722 2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
9caab458 2113 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2114 if (flag == ENABLE_INTRS) {
1da177e4
LT
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
20346722 2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2123 }
2124 }
9caab458
SS
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
d44570e4 2128 temp64 &= ~((u64)intr_mask);
9caab458
SS
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2134}
2135
19a60522
SS
2136/**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
1ee6dd77 2141static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2142{
19a60522 2143 int ret = 0, herc;
1ee6dd77 2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2145 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2146
19a60522 2147 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2148
f957bcf0 2149 if (flag == false) {
44c10138 2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2152 ret = 1;
19a60522
SS
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2155 ret = 1;
20346722 2156 }
2157 } else {
44c10138 2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2161 ret = 1;
5e25b9dd 2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2165 ret = 1;
20346722 2166 }
2167 }
2168
2169 return ret;
2170}
2171/**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2173 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2174 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
20346722 2177 * Return: 1 If xena is quiescence
1da177e4
LT
2178 * 0 If Xena is not quiescence
2179 */
2180
1ee6dd77 2181static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2182{
19a60522 2183 int mode;
1ee6dd77 2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
1da177e4 2187
19a60522 2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2218 return 0;
1da177e4
LT
2219 }
2220
19a60522
SS
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
9e39f7c5 2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2235 return 0;
2236 }
2237 return 1;
1da177e4
LT
2238}
2239
2240/**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
20346722 2243 * Description :
1da177e4
LT
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
d44570e4 2248static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2249{
1ee6dd77 2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2256 udelay(10);
1da177e4
LT
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259}
2260
2261/**
20346722 2262 * start_nic - Turns the device on
1da177e4 2263 * @nic : device private variable.
20346722 2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
20346722 2270 * Return Value:
1da177e4
LT
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274static int start_nic(struct s2io_nic *nic)
2275{
1ee6dd77 2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
20346722 2279 u16 subid, i;
ffb5df6c
JP
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2285 struct ring_info *ring = &mac_control->rings[i];
2286
d44570e4 2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
da6971d8
AR
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
1da177e4 2308
926930b2
SS
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2313 nic->vlan_strip_flag = 0;
926930b2
SS
2314 }
2315
20346722 2316 /*
1da177e4
LT
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
20346722 2326 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
20346722 2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
19a60522 2338 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
1da177e4
LT
2342 return FAILURE;
2343 }
2344
20346722 2345 /*
1da177e4 2346 * With some switches, link might be already up at this point.
20346722 2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
1da177e4
LT
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
c92ca04b
AR
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
1da177e4
LT
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
541ae68f 2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
509a2671 2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2374 }
2375
1da177e4
LT
2376 return SUCCESS;
2377}
fed5eccd
AR
2378/**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
d44570e4
JP
2381static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
fed5eccd 2383{
1ee6dd77 2384 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2385 struct sk_buff *skb;
1ee6dd77 2386 struct TxD *txds;
fed5eccd
AR
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2fda096d 2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2393 txds++;
2394 }
2395
d44570e4 2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2397 if (!skb) {
1ee6dd77 2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2399 return NULL;
2400 }
d44570e4 2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
e743d313 2402 skb_headlen(skb), PCI_DMA_TODEVICE);
fed5eccd
AR
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
d44570e4
JP
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
d44570e4
JP
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
fed5eccd 2417}
1da177e4 2418
20346722 2419/**
2420 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2421 * @nic : device private variable.
20346722 2422 * Description:
1da177e4 2423 * Free all queued Tx buffers.
20346722 2424 * Return Value: void
d44570e4 2425 */
1da177e4
LT
2426
2427static void free_tx_buffers(struct s2io_nic *nic)
2428{
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
1ee6dd77 2431 struct TxD *txdp;
1da177e4 2432 int i, j;
fed5eccd 2433 int cnt = 0;
ffb5df6c
JP
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2442 unsigned long flags;
13d866a9
JP
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
ffb5df6c 2449 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2450 dev_kfree_skb(skb);
2451 cnt++;
1da177e4 2452 }
1da177e4
LT
2453 }
2454 DBG_PRINT(INTR_DBG,
9e39f7c5 2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2456 dev->name, cnt, i);
13d866a9
JP
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2460 }
2461}
2462
20346722 2463/**
2464 * stop_nic - To stop the nic
1da177e4 2465 * @nic ; device private variable.
20346722 2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473static void stop_nic(struct s2io_nic *nic)
2474{
1ee6dd77 2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2476 register u64 val64 = 0;
5d3213cc 2477 u16 interruptible;
1da177e4
LT
2478
2479 /* Disable all interrupts */
9caab458 2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2482 interruptible |= TX_PIC_INTR;
1da177e4
LT
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
5d3213cc
AR
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2489}
2490
20346722 2491/**
2492 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2493 * @ring_info: per ring structure
3f78d885
SH
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
20346722 2497 * Description:
1da177e4
LT
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
20346722 2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
8d8bb39b 2513static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2514 int from_card_up)
1da177e4 2515{
1da177e4 2516 struct sk_buff *skb;
1ee6dd77 2517 struct RxD_t *rxdp;
0425b46a 2518 int off, size, block_no, block_no1;
1da177e4 2519 u32 alloc_tab = 0;
20346722 2520 u32 alloc_cnt;
20346722 2521 u64 tmp;
1ee6dd77 2522 struct buffAdd *ba;
1ee6dd77 2523 struct RxD_t *first_rxdp = NULL;
363dc367 2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2525 int rxd_index = 0;
6d517a27
VP
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
ffb5df6c 2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2529
0425b46a 2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2531
0425b46a 2532 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2533 while (alloc_tab < alloc_cnt) {
0425b46a 2534 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2535
0425b46a
SH
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
da6971d8 2543
7d2e3cb7 2544 if ((block_no == block_no1) &&
d44570e4
JP
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
9e39f7c5
JP
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
1da177e4
LT
2549 goto end;
2550 }
0425b46a
SH
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
d44570e4 2554 ring->block_count)
0425b46a
SH
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2561 ring->dev->name, rxdp);
2562
1da177e4 2563 }
c9fcbf47 2564
da6971d8 2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2568 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2569 goto end;
2570 }
da6971d8 2571 /* calculate size of skb based on ring mode */
d44570e4
JP
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2575 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2576 size += NET_IP_ALIGN;
da6971d8 2577 else
0425b46a 2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2579
da6971d8
AR
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
d44570e4 2582 if (!skb) {
9e39f7c5
JP
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
303bcb4b 2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
ffb5df6c 2589 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2590
da6971d8
AR
2591 return -ENOMEM ;
2592 }
ffb5df6c 2593 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2596 /* 1 buffer mode - normal operation mode */
d44570e4 2597 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2598 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2599 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
8d8bb39b 2604 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2605 rxdp1->Buffer0_ptr))
491abf25
VP
2606 goto pci_map_failed;
2607
8a4bdbaa 2608 rxdp->Control_2 =
491976b2 2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2610 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2612 /*
6d517a27
VP
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
da6971d8 2615 * byte aligned receive buffers.
da6971d8
AR
2616 */
2617
d44570e4 2618 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2619 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2622 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2623 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2626
0425b46a 2627 ba = &ring->ba[block_no][off];
da6971d8 2628 skb_reserve(skb, BUF0_LEN);
d44570e4 2629 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
27a884dc 2633 skb_reset_tail_pointer(skb);
da6971d8 2634
3f78d885 2635 if (from_card_up) {
6d517a27 2636 rxdp3->Buffer0_ptr =
d44570e4
JP
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
3f78d885
SH
2642 goto pci_map_failed;
2643 } else
0425b46a 2644 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
491abf25 2648
da6971d8 2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2650 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2651 /* Two buffer mode */
2652
2653 /*
6aa20a22 2654 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2655 * L4 payload
2656 */
d44570e4
JP
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
da6971d8 2661
8d8bb39b 2662 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2663 rxdp3->Buffer2_ptr))
491abf25
VP
2664 goto pci_map_failed;
2665
3f78d885 2666 if (from_card_up) {
0425b46a
SH
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
d44570e4
JP
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
0425b46a 2672
8d8bb39b 2673 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
3f78d885
SH
2680 goto pci_map_failed;
2681 }
75c30b13 2682 }
da6971d8
AR
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2685 (ring->mtu + 4);
da6971d8 2686 }
b7b5a128 2687 rxdp->Control_2 |= s2BIT(0);
0425b46a 2688 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2689 }
303bcb4b 2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2692 off++;
0425b46a 2693 if (off == (ring->rxd_count + 1))
da6971d8 2694 off = 0;
0425b46a 2695 ring->rx_curr_put_info.offset = off;
20346722 2696
da6971d8 2697 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b 2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
0425b46a 2705 ring->rx_bufs_left += 1;
1da177e4
LT
2706 alloc_tab++;
2707 }
2708
d44570e4 2709end:
303bcb4b 2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
1da177e4 2719 return SUCCESS;
d44570e4 2720
491abf25 2721pci_map_failed:
ffb5df6c
JP
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
491abf25
VP
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
1da177e4
LT
2726}
2727
da6971d8
AR
2728static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729{
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
1ee6dd77 2733 struct RxD_t *rxdp;
1ee6dd77 2734 struct buffAdd *ba;
6d517a27
VP
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
ffb5df6c
JP
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
da6971d8 2740
da6971d8
AR
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
da6971d8 2746 continue;
da6971d8 2747 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
1ee6dd77 2755 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
1ee6dd77 2771 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2772 }
ffb5df6c 2773 swstats->mem_freed += skb->truesize;
da6971d8 2774 dev_kfree_skb(skb);
0425b46a 2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2776 }
2777}
2778
1da177e4 2779/**
20346722 2780 * free_rx_buffers - Frees all Rx buffers
1da177e4 2781 * @sp: device private variable.
20346722 2782 * Description:
1da177e4
LT
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788static void free_rx_buffers(struct s2io_nic *sp)
2789{
2790 struct net_device *dev = sp->dev;
da6971d8 2791 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2796 struct ring_info *ring = &mac_control->rings[i];
2797
da6971d8 2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2799 free_rxd_blk(sp, i, blk);
1da177e4 2800
13d866a9
JP
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
9e39f7c5 2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2807 dev->name, buf_cnt, i);
2808 }
2809}
2810
8d8bb39b 2811static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2812{
8d8bb39b 2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
f61e0a35
SH
2816 }
2817 return 0;
2818}
2819
1da177e4
LT
2820/**
2821 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2822 * @napi : pointer to the napi structure.
20346722 2823 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
f61e0a35 2833static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2834{
f61e0a35
SH
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
f61e0a35 2837 int pkts_processed = 0;
1a79d1c3
AV
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
4cf1653a 2840 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2842 int budget_org = budget;
1da177e4 2843
f61e0a35
SH
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
1da177e4 2846
f61e0a35 2847 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2848 s2io_chk_rx_buffers(nic, ring);
1da177e4 2849
f61e0a35 2850 if (pkts_processed < budget_org) {
288379f0 2851 napi_complete(napi);
f61e0a35 2852 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
1da177e4 2858 }
f61e0a35
SH
2859 return pkts_processed;
2860}
d44570e4 2861
f61e0a35
SH
2862static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863{
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
ffb5df6c
JP
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2871
f61e0a35
SH
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
1da177e4 2874
1da177e4 2875 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2876 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2877 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2878 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
1da177e4 2882 break;
1da177e4 2883 }
f61e0a35 2884 if (pkts_processed < budget_org) {
288379f0 2885 napi_complete(napi);
f61e0a35
SH
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
1da177e4 2891}
20346722 2892
b41477f3 2893#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2894/**
b41477f3 2895 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2896 * @dev : pointer to the device structure.
2897 * Description:
b41477f3
AR
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
612eff0e 2902 */
612eff0e
BH
2903static void s2io_netpoll(struct net_device *dev)
2904{
4cf1653a 2905 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2908 int i;
ffb5df6c
JP
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2911
d796fdb7
LV
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
612eff0e
BH
2915 disable_irq(dev->irq);
2916
612eff0e 2917 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2918 writeq(val64, &bar0->tx_traffic_int);
2919
6aa20a22 2920 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2926
b41477f3 2927 /* check for received packet and indicate up to network */
13d866a9
JP
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
612eff0e
BH
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
612eff0e
BH
2941 break;
2942 }
2943 }
612eff0e 2944 enable_irq(dev->irq);
612eff0e
BH
2945}
2946#endif
2947
20346722 2948/**
1da177e4 2949 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2950 * @ring_info: per ring structure.
2951 * @budget: budget for napi processing.
20346722 2952 * Description:
2953 * If the interrupt is because of a received frame or if the
1da177e4 2954 * receive ring contains fresh as yet un-processed frames,this function is
20346722 2955 * called. It picks out the RxD at which place the last Rx processing had
2956 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2957 * the offset.
2958 * Return Value:
f61e0a35 2959 * No. of napi packets processed.
1da177e4 2960 */
f61e0a35 2961static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2962{
c9fcbf47 2963 int get_block, put_block;
1ee6dd77
RB
2964 struct rx_curr_get_info get_info, put_info;
2965 struct RxD_t *rxdp;
1da177e4 2966 struct sk_buff *skb;
f61e0a35 2967 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2968 int i;
d44570e4
JP
2969 struct RxD1 *rxdp1;
2970 struct RxD3 *rxdp3;
7d3d0439 2971
20346722 2972 get_info = ring_data->rx_curr_get_info;
2973 get_block = get_info.block_index;
1ee6dd77 2974 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2975 put_block = put_info.block_index;
da6971d8 2976 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2977
da6971d8 2978 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2979 /*
2980 * If your are next to put index then it's
2981 * FIFO full condition
2982 */
da6971d8
AR
2983 if ((get_block == put_block) &&
2984 (get_info.offset + 1) == put_info.offset) {
0425b46a 2985 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2986 ring_data->dev->name);
da6971d8
AR
2987 break;
2988 }
d44570e4 2989 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2990 if (skb == NULL) {
9e39f7c5 2991 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2992 ring_data->dev->name);
f61e0a35 2993 return 0;
1da177e4 2994 }
0425b46a 2995 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2996 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2997 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2998 rxdp1->Buffer0_ptr,
2999 ring_data->mtu +
3000 HEADER_ETHERNET_II_802_3_SIZE +
3001 HEADER_802_2_SIZE +
3002 HEADER_SNAP_SIZE,
3003 PCI_DMA_FROMDEVICE);
0425b46a 3004 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3005 rxdp3 = (struct RxD3 *)rxdp;
3006 pci_dma_sync_single_for_cpu(ring_data->pdev,
3007 (dma_addr_t)rxdp3->Buffer0_ptr,
3008 BUF0_LEN,
3009 PCI_DMA_FROMDEVICE);
3010 pci_unmap_single(ring_data->pdev,
3011 (dma_addr_t)rxdp3->Buffer2_ptr,
3012 ring_data->mtu + 4,
3013 PCI_DMA_FROMDEVICE);
da6971d8 3014 }
863c11a9 3015 prefetch(skb->data);
20346722 3016 rx_osm_handler(ring_data, rxdp);
3017 get_info.offset++;
da6971d8
AR
3018 ring_data->rx_curr_get_info.offset = get_info.offset;
3019 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3020 rxds[get_info.offset].virt_addr;
0425b46a 3021 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3022 get_info.offset = 0;
da6971d8 3023 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3024 get_block++;
da6971d8
AR
3025 if (get_block == ring_data->block_count)
3026 get_block = 0;
3027 ring_data->rx_curr_get_info.block_index = get_block;
20346722 3028 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3029 }
1da177e4 3030
f61e0a35
SH
3031 if (ring_data->nic->config.napi) {
3032 budget--;
3033 napi_pkts++;
3034 if (!budget)
0425b46a
SH
3035 break;
3036 }
20346722 3037 pkt_cnt++;
1da177e4
LT
3038 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3039 break;
3040 }
0425b46a 3041 if (ring_data->lro) {
7d3d0439 3042 /* Clear all LRO sessions before exiting */
d44570e4 3043 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3044 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3045 if (lro->in_use) {
0425b46a 3046 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3047 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3048 clear_lro_session(lro);
3049 }
3050 }
3051 }
d44570e4 3052 return napi_pkts;
1da177e4 3053}
20346722 3054
3055/**
1da177e4
LT
3056 * tx_intr_handler - Transmit interrupt handler
3057 * @nic : device private variable
20346722 3058 * Description:
3059 * If an interrupt was raised to indicate DMA complete of the
3060 * Tx packet, this function is called. It identifies the last TxD
3061 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3062 * DMA'ed into the NICs internal memory.
3063 * Return Value:
3064 * NONE
3065 */
3066
1ee6dd77 3067static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3068{
1ee6dd77 3069 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3070 struct tx_curr_get_info get_info, put_info;
3a3d5756 3071 struct sk_buff *skb = NULL;
1ee6dd77 3072 struct TxD *txdlp;
3a3d5756 3073 int pkt_cnt = 0;
2fda096d 3074 unsigned long flags = 0;
f9046eb3 3075 u8 err_mask;
ffb5df6c
JP
3076 struct stat_block *stats = nic->mac_control.stats_info;
3077 struct swStat *swstats = &stats->sw_stat;
1da177e4 3078
2fda096d 3079 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3080 return;
2fda096d 3081
20346722 3082 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3083 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3084 txdlp = (struct TxD *)
3085 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722 3086 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3087 (get_info.offset != put_info.offset) &&
3088 (txdlp->Host_Control)) {
3089 /* Check for TxD errors */
3090 if (txdlp->Control_1 & TXD_T_CODE) {
3091 unsigned long long err;
3092 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3093 if (err & 0x1) {
ffb5df6c 3094 swstats->parity_err_cnt++;
bd1034f0 3095 }
491976b2
SH
3096
3097 /* update t_code statistics */
f9046eb3 3098 err_mask = err >> 48;
d44570e4
JP
3099 switch (err_mask) {
3100 case 2:
ffb5df6c 3101 swstats->tx_buf_abort_cnt++;
491976b2
SH
3102 break;
3103
d44570e4 3104 case 3:
ffb5df6c 3105 swstats->tx_desc_abort_cnt++;
491976b2
SH
3106 break;
3107
d44570e4 3108 case 7:
ffb5df6c 3109 swstats->tx_parity_err_cnt++;
491976b2
SH
3110 break;
3111
d44570e4 3112 case 10:
ffb5df6c 3113 swstats->tx_link_loss_cnt++;
491976b2
SH
3114 break;
3115
d44570e4 3116 case 15:
ffb5df6c 3117 swstats->tx_list_proc_err_cnt++;
491976b2 3118 break;
d44570e4 3119 }
20346722 3120 }
1da177e4 3121
fed5eccd 3122 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3123 if (skb == NULL) {
2fda096d 3124 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3125 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3126 __func__);
20346722 3127 return;
3128 }
3a3d5756 3129 pkt_cnt++;
20346722 3130
20346722 3131 /* Updating the statistics block */
ffb5df6c 3132 swstats->mem_freed += skb->truesize;
20346722 3133 dev_kfree_skb_irq(skb);
3134
3135 get_info.offset++;
863c11a9
AR
3136 if (get_info.offset == get_info.fifo_len + 1)
3137 get_info.offset = 0;
d44570e4
JP
3138 txdlp = (struct TxD *)
3139 fifo_data->list_info[get_info.offset].list_virt_addr;
3140 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3141 }
3142
3a3d5756 3143 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3144
3145 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3146}
3147
bd1034f0
AR
3148/**
3149 * s2io_mdio_write - Function to write in to MDIO registers
3150 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3151 * @addr : address value
3152 * @value : data value
3153 * @dev : pointer to net_device structure
3154 * Description:
3155 * This function is used to write values to the MDIO registers
3156 * NONE
3157 */
d44570e4
JP
3158static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3159 struct net_device *dev)
bd1034f0 3160{
d44570e4 3161 u64 val64;
4cf1653a 3162 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3163 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3164
d44570e4
JP
3165 /* address transaction */
3166 val64 = MDIO_MMD_INDX_ADDR(addr) |
3167 MDIO_MMD_DEV_ADDR(mmd_type) |
3168 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3169 writeq(val64, &bar0->mdio_control);
3170 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3171 writeq(val64, &bar0->mdio_control);
3172 udelay(100);
3173
d44570e4
JP
3174 /* Data transaction */
3175 val64 = MDIO_MMD_INDX_ADDR(addr) |
3176 MDIO_MMD_DEV_ADDR(mmd_type) |
3177 MDIO_MMS_PRT_ADDR(0x0) |
3178 MDIO_MDIO_DATA(value) |
3179 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3180 writeq(val64, &bar0->mdio_control);
3181 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3182 writeq(val64, &bar0->mdio_control);
3183 udelay(100);
3184
d44570e4
JP
3185 val64 = MDIO_MMD_INDX_ADDR(addr) |
3186 MDIO_MMD_DEV_ADDR(mmd_type) |
3187 MDIO_MMS_PRT_ADDR(0x0) |
3188 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3189 writeq(val64, &bar0->mdio_control);
3190 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3191 writeq(val64, &bar0->mdio_control);
3192 udelay(100);
bd1034f0
AR
3193}
3194
3195/**
3196 * s2io_mdio_read - Function to write in to MDIO registers
3197 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3198 * @addr : address value
3199 * @dev : pointer to net_device structure
3200 * Description:
3201 * This function is used to read values to the MDIO registers
3202 * NONE
3203 */
3204static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3205{
3206 u64 val64 = 0x0;
3207 u64 rval64 = 0x0;
4cf1653a 3208 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3209 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3210
3211 /* address transaction */
d44570e4
JP
3212 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3213 | MDIO_MMD_DEV_ADDR(mmd_type)
3214 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3215 writeq(val64, &bar0->mdio_control);
3216 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3217 writeq(val64, &bar0->mdio_control);
3218 udelay(100);
3219
3220 /* Data transaction */
d44570e4
JP
3221 val64 = MDIO_MMD_INDX_ADDR(addr) |
3222 MDIO_MMD_DEV_ADDR(mmd_type) |
3223 MDIO_MMS_PRT_ADDR(0x0) |
3224 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3225 writeq(val64, &bar0->mdio_control);
3226 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3227 writeq(val64, &bar0->mdio_control);
3228 udelay(100);
3229
3230 /* Read the value from regs */
3231 rval64 = readq(&bar0->mdio_control);
3232 rval64 = rval64 & 0xFFFF0000;
3233 rval64 = rval64 >> 16;
3234 return rval64;
3235}
d44570e4 3236
bd1034f0
AR
3237/**
3238 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3239 * @counter : counter value to be updated
bd1034f0
AR
3240 * @flag : flag to indicate the status
3241 * @type : counter type
3242 * Description:
3243 * This function is to check the status of the xpak counters value
3244 * NONE
3245 */
3246
d44570e4
JP
3247static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3248 u16 flag, u16 type)
bd1034f0
AR
3249{
3250 u64 mask = 0x3;
3251 u64 val64;
3252 int i;
d44570e4 3253 for (i = 0; i < index; i++)
bd1034f0
AR
3254 mask = mask << 0x2;
3255
d44570e4 3256 if (flag > 0) {
bd1034f0
AR
3257 *counter = *counter + 1;
3258 val64 = *regs_stat & mask;
3259 val64 = val64 >> (index * 0x2);
3260 val64 = val64 + 1;
d44570e4
JP
3261 if (val64 == 3) {
3262 switch (type) {
bd1034f0 3263 case 1:
9e39f7c5
JP
3264 DBG_PRINT(ERR_DBG,
3265 "Take Xframe NIC out of service.\n");
3266 DBG_PRINT(ERR_DBG,
3267"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3268 break;
bd1034f0 3269 case 2:
9e39f7c5
JP
3270 DBG_PRINT(ERR_DBG,
3271 "Take Xframe NIC out of service.\n");
3272 DBG_PRINT(ERR_DBG,
3273"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3274 break;
bd1034f0 3275 case 3:
9e39f7c5
JP
3276 DBG_PRINT(ERR_DBG,
3277 "Take Xframe NIC out of service.\n");
3278 DBG_PRINT(ERR_DBG,
3279"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3280 break;
bd1034f0 3281 default:
d44570e4
JP
3282 DBG_PRINT(ERR_DBG,
3283 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3284 }
3285 val64 = 0x0;
3286 }
3287 val64 = val64 << (index * 0x2);
3288 *regs_stat = (*regs_stat & (~mask)) | (val64);
3289
3290 } else {
3291 *regs_stat = *regs_stat & (~mask);
3292 }
3293}
3294
3295/**
3296 * s2io_updt_xpak_counter - Function to update the xpak counters
3297 * @dev : pointer to net_device struct
3298 * Description:
3299 * This function is to upate the status of the xpak counters value
3300 * NONE
3301 */
3302static void s2io_updt_xpak_counter(struct net_device *dev)
3303{
3304 u16 flag = 0x0;
3305 u16 type = 0x0;
3306 u16 val16 = 0x0;
3307 u64 val64 = 0x0;
3308 u64 addr = 0x0;
3309
4cf1653a 3310 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3311 struct stat_block *stats = sp->mac_control.stats_info;
3312 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3313
3314 /* Check the communication with the MDIO slave */
40239396 3315 addr = MDIO_CTRL1;
bd1034f0 3316 val64 = 0x0;
40239396 3317 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3318 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3319 DBG_PRINT(ERR_DBG,
3320 "ERR: MDIO slave access failed - Returned %llx\n",
3321 (unsigned long long)val64);
bd1034f0
AR
3322 return;
3323 }
3324
40239396 3325 /* Check for the expected value of control reg 1 */
d44570e4 3326 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3327 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3328 "Returned: %llx- Expected: 0x%x\n",
40239396 3329 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3330 return;
3331 }
3332
3333 /* Loading the DOM register to MDIO register */
3334 addr = 0xA100;
40239396
BH
3335 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3336 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3337
3338 /* Reading the Alarm flags */
3339 addr = 0xA070;
3340 val64 = 0x0;
40239396 3341 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3342
3343 flag = CHECKBIT(val64, 0x7);
3344 type = 1;
ffb5df6c
JP
3345 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3346 &xstats->xpak_regs_stat,
d44570e4 3347 0x0, flag, type);
bd1034f0 3348
d44570e4 3349 if (CHECKBIT(val64, 0x6))
ffb5df6c 3350 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3351
3352 flag = CHECKBIT(val64, 0x3);
3353 type = 2;
ffb5df6c
JP
3354 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3355 &xstats->xpak_regs_stat,
d44570e4 3356 0x2, flag, type);
bd1034f0 3357
d44570e4 3358 if (CHECKBIT(val64, 0x2))
ffb5df6c 3359 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3360
3361 flag = CHECKBIT(val64, 0x1);
3362 type = 3;
ffb5df6c
JP
3363 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3364 &xstats->xpak_regs_stat,
d44570e4 3365 0x4, flag, type);
bd1034f0 3366
d44570e4 3367 if (CHECKBIT(val64, 0x0))
ffb5df6c 3368 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3369
3370 /* Reading the Warning flags */
3371 addr = 0xA074;
3372 val64 = 0x0;
40239396 3373 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3374
d44570e4 3375 if (CHECKBIT(val64, 0x7))
ffb5df6c 3376 xstats->warn_transceiver_temp_high++;
bd1034f0 3377
d44570e4 3378 if (CHECKBIT(val64, 0x6))
ffb5df6c 3379 xstats->warn_transceiver_temp_low++;
bd1034f0 3380
d44570e4 3381 if (CHECKBIT(val64, 0x3))
ffb5df6c 3382 xstats->warn_laser_bias_current_high++;
bd1034f0 3383
d44570e4 3384 if (CHECKBIT(val64, 0x2))
ffb5df6c 3385 xstats->warn_laser_bias_current_low++;
bd1034f0 3386
d44570e4 3387 if (CHECKBIT(val64, 0x1))
ffb5df6c 3388 xstats->warn_laser_output_power_high++;
bd1034f0 3389
d44570e4 3390 if (CHECKBIT(val64, 0x0))
ffb5df6c 3391 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3392}
3393
20346722 3394/**
1da177e4 3395 * wait_for_cmd_complete - waits for a command to complete.
20346722 3396 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3397 * s2io_nic structure.
20346722 3398 * Description: Function that waits for a command to Write into RMAC
3399 * ADDR DATA registers to be completed and returns either success or
3400 * error depending on whether the command was complete or not.
1da177e4
LT
3401 * Return value:
3402 * SUCCESS on success and FAILURE on failure.
3403 */
3404
9fc93a41 3405static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3406 int bit_state)
1da177e4 3407{
9fc93a41 3408 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3409 u64 val64;
3410
9fc93a41
SS
3411 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3412 return FAILURE;
3413
3414 do {
c92ca04b 3415 val64 = readq(addr);
9fc93a41
SS
3416 if (bit_state == S2IO_BIT_RESET) {
3417 if (!(val64 & busy_bit)) {
3418 ret = SUCCESS;
3419 break;
3420 }
3421 } else {
2d146eb1 3422 if (val64 & busy_bit) {
9fc93a41
SS
3423 ret = SUCCESS;
3424 break;
3425 }
1da177e4 3426 }
c92ca04b 3427
d44570e4 3428 if (in_interrupt())
9fc93a41 3429 mdelay(delay);
c92ca04b 3430 else
9fc93a41 3431 msleep(delay);
c92ca04b 3432
9fc93a41
SS
3433 if (++cnt >= 10)
3434 delay = 50;
3435 } while (cnt < 20);
1da177e4
LT
3436 return ret;
3437}
19a60522
SS
3438/*
3439 * check_pci_device_id - Checks if the device id is supported
3440 * @id : device id
3441 * Description: Function to check if the pci device id is supported by driver.
3442 * Return value: Actual device id if supported else PCI_ANY_ID
3443 */
3444static u16 check_pci_device_id(u16 id)
3445{
3446 switch (id) {
3447 case PCI_DEVICE_ID_HERC_WIN:
3448 case PCI_DEVICE_ID_HERC_UNI:
3449 return XFRAME_II_DEVICE;
3450 case PCI_DEVICE_ID_S2IO_UNI:
3451 case PCI_DEVICE_ID_S2IO_WIN:
3452 return XFRAME_I_DEVICE;
3453 default:
3454 return PCI_ANY_ID;
3455 }
3456}
1da177e4 3457
20346722 3458/**
3459 * s2io_reset - Resets the card.
1da177e4
LT
3460 * @sp : private member of the device structure.
3461 * Description: Function to Reset the card. This function then also
20346722 3462 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3463 * the card reset also resets the configuration space.
3464 * Return value:
3465 * void.
3466 */
3467
d44570e4 3468static void s2io_reset(struct s2io_nic *sp)
1da177e4 3469{
1ee6dd77 3470 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3471 u64 val64;
5e25b9dd 3472 u16 subid, pci_cmd;
19a60522
SS
3473 int i;
3474 u16 val16;
491976b2
SH
3475 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3476 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3477 struct stat_block *stats;
3478 struct swStat *swstats;
491976b2 3479
9e39f7c5 3480 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3481 __func__, pci_name(sp->pdev));
1da177e4 3482
0b1f7ebe 3483 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3484 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3485
1da177e4
LT
3486 val64 = SW_RESET_ALL;
3487 writeq(val64, &bar0->sw_reset);
d44570e4 3488 if (strstr(sp->product_name, "CX4"))
c92ca04b 3489 msleep(750);
19a60522
SS
3490 msleep(250);
3491 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3492
19a60522
SS
3493 /* Restore the PCI state saved during initialization. */
3494 pci_restore_state(sp->pdev);
b8a623bf 3495 pci_save_state(sp->pdev);
19a60522
SS
3496 pci_read_config_word(sp->pdev, 0x2, &val16);
3497 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3498 break;
3499 msleep(200);
3500 }
1da177e4 3501
d44570e4
JP
3502 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3503 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3504
3505 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3506
3507 s2io_init_pci(sp);
1da177e4 3508
20346722 3509 /* Set swapper to enable I/O register access */
3510 s2io_set_swapper(sp);
3511
faa4f796
SH
3512 /* restore mac_addr entries */
3513 do_s2io_restore_unicast_mc(sp);
3514
cc6e7c44
RA
3515 /* Restore the MSIX table entries from local variables */
3516 restore_xmsi_data(sp);
3517
5e25b9dd 3518 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3519 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3520 /* Clear "detected parity error" bit */
303bcb4b 3521 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3522
303bcb4b 3523 /* Clearing PCIX Ecc status register */
3524 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3525
303bcb4b 3526 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3527 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3528 }
5e25b9dd 3529
20346722 3530 /* Reset device statistics maintained by OS */
d44570e4 3531 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3532
ffb5df6c
JP
3533 stats = sp->mac_control.stats_info;
3534 swstats = &stats->sw_stat;
3535
491976b2 3536 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3537 up_cnt = swstats->link_up_cnt;
3538 down_cnt = swstats->link_down_cnt;
3539 up_time = swstats->link_up_time;
3540 down_time = swstats->link_down_time;
3541 reset_cnt = swstats->soft_reset_cnt;
3542 mem_alloc_cnt = swstats->mem_allocated;
3543 mem_free_cnt = swstats->mem_freed;
3544 watchdog_cnt = swstats->watchdog_timer_cnt;
3545
3546 memset(stats, 0, sizeof(struct stat_block));
3547
491976b2 3548 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3549 swstats->link_up_cnt = up_cnt;
3550 swstats->link_down_cnt = down_cnt;
3551 swstats->link_up_time = up_time;
3552 swstats->link_down_time = down_time;
3553 swstats->soft_reset_cnt = reset_cnt;
3554 swstats->mem_allocated = mem_alloc_cnt;
3555 swstats->mem_freed = mem_free_cnt;
3556 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3557
1da177e4
LT
3558 /* SXE-002: Configure link and activity LED to turn it off */
3559 subid = sp->pdev->subsystem_device;
541ae68f 3560 if (((subid & 0xFF) >= 0x07) &&
3561 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3562 val64 = readq(&bar0->gpio_control);
3563 val64 |= 0x0000800000000000ULL;
3564 writeq(val64, &bar0->gpio_control);
3565 val64 = 0x0411040400000000ULL;
509a2671 3566 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3567 }
3568
541ae68f 3569 /*
3570 * Clear spurious ECC interrupts that would have occured on
3571 * XFRAME II cards after reset.
3572 */
3573 if (sp->device_type == XFRAME_II_DEVICE) {
3574 val64 = readq(&bar0->pcc_err_reg);
3575 writeq(val64, &bar0->pcc_err_reg);
3576 }
3577
f957bcf0 3578 sp->device_enabled_once = false;
1da177e4
LT
3579}
3580
3581/**
20346722 3582 * s2io_set_swapper - to set the swapper controle on the card
3583 * @sp : private member of the device structure,
1da177e4 3584 * pointer to the s2io_nic structure.
20346722 3585 * Description: Function to set the swapper control on the card
1da177e4
LT
3586 * correctly depending on the 'endianness' of the system.
3587 * Return value:
3588 * SUCCESS on success and FAILURE on failure.
3589 */
3590
d44570e4 3591static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3592{
3593 struct net_device *dev = sp->dev;
1ee6dd77 3594 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3595 u64 val64, valt, valr;
3596
20346722 3597 /*
1da177e4
LT
3598 * Set proper endian settings and verify the same by reading
3599 * the PIF Feed-back register.
3600 */
3601
3602 val64 = readq(&bar0->pif_rd_swapper_fb);
3603 if (val64 != 0x0123456789ABCDEFULL) {
3604 int i = 0;
3605 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3606 0x8100008181000081ULL, /* FE=1, SE=0 */
3607 0x4200004242000042ULL, /* FE=0, SE=1 */
3608 0}; /* FE=0, SE=0 */
3609
d44570e4 3610 while (i < 4) {
1da177e4
LT
3611 writeq(value[i], &bar0->swapper_ctrl);
3612 val64 = readq(&bar0->pif_rd_swapper_fb);
3613 if (val64 == 0x0123456789ABCDEFULL)
3614 break;
3615 i++;
3616 }
3617 if (i == 4) {
9e39f7c5
JP
3618 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3619 "feedback read %llx\n",
3620 dev->name, (unsigned long long)val64);
1da177e4
LT
3621 return FAILURE;
3622 }
3623 valr = value[i];
3624 } else {
3625 valr = readq(&bar0->swapper_ctrl);
3626 }
3627
3628 valt = 0x0123456789ABCDEFULL;
3629 writeq(valt, &bar0->xmsi_address);
3630 val64 = readq(&bar0->xmsi_address);
3631
d44570e4 3632 if (val64 != valt) {
1da177e4
LT
3633 int i = 0;
3634 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3635 0x0081810000818100ULL, /* FE=1, SE=0 */
3636 0x0042420000424200ULL, /* FE=0, SE=1 */
3637 0}; /* FE=0, SE=0 */
3638
d44570e4 3639 while (i < 4) {
1da177e4
LT
3640 writeq((value[i] | valr), &bar0->swapper_ctrl);
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
d44570e4 3643 if (val64 == valt)
1da177e4
LT
3644 break;
3645 i++;
3646 }
d44570e4 3647 if (i == 4) {
20346722 3648 unsigned long long x = val64;
9e39f7c5
JP
3649 DBG_PRINT(ERR_DBG,
3650 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3651 return FAILURE;
3652 }
3653 }
3654 val64 = readq(&bar0->swapper_ctrl);
3655 val64 &= 0xFFFF000000000000ULL;
3656
d44570e4 3657#ifdef __BIG_ENDIAN
20346722 3658 /*
3659 * The device by default set to a big endian format, so a
1da177e4
LT
3660 * big endian driver need not set anything.
3661 */
3662 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3663 SWAPPER_CTRL_TXP_SE |
3664 SWAPPER_CTRL_TXD_R_FE |
3665 SWAPPER_CTRL_TXD_W_FE |
3666 SWAPPER_CTRL_TXF_R_FE |
3667 SWAPPER_CTRL_RXD_R_FE |
3668 SWAPPER_CTRL_RXD_W_FE |
3669 SWAPPER_CTRL_RXF_W_FE |
3670 SWAPPER_CTRL_XMSI_FE |
3671 SWAPPER_CTRL_STATS_FE |
3672 SWAPPER_CTRL_STATS_SE);
eaae7f72 3673 if (sp->config.intr_type == INTA)
cc6e7c44 3674 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3675 writeq(val64, &bar0->swapper_ctrl);
3676#else
20346722 3677 /*
1da177e4 3678 * Initially we enable all bits to make it accessible by the
20346722 3679 * driver, then we selectively enable only those bits that
1da177e4
LT
3680 * we want to set.
3681 */
3682 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3683 SWAPPER_CTRL_TXP_SE |
3684 SWAPPER_CTRL_TXD_R_FE |
3685 SWAPPER_CTRL_TXD_R_SE |
3686 SWAPPER_CTRL_TXD_W_FE |
3687 SWAPPER_CTRL_TXD_W_SE |
3688 SWAPPER_CTRL_TXF_R_FE |
3689 SWAPPER_CTRL_RXD_R_FE |
3690 SWAPPER_CTRL_RXD_R_SE |
3691 SWAPPER_CTRL_RXD_W_FE |
3692 SWAPPER_CTRL_RXD_W_SE |
3693 SWAPPER_CTRL_RXF_W_FE |
3694 SWAPPER_CTRL_XMSI_FE |
3695 SWAPPER_CTRL_STATS_FE |
3696 SWAPPER_CTRL_STATS_SE);
eaae7f72 3697 if (sp->config.intr_type == INTA)
cc6e7c44 3698 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3699 writeq(val64, &bar0->swapper_ctrl);
3700#endif
3701 val64 = readq(&bar0->swapper_ctrl);
3702
20346722 3703 /*
3704 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3705 * feedback register.
3706 */
3707 val64 = readq(&bar0->pif_rd_swapper_fb);
3708 if (val64 != 0x0123456789ABCDEFULL) {
3709 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3710 DBG_PRINT(ERR_DBG,
3711 "%s: Endian settings are wrong, feedback read %llx\n",
3712 dev->name, (unsigned long long)val64);
1da177e4
LT
3713 return FAILURE;
3714 }
3715
3716 return SUCCESS;
3717}
3718
1ee6dd77 3719static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3720{
1ee6dd77 3721 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3722 u64 val64;
3723 int ret = 0, cnt = 0;
3724
3725 do {
3726 val64 = readq(&bar0->xmsi_access);
b7b5a128 3727 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3728 break;
3729 mdelay(1);
3730 cnt++;
d44570e4 3731 } while (cnt < 5);
cc6e7c44
RA
3732 if (cnt == 5) {
3733 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734 ret = 1;
3735 }
3736
3737 return ret;
3738}
3739
1ee6dd77 3740static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3741{
1ee6dd77 3742 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3743 u64 val64;
f61e0a35
SH
3744 int i, msix_index;
3745
f61e0a35
SH
3746 if (nic->device_type == XFRAME_I_DEVICE)
3747 return;
cc6e7c44 3748
d44570e4
JP
3749 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3751 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3753 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3754 writeq(val64, &bar0->xmsi_access);
f61e0a35 3755 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3756 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757 __func__, msix_index);
cc6e7c44
RA
3758 continue;
3759 }
3760 }
3761}
3762
1ee6dd77 3763static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3764{
1ee6dd77 3765 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3766 u64 val64, addr, data;
f61e0a35
SH
3767 int i, msix_index;
3768
3769 if (nic->device_type == XFRAME_I_DEVICE)
3770 return;
cc6e7c44
RA
3771
3772 /* Store and display */
d44570e4
JP
3773 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3775 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3776 writeq(val64, &bar0->xmsi_access);
f61e0a35 3777 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3778 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779 __func__, msix_index);
cc6e7c44
RA
3780 continue;
3781 }
3782 addr = readq(&bar0->xmsi_address);
3783 data = readq(&bar0->xmsi_data);
3784 if (addr && data) {
3785 nic->msix_info[i].addr = addr;
3786 nic->msix_info[i].data = data;
3787 }
3788 }
3789}
3790
1ee6dd77 3791static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3792{
1ee6dd77 3793 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3794 u64 rx_mat;
cc6e7c44
RA
3795 u16 msi_control; /* Temp variable */
3796 int ret, i, j, msix_indx = 1;
4f870320 3797 int size;
ffb5df6c
JP
3798 struct stat_block *stats = nic->mac_control.stats_info;
3799 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3800
4f870320 3801 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3802 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3803 if (!nic->entries) {
d44570e4
JP
3804 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805 __func__);
ffb5df6c 3806 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3807 return -ENOMEM;
3808 }
ffb5df6c 3809 swstats->mem_allocated += size;
f61e0a35 3810
4f870320 3811 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3812 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3813 if (!nic->s2io_entries) {
8a4bdbaa 3814 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3815 __func__);
ffb5df6c 3816 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3817 kfree(nic->entries);
ffb5df6c 3818 swstats->mem_freed
f61e0a35 3819 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3820 return -ENOMEM;
3821 }
ffb5df6c 3822 swstats->mem_allocated += size;
cc6e7c44 3823
ac731ab6
SH
3824 nic->entries[0].entry = 0;
3825 nic->s2io_entries[0].entry = 0;
3826 nic->s2io_entries[0].in_use = MSIX_FLG;
3827 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
f61e0a35
SH
3830 for (i = 1; i < nic->num_entries; i++) {
3831 nic->entries[i].entry = ((i - 1) * 8) + 1;
3832 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3833 nic->s2io_entries[i].arg = NULL;
3834 nic->s2io_entries[i].in_use = 0;
3835 }
3836
8a4bdbaa 3837 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3838 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3839 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3840 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843 msix_indx += 8;
cc6e7c44 3844 }
8a4bdbaa 3845 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3846 readq(&bar0->rx_mat);
cc6e7c44 3847
f61e0a35 3848 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3849 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3850 if (ret) {
9e39f7c5 3851 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3852 kfree(nic->entries);
ffb5df6c
JP
3853 swstats->mem_freed += nic->num_entries *
3854 sizeof(struct msix_entry);
cc6e7c44 3855 kfree(nic->s2io_entries);
ffb5df6c
JP
3856 swstats->mem_freed += nic->num_entries *
3857 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3858 nic->entries = NULL;
3859 nic->s2io_entries = NULL;
3860 return -ENOMEM;
3861 }
3862
3863 /*
3864 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 * in the herc NIC. (Temp change, needs to be removed later)
3866 */
3867 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868 msi_control |= 0x1; /* Enable MSI */
3869 pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871 return 0;
3872}
3873
8abc4d5b 3874/* Handle software interrupt used during MSI(X) test */
33390a70 3875static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3876{
3877 struct s2io_nic *sp = dev_id;
3878
3879 sp->msi_detected = 1;
3880 wake_up(&sp->msi_wait);
3881
3882 return IRQ_HANDLED;
3883}
3884
3885/* Test interrupt path by forcing a a software IRQ */
33390a70 3886static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3887{
3888 struct pci_dev *pdev = sp->pdev;
3889 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890 int err;
3891 u64 val64, saved64;
3892
3893 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3894 sp->name, sp);
8abc4d5b
SS
3895 if (err) {
3896 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3897 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3898 return err;
3899 }
3900
d44570e4 3901 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3902 sp->msi_detected = 0;
3903
3904 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906 val64 |= SCHED_INT_CTRL_TIMER_EN;
3907 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908 writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912 if (!sp->msi_detected) {
3913 /* MSI(X) test failed, go back to INTx mode */
2450022a 3914 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3915 "using MSI(X) during test\n",
3916 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3917
3918 err = -EOPNOTSUPP;
3919 }
3920
3921 free_irq(sp->entries[1].vector, sp);
3922
3923 writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925 return err;
3926}
18b2b7bd
SH
3927
3928static void remove_msix_isr(struct s2io_nic *sp)
3929{
3930 int i;
3931 u16 msi_control;
3932
f61e0a35 3933 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3934 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3935 int vector = sp->entries[i].vector;
3936 void *arg = sp->s2io_entries[i].arg;
3937 free_irq(vector, arg);
3938 }
3939 }
3940
3941 kfree(sp->entries);
3942 kfree(sp->s2io_entries);
3943 sp->entries = NULL;
3944 sp->s2io_entries = NULL;
3945
3946 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947 msi_control &= 0xFFFE; /* Disable MSI */
3948 pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950 pci_disable_msix(sp->pdev);
3951}
3952
3953static void remove_inta_isr(struct s2io_nic *sp)
3954{
3955 struct net_device *dev = sp->dev;
3956
3957 free_irq(sp->pdev->irq, dev);
3958}
3959
1da177e4
LT
3960/* ********************************************************* *
3961 * Functions defined below concern the OS part of the driver *
3962 * ********************************************************* */
3963
20346722 3964/**
1da177e4
LT
3965 * s2io_open - open entry point of the driver
3966 * @dev : pointer to the device structure.
3967 * Description:
3968 * This function is the open entry point of the driver. It mainly calls a
3969 * function to allocate Rx buffers and inserts them into the buffer
20346722 3970 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3971 * Return value:
3972 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3973 * file on failure.
3974 */
3975
ac1f60db 3976static int s2io_open(struct net_device *dev)
1da177e4 3977{
4cf1653a 3978 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3979 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3980 int err = 0;
3981
20346722 3982 /*
3983 * Make sure you have link off by default every time
1da177e4
LT
3984 * Nic is initialized
3985 */
3986 netif_carrier_off(dev);
0b1f7ebe 3987 sp->last_link_state = 0;
1da177e4
LT
3988
3989 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3990 err = s2io_card_up(sp);
3991 if (err) {
1da177e4
LT
3992 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993 dev->name);
e6a8fee2 3994 goto hw_init_failed;
1da177e4
LT
3995 }
3996
2fd37688 3997 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3998 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3999 s2io_card_down(sp);
20346722 4000 err = -ENODEV;
e6a8fee2 4001 goto hw_init_failed;
1da177e4 4002 }
3a3d5756 4003 s2io_start_all_tx_queue(sp);
1da177e4 4004 return 0;
20346722 4005
20346722 4006hw_init_failed:
eaae7f72 4007 if (sp->config.intr_type == MSI_X) {
491976b2 4008 if (sp->entries) {
cc6e7c44 4009 kfree(sp->entries);
ffb5df6c
JP
4010 swstats->mem_freed += sp->num_entries *
4011 sizeof(struct msix_entry);
491976b2
SH
4012 }
4013 if (sp->s2io_entries) {
cc6e7c44 4014 kfree(sp->s2io_entries);
ffb5df6c
JP
4015 swstats->mem_freed += sp->num_entries *
4016 sizeof(struct s2io_msix_entry);
491976b2 4017 }
cc6e7c44 4018 }
20346722 4019 return err;
1da177e4
LT
4020}
4021
4022/**
4023 * s2io_close -close entry point of the driver
4024 * @dev : device pointer.
4025 * Description:
4026 * This is the stop entry point of the driver. It needs to undo exactly
4027 * whatever was done by the open entry point,thus it's usually referred to
4028 * as the close function.Among other things this function mainly stops the
4029 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030 * Return value:
4031 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4032 * file on failure.
4033 */
4034
ac1f60db 4035static int s2io_close(struct net_device *dev)
1da177e4 4036{
4cf1653a 4037 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4038 struct config_param *config = &sp->config;
4039 u64 tmp64;
4040 int offset;
cc6e7c44 4041
9f74ffde 4042 /* Return if the device is already closed *
d44570e4
JP
4043 * Can happen when s2io_card_up failed in change_mtu *
4044 */
9f74ffde
SH
4045 if (!is_s2io_card_up(sp))
4046 return 0;
4047
3a3d5756 4048 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4049 /* delete all populated mac entries */
4050 for (offset = 1; offset < config->max_mc_addr; offset++) {
4051 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053 do_s2io_delete_unicast_mc(sp, tmp64);
4054 }
4055
e6a8fee2 4056 s2io_card_down(sp);
cc6e7c44 4057
1da177e4
LT
4058 return 0;
4059}
4060
4061/**
4062 * s2io_xmit - Tx entry point of te driver
4063 * @skb : the socket buffer containing the Tx data.
4064 * @dev : device pointer.
4065 * Description :
4066 * This function is the Tx entry point of the driver. S2IO NIC supports
4067 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4068 * NOTE: when device cant queue the pkt,just the trans_start variable will
4069 * not be upadted.
4070 * Return value:
4071 * 0 on success & 1 on failure.
4072 */
4073
61357325 4074static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4075{
4cf1653a 4076 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4077 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078 register u64 val64;
1ee6dd77
RB
4079 struct TxD *txdp;
4080 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4081 unsigned long flags = 0;
be3a6b02 4082 u16 vlan_tag = 0;
2fda096d 4083 struct fifo_info *fifo = NULL;
6cfc482b 4084 int do_spin_lock = 1;
75c30b13 4085 int offload_type;
6cfc482b 4086 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4087 struct config_param *config = &sp->config;
4088 struct mac_info *mac_control = &sp->mac_control;
4089 struct stat_block *stats = mac_control->stats_info;
4090 struct swStat *swstats = &stats->sw_stat;
1da177e4 4091
20346722 4092 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4093
4094 if (unlikely(skb->len <= 0)) {
9e39f7c5 4095 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4096 dev_kfree_skb_any(skb);
6ed10654 4097 return NETDEV_TX_OK;
2fda096d 4098 }
491976b2 4099
92b84437 4100 if (!is_s2io_card_up(sp)) {
20346722 4101 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4102 dev->name);
20346722 4103 dev_kfree_skb(skb);
6ed10654 4104 return NETDEV_TX_OK;
1da177e4
LT
4105 }
4106
4107 queue = 0;
3a3d5756 4108 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4109 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4110 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111 if (skb->protocol == htons(ETH_P_IP)) {
4112 struct iphdr *ip;
4113 struct tcphdr *th;
4114 ip = ip_hdr(skb);
4115
4116 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4118 ip->ihl*4);
6cfc482b
SH
4119
4120 if (ip->protocol == IPPROTO_TCP) {
4121 queue_len = sp->total_tcp_fifos;
4122 queue = (ntohs(th->source) +
d44570e4
JP
4123 ntohs(th->dest)) &
4124 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4125 if (queue >= queue_len)
4126 queue = queue_len - 1;
4127 } else if (ip->protocol == IPPROTO_UDP) {
4128 queue_len = sp->total_udp_fifos;
4129 queue = (ntohs(th->source) +
d44570e4
JP
4130 ntohs(th->dest)) &
4131 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4132 if (queue >= queue_len)
4133 queue = queue_len - 1;
4134 queue += sp->udp_fifo_idx;
4135 if (skb->len > 1024)
4136 enable_per_list_interrupt = 1;
4137 do_spin_lock = 0;
4138 }
4139 }
4140 }
4141 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142 /* get fifo number based on skb->priority value */
4143 queue = config->fifo_mapping
d44570e4 4144 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4145 fifo = &mac_control->fifos[queue];
3a3d5756 4146
6cfc482b
SH
4147 if (do_spin_lock)
4148 spin_lock_irqsave(&fifo->tx_lock, flags);
4149 else {
4150 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151 return NETDEV_TX_LOCKED;
4152 }
be3a6b02 4153
3a3d5756
SH
4154 if (sp->config.multiq) {
4155 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157 return NETDEV_TX_BUSY;
4158 }
b19fa1fa 4159 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4160 if (netif_queue_stopped(dev)) {
4161 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162 return NETDEV_TX_BUSY;
4163 }
4164 }
4165
d44570e4
JP
4166 put_off = (u16)fifo->tx_curr_put_info.offset;
4167 get_off = (u16)fifo->tx_curr_get_info.offset;
4168 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4169
2fda096d 4170 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4171 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4172 if (txdp->Host_Control ||
d44570e4 4173 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4174 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4175 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4176 dev_kfree_skb(skb);
2fda096d 4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4178 return NETDEV_TX_OK;
1da177e4 4179 }
0b1f7ebe 4180
75c30b13 4181 offload_type = s2io_offload_type(skb);
75c30b13 4182 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4183 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4184 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4185 }
84fa7933 4186 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4187 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188 TXD_TX_CKO_TCP_EN |
4189 TXD_TX_CKO_UDP_EN);
1da177e4 4190 }
fed5eccd
AR
4191 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4193 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4194 if (enable_per_list_interrupt)
4195 if (put_off & (queue_len >> 5))
4196 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4197 if (vlan_tag) {
be3a6b02 4198 txdp->Control_2 |= TXD_VLAN_ENABLE;
4199 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200 }
4201
e743d313 4202 frg_len = skb_headlen(skb);
75c30b13 4203 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4204 int ufo_size;
4205
75c30b13 4206 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4207 ufo_size &= ~7;
4208 txdp->Control_1 |= TXD_UFO_EN;
4209 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211#ifdef __BIG_ENDIAN
3459feb8 4212 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4213 fifo->ufo_in_band_v[put_off] =
d44570e4 4214 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4215#else
2fda096d 4216 fifo->ufo_in_band_v[put_off] =
d44570e4 4217 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4218#endif
2fda096d 4219 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4220 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4221 fifo->ufo_in_band_v,
4222 sizeof(u64),
4223 PCI_DMA_TODEVICE);
8d8bb39b 4224 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4225 goto pci_map_failed;
fed5eccd 4226 txdp++;
fed5eccd 4227 }
1da177e4 4228
d44570e4
JP
4229 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4231 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4232 goto pci_map_failed;
4233
d44570e4 4234 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4235 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4236 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4237 txdp->Control_1 |= TXD_UFO_EN;
4238
4239 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4240 /* For fragmented SKB. */
4241 for (i = 0; i < frg_cnt; i++) {
4242 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4243 /* A '0' length fragment will be ignored */
4244 if (!frag->size)
4245 continue;
1da177e4 4246 txdp++;
d44570e4
JP
4247 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248 frag->page_offset,
4249 frag->size,
4250 PCI_DMA_TODEVICE);
efd51b5c 4251 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4252 if (offload_type == SKB_GSO_UDP)
fed5eccd 4253 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4254 }
4255 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
75c30b13 4257 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4258 frg_cnt++; /* as Txd0 was used for inband header */
4259
1da177e4 4260 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4261 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4262 writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265 TX_FIFO_LAST_LIST);
75c30b13 4266 if (offload_type)
fed5eccd 4267 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4268
1da177e4
LT
4269 writeq(val64, &tx_fifo->List_Control);
4270
303bcb4b 4271 mmiowb();
4272
1da177e4 4273 put_off++;
2fda096d 4274 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4275 put_off = 0;
2fda096d 4276 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4277
4278 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4279 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4280 swstats->fifo_full_cnt++;
1da177e4
LT
4281 DBG_PRINT(TX_DBG,
4282 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283 put_off, get_off);
3a3d5756 4284 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4285 }
ffb5df6c 4286 swstats->mem_allocated += skb->truesize;
2fda096d 4287 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4288
f6f4bfa3
SH
4289 if (sp->config.intr_type == MSI_X)
4290 tx_intr_handler(fifo);
4291
6ed10654 4292 return NETDEV_TX_OK;
ffb5df6c 4293
491abf25 4294pci_map_failed:
ffb5df6c 4295 swstats->pci_map_fail_cnt++;
3a3d5756 4296 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4297 swstats->mem_freed += skb->truesize;
491abf25 4298 dev_kfree_skb(skb);
2fda096d 4299 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4300 return NETDEV_TX_OK;
1da177e4
LT
4301}
4302
25fff88e 4303static void
4304s2io_alarm_handle(unsigned long data)
4305{
1ee6dd77 4306 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4307 struct net_device *dev = sp->dev;
25fff88e 4308
8116f3cf 4309 s2io_handle_errors(dev);
25fff88e 4310 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311}
4312
7d12e780 4313static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4314{
1ee6dd77
RB
4315 struct ring_info *ring = (struct ring_info *)dev_id;
4316 struct s2io_nic *sp = ring->nic;
f61e0a35 4317 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4318
f61e0a35 4319 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4320 return IRQ_HANDLED;
92b84437 4321
f61e0a35 4322 if (sp->config.napi) {
1a79d1c3
AV
4323 u8 __iomem *addr = NULL;
4324 u8 val8 = 0;
f61e0a35 4325
1a79d1c3 4326 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4327 addr += (7 - ring->ring_no);
4328 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329 writeb(val8, addr);
4330 val8 = readb(addr);
288379f0 4331 napi_schedule(&ring->napi);
f61e0a35
SH
4332 } else {
4333 rx_intr_handler(ring, 0);
8d8bb39b 4334 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4335 }
7d3d0439 4336
cc6e7c44
RA
4337 return IRQ_HANDLED;
4338}
4339
7d12e780 4340static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4341{
ac731ab6
SH
4342 int i;
4343 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344 struct s2io_nic *sp = fifos->nic;
4345 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346 struct config_param *config = &sp->config;
4347 u64 reason;
cc6e7c44 4348
ac731ab6
SH
4349 if (unlikely(!is_s2io_card_up(sp)))
4350 return IRQ_NONE;
4351
4352 reason = readq(&bar0->general_int_status);
4353 if (unlikely(reason == S2IO_MINUS_ONE))
4354 /* Nothing much can be done. Get out */
92b84437 4355 return IRQ_HANDLED;
92b84437 4356
01e16faa
SH
4357 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4359
01e16faa
SH
4360 if (reason & GEN_INTR_TXPIC)
4361 s2io_txpic_intr_handle(sp);
ac731ab6 4362
01e16faa
SH
4363 if (reason & GEN_INTR_TXTRAFFIC)
4364 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4365
01e16faa
SH
4366 for (i = 0; i < config->tx_fifo_num; i++)
4367 tx_intr_handler(&fifos[i]);
ac731ab6 4368
01e16faa
SH
4369 writeq(sp->general_int_mask, &bar0->general_int_mask);
4370 readl(&bar0->general_int_status);
4371 return IRQ_HANDLED;
4372 }
4373 /* The interrupt was not raised by us */
4374 return IRQ_NONE;
cc6e7c44 4375}
ac731ab6 4376
1ee6dd77 4377static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4378{
1ee6dd77 4379 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d 4380 u64 val64;
4381
4382 val64 = readq(&bar0->pic_int_status);
4383 if (val64 & PIC_INT_GPIO) {
4384 val64 = readq(&bar0->gpio_int_reg);
4385 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4387 /*
4388 * This is unstable state so clear both up/down
4389 * interrupt and adapter to re-evaluate the link state.
4390 */
d44570e4 4391 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d 4392 val64 |= GPIO_INT_REG_LINK_UP;
4393 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4394 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4395 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4397 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4398 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4399 val64 = readq(&bar0->adapter_status);
d44570e4 4400 /* Enable Adapter */
19a60522
SS
4401 val64 = readq(&bar0->adapter_control);
4402 val64 |= ADAPTER_CNTL_EN;
4403 writeq(val64, &bar0->adapter_control);
4404 val64 |= ADAPTER_LED_ON;
4405 writeq(val64, &bar0->adapter_control);
4406 if (!sp->device_enabled_once)
4407 sp->device_enabled_once = 1;
c92ca04b 4408
19a60522
SS
4409 s2io_link(sp, LINK_UP);
4410 /*
4411 * unmask link down interrupt and mask link-up
4412 * intr
4413 */
4414 val64 = readq(&bar0->gpio_int_mask);
4415 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416 val64 |= GPIO_INT_MASK_LINK_UP;
4417 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4418
d44570e4 4419 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4420 val64 = readq(&bar0->adapter_status);
19a60522
SS
4421 s2io_link(sp, LINK_DOWN);
4422 /* Link is down so unmaks link up interrupt */
4423 val64 = readq(&bar0->gpio_int_mask);
4424 val64 &= ~GPIO_INT_MASK_LINK_UP;
4425 val64 |= GPIO_INT_MASK_LINK_DOWN;
4426 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4427
4428 /* turn off LED */
4429 val64 = readq(&bar0->adapter_control);
d44570e4 4430 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4431 writeq(val64, &bar0->adapter_control);
a371a07d 4432 }
4433 }
c92ca04b 4434 val64 = readq(&bar0->gpio_int_mask);
a371a07d 4435}
4436
8116f3cf
SS
4437/**
4438 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439 * @value: alarm bits
4440 * @addr: address value
4441 * @cnt: counter variable
4442 * Description: Check for alarm and increment the counter
4443 * Return Value:
4444 * 1 - if alarm bit set
4445 * 0 - if alarm bit is not set
4446 */
d44570e4
JP
4447static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448 unsigned long long *cnt)
8116f3cf
SS
4449{
4450 u64 val64;
4451 val64 = readq(addr);
d44570e4 4452 if (val64 & value) {
8116f3cf
SS
4453 writeq(val64, addr);
4454 (*cnt)++;
4455 return 1;
4456 }
4457 return 0;
4458
4459}
4460
4461/**
4462 * s2io_handle_errors - Xframe error indication handler
4463 * @nic: device private variable
4464 * Description: Handle alarms such as loss of link, single or
4465 * double ECC errors, critical and serious errors.
4466 * Return Value:
4467 * NONE
4468 */
d44570e4 4469static void s2io_handle_errors(void *dev_id)
8116f3cf 4470{
d44570e4 4471 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4472 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4473 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4474 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4475 int i = 0;
4476
4477 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
92b84437 4480 if (!is_s2io_card_up(sp))
8116f3cf
SS
4481 return;
4482
4483 if (pci_channel_offline(sp->pdev))
4484 return;
4485
4486 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4487 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4488
4489 /* Handling the XPAK counters update */
d44570e4 4490 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4491 /* waiting for an hour */
4492 stats->xpak_timer_count++;
4493 } else {
4494 s2io_updt_xpak_counter(dev);
4495 /* reset the count to zero */
4496 stats->xpak_timer_count = 0;
4497 }
4498
4499 /* Handling link status change error Intr */
4500 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501 val64 = readq(&bar0->mac_rmac_err_reg);
4502 writeq(val64, &bar0->mac_rmac_err_reg);
4503 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504 schedule_work(&sp->set_link_task);
4505 }
4506
4507 /* In case of a serious error, the device will be Reset. */
4508 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4509 &sw_stat->serious_err_cnt))
8116f3cf
SS
4510 goto reset;
4511
4512 /* Check for data parity error */
4513 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4514 &sw_stat->parity_err_cnt))
8116f3cf
SS
4515 goto reset;
4516
4517 /* Check for ring full counter */
4518 if (sp->device_type == XFRAME_II_DEVICE) {
4519 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4520 for (i = 0; i < 4; i++) {
4521 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4522 temp64 >>= 64 - ((i+1)*16);
4523 sw_stat->ring_full_cnt[i] += temp64;
4524 }
4525
4526 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4527 for (i = 0; i < 4; i++) {
4528 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4529 temp64 >>= 64 - ((i+1)*16);
d44570e4 4530 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4531 }
4532 }
4533
4534 val64 = readq(&bar0->txdma_int_status);
4535 /*check for pfc_err*/
4536 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4537 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539 PFC_PCIX_ERR,
4540 &bar0->pfc_err_reg,
4541 &sw_stat->pfc_err_cnt))
8116f3cf 4542 goto reset;
d44570e4
JP
4543 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544 &bar0->pfc_err_reg,
4545 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4546 }
4547
4548 /*check for tda_err*/
4549 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4550 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551 TDA_SM0_ERR_ALARM |
4552 TDA_SM1_ERR_ALARM,
4553 &bar0->tda_err_reg,
4554 &sw_stat->tda_err_cnt))
8116f3cf
SS
4555 goto reset;
4556 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4557 &bar0->tda_err_reg,
4558 &sw_stat->tda_err_cnt);
8116f3cf
SS
4559 }
4560 /*check for pcc_err*/
4561 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4562 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563 PCC_N_SERR | PCC_6_COF_OV_ERR |
4564 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566 PCC_TXB_ECC_DB_ERR,
4567 &bar0->pcc_err_reg,
4568 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4569 goto reset;
4570 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4571 &bar0->pcc_err_reg,
4572 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4573 }
4574
4575 /*check for tti_err*/
4576 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4577 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578 &bar0->tti_err_reg,
4579 &sw_stat->tti_err_cnt))
8116f3cf
SS
4580 goto reset;
4581 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4582 &bar0->tti_err_reg,
4583 &sw_stat->tti_err_cnt);
8116f3cf
SS
4584 }
4585
4586 /*check for lso_err*/
4587 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4588 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590 &bar0->lso_err_reg,
4591 &sw_stat->lso_err_cnt))
8116f3cf
SS
4592 goto reset;
4593 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4594 &bar0->lso_err_reg,
4595 &sw_stat->lso_err_cnt);
8116f3cf
SS
4596 }
4597
4598 /*check for tpa_err*/
4599 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4600 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601 &bar0->tpa_err_reg,
4602 &sw_stat->tpa_err_cnt))
8116f3cf 4603 goto reset;
d44570e4
JP
4604 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605 &bar0->tpa_err_reg,
4606 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4607 }
4608
4609 /*check for sm_err*/
4610 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4611 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612 &bar0->sm_err_reg,
4613 &sw_stat->sm_err_cnt))
8116f3cf
SS
4614 goto reset;
4615 }
4616
4617 val64 = readq(&bar0->mac_int_status);
4618 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4620 &bar0->mac_tmac_err_reg,
4621 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4622 goto reset;
d44570e4
JP
4623 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624 TMAC_DESC_ECC_SG_ERR |
4625 TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4628 }
4629
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4639 }
4640
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644 RC_FTC_ECC_DB_ERR |
4645 RC_PRCn_SM_ERR_ALARM |
4646 RC_FTC_SM_ERR_ALARM,
4647 &bar0->rc_err_reg,
4648 &sw_stat->rc_err_cnt))
8116f3cf 4649 goto reset;
d44570e4
JP
4650 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651 RC_FTC_ECC_SG_ERR |
4652 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 &sw_stat->rc_err_cnt);
4654 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655 PRC_PCI_AB_WR_Rn |
4656 PRC_PCI_AB_F_WR_Rn,
4657 &bar0->prc_pcix_err_reg,
4658 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4659 goto reset;
d44570e4
JP
4660 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661 PRC_PCI_DP_WR_Rn |
4662 PRC_PCI_DP_F_WR_Rn,
4663 &bar0->prc_pcix_err_reg,
4664 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4665 }
4666
4667 if (val64 & RXDMA_INT_RPA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4669 &bar0->rpa_err_reg,
4670 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4671 goto reset;
4672 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4673 &bar0->rpa_err_reg,
4674 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4675 }
4676
4677 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4678 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679 RDA_FRM_ECC_DB_N_AERR |
4680 RDA_SM1_ERR_ALARM |
4681 RDA_SM0_ERR_ALARM |
4682 RDA_RXD_ECC_DB_SERR,
4683 &bar0->rda_err_reg,
4684 &sw_stat->rda_err_cnt))
8116f3cf 4685 goto reset;
d44570e4
JP
4686 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687 RDA_FRM_ECC_SG_ERR |
4688 RDA_MISC_ERR |
4689 RDA_PCIX_ERR,
4690 &bar0->rda_err_reg,
4691 &sw_stat->rda_err_cnt);
8116f3cf
SS
4692 }
4693
4694 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4695 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696 &bar0->rti_err_reg,
4697 &sw_stat->rti_err_cnt))
8116f3cf
SS
4698 goto reset;
4699 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4700 &bar0->rti_err_reg,
4701 &sw_stat->rti_err_cnt);
8116f3cf
SS
4702 }
4703
4704 val64 = readq(&bar0->mac_int_status);
4705 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4707 &bar0->mac_rmac_err_reg,
4708 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4709 goto reset;
d44570e4
JP
4710 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711 RMAC_SINGLE_ECC_ERR |
4712 RMAC_DOUBLE_ECC_ERR,
4713 &bar0->mac_rmac_err_reg,
4714 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4715 }
4716
4717 val64 = readq(&bar0->xgxs_int_status);
4718 if (val64 & XGXS_INT_STATUS_RXGXS) {
4719 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4720 &bar0->xgxs_rxgxs_err_reg,
4721 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4722 goto reset;
4723 }
4724
4725 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4726 if (val64 & MC_INT_STATUS_MC_INT) {
4727 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728 &bar0->mc_err_reg,
4729 &sw_stat->mc_err_cnt))
8116f3cf
SS
4730 goto reset;
4731
4732 /* Handling Ecc errors */
4733 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734 writeq(val64, &bar0->mc_err_reg);
4735 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736 sw_stat->double_ecc_errs++;
4737 if (sp->device_type != XFRAME_II_DEVICE) {
4738 /*
4739 * Reset XframeI only if critical error
4740 */
4741 if (val64 &
d44570e4
JP
4742 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744 goto reset;
4745 }
8116f3cf
SS
4746 } else
4747 sw_stat->single_ecc_errs++;
4748 }
4749 }
4750 return;
4751
4752reset:
3a3d5756 4753 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4754 schedule_work(&sp->rst_timer_task);
4755 sw_stat->soft_reset_cnt++;
8116f3cf
SS
4756}
4757
1da177e4
LT
4758/**
4759 * s2io_isr - ISR handler of the device .
4760 * @irq: the irq of the device.
4761 * @dev_id: a void pointer to the dev structure of the NIC.
20346722 4762 * Description: This function is the ISR handler of the device. It
4763 * identifies the reason for the interrupt and calls the relevant
4764 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4765 * recv buffers, if their numbers are below the panic value which is
4766 * presently set to 25% of the original number of rcv buffers allocated.
4767 * Return value:
20346722 4768 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4769 * IRQ_NONE: will be returned if interrupt is not from our device
4770 */
7d12e780 4771static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4772{
d44570e4 4773 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4774 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4775 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4776 int i;
19a60522 4777 u64 reason = 0;
1ee6dd77 4778 struct mac_info *mac_control;
1da177e4
LT
4779 struct config_param *config;
4780
d796fdb7
LV
4781 /* Pretend we handled any irq's from a disconnected card */
4782 if (pci_channel_offline(sp->pdev))
4783 return IRQ_NONE;
4784
596c5c97 4785 if (!is_s2io_card_up(sp))
92b84437 4786 return IRQ_NONE;
92b84437 4787
1da177e4 4788 config = &sp->config;
ffb5df6c 4789 mac_control = &sp->mac_control;
1da177e4 4790
20346722 4791 /*
1da177e4
LT
4792 * Identify the cause for interrupt and call the appropriate
4793 * interrupt handler. Causes for the interrupt could be;
4794 * 1. Rx of packet.
4795 * 2. Tx complete.
4796 * 3. Link down.
1da177e4
LT
4797 */
4798 reason = readq(&bar0->general_int_status);
4799
d44570e4
JP
4800 if (unlikely(reason == S2IO_MINUS_ONE))
4801 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4802
d44570e4
JP
4803 if (reason &
4804 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4805 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807 if (config->napi) {
4808 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4809 napi_schedule(&sp->napi);
f61e0a35
SH
4810 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812 readl(&bar0->rx_traffic_int);
db874e65 4813 }
596c5c97
SS
4814 } else {
4815 /*
4816 * rx_traffic_int reg is an R1 register, writing all 1's
4817 * will ensure that the actual interrupt causing bit
4818 * get's cleared and hence a read can be avoided.
4819 */
4820 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4821 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4822
13d866a9
JP
4823 for (i = 0; i < config->rx_ring_num; i++) {
4824 struct ring_info *ring = &mac_control->rings[i];
4825
4826 rx_intr_handler(ring, 0);
4827 }
db874e65 4828 }
596c5c97 4829
db874e65 4830 /*
596c5c97 4831 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4832 * will ensure that the actual interrupt causing bit get's
4833 * cleared and hence a read can be avoided.
4834 */
596c5c97
SS
4835 if (reason & GEN_INTR_TXTRAFFIC)
4836 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4837
596c5c97
SS
4838 for (i = 0; i < config->tx_fifo_num; i++)
4839 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4840
596c5c97
SS
4841 if (reason & GEN_INTR_TXPIC)
4842 s2io_txpic_intr_handle(sp);
fe113638 4843
596c5c97
SS
4844 /*
4845 * Reallocate the buffers from the interrupt handler itself.
4846 */
4847 if (!config->napi) {
13d866a9
JP
4848 for (i = 0; i < config->rx_ring_num; i++) {
4849 struct ring_info *ring = &mac_control->rings[i];
4850
4851 s2io_chk_rx_buffers(sp, ring);
4852 }
596c5c97
SS
4853 }
4854 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 readl(&bar0->general_int_status);
20346722 4856
596c5c97 4857 return IRQ_HANDLED;
db874e65 4858
d44570e4 4859 } else if (!reason) {
596c5c97
SS
4860 /* The interrupt was not raised by us */
4861 return IRQ_NONE;
4862 }
db874e65 4863
1da177e4
LT
4864 return IRQ_HANDLED;
4865}
4866
7ba013ac 4867/**
4868 * s2io_updt_stats -
4869 */
1ee6dd77 4870static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4871{
1ee6dd77 4872 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac 4873 u64 val64;
4874 int cnt = 0;
4875
92b84437 4876 if (is_s2io_card_up(sp)) {
7ba013ac 4877 /* Apprx 30us on a 133 MHz bus */
4878 val64 = SET_UPDT_CLICKS(10) |
4879 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880 writeq(val64, &bar0->stat_cfg);
4881 do {
4882 udelay(100);
4883 val64 = readq(&bar0->stat_cfg);
b7b5a128 4884 if (!(val64 & s2BIT(0)))
7ba013ac 4885 break;
4886 cnt++;
4887 if (cnt == 5)
4888 break; /* Updt failed */
d44570e4 4889 } while (1);
8a4bdbaa 4890 }
7ba013ac 4891}
4892
1da177e4 4893/**
20346722 4894 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4895 * @dev : pointer to the device structure.
4896 * Description:
20346722 4897 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4898 * structure and returns a pointer to the same.
4899 * Return value:
4900 * pointer to the updated net_device_stats structure.
4901 */
ac1f60db 4902static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4903{
4cf1653a 4904 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4905 struct mac_info *mac_control = &sp->mac_control;
4906 struct stat_block *stats = mac_control->stats_info;
4a490432 4907 u64 delta;
1da177e4 4908
7ba013ac 4909 /* Configure Stats for immediate updt */
4910 s2io_updt_stats(sp);
4911
4a490432
JM
4912 /* A device reset will cause the on-adapter statistics to be zero'ed.
4913 * This can be done while running by changing the MTU. To prevent the
4914 * system from having the stats zero'ed, the driver keeps a copy of the
4915 * last update to the system (which is also zero'ed on reset). This
4916 * enables the driver to accurately know the delta between the last
4917 * update and the current update.
4918 */
4919 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921 sp->stats.rx_packets += delta;
4922 dev->stats.rx_packets += delta;
4923
4924 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926 sp->stats.tx_packets += delta;
4927 dev->stats.tx_packets += delta;
4928
4929 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931 sp->stats.rx_bytes += delta;
4932 dev->stats.rx_bytes += delta;
4933
4934 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936 sp->stats.tx_bytes += delta;
4937 dev->stats.tx_bytes += delta;
4938
4939 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940 sp->stats.rx_errors += delta;
4941 dev->stats.rx_errors += delta;
4942
4943 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945 sp->stats.tx_errors += delta;
4946 dev->stats.tx_errors += delta;
4947
4948 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949 sp->stats.rx_dropped += delta;
4950 dev->stats.rx_dropped += delta;
4951
4952 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953 sp->stats.tx_dropped += delta;
4954 dev->stats.tx_dropped += delta;
4955
4956 /* The adapter MAC interprets pause frames as multicast packets, but
4957 * does not pass them up. This erroneously increases the multicast
4958 * packet count and needs to be deducted when the multicast frame count
4959 * is queried.
4960 */
4961 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962 le32_to_cpu(stats->rmac_vld_mcst_frms);
4963 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964 delta -= sp->stats.multicast;
4965 sp->stats.multicast += delta;
4966 dev->stats.multicast += delta;
1da177e4 4967
4a490432
JM
4968 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969 le32_to_cpu(stats->rmac_usized_frms)) +
4970 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971 sp->stats.rx_length_errors += delta;
4972 dev->stats.rx_length_errors += delta;
13d866a9 4973
4a490432
JM
4974 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975 sp->stats.rx_crc_errors += delta;
4976 dev->stats.rx_crc_errors += delta;
0425b46a 4977
d44570e4 4978 return &dev->stats;
1da177e4
LT
4979}
4980
4981/**
4982 * s2io_set_multicast - entry point for multicast address enable/disable.
4983 * @dev : pointer to the device structure
4984 * Description:
20346722 4985 * This function is a driver entry point which gets called by the kernel
4986 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4987 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4988 * determine, if multicast address must be enabled or if promiscuous mode
4989 * is to be disabled etc.
4990 * Return value:
4991 * void.
4992 */
4993
4994static void s2io_set_multicast(struct net_device *dev)
4995{
4996 int i, j, prev_cnt;
22bedad3 4997 struct netdev_hw_addr *ha;
4cf1653a 4998 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4999 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5000 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 5001 0xfeffffffffffULL;
faa4f796 5002 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 5003 void __iomem *add;
faa4f796 5004 struct config_param *config = &sp->config;
1da177e4
LT
5005
5006 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007 /* Enable all Multicast addresses */
5008 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009 &bar0->rmac_addr_data0_mem);
5010 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011 &bar0->rmac_addr_data1_mem);
5012 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5013 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
5015 writeq(val64, &bar0->rmac_addr_cmd_mem);
5016 /* Wait till command completes */
c92ca04b 5017 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5018 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019 S2IO_BIT_RESET);
1da177e4
LT
5020
5021 sp->m_cast_flg = 1;
faa4f796 5022 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
5023 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024 /* Disable all Multicast addresses */
5025 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026 &bar0->rmac_addr_data0_mem);
5e25b9dd 5027 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 &bar0->rmac_addr_data1_mem);
1da177e4 5029 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5030 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5032 writeq(val64, &bar0->rmac_addr_cmd_mem);
5033 /* Wait till command completes */
c92ca04b 5034 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5035 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036 S2IO_BIT_RESET);
1da177e4
LT
5037
5038 sp->m_cast_flg = 0;
5039 sp->all_multi_pos = 0;
5040 }
5041
5042 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043 /* Put the NIC into promiscuous mode */
5044 add = &bar0->mac_cfg;
5045 val64 = readq(&bar0->mac_cfg);
5046 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5049 writel((u32)val64, add);
1da177e4
LT
5050 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051 writel((u32) (val64 >> 32), (add + 4));
5052
926930b2
SS
5053 if (vlan_tag_strip != 1) {
5054 val64 = readq(&bar0->rx_pa_cfg);
5055 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5057 sp->vlan_strip_flag = 0;
926930b2
SS
5058 }
5059
1da177e4
LT
5060 val64 = readq(&bar0->mac_cfg);
5061 sp->promisc_flg = 1;
776bd20f 5062 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5063 dev->name);
5064 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065 /* Remove the NIC from promiscuous mode */
5066 add = &bar0->mac_cfg;
5067 val64 = readq(&bar0->mac_cfg);
5068 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5071 writel((u32)val64, add);
1da177e4
LT
5072 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073 writel((u32) (val64 >> 32), (add + 4));
5074
926930b2
SS
5075 if (vlan_tag_strip != 0) {
5076 val64 = readq(&bar0->rx_pa_cfg);
5077 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5079 sp->vlan_strip_flag = 1;
926930b2
SS
5080 }
5081
1da177e4
LT
5082 val64 = readq(&bar0->mac_cfg);
5083 sp->promisc_flg = 0;
9e39f7c5 5084 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5085 }
5086
5087 /* Update individual M_CAST address list */
4cd24eaf
JP
5088 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089 if (netdev_mc_count(dev) >
faa4f796 5090 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5091 DBG_PRINT(ERR_DBG,
5092 "%s: No more Rx filters can be added - "
5093 "please enable ALL_MULTI instead\n",
1da177e4 5094 dev->name);
1da177e4
LT
5095 return;
5096 }
5097
5098 prev_cnt = sp->mc_addr_count;
4cd24eaf 5099 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5100
5101 /* Clear out the previous list of Mc in the H/W. */
5102 for (i = 0; i < prev_cnt; i++) {
5103 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104 &bar0->rmac_addr_data0_mem);
5105 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5106 &bar0->rmac_addr_data1_mem);
1da177e4 5107 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5108 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109 RMAC_ADDR_CMD_MEM_OFFSET
5110 (config->mc_start_offset + i);
1da177e4
LT
5111 writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113 /* Wait for command completes */
c92ca04b 5114 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5115 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116 S2IO_BIT_RESET)) {
9e39f7c5
JP
5117 DBG_PRINT(ERR_DBG,
5118 "%s: Adding Multicasts failed\n",
5119 dev->name);
1da177e4
LT
5120 return;
5121 }
5122 }
5123
5124 /* Create the new Rx filter list and update the same in H/W. */
5508590c 5125 i = 0;
22bedad3 5126 netdev_for_each_mc_addr(ha, dev) {
a7a80d5a 5127 mac_addr = 0;
1da177e4 5128 for (j = 0; j < ETH_ALEN; j++) {
22bedad3 5129 mac_addr |= ha->addr[j];
1da177e4
LT
5130 mac_addr <<= 8;
5131 }
5132 mac_addr >>= 8;
5133 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134 &bar0->rmac_addr_data0_mem);
5135 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5136 &bar0->rmac_addr_data1_mem);
1da177e4 5137 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5138 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139 RMAC_ADDR_CMD_MEM_OFFSET
5140 (i + config->mc_start_offset);
1da177e4
LT
5141 writeq(val64, &bar0->rmac_addr_cmd_mem);
5142
5143 /* Wait for command completes */
c92ca04b 5144 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5145 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146 S2IO_BIT_RESET)) {
9e39f7c5
JP
5147 DBG_PRINT(ERR_DBG,
5148 "%s: Adding Multicasts failed\n",
5149 dev->name);
1da177e4
LT
5150 return;
5151 }
5508590c 5152 i++;
1da177e4
LT
5153 }
5154 }
5155}
5156
faa4f796
SH
5157/* read from CAM unicast & multicast addresses and store it in
5158 * def_mac_addr structure
5159 */
dac499f9 5160static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5161{
5162 int offset;
5163 u64 mac_addr = 0x0;
5164 struct config_param *config = &sp->config;
5165
5166 /* store unicast & multicast mac addresses */
5167 for (offset = 0; offset < config->max_mc_addr; offset++) {
5168 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169 /* if read fails disable the entry */
5170 if (mac_addr == FAILURE)
5171 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173 }
5174}
5175
5176/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178{
5179 int offset;
5180 struct config_param *config = &sp->config;
5181 /* restore unicast mac address */
5182 for (offset = 0; offset < config->max_mac_addr; offset++)
5183 do_s2io_prog_unicast(sp->dev,
d44570e4 5184 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5185
5186 /* restore multicast mac address */
5187 for (offset = config->mc_start_offset;
d44570e4 5188 offset < config->max_mc_addr; offset++)
faa4f796
SH
5189 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190}
5191
5192/* add a multicast MAC address to CAM */
5193static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194{
5195 int i;
5196 u64 mac_addr = 0;
5197 struct config_param *config = &sp->config;
5198
5199 for (i = 0; i < ETH_ALEN; i++) {
5200 mac_addr <<= 8;
5201 mac_addr |= addr[i];
5202 }
5203 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204 return SUCCESS;
5205
5206 /* check if the multicast mac already preset in CAM */
5207 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208 u64 tmp64;
5209 tmp64 = do_s2io_read_unicast_mc(sp, i);
5210 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211 break;
5212
5213 if (tmp64 == mac_addr)
5214 return SUCCESS;
5215 }
5216 if (i == config->max_mc_addr) {
5217 DBG_PRINT(ERR_DBG,
d44570e4 5218 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5219 return FAILURE;
5220 }
5221 /* Update the internal structure with this new mac address */
5222 do_s2io_copy_mac_addr(sp, i, mac_addr);
5223
d44570e4 5224 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5225}
5226
5227/* add MAC address to CAM */
5228static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5229{
5230 u64 val64;
5231 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232
5233 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5234 &bar0->rmac_addr_data0_mem);
2fd37688 5235
d44570e4 5236 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5237 RMAC_ADDR_CMD_MEM_OFFSET(off);
5238 writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240 /* Wait till command completes */
5241 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5242 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243 S2IO_BIT_RESET)) {
faa4f796 5244 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5245 return FAILURE;
5246 }
5247 return SUCCESS;
5248}
faa4f796
SH
5249/* deletes a specified unicast/multicast mac entry from CAM */
5250static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251{
5252 int offset;
5253 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254 struct config_param *config = &sp->config;
5255
5256 for (offset = 1;
d44570e4 5257 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5258 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259 if (tmp64 == addr) {
5260 /* disable the entry by writing 0xffffffffffffULL */
5261 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5262 return FAILURE;
5263 /* store the new mac list from CAM */
5264 do_s2io_store_unicast_mc(sp);
5265 return SUCCESS;
5266 }
5267 }
5268 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5269 (unsigned long long)addr);
faa4f796
SH
5270 return FAILURE;
5271}
5272
5273/* read mac entries from CAM */
5274static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275{
5276 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279 /* read mac addr */
d44570e4 5280 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5281 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282 writeq(val64, &bar0->rmac_addr_cmd_mem);
5283
5284 /* Wait till command completes */
5285 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5286 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287 S2IO_BIT_RESET)) {
faa4f796
SH
5288 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289 return FAILURE;
5290 }
5291 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5292
5293 return tmp64 >> 16;
faa4f796 5294}
2fd37688
SS
5295
5296/**
5297 * s2io_set_mac_addr driver entry point
5298 */
faa4f796 5299
2fd37688
SS
5300static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301{
5302 struct sockaddr *addr = p;
5303
5304 if (!is_valid_ether_addr(addr->sa_data))
5305 return -EINVAL;
5306
5307 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308
5309 /* store the MAC address in CAM */
d44570e4 5310 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5311}
1da177e4 5312/**
2fd37688 5313 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5314 * @dev : pointer to the device structure.
5315 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5316 * Description : This procedure will program the Xframe to receive
1da177e4 5317 * frames with new Mac Address
20346722 5318 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5319 * as defined in errno.h file on failure.
5320 */
faa4f796 5321
2fd37688 5322static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5323{
4cf1653a 5324 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5325 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5326 int i;
faa4f796
SH
5327 u64 tmp64;
5328 struct config_param *config = &sp->config;
1da177e4 5329
20346722 5330 /*
d44570e4
JP
5331 * Set the new MAC address as the new unicast filter and reflect this
5332 * change on the device address registered with the OS. It will be
5333 * at offset 0.
5334 */
1da177e4
LT
5335 for (i = 0; i < ETH_ALEN; i++) {
5336 mac_addr <<= 8;
5337 mac_addr |= addr[i];
2fd37688
SS
5338 perm_addr <<= 8;
5339 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5340 }
5341
2fd37688
SS
5342 /* check if the dev_addr is different than perm_addr */
5343 if (mac_addr == perm_addr)
d8d70caf
SS
5344 return SUCCESS;
5345
faa4f796
SH
5346 /* check if the mac already preset in CAM */
5347 for (i = 1; i < config->max_mac_addr; i++) {
5348 tmp64 = do_s2io_read_unicast_mc(sp, i);
5349 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350 break;
5351
5352 if (tmp64 == mac_addr) {
5353 DBG_PRINT(INFO_DBG,
d44570e4
JP
5354 "MAC addr:0x%llx already present in CAM\n",
5355 (unsigned long long)mac_addr);
faa4f796
SH
5356 return SUCCESS;
5357 }
5358 }
5359 if (i == config->max_mac_addr) {
5360 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361 return FAILURE;
5362 }
d8d70caf 5363 /* Update the internal structure with this new mac address */
faa4f796 5364 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5365
5366 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5367}
5368
5369/**
20346722 5370 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5371 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5372 * @info: pointer to the structure with parameters given by ethtool to set
5373 * link information.
5374 * Description:
20346722 5375 * The function sets different link parameters provided by the user onto
1da177e4
LT
5376 * the NIC.
5377 * Return value:
5378 * 0 on success.
d44570e4 5379 */
1da177e4
LT
5380
5381static int s2io_ethtool_sset(struct net_device *dev,
5382 struct ethtool_cmd *info)
5383{
4cf1653a 5384 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5385 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5386 (info->speed != SPEED_10000) ||
5387 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5388 return -EINVAL;
5389 else {
5390 s2io_close(sp->dev);
5391 s2io_open(sp->dev);
5392 }
5393
5394 return 0;
5395}
5396
5397/**
20346722 5398 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5399 * @sp : private member of the device structure, pointer to the
5400 * s2io_nic structure.
5401 * @info : pointer to the structure with parameters given by ethtool
5402 * to return link information.
5403 * Description:
5404 * Returns link specific information like speed, duplex etc.. to ethtool.
5405 * Return value :
5406 * return 0 on success.
5407 */
5408
5409static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410{
4cf1653a 5411 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5412 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414 info->port = PORT_FIBRE;
1a7eb72b
SS
5415
5416 /* info->transceiver */
5417 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5418
5419 if (netif_carrier_ok(sp->dev)) {
5420 info->speed = 10000;
5421 info->duplex = DUPLEX_FULL;
5422 } else {
5423 info->speed = -1;
5424 info->duplex = -1;
5425 }
5426
5427 info->autoneg = AUTONEG_DISABLE;
5428 return 0;
5429}
5430
5431/**
20346722 5432 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5434 * s2io_nic structure.
5435 * @info : pointer to the structure with parameters given by ethtool to
5436 * return driver information.
5437 * Description:
5438 * Returns driver specefic information like name, version etc.. to ethtool.
5439 * Return value:
5440 * void
5441 */
5442
5443static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444 struct ethtool_drvinfo *info)
5445{
4cf1653a 5446 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5447
dbc2309d
JL
5448 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450 strncpy(info->fw_version, "", sizeof(info->fw_version));
5451 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5452 info->regdump_len = XENA_REG_SPACE;
5453 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5454}
5455
5456/**
5457 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5458 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5459 * s2io_nic structure.
20346722 5460 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5461 * dumping the registers.
5462 * @reg_space: The input argumnet into which all the registers are dumped.
5463 * Description:
5464 * Dumps the entire register space of xFrame NIC into the user given
5465 * buffer area.
5466 * Return value :
5467 * void .
d44570e4 5468 */
1da177e4
LT
5469
5470static void s2io_ethtool_gregs(struct net_device *dev,
5471 struct ethtool_regs *regs, void *space)
5472{
5473 int i;
5474 u64 reg;
d44570e4 5475 u8 *reg_space = (u8 *)space;
4cf1653a 5476 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5477
5478 regs->len = XENA_REG_SPACE;
5479 regs->version = sp->pdev->subsystem_device;
5480
5481 for (i = 0; i < regs->len; i += 8) {
5482 reg = readq(sp->bar0 + i);
5483 memcpy((reg_space + i), &reg, 8);
5484 }
5485}
5486
5487/**
5488 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5489 * @data : address of the private member of the device structure, which
1da177e4 5490 * is a pointer to the s2io_nic structure, provided as an u32.
20346722 5491 * Description: This is actually the timer function that alternates the
5492 * adapter LED bit of the adapter control bit to set/reset every time on
5493 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5494 * once every second.
d44570e4 5495 */
1da177e4
LT
5496static void s2io_phy_id(unsigned long data)
5497{
d44570e4 5498 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5499 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5500 u64 val64 = 0;
5501 u16 subid;
5502
5503 subid = sp->pdev->subsystem_device;
541ae68f 5504 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5505 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5506 val64 = readq(&bar0->gpio_control);
5507 val64 ^= GPIO_CTRL_GPIO_0;
5508 writeq(val64, &bar0->gpio_control);
5509 } else {
5510 val64 = readq(&bar0->adapter_control);
5511 val64 ^= ADAPTER_LED_ON;
5512 writeq(val64, &bar0->adapter_control);
5513 }
5514
5515 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5516}
5517
5518/**
5519 * s2io_ethtool_idnic - To physically identify the nic on the system.
5520 * @sp : private member of the device structure, which is a pointer to the
5521 * s2io_nic structure.
20346722 5522 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5523 * ethtool.
5524 * Description: Used to physically identify the NIC on the system.
20346722 5525 * The Link LED will blink for a time specified by the user for
1da177e4 5526 * identification.
20346722 5527 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5528 * identification is possible only if it's link is up.
5529 * Return value:
5530 * int , returns 0 on success
5531 */
5532
5533static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5534{
5535 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5536 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5537 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5538 u16 subid;
5539
5540 subid = sp->pdev->subsystem_device;
5541 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5542 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5543 val64 = readq(&bar0->adapter_control);
5544 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5545 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5546 return -EFAULT;
5547 }
5548 }
5549 if (sp->id_timer.function == NULL) {
5550 init_timer(&sp->id_timer);
5551 sp->id_timer.function = s2io_phy_id;
d44570e4 5552 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5553 }
5554 mod_timer(&sp->id_timer, jiffies);
5555 if (data)
20346722 5556 msleep_interruptible(data * HZ);
1da177e4 5557 else
20346722 5558 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5559 del_timer_sync(&sp->id_timer);
5560
541ae68f 5561 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5562 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5563 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5564 }
5565
5566 return 0;
5567}
5568
0cec35eb 5569static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5570 struct ethtool_ringparam *ering)
0cec35eb 5571{
4cf1653a 5572 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5573 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb
SH
5574
5575 if (sp->rxd_mode == RXD_MODE_1)
5576 ering->rx_max_pending = MAX_RX_DESC_1;
5577 else if (sp->rxd_mode == RXD_MODE_3B)
5578 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5579
5580 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5581 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5582 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5583
9e39f7c5 5584 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5585 ering->tx_pending = tx_desc_count;
5586 rx_desc_count = 0;
8a4bdbaa 5587 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5588 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5589
0cec35eb
SH
5590 ering->rx_pending = rx_desc_count;
5591
5592 ering->rx_mini_max_pending = 0;
5593 ering->rx_mini_pending = 0;
d44570e4 5594 if (sp->rxd_mode == RXD_MODE_1)
0cec35eb
SH
5595 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5596 else if (sp->rxd_mode == RXD_MODE_3B)
5597 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5598 ering->rx_jumbo_pending = rx_desc_count;
5599}
5600
1da177e4
LT
5601/**
5602 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722 5603 * @sp : private member of the device structure, which is a pointer to the
5604 * s2io_nic structure.
1da177e4
LT
5605 * @ep : pointer to the structure with pause parameters given by ethtool.
5606 * Description:
5607 * Returns the Pause frame generation and reception capability of the NIC.
5608 * Return value:
5609 * void
5610 */
5611static void s2io_ethtool_getpause_data(struct net_device *dev,
5612 struct ethtool_pauseparam *ep)
5613{
5614 u64 val64;
4cf1653a 5615 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5616 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5617
5618 val64 = readq(&bar0->rmac_pause_cfg);
5619 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5620 ep->tx_pause = true;
1da177e4 5621 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5622 ep->rx_pause = true;
5623 ep->autoneg = false;
1da177e4
LT
5624}
5625
5626/**
5627 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5628 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5629 * s2io_nic structure.
5630 * @ep : pointer to the structure with pause parameters given by ethtool.
5631 * Description:
5632 * It can be used to set or reset Pause frame generation or reception
5633 * support of the NIC.
5634 * Return value:
5635 * int, returns 0 on Success
5636 */
5637
5638static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5639 struct ethtool_pauseparam *ep)
1da177e4
LT
5640{
5641 u64 val64;
4cf1653a 5642 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5643 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5644
5645 val64 = readq(&bar0->rmac_pause_cfg);
5646 if (ep->tx_pause)
5647 val64 |= RMAC_PAUSE_GEN_ENABLE;
5648 else
5649 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5650 if (ep->rx_pause)
5651 val64 |= RMAC_PAUSE_RX_ENABLE;
5652 else
5653 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5654 writeq(val64, &bar0->rmac_pause_cfg);
5655 return 0;
5656}
5657
5658/**
5659 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5660 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5661 * s2io_nic structure.
5662 * @off : offset at which the data must be written
5663 * @data : Its an output parameter where the data read at the given
20346722 5664 * offset is stored.
1da177e4 5665 * Description:
20346722 5666 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5667 * read data.
5668 * NOTE: Will allow to read only part of the EEPROM visible through the
5669 * I2C bus.
5670 * Return value:
5671 * -1 on failure and 0 on success.
5672 */
5673
5674#define S2IO_DEV_ID 5
d44570e4 5675static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5676{
5677 int ret = -1;
5678 u32 exit_cnt = 0;
5679 u64 val64;
1ee6dd77 5680 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5681
ad4ebed0 5682 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5683 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5684 I2C_CONTROL_ADDR(off) |
5685 I2C_CONTROL_BYTE_CNT(0x3) |
5686 I2C_CONTROL_READ |
5687 I2C_CONTROL_CNTL_START;
ad4ebed0 5688 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5689
ad4ebed0 5690 while (exit_cnt < 5) {
5691 val64 = readq(&bar0->i2c_control);
5692 if (I2C_CONTROL_CNTL_END(val64)) {
5693 *data = I2C_CONTROL_GET_DATA(val64);
5694 ret = 0;
5695 break;
5696 }
5697 msleep(50);
5698 exit_cnt++;
1da177e4 5699 }
1da177e4
LT
5700 }
5701
ad4ebed0 5702 if (sp->device_type == XFRAME_II_DEVICE) {
5703 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5704 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5705 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5706 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5707 val64 |= SPI_CONTROL_REQ;
5708 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5709 while (exit_cnt < 5) {
5710 val64 = readq(&bar0->spi_control);
5711 if (val64 & SPI_CONTROL_NACK) {
5712 ret = 1;
5713 break;
5714 } else if (val64 & SPI_CONTROL_DONE) {
5715 *data = readq(&bar0->spi_data);
5716 *data &= 0xffffff;
5717 ret = 0;
5718 break;
5719 }
5720 msleep(50);
5721 exit_cnt++;
5722 }
5723 }
1da177e4
LT
5724 return ret;
5725}
5726
5727/**
5728 * write_eeprom - actually writes the relevant part of the data value.
5729 * @sp : private member of the device structure, which is a pointer to the
5730 * s2io_nic structure.
5731 * @off : offset at which the data must be written
5732 * @data : The data that is to be written
20346722 5733 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5734 * the Eeprom. (max of 3)
5735 * Description:
5736 * Actually writes the relevant part of the data value into the Eeprom
5737 * through the I2C bus.
5738 * Return value:
5739 * 0 on success, -1 on failure.
5740 */
5741
d44570e4 5742static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5743{
5744 int exit_cnt = 0, ret = -1;
5745 u64 val64;
1ee6dd77 5746 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5747
ad4ebed0 5748 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5749 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5750 I2C_CONTROL_ADDR(off) |
5751 I2C_CONTROL_BYTE_CNT(cnt) |
5752 I2C_CONTROL_SET_DATA((u32)data) |
5753 I2C_CONTROL_CNTL_START;
ad4ebed0 5754 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5755
5756 while (exit_cnt < 5) {
5757 val64 = readq(&bar0->i2c_control);
5758 if (I2C_CONTROL_CNTL_END(val64)) {
5759 if (!(val64 & I2C_CONTROL_NACK))
5760 ret = 0;
5761 break;
5762 }
5763 msleep(50);
5764 exit_cnt++;
5765 }
5766 }
1da177e4 5767
ad4ebed0 5768 if (sp->device_type == XFRAME_II_DEVICE) {
5769 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5770 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5771
5772 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5773 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5774 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5775 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5776 val64 |= SPI_CONTROL_REQ;
5777 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5778 while (exit_cnt < 5) {
5779 val64 = readq(&bar0->spi_control);
5780 if (val64 & SPI_CONTROL_NACK) {
5781 ret = 1;
5782 break;
5783 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5784 ret = 0;
ad4ebed0 5785 break;
5786 }
5787 msleep(50);
5788 exit_cnt++;
1da177e4 5789 }
1da177e4 5790 }
1da177e4
LT
5791 return ret;
5792}
1ee6dd77 5793static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5794{
b41477f3
AR
5795 u8 *vpd_data;
5796 u8 data;
9c179780 5797 int i = 0, cnt, len, fail = 0;
9dc737a7 5798 int vpd_addr = 0x80;
ffb5df6c 5799 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5800
5801 if (nic->device_type == XFRAME_II_DEVICE) {
5802 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5803 vpd_addr = 0x80;
d44570e4 5804 } else {
9dc737a7
AR
5805 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5806 vpd_addr = 0x50;
5807 }
19a60522 5808 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5809
b41477f3 5810 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5811 if (!vpd_data) {
ffb5df6c 5812 swstats->mem_alloc_fail_cnt++;
b41477f3 5813 return;
c53d4945 5814 }
ffb5df6c 5815 swstats->mem_allocated += 256;
b41477f3 5816
d44570e4 5817 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5818 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5819 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5820 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5821 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5822 msleep(2);
5823 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5824 if (data == 0x80)
5825 break;
5826 }
5827 if (cnt >= 5) {
5828 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5829 fail = 1;
5830 break;
5831 }
5832 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5833 (u32 *)&vpd_data[i]);
5834 }
19a60522 5835
d44570e4 5836 if (!fail) {
19a60522 5837 /* read serial number of adapter */
9c179780 5838 for (cnt = 0; cnt < 252; cnt++) {
d44570e4 5839 if ((vpd_data[cnt] == 'S') &&
9c179780
KV
5840 (vpd_data[cnt+1] == 'N')) {
5841 len = vpd_data[cnt+2];
5842 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5843 memcpy(nic->serial_num,
5844 &vpd_data[cnt + 3],
5845 len);
5846 memset(nic->serial_num+len,
5847 0,
5848 VPD_STRING_LEN-len);
5849 break;
5850 }
19a60522
SS
5851 }
5852 }
5853 }
5854
9c179780
KV
5855 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5856 len = vpd_data[1];
5857 memcpy(nic->product_name, &vpd_data[3], len);
5858 nic->product_name[len] = 0;
5859 }
b41477f3 5860 kfree(vpd_data);
ffb5df6c 5861 swstats->mem_freed += 256;
9dc737a7
AR
5862}
5863
1da177e4
LT
5864/**
5865 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5866 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5867 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5868 * containing all relevant information.
5869 * @data_buf : user defined value to be written into Eeprom.
5870 * Description: Reads the values stored in the Eeprom at given offset
5871 * for a given length. Stores these values int the input argument data
5872 * buffer 'data_buf' and returns these to the caller (ethtool.)
5873 * Return value:
5874 * int 0 on success
5875 */
5876
5877static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5878 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5879{
ad4ebed0 5880 u32 i, valid;
5881 u64 data;
4cf1653a 5882 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5883
5884 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5885
5886 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5887 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5888
5889 for (i = 0; i < eeprom->len; i += 4) {
5890 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5891 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5892 return -EFAULT;
5893 }
5894 valid = INV(data);
5895 memcpy((data_buf + i), &valid, 4);
5896 }
5897 return 0;
5898}
5899
5900/**
5901 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5902 * @sp : private member of the device structure, which is a pointer to the
5903 * s2io_nic structure.
20346722 5904 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5905 * containing all relevant information.
5906 * @data_buf ; user defined value to be written into Eeprom.
5907 * Description:
5908 * Tries to write the user provided value in the Eeprom, at the offset
5909 * given by the user.
5910 * Return value:
5911 * 0 on success, -EFAULT on failure.
5912 */
5913
5914static int s2io_ethtool_seeprom(struct net_device *dev,
5915 struct ethtool_eeprom *eeprom,
d44570e4 5916 u8 *data_buf)
1da177e4
LT
5917{
5918 int len = eeprom->len, cnt = 0;
ad4ebed0 5919 u64 valid = 0, data;
4cf1653a 5920 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5921
5922 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5923 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5924 "ETHTOOL_WRITE_EEPROM Err: "
5925 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5926 (sp->pdev->vendor | (sp->pdev->device << 16)),
5927 eeprom->magic);
1da177e4
LT
5928 return -EFAULT;
5929 }
5930
5931 while (len) {
d44570e4
JP
5932 data = (u32)data_buf[cnt] & 0x000000FF;
5933 if (data)
5934 valid = (u32)(data << 24);
5935 else
1da177e4
LT
5936 valid = data;
5937
5938 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5939 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5940 "ETHTOOL_WRITE_EEPROM Err: "
5941 "Cannot write into the specified offset\n");
1da177e4
LT
5942 return -EFAULT;
5943 }
5944 cnt++;
5945 len--;
5946 }
5947
5948 return 0;
5949}
5950
5951/**
20346722 5952 * s2io_register_test - reads and writes into all clock domains.
5953 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5954 * s2io_nic structure.
5955 * @data : variable that returns the result of each of the test conducted b
5956 * by the driver.
5957 * Description:
5958 * Read and write into all clock domains. The NIC has 3 clock domains,
5959 * see that registers in all the three regions are accessible.
5960 * Return value:
5961 * 0 on success.
5962 */
5963
d44570e4 5964static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5965{
1ee6dd77 5966 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5967 u64 val64 = 0, exp_val;
1da177e4
LT
5968 int fail = 0;
5969
20346722 5970 val64 = readq(&bar0->pif_rd_swapper_fb);
5971 if (val64 != 0x123456789abcdefULL) {
1da177e4 5972 fail = 1;
9e39f7c5 5973 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5974 }
5975
5976 val64 = readq(&bar0->rmac_pause_cfg);
5977 if (val64 != 0xc000ffff00000000ULL) {
5978 fail = 1;
9e39f7c5 5979 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5980 }
5981
5982 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5983 if (sp->device_type == XFRAME_II_DEVICE)
5984 exp_val = 0x0404040404040404ULL;
5985 else
5986 exp_val = 0x0808080808080808ULL;
5987 if (val64 != exp_val) {
1da177e4 5988 fail = 1;
9e39f7c5 5989 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5990 }
5991
5992 val64 = readq(&bar0->xgxs_efifo_cfg);
5993 if (val64 != 0x000000001923141EULL) {
5994 fail = 1;
9e39f7c5 5995 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5996 }
5997
5998 val64 = 0x5A5A5A5A5A5A5A5AULL;
5999 writeq(val64, &bar0->xmsi_data);
6000 val64 = readq(&bar0->xmsi_data);
6001 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
6002 fail = 1;
9e39f7c5 6003 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
6004 }
6005
6006 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6007 writeq(val64, &bar0->xmsi_data);
6008 val64 = readq(&bar0->xmsi_data);
6009 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6010 fail = 1;
9e39f7c5 6011 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
6012 }
6013
6014 *data = fail;
ad4ebed0 6015 return fail;
1da177e4
LT
6016}
6017
6018/**
20346722 6019 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
6020 * @sp : private member of the device structure, which is a pointer to the
6021 * s2io_nic structure.
6022 * @data:variable that returns the result of each of the test conducted by
6023 * the driver.
6024 * Description:
20346722 6025 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
6026 * register.
6027 * Return value:
6028 * 0 on success.
6029 */
6030
d44570e4 6031static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6032{
6033 int fail = 0;
ad4ebed0 6034 u64 ret_data, org_4F0, org_7F0;
6035 u8 saved_4F0 = 0, saved_7F0 = 0;
6036 struct net_device *dev = sp->dev;
1da177e4
LT
6037
6038 /* Test Write Error at offset 0 */
ad4ebed0 6039 /* Note that SPI interface allows write access to all areas
6040 * of EEPROM. Hence doing all negative testing only for Xframe I.
6041 */
6042 if (sp->device_type == XFRAME_I_DEVICE)
6043 if (!write_eeprom(sp, 0, 0, 3))
6044 fail = 1;
6045
6046 /* Save current values at offsets 0x4F0 and 0x7F0 */
6047 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6048 saved_4F0 = 1;
6049 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6050 saved_7F0 = 1;
1da177e4
LT
6051
6052 /* Test Write at offset 4f0 */
ad4ebed0 6053 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6054 fail = 1;
6055 if (read_eeprom(sp, 0x4F0, &ret_data))
6056 fail = 1;
6057
ad4ebed0 6058 if (ret_data != 0x012345) {
26b7625c 6059 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6060 "Data written %llx Data read %llx\n",
6061 dev->name, (unsigned long long)0x12345,
6062 (unsigned long long)ret_data);
1da177e4 6063 fail = 1;
ad4ebed0 6064 }
1da177e4
LT
6065
6066 /* Reset the EEPROM data go FFFF */
ad4ebed0 6067 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6068
6069 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6070 if (sp->device_type == XFRAME_I_DEVICE)
6071 if (!write_eeprom(sp, 0x07C, 0, 3))
6072 fail = 1;
1da177e4 6073
ad4ebed0 6074 /* Test Write Request at offset 0x7f0 */
6075 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6076 fail = 1;
ad4ebed0 6077 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6078 fail = 1;
6079
ad4ebed0 6080 if (ret_data != 0x012345) {
26b7625c 6081 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6082 "Data written %llx Data read %llx\n",
6083 dev->name, (unsigned long long)0x12345,
6084 (unsigned long long)ret_data);
1da177e4 6085 fail = 1;
ad4ebed0 6086 }
1da177e4
LT
6087
6088 /* Reset the EEPROM data go FFFF */
ad4ebed0 6089 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6090
ad4ebed0 6091 if (sp->device_type == XFRAME_I_DEVICE) {
6092 /* Test Write Error at offset 0x80 */
6093 if (!write_eeprom(sp, 0x080, 0, 3))
6094 fail = 1;
1da177e4 6095
ad4ebed0 6096 /* Test Write Error at offset 0xfc */
6097 if (!write_eeprom(sp, 0x0FC, 0, 3))
6098 fail = 1;
1da177e4 6099
ad4ebed0 6100 /* Test Write Error at offset 0x100 */
6101 if (!write_eeprom(sp, 0x100, 0, 3))
6102 fail = 1;
1da177e4 6103
ad4ebed0 6104 /* Test Write Error at offset 4ec */
6105 if (!write_eeprom(sp, 0x4EC, 0, 3))
6106 fail = 1;
6107 }
6108
6109 /* Restore values at offsets 0x4F0 and 0x7F0 */
6110 if (saved_4F0)
6111 write_eeprom(sp, 0x4F0, org_4F0, 3);
6112 if (saved_7F0)
6113 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6114
6115 *data = fail;
ad4ebed0 6116 return fail;
1da177e4
LT
6117}
6118
6119/**
6120 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6121 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6122 * s2io_nic structure.
20346722 6123 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6124 * the driver.
6125 * Description:
6126 * This invokes the MemBist test of the card. We give around
6127 * 2 secs time for the Test to complete. If it's still not complete
20346722 6128 * within this peiod, we consider that the test failed.
1da177e4
LT
6129 * Return value:
6130 * 0 on success and -1 on failure.
6131 */
6132
d44570e4 6133static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6134{
6135 u8 bist = 0;
6136 int cnt = 0, ret = -1;
6137
6138 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6139 bist |= PCI_BIST_START;
6140 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6141
6142 while (cnt < 20) {
6143 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6144 if (!(bist & PCI_BIST_START)) {
6145 *data = (bist & PCI_BIST_CODE_MASK);
6146 ret = 0;
6147 break;
6148 }
6149 msleep(100);
6150 cnt++;
6151 }
6152
6153 return ret;
6154}
6155
6156/**
20346722 6157 * s2io-link_test - verifies the link state of the nic
6158 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6159 * s2io_nic structure.
6160 * @data: variable that returns the result of each of the test conducted by
6161 * the driver.
6162 * Description:
20346722 6163 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6164 * argument 'data' appropriately.
6165 * Return value:
6166 * 0 on success.
6167 */
6168
d44570e4 6169static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6170{
1ee6dd77 6171 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6172 u64 val64;
6173
6174 val64 = readq(&bar0->adapter_status);
d44570e4 6175 if (!(LINK_IS_UP(val64)))
1da177e4 6176 *data = 1;
c92ca04b
AR
6177 else
6178 *data = 0;
1da177e4 6179
b41477f3 6180 return *data;
1da177e4
LT
6181}
6182
6183/**
20346722 6184 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6185 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6186 * s2io_nic structure.
20346722 6187 * @data - variable that returns the result of each of the test
1da177e4
LT
6188 * conducted by the driver.
6189 * Description:
20346722 6190 * This is one of the offline test that tests the read and write
1da177e4
LT
6191 * access to the RldRam chip on the NIC.
6192 * Return value:
6193 * 0 on success.
6194 */
6195
d44570e4 6196static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6197{
1ee6dd77 6198 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6199 u64 val64;
ad4ebed0 6200 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6201
6202 val64 = readq(&bar0->adapter_control);
6203 val64 &= ~ADAPTER_ECC_EN;
6204 writeq(val64, &bar0->adapter_control);
6205
6206 val64 = readq(&bar0->mc_rldram_test_ctrl);
6207 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6208 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6209
6210 val64 = readq(&bar0->mc_rldram_mrs);
6211 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6212 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6213
6214 val64 |= MC_RLDRAM_MRS_ENABLE;
6215 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6216
6217 while (iteration < 2) {
6218 val64 = 0x55555555aaaa0000ULL;
d44570e4 6219 if (iteration == 1)
1da177e4 6220 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6221 writeq(val64, &bar0->mc_rldram_test_d0);
6222
6223 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6224 if (iteration == 1)
1da177e4 6225 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6226 writeq(val64, &bar0->mc_rldram_test_d1);
6227
6228 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6229 if (iteration == 1)
1da177e4 6230 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6231 writeq(val64, &bar0->mc_rldram_test_d2);
6232
ad4ebed0 6233 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6234 writeq(val64, &bar0->mc_rldram_test_add);
6235
d44570e4
JP
6236 val64 = MC_RLDRAM_TEST_MODE |
6237 MC_RLDRAM_TEST_WRITE |
6238 MC_RLDRAM_TEST_GO;
ad4ebed0 6239 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6240
6241 for (cnt = 0; cnt < 5; cnt++) {
6242 val64 = readq(&bar0->mc_rldram_test_ctrl);
6243 if (val64 & MC_RLDRAM_TEST_DONE)
6244 break;
6245 msleep(200);
6246 }
6247
6248 if (cnt == 5)
6249 break;
6250
ad4ebed0 6251 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6252 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6253
6254 for (cnt = 0; cnt < 5; cnt++) {
6255 val64 = readq(&bar0->mc_rldram_test_ctrl);
6256 if (val64 & MC_RLDRAM_TEST_DONE)
6257 break;
6258 msleep(500);
6259 }
6260
6261 if (cnt == 5)
6262 break;
6263
6264 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6265 if (!(val64 & MC_RLDRAM_TEST_PASS))
6266 test_fail = 1;
1da177e4
LT
6267
6268 iteration++;
6269 }
6270
ad4ebed0 6271 *data = test_fail;
1da177e4 6272
ad4ebed0 6273 /* Bring the adapter out of test mode */
6274 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6275
6276 return test_fail;
1da177e4
LT
6277}
6278
6279/**
6280 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6281 * @sp : private member of the device structure, which is a pointer to the
6282 * s2io_nic structure.
6283 * @ethtest : pointer to a ethtool command specific structure that will be
6284 * returned to the user.
20346722 6285 * @data : variable that returns the result of each of the test
1da177e4
LT
6286 * conducted by the driver.
6287 * Description:
6288 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6289 * the health of the card.
6290 * Return value:
6291 * void
6292 */
6293
6294static void s2io_ethtool_test(struct net_device *dev,
6295 struct ethtool_test *ethtest,
d44570e4 6296 uint64_t *data)
1da177e4 6297{
4cf1653a 6298 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6299 int orig_state = netif_running(sp->dev);
6300
6301 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6302 /* Offline Tests. */
20346722 6303 if (orig_state)
1da177e4 6304 s2io_close(sp->dev);
1da177e4
LT
6305
6306 if (s2io_register_test(sp, &data[0]))
6307 ethtest->flags |= ETH_TEST_FL_FAILED;
6308
6309 s2io_reset(sp);
1da177e4
LT
6310
6311 if (s2io_rldram_test(sp, &data[3]))
6312 ethtest->flags |= ETH_TEST_FL_FAILED;
6313
6314 s2io_reset(sp);
1da177e4
LT
6315
6316 if (s2io_eeprom_test(sp, &data[1]))
6317 ethtest->flags |= ETH_TEST_FL_FAILED;
6318
6319 if (s2io_bist_test(sp, &data[4]))
6320 ethtest->flags |= ETH_TEST_FL_FAILED;
6321
6322 if (orig_state)
6323 s2io_open(sp->dev);
6324
6325 data[2] = 0;
6326 } else {
6327 /* Online Tests. */
6328 if (!orig_state) {
d44570e4 6329 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6330 dev->name);
6331 data[0] = -1;
6332 data[1] = -1;
6333 data[2] = -1;
6334 data[3] = -1;
6335 data[4] = -1;
6336 }
6337
6338 if (s2io_link_test(sp, &data[2]))
6339 ethtest->flags |= ETH_TEST_FL_FAILED;
6340
6341 data[0] = 0;
6342 data[1] = 0;
6343 data[3] = 0;
6344 data[4] = 0;
6345 }
6346}
6347
6348static void s2io_get_ethtool_stats(struct net_device *dev,
6349 struct ethtool_stats *estats,
d44570e4 6350 u64 *tmp_stats)
1da177e4 6351{
8116f3cf 6352 int i = 0, k;
4cf1653a 6353 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6354 struct stat_block *stats = sp->mac_control.stats_info;
6355 struct swStat *swstats = &stats->sw_stat;
6356 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6357
7ba013ac 6358 s2io_updt_stats(sp);
541ae68f 6359 tmp_stats[i++] =
ffb5df6c
JP
6360 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6361 le32_to_cpu(stats->tmac_frms);
541ae68f 6362 tmp_stats[i++] =
ffb5df6c
JP
6363 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6364 le32_to_cpu(stats->tmac_data_octets);
6365 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6366 tmp_stats[i++] =
ffb5df6c
JP
6367 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6368 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6369 tmp_stats[i++] =
ffb5df6c
JP
6370 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6371 le32_to_cpu(stats->tmac_bcst_frms);
6372 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6373 tmp_stats[i++] =
ffb5df6c
JP
6374 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6375 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6376 tmp_stats[i++] =
ffb5df6c
JP
6377 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6378 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6379 tmp_stats[i++] =
ffb5df6c
JP
6380 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6381 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6382 tmp_stats[i++] =
ffb5df6c
JP
6383 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6384 le32_to_cpu(stats->tmac_any_err_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6386 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6387 tmp_stats[i++] =
ffb5df6c
JP
6388 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6389 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6390 tmp_stats[i++] =
ffb5df6c
JP
6391 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6392 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6393 tmp_stats[i++] =
ffb5df6c
JP
6394 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6395 le32_to_cpu(stats->tmac_icmp);
541ae68f 6396 tmp_stats[i++] =
ffb5df6c
JP
6397 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6398 le32_to_cpu(stats->tmac_rst_tcp);
6399 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6400 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6401 le32_to_cpu(stats->tmac_udp);
541ae68f 6402 tmp_stats[i++] =
ffb5df6c
JP
6403 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6405 tmp_stats[i++] =
ffb5df6c
JP
6406 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_data_octets);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6410 tmp_stats[i++] =
ffb5df6c
JP
6411 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6412 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6413 tmp_stats[i++] =
ffb5df6c
JP
6414 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6415 le32_to_cpu(stats->rmac_vld_bcst_frms);
6416 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6417 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6420 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6421 tmp_stats[i++] =
ffb5df6c
JP
6422 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6423 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6424 tmp_stats[i++] =
ffb5df6c
JP
6425 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6426 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6427 tmp_stats[i++] =
ffb5df6c
JP
6428 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6429 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6430 tmp_stats[i++] =
ffb5df6c
JP
6431 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6433 tmp_stats[i++] =
ffb5df6c
JP
6434 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6435 << 32 | le32_to_cpu(stats->rmac_drop_events);
6436 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6437 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6438 tmp_stats[i++] =
ffb5df6c
JP
6439 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6440 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6441 tmp_stats[i++] =
ffb5df6c
JP
6442 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6443 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6444 tmp_stats[i++] =
ffb5df6c
JP
6445 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6446 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6447 tmp_stats[i++] =
ffb5df6c
JP
6448 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6449 le32_to_cpu(stats->rmac_jabber_frms);
6450 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6451 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6452 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6453 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6454 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6455 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6456 tmp_stats[i++] =
ffb5df6c
JP
6457 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6458 le32_to_cpu(stats->rmac_ip);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6460 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6461 tmp_stats[i++] =
ffb5df6c
JP
6462 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6463 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6464 tmp_stats[i++] =
ffb5df6c
JP
6465 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6466 le32_to_cpu(stats->rmac_icmp);
6467 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6468 tmp_stats[i++] =
ffb5df6c
JP
6469 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6470 le32_to_cpu(stats->rmac_udp);
541ae68f 6471 tmp_stats[i++] =
ffb5df6c
JP
6472 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6473 le32_to_cpu(stats->rmac_err_drp_udp);
6474 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6475 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6476 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6477 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6478 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6479 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6480 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6481 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6482 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6483 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6484 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6485 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6486 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6487 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6488 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6489 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6490 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6491 tmp_stats[i++] =
ffb5df6c
JP
6492 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6493 le32_to_cpu(stats->rmac_pause_cnt);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6496 tmp_stats[i++] =
ffb5df6c
JP
6497 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6498 le32_to_cpu(stats->rmac_accepted_ip);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6500 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6513 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6514 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6515 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6516 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6517 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6518
6519 /* Enhanced statistics exist only for Hercules */
d44570e4 6520 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6521 tmp_stats[i++] =
ffb5df6c 6522 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6523 tmp_stats[i++] =
ffb5df6c 6524 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6525 tmp_stats[i++] =
ffb5df6c
JP
6526 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6527 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6528 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6529 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6530 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6531 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6532 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6533 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6534 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6535 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6536 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6537 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6538 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6539 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6540 }
6541
7ba013ac 6542 tmp_stats[i++] = 0;
ffb5df6c
JP
6543 tmp_stats[i++] = swstats->single_ecc_errs;
6544 tmp_stats[i++] = swstats->double_ecc_errs;
6545 tmp_stats[i++] = swstats->parity_err_cnt;
6546 tmp_stats[i++] = swstats->serious_err_cnt;
6547 tmp_stats[i++] = swstats->soft_reset_cnt;
6548 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6549 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6550 tmp_stats[i++] = swstats->ring_full_cnt[k];
6551 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6552 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6553 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6554 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6555 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6556 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6557 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6558 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6559 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6560 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6561 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6562 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6563 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6564 tmp_stats[i++] = swstats->sending_both;
6565 tmp_stats[i++] = swstats->outof_sequence_pkts;
6566 tmp_stats[i++] = swstats->flush_max_pkts;
6567 if (swstats->num_aggregations) {
6568 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6569 int count = 0;
6aa20a22 6570 /*
bd1034f0
AR
6571 * Since 64-bit divide does not work on all platforms,
6572 * do repeated subtraction.
6573 */
ffb5df6c
JP
6574 while (tmp >= swstats->num_aggregations) {
6575 tmp -= swstats->num_aggregations;
bd1034f0
AR
6576 count++;
6577 }
6578 tmp_stats[i++] = count;
d44570e4 6579 } else
bd1034f0 6580 tmp_stats[i++] = 0;
ffb5df6c
JP
6581 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6582 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6583 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6584 tmp_stats[i++] = swstats->mem_allocated;
6585 tmp_stats[i++] = swstats->mem_freed;
6586 tmp_stats[i++] = swstats->link_up_cnt;
6587 tmp_stats[i++] = swstats->link_down_cnt;
6588 tmp_stats[i++] = swstats->link_up_time;
6589 tmp_stats[i++] = swstats->link_down_time;
6590
6591 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6592 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6593 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6594 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6595 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6596
6597 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6598 tmp_stats[i++] = swstats->rx_abort_cnt;
6599 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6600 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6601 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6602 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6603 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6604 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6605 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6606 tmp_stats[i++] = swstats->tda_err_cnt;
6607 tmp_stats[i++] = swstats->pfc_err_cnt;
6608 tmp_stats[i++] = swstats->pcc_err_cnt;
6609 tmp_stats[i++] = swstats->tti_err_cnt;
6610 tmp_stats[i++] = swstats->tpa_err_cnt;
6611 tmp_stats[i++] = swstats->sm_err_cnt;
6612 tmp_stats[i++] = swstats->lso_err_cnt;
6613 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6614 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6615 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6616 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6617 tmp_stats[i++] = swstats->rc_err_cnt;
6618 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6619 tmp_stats[i++] = swstats->rpa_err_cnt;
6620 tmp_stats[i++] = swstats->rda_err_cnt;
6621 tmp_stats[i++] = swstats->rti_err_cnt;
6622 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6623}
6624
ac1f60db 6625static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6626{
d44570e4 6627 return XENA_REG_SPACE;
1da177e4
LT
6628}
6629
6630
d44570e4 6631static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6632{
4cf1653a 6633 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6634
d44570e4 6635 return sp->rx_csum;
1da177e4 6636}
ac1f60db
AB
6637
6638static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6639{
4cf1653a 6640 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6641
6642 if (data)
6643 sp->rx_csum = 1;
6644 else
6645 sp->rx_csum = 0;
6646
6647 return 0;
6648}
ac1f60db
AB
6649
6650static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6651{
d44570e4 6652 return XENA_EEPROM_SPACE;
1da177e4
LT
6653}
6654
b9f2c044 6655static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6656{
4cf1653a 6657 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6658
6659 switch (sset) {
6660 case ETH_SS_TEST:
6661 return S2IO_TEST_LEN;
6662 case ETH_SS_STATS:
d44570e4 6663 switch (sp->device_type) {
b9f2c044
JG
6664 case XFRAME_I_DEVICE:
6665 return XFRAME_I_STAT_LEN;
6666 case XFRAME_II_DEVICE:
6667 return XFRAME_II_STAT_LEN;
6668 default:
6669 return 0;
6670 }
6671 default:
6672 return -EOPNOTSUPP;
6673 }
1da177e4 6674}
ac1f60db
AB
6675
6676static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6677 u32 stringset, u8 *data)
1da177e4 6678{
fa1f0cb3 6679 int stat_size = 0;
4cf1653a 6680 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6681
1da177e4
LT
6682 switch (stringset) {
6683 case ETH_SS_TEST:
6684 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6685 break;
6686 case ETH_SS_STATS:
fa1f0cb3 6687 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6688 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6689 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6690 memcpy(data + stat_size,
d44570e4
JP
6691 &ethtool_enhanced_stats_keys,
6692 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6693 stat_size += sizeof(ethtool_enhanced_stats_keys);
6694 }
6695
6696 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6697 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6698 }
6699}
1da177e4 6700
ac1f60db 6701static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6702{
6703 if (data)
6704 dev->features |= NETIF_F_IP_CSUM;
6705 else
6706 dev->features &= ~NETIF_F_IP_CSUM;
6707
6708 return 0;
6709}
6710
75c30b13
AR
6711static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6712{
6713 return (dev->features & NETIF_F_TSO) != 0;
6714}
958de193 6715
75c30b13
AR
6716static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6717{
6718 if (data)
6719 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6720 else
6721 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6722
6723 return 0;
6724}
1da177e4 6725
958de193
JM
6726static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6727{
6728 struct s2io_nic *sp = netdev_priv(dev);
6729 int rc = 0;
6730 int changed = 0;
6731
6732 if (data & ~ETH_FLAG_LRO)
97d1935a 6733 return -EINVAL;
958de193
JM
6734
6735 if (data & ETH_FLAG_LRO) {
6736 if (lro_enable) {
6737 if (!(dev->features & NETIF_F_LRO)) {
6738 dev->features |= NETIF_F_LRO;
6739 changed = 1;
6740 }
6741 } else
6742 rc = -EINVAL;
6743 } else if (dev->features & NETIF_F_LRO) {
6744 dev->features &= ~NETIF_F_LRO;
6745 changed = 1;
6746 }
6747
6748 if (changed && netif_running(dev)) {
6749 s2io_stop_all_tx_queue(sp);
6750 s2io_card_down(sp);
6751 sp->lro = !!(dev->features & NETIF_F_LRO);
6752 rc = s2io_card_up(sp);
6753 if (rc)
6754 s2io_reset(sp);
6755 else
6756 s2io_start_all_tx_queue(sp);
6757 }
6758
6759 return rc;
6760}
6761
7282d491 6762static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6763 .get_settings = s2io_ethtool_gset,
6764 .set_settings = s2io_ethtool_sset,
6765 .get_drvinfo = s2io_ethtool_gdrvinfo,
6766 .get_regs_len = s2io_ethtool_get_regs_len,
6767 .get_regs = s2io_ethtool_gregs,
6768 .get_link = ethtool_op_get_link,
6769 .get_eeprom_len = s2io_get_eeprom_len,
6770 .get_eeprom = s2io_ethtool_geeprom,
6771 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6772 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6773 .get_pauseparam = s2io_ethtool_getpause_data,
6774 .set_pauseparam = s2io_ethtool_setpause_data,
6775 .get_rx_csum = s2io_ethtool_get_rx_csum,
6776 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6777 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
958de193
JM
6778 .set_flags = s2io_ethtool_set_flags,
6779 .get_flags = ethtool_op_get_flags,
1da177e4 6780 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6781 .get_tso = s2io_ethtool_op_get_tso,
6782 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6783 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6784 .self_test = s2io_ethtool_test,
6785 .get_strings = s2io_ethtool_get_strings,
6786 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6787 .get_ethtool_stats = s2io_get_ethtool_stats,
6788 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6789};
6790
6791/**
20346722 6792 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6793 * @dev : Device pointer.
6794 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6795 * a proprietary structure used to pass information to the driver.
6796 * @cmd : This is used to distinguish between the different commands that
6797 * can be passed to the IOCTL functions.
6798 * Description:
20346722 6799 * Currently there are no special functionality supported in IOCTL, hence
6800 * function always return EOPNOTSUPPORTED
1da177e4
LT
6801 */
6802
ac1f60db 6803static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6804{
6805 return -EOPNOTSUPP;
6806}
6807
6808/**
6809 * s2io_change_mtu - entry point to change MTU size for the device.
6810 * @dev : device pointer.
6811 * @new_mtu : the new MTU size for the device.
6812 * Description: A driver entry point to change MTU size for the device.
6813 * Before changing the MTU the device must be stopped.
6814 * Return value:
6815 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6816 * file on failure.
6817 */
6818
ac1f60db 6819static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6820{
4cf1653a 6821 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6822 int ret = 0;
1da177e4
LT
6823
6824 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6825 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6826 return -EPERM;
6827 }
6828
1da177e4 6829 dev->mtu = new_mtu;
d8892c6e 6830 if (netif_running(dev)) {
3a3d5756 6831 s2io_stop_all_tx_queue(sp);
e6a8fee2 6832 s2io_card_down(sp);
9f74ffde
SH
6833 ret = s2io_card_up(sp);
6834 if (ret) {
d8892c6e 6835 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6836 __func__);
9f74ffde 6837 return ret;
d8892c6e 6838 }
3a3d5756 6839 s2io_wake_all_tx_queue(sp);
d8892c6e 6840 } else { /* Device is down */
1ee6dd77 6841 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e 6842 u64 val64 = new_mtu;
6843
6844 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6845 }
1da177e4 6846
9f74ffde 6847 return ret;
1da177e4
LT
6848}
6849
1da177e4
LT
6850/**
6851 * s2io_set_link - Set the LInk status
6852 * @data: long pointer to device private structue
6853 * Description: Sets the link status for the adapter
6854 */
6855
c4028958 6856static void s2io_set_link(struct work_struct *work)
1da177e4 6857{
d44570e4
JP
6858 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6859 set_link_task);
1da177e4 6860 struct net_device *dev = nic->dev;
1ee6dd77 6861 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6862 register u64 val64;
6863 u16 subid;
6864
22747d6b
FR
6865 rtnl_lock();
6866
6867 if (!netif_running(dev))
6868 goto out_unlock;
6869
92b84437 6870 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6871 /* The card is being reset, no point doing anything */
22747d6b 6872 goto out_unlock;
1da177e4
LT
6873 }
6874
6875 subid = nic->pdev->subsystem_device;
a371a07d 6876 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6877 /*
6878 * Allow a small delay for the NICs self initiated
6879 * cleanup to complete.
6880 */
6881 msleep(100);
6882 }
1da177e4
LT
6883
6884 val64 = readq(&bar0->adapter_status);
19a60522
SS
6885 if (LINK_IS_UP(val64)) {
6886 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6887 if (verify_xena_quiescence(nic)) {
6888 val64 = readq(&bar0->adapter_control);
6889 val64 |= ADAPTER_CNTL_EN;
1da177e4 6890 writeq(val64, &bar0->adapter_control);
19a60522 6891 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6892 nic->device_type, subid)) {
19a60522
SS
6893 val64 = readq(&bar0->gpio_control);
6894 val64 |= GPIO_CTRL_GPIO_0;
6895 writeq(val64, &bar0->gpio_control);
6896 val64 = readq(&bar0->gpio_control);
6897 } else {
6898 val64 |= ADAPTER_LED_ON;
6899 writeq(val64, &bar0->adapter_control);
a371a07d 6900 }
f957bcf0 6901 nic->device_enabled_once = true;
19a60522 6902 } else {
9e39f7c5
JP
6903 DBG_PRINT(ERR_DBG,
6904 "%s: Error: device is not Quiescent\n",
6905 dev->name);
3a3d5756 6906 s2io_stop_all_tx_queue(nic);
1da177e4 6907 }
19a60522 6908 }
92c48799
SS
6909 val64 = readq(&bar0->adapter_control);
6910 val64 |= ADAPTER_LED_ON;
6911 writeq(val64, &bar0->adapter_control);
6912 s2io_link(nic, LINK_UP);
19a60522
SS
6913 } else {
6914 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6915 subid)) {
6916 val64 = readq(&bar0->gpio_control);
6917 val64 &= ~GPIO_CTRL_GPIO_0;
6918 writeq(val64, &bar0->gpio_control);
6919 val64 = readq(&bar0->gpio_control);
1da177e4 6920 }
92c48799
SS
6921 /* turn off LED */
6922 val64 = readq(&bar0->adapter_control);
d44570e4 6923 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6924 writeq(val64, &bar0->adapter_control);
19a60522 6925 s2io_link(nic, LINK_DOWN);
1da177e4 6926 }
92b84437 6927 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6928
6929out_unlock:
d8d70caf 6930 rtnl_unlock();
1da177e4
LT
6931}
6932
1ee6dd77 6933static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6934 struct buffAdd *ba,
6935 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6936 u64 *temp2, int size)
5d3213cc
AR
6937{
6938 struct net_device *dev = sp->dev;
491abf25 6939 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6940
6941 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6942 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6943 /* allocate skb */
6944 if (*skb) {
6945 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6946 /*
6947 * As Rx frame are not going to be processed,
6948 * using same mapped address for the Rxd
6949 * buffer pointer
6950 */
6d517a27 6951 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6952 } else {
6953 *skb = dev_alloc_skb(size);
6954 if (!(*skb)) {
9e39f7c5
JP
6955 DBG_PRINT(INFO_DBG,
6956 "%s: Out of memory to allocate %s\n",
6957 dev->name, "1 buf mode SKBs");
ffb5df6c 6958 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6959 return -ENOMEM ;
6960 }
ffb5df6c 6961 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6962 /* storing the mapped addr in a temp variable
6963 * such it will be used for next rxd whose
6964 * Host Control is NULL
6965 */
6d517a27 6966 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6967 pci_map_single(sp->pdev, (*skb)->data,
6968 size - NET_IP_ALIGN,
6969 PCI_DMA_FROMDEVICE);
8d8bb39b 6970 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6971 goto memalloc_failed;
5d3213cc
AR
6972 rxdp->Host_Control = (unsigned long) (*skb);
6973 }
6974 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6975 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6976 /* Two buffer Mode */
6977 if (*skb) {
6d517a27
VP
6978 rxdp3->Buffer2_ptr = *temp2;
6979 rxdp3->Buffer0_ptr = *temp0;
6980 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6981 } else {
6982 *skb = dev_alloc_skb(size);
2ceaac75 6983 if (!(*skb)) {
9e39f7c5
JP
6984 DBG_PRINT(INFO_DBG,
6985 "%s: Out of memory to allocate %s\n",
6986 dev->name,
6987 "2 buf mode SKBs");
ffb5df6c 6988 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6989 return -ENOMEM;
6990 }
ffb5df6c 6991 stats->mem_allocated += (*skb)->truesize;
6d517a27 6992 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6993 pci_map_single(sp->pdev, (*skb)->data,
6994 dev->mtu + 4,
6995 PCI_DMA_FROMDEVICE);
8d8bb39b 6996 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6997 goto memalloc_failed;
6d517a27 6998 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6999 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
7000 PCI_DMA_FROMDEVICE);
8d8bb39b 7001 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
7002 rxdp3->Buffer0_ptr)) {
7003 pci_unmap_single(sp->pdev,
7004 (dma_addr_t)rxdp3->Buffer2_ptr,
7005 dev->mtu + 4,
7006 PCI_DMA_FROMDEVICE);
491abf25
VP
7007 goto memalloc_failed;
7008 }
5d3213cc
AR
7009 rxdp->Host_Control = (unsigned long) (*skb);
7010
7011 /* Buffer-1 will be dummy buffer not used */
6d517a27 7012 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 7013 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 7014 PCI_DMA_FROMDEVICE);
8d8bb39b 7015 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
7016 rxdp3->Buffer1_ptr)) {
7017 pci_unmap_single(sp->pdev,
7018 (dma_addr_t)rxdp3->Buffer0_ptr,
7019 BUF0_LEN, PCI_DMA_FROMDEVICE);
7020 pci_unmap_single(sp->pdev,
7021 (dma_addr_t)rxdp3->Buffer2_ptr,
7022 dev->mtu + 4,
7023 PCI_DMA_FROMDEVICE);
491abf25
VP
7024 goto memalloc_failed;
7025 }
5d3213cc
AR
7026 }
7027 }
7028 return 0;
d44570e4
JP
7029
7030memalloc_failed:
7031 stats->pci_map_fail_cnt++;
7032 stats->mem_freed += (*skb)->truesize;
7033 dev_kfree_skb(*skb);
7034 return -ENOMEM;
5d3213cc 7035}
491abf25 7036
1ee6dd77
RB
7037static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7038 int size)
5d3213cc
AR
7039{
7040 struct net_device *dev = sp->dev;
7041 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 7042 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
7043 } else if (sp->rxd_mode == RXD_MODE_3B) {
7044 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7045 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 7046 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
7047 }
7048}
7049
1ee6dd77 7050static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
7051{
7052 int i, j, k, blk_cnt = 0, size;
5d3213cc 7053 struct config_param *config = &sp->config;
ffb5df6c 7054 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 7055 struct net_device *dev = sp->dev;
1ee6dd77 7056 struct RxD_t *rxdp = NULL;
5d3213cc 7057 struct sk_buff *skb = NULL;
1ee6dd77 7058 struct buffAdd *ba = NULL;
5d3213cc
AR
7059 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7060
7061 /* Calculate the size based on ring mode */
7062 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7063 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7064 if (sp->rxd_mode == RXD_MODE_1)
7065 size += NET_IP_ALIGN;
7066 else if (sp->rxd_mode == RXD_MODE_3B)
7067 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
7068
7069 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7070 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7071 struct ring_info *ring = &mac_control->rings[i];
7072
d44570e4 7073 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
7074
7075 for (j = 0; j < blk_cnt; j++) {
7076 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7077 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7078 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7079 ba = &ring->ba[j][k];
d44570e4
JP
7080 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7081 (u64 *)&temp0_64,
7082 (u64 *)&temp1_64,
7083 (u64 *)&temp2_64,
7084 size) == -ENOMEM) {
ac1f90d6
SS
7085 return 0;
7086 }
5d3213cc
AR
7087
7088 set_rxd_buffer_size(sp, rxdp, size);
7089 wmb();
7090 /* flip the Ownership bit to Hardware */
7091 rxdp->Control_1 |= RXD_OWN_XENA;
7092 }
7093 }
7094 }
7095 return 0;
7096
7097}
7098
d44570e4 7099static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7100{
e6a8fee2 7101 int ret = 0;
c92ca04b 7102 struct net_device *dev = sp->dev;
e6a8fee2 7103 int err = 0;
1da177e4 7104
eaae7f72 7105 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7106 ret = s2io_enable_msi_x(sp);
7107 if (ret) {
7108 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7109 sp->config.intr_type = INTA;
20346722 7110 }
1da177e4 7111
d44570e4
JP
7112 /*
7113 * Store the values of the MSIX table in
7114 * the struct s2io_nic structure
7115 */
e6a8fee2 7116 store_xmsi_data(sp);
c92ca04b 7117
e6a8fee2 7118 /* After proper initialization of H/W, register ISR */
eaae7f72 7119 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7120 int i, msix_rx_cnt = 0;
7121
f61e0a35
SH
7122 for (i = 0; i < sp->num_entries; i++) {
7123 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7124 if (sp->s2io_entries[i].type ==
d44570e4 7125 MSIX_RING_TYPE) {
ac731ab6
SH
7126 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7127 dev->name, i);
7128 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7129 s2io_msix_ring_handle,
7130 0,
7131 sp->desc[i],
7132 sp->s2io_entries[i].arg);
ac731ab6 7133 } else if (sp->s2io_entries[i].type ==
d44570e4 7134 MSIX_ALARM_TYPE) {
ac731ab6 7135 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7136 dev->name, i);
ac731ab6 7137 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7138 s2io_msix_fifo_handle,
7139 0,
7140 sp->desc[i],
7141 sp->s2io_entries[i].arg);
ac731ab6 7142
fb6a825b 7143 }
ac731ab6
SH
7144 /* if either data or addr is zero print it. */
7145 if (!(sp->msix_info[i].addr &&
d44570e4 7146 sp->msix_info[i].data)) {
ac731ab6 7147 DBG_PRINT(ERR_DBG,
d44570e4
JP
7148 "%s @Addr:0x%llx Data:0x%llx\n",
7149 sp->desc[i],
7150 (unsigned long long)
7151 sp->msix_info[i].addr,
7152 (unsigned long long)
7153 ntohl(sp->msix_info[i].data));
ac731ab6 7154 } else
fb6a825b 7155 msix_rx_cnt++;
ac731ab6
SH
7156 if (err) {
7157 remove_msix_isr(sp);
7158
7159 DBG_PRINT(ERR_DBG,
d44570e4
JP
7160 "%s:MSI-X-%d registration "
7161 "failed\n", dev->name, i);
ac731ab6
SH
7162
7163 DBG_PRINT(ERR_DBG,
d44570e4
JP
7164 "%s: Defaulting to INTA\n",
7165 dev->name);
ac731ab6
SH
7166 sp->config.intr_type = INTA;
7167 break;
fb6a825b 7168 }
ac731ab6
SH
7169 sp->s2io_entries[i].in_use =
7170 MSIX_REGISTERED_SUCCESS;
c92ca04b 7171 }
e6a8fee2 7172 }
18b2b7bd 7173 if (!err) {
6cef2b8e 7174 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7175 DBG_PRINT(INFO_DBG,
7176 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7177 }
e6a8fee2 7178 }
eaae7f72 7179 if (sp->config.intr_type == INTA) {
d44570e4
JP
7180 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7181 sp->name, dev);
e6a8fee2
AR
7182 if (err) {
7183 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7184 dev->name);
7185 return -1;
7186 }
7187 }
7188 return 0;
7189}
d44570e4
JP
7190
7191static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7192{
18b2b7bd
SH
7193 if (sp->config.intr_type == MSI_X)
7194 remove_msix_isr(sp);
7195 else
7196 remove_inta_isr(sp);
e6a8fee2
AR
7197}
7198
d44570e4 7199static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7200{
7201 int cnt = 0;
1ee6dd77 7202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7203 register u64 val64 = 0;
5f490c96
SH
7204 struct config_param *config;
7205 config = &sp->config;
e6a8fee2 7206
9f74ffde
SH
7207 if (!is_s2io_card_up(sp))
7208 return;
7209
e6a8fee2
AR
7210 del_timer_sync(&sp->alarm_timer);
7211 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7212 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7213 msleep(50);
92b84437 7214 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7215
5f490c96 7216 /* Disable napi */
f61e0a35
SH
7217 if (sp->config.napi) {
7218 int off = 0;
7219 if (config->intr_type == MSI_X) {
7220 for (; off < sp->config.rx_ring_num; off++)
7221 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7222 }
f61e0a35
SH
7223 else
7224 napi_disable(&sp->napi);
7225 }
5f490c96 7226
e6a8fee2 7227 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7228 if (do_io)
7229 stop_nic(sp);
e6a8fee2
AR
7230
7231 s2io_rem_isr(sp);
1da177e4 7232
01e16faa
SH
7233 /* stop the tx queue, indicate link down */
7234 s2io_link(sp, LINK_DOWN);
7235
1da177e4 7236 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7237 while (do_io) {
5d3213cc
AR
7238 /* As per the HW requirement we need to replenish the
7239 * receive buffer to avoid the ring bump. Since there is
7240 * no intention of processing the Rx frame at this pointwe are
7241 * just settting the ownership bit of rxd in Each Rx
7242 * ring to HW and set the appropriate buffer size
7243 * based on the ring mode
7244 */
7245 rxd_owner_bit_reset(sp);
7246
1da177e4 7247 val64 = readq(&bar0->adapter_status);
19a60522 7248 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7249 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7250 break;
1da177e4
LT
7251 }
7252
7253 msleep(50);
7254 cnt++;
7255 if (cnt == 10) {
9e39f7c5
JP
7256 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7257 "adapter status reads 0x%llx\n",
d44570e4 7258 (unsigned long long)val64);
1da177e4
LT
7259 break;
7260 }
d796fdb7
LV
7261 }
7262 if (do_io)
7263 s2io_reset(sp);
1da177e4 7264
7ba013ac 7265 /* Free all Tx buffers */
1da177e4 7266 free_tx_buffers(sp);
7ba013ac 7267
7268 /* Free all Rx buffers */
1da177e4
LT
7269 free_rx_buffers(sp);
7270
92b84437 7271 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7272}
7273
d44570e4 7274static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7275{
7276 do_s2io_card_down(sp, 1);
7277}
7278
d44570e4 7279static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7280{
cc6e7c44 7281 int i, ret = 0;
1da177e4 7282 struct config_param *config;
ffb5df6c 7283 struct mac_info *mac_control;
d44570e4 7284 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7285 u16 interruptible;
1da177e4
LT
7286
7287 /* Initialize the H/W I/O registers */
9f74ffde
SH
7288 ret = init_nic(sp);
7289 if (ret != 0) {
1da177e4
LT
7290 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7291 dev->name);
9f74ffde
SH
7292 if (ret != -EIO)
7293 s2io_reset(sp);
7294 return ret;
1da177e4
LT
7295 }
7296
20346722 7297 /*
7298 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7299 * Rx ring and initializing buffers into 30 Rx blocks
7300 */
1da177e4 7301 config = &sp->config;
ffb5df6c 7302 mac_control = &sp->mac_control;
1da177e4
LT
7303
7304 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7305 struct ring_info *ring = &mac_control->rings[i];
7306
7307 ring->mtu = dev->mtu;
958de193 7308 ring->lro = sp->lro;
13d866a9 7309 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7310 if (ret) {
1da177e4
LT
7311 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7312 dev->name);
7313 s2io_reset(sp);
7314 free_rx_buffers(sp);
7315 return -ENOMEM;
7316 }
7317 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7318 ring->rx_bufs_left);
1da177e4 7319 }
5f490c96
SH
7320
7321 /* Initialise napi */
f61e0a35 7322 if (config->napi) {
f61e0a35
SH
7323 if (config->intr_type == MSI_X) {
7324 for (i = 0; i < sp->config.rx_ring_num; i++)
7325 napi_enable(&sp->mac_control.rings[i].napi);
7326 } else {
7327 napi_enable(&sp->napi);
7328 }
7329 }
5f490c96 7330
19a60522
SS
7331 /* Maintain the state prior to the open */
7332 if (sp->promisc_flg)
7333 sp->promisc_flg = 0;
7334 if (sp->m_cast_flg) {
7335 sp->m_cast_flg = 0;
d44570e4 7336 sp->all_multi_pos = 0;
19a60522 7337 }
1da177e4
LT
7338
7339 /* Setting its receive mode */
7340 s2io_set_multicast(dev);
7341
7d3d0439 7342 if (sp->lro) {
b41477f3 7343 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7344 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7345 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7346 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7347 sp->lro_max_aggr_per_sess = lro_max_pkts;
7348 }
7349
1da177e4
LT
7350 /* Enable Rx Traffic and interrupts on the NIC */
7351 if (start_nic(sp)) {
7352 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7353 s2io_reset(sp);
e6a8fee2
AR
7354 free_rx_buffers(sp);
7355 return -ENODEV;
7356 }
7357
7358 /* Add interrupt service routine */
7359 if (s2io_add_isr(sp) != 0) {
eaae7f72 7360 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7361 s2io_rem_isr(sp);
7362 s2io_reset(sp);
1da177e4
LT
7363 free_rx_buffers(sp);
7364 return -ENODEV;
7365 }
7366
25fff88e 7367 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7368
01e16faa
SH
7369 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7370
e6a8fee2 7371 /* Enable select interrupts */
9caab458 7372 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7373 if (sp->config.intr_type != INTA) {
7374 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7375 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7376 } else {
e6a8fee2 7377 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7378 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7379 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7380 }
7381
1da177e4
LT
7382 return 0;
7383}
7384
20346722 7385/**
1da177e4
LT
7386 * s2io_restart_nic - Resets the NIC.
7387 * @data : long pointer to the device private structure
7388 * Description:
7389 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7390 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7391 * the run time of the watch dog routine which is run holding a
7392 * spin lock.
7393 */
7394
c4028958 7395static void s2io_restart_nic(struct work_struct *work)
1da177e4 7396{
1ee6dd77 7397 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7398 struct net_device *dev = sp->dev;
1da177e4 7399
22747d6b
FR
7400 rtnl_lock();
7401
7402 if (!netif_running(dev))
7403 goto out_unlock;
7404
e6a8fee2 7405 s2io_card_down(sp);
1da177e4 7406 if (s2io_card_up(sp)) {
d44570e4 7407 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7408 }
3a3d5756 7409 s2io_wake_all_tx_queue(sp);
d44570e4 7410 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7411out_unlock:
7412 rtnl_unlock();
1da177e4
LT
7413}
7414
20346722 7415/**
7416 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7417 * @dev : Pointer to net device structure
7418 * Description:
7419 * This function is triggered if the Tx Queue is stopped
7420 * for a pre-defined amount of time when the Interface is still up.
7421 * If the Interface is jammed in such a situation, the hardware is
7422 * reset (by s2io_close) and restarted again (by s2io_open) to
7423 * overcome any problem that might have been caused in the hardware.
7424 * Return value:
7425 * void
7426 */
7427
7428static void s2io_tx_watchdog(struct net_device *dev)
7429{
4cf1653a 7430 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7431 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7432
7433 if (netif_carrier_ok(dev)) {
ffb5df6c 7434 swstats->watchdog_timer_cnt++;
1da177e4 7435 schedule_work(&sp->rst_timer_task);
ffb5df6c 7436 swstats->soft_reset_cnt++;
1da177e4
LT
7437 }
7438}
7439
7440/**
7441 * rx_osm_handler - To perform some OS related operations on SKB.
7442 * @sp: private member of the device structure,pointer to s2io_nic structure.
7443 * @skb : the socket buffer pointer.
7444 * @len : length of the packet
7445 * @cksum : FCS checksum of the frame.
7446 * @ring_no : the ring from which this RxD was extracted.
20346722 7447 * Description:
b41477f3 7448 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7449 * some OS related operations on the SKB before passing it to the upper
7450 * layers. It mainly checks if the checksum is OK, if so adds it to the
7451 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7452 * to the upper layer. If the checksum is wrong, it increments the Rx
7453 * packet error count, frees the SKB and returns error.
7454 * Return value:
7455 * SUCCESS on success and -1 on failure.
7456 */
1ee6dd77 7457static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7458{
1ee6dd77 7459 struct s2io_nic *sp = ring_data->nic;
d44570e4 7460 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7461 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7462 ((unsigned long)rxdp->Host_Control);
20346722 7463 int ring_no = ring_data->ring_no;
1da177e4 7464 u16 l3_csum, l4_csum;
863c11a9 7465 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7466 struct lro *uninitialized_var(lro);
f9046eb3 7467 u8 err_mask;
ffb5df6c 7468 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7469
20346722 7470 skb->dev = dev;
c92ca04b 7471
863c11a9 7472 if (err) {
bd1034f0 7473 /* Check for parity error */
d44570e4 7474 if (err & 0x1)
ffb5df6c 7475 swstats->parity_err_cnt++;
d44570e4 7476
f9046eb3 7477 err_mask = err >> 48;
d44570e4
JP
7478 switch (err_mask) {
7479 case 1:
ffb5df6c 7480 swstats->rx_parity_err_cnt++;
491976b2
SH
7481 break;
7482
d44570e4 7483 case 2:
ffb5df6c 7484 swstats->rx_abort_cnt++;
491976b2
SH
7485 break;
7486
d44570e4 7487 case 3:
ffb5df6c 7488 swstats->rx_parity_abort_cnt++;
491976b2
SH
7489 break;
7490
d44570e4 7491 case 4:
ffb5df6c 7492 swstats->rx_rda_fail_cnt++;
491976b2
SH
7493 break;
7494
d44570e4 7495 case 5:
ffb5df6c 7496 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7497 break;
7498
d44570e4 7499 case 6:
ffb5df6c 7500 swstats->rx_fcs_err_cnt++;
491976b2 7501 break;
bd1034f0 7502
d44570e4 7503 case 7:
ffb5df6c 7504 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7505 break;
7506
d44570e4 7507 case 8:
ffb5df6c 7508 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7509 break;
7510
d44570e4 7511 case 15:
ffb5df6c 7512 swstats->rx_unkn_err_cnt++;
491976b2
SH
7513 break;
7514 }
863c11a9 7515 /*
d44570e4
JP
7516 * Drop the packet if bad transfer code. Exception being
7517 * 0x5, which could be due to unsupported IPv6 extension header.
7518 * In this case, we let stack handle the packet.
7519 * Note that in this case, since checksum will be incorrect,
7520 * stack will validate the same.
7521 */
f9046eb3
OH
7522 if (err_mask != 0x5) {
7523 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7524 dev->name, err_mask);
dc56e634 7525 dev->stats.rx_crc_errors++;
ffb5df6c 7526 swstats->mem_freed
491976b2 7527 += skb->truesize;
863c11a9 7528 dev_kfree_skb(skb);
0425b46a 7529 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7530 rxdp->Host_Control = 0;
7531 return 0;
7532 }
20346722 7533 }
1da177e4 7534
20346722 7535 rxdp->Host_Control = 0;
da6971d8
AR
7536 if (sp->rxd_mode == RXD_MODE_1) {
7537 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7538
da6971d8 7539 skb_put(skb, len);
6d517a27 7540 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7541 int get_block = ring_data->rx_curr_get_info.block_index;
7542 int get_off = ring_data->rx_curr_get_info.offset;
7543 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7544 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7545 unsigned char *buff = skb_push(skb, buf0_len);
7546
1ee6dd77 7547 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8 7548 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7549 skb_put(skb, buf2_len);
da6971d8 7550 }
20346722 7551
d44570e4
JP
7552 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7553 ((!ring_data->lro) ||
7554 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722 7555 (sp->rx_csum)) {
7556 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7557 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7558 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7559 /*
1da177e4
LT
7560 * NIC verifies if the Checksum of the received
7561 * frame is Ok or not and accordingly returns
7562 * a flag in the RxD.
7563 */
7564 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7565 if (ring_data->lro) {
7d3d0439
RA
7566 u32 tcp_len;
7567 u8 *tcp;
7568 int ret = 0;
7569
0425b46a 7570 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7571 skb->data, &tcp,
7572 &tcp_len, &lro,
7573 rxdp, sp);
7d3d0439 7574 switch (ret) {
d44570e4
JP
7575 case 3: /* Begin anew */
7576 lro->parent = skb;
7577 goto aggregate;
7578 case 1: /* Aggregate */
7579 lro_append_pkt(sp, lro, skb, tcp_len);
7580 goto aggregate;
7581 case 4: /* Flush session */
7582 lro_append_pkt(sp, lro, skb, tcp_len);
7583 queue_rx_frame(lro->parent,
7584 lro->vlan_tag);
7585 clear_lro_session(lro);
ffb5df6c 7586 swstats->flush_max_pkts++;
d44570e4
JP
7587 goto aggregate;
7588 case 2: /* Flush both */
7589 lro->parent->data_len = lro->frags_len;
ffb5df6c 7590 swstats->sending_both++;
d44570e4
JP
7591 queue_rx_frame(lro->parent,
7592 lro->vlan_tag);
7593 clear_lro_session(lro);
7594 goto send_up;
7595 case 0: /* sessions exceeded */
7596 case -1: /* non-TCP or not L2 aggregatable */
7597 case 5: /*
7598 * First pkt in session not
7599 * L3/L4 aggregatable
7600 */
7601 break;
7602 default:
7603 DBG_PRINT(ERR_DBG,
7604 "%s: Samadhana!!\n",
7605 __func__);
7606 BUG();
7d3d0439
RA
7607 }
7608 }
1da177e4 7609 } else {
20346722 7610 /*
7611 * Packet with erroneous checksum, let the
1da177e4
LT
7612 * upper layers deal with it.
7613 */
7614 skb->ip_summed = CHECKSUM_NONE;
7615 }
cdb5bf02 7616 } else
1da177e4 7617 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7618
ffb5df6c 7619 swstats->mem_freed += skb->truesize;
7d3d0439 7620send_up:
0c8dfc83 7621 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7622 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7623aggregate:
0425b46a 7624 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7625 return SUCCESS;
7626}
7627
7628/**
7629 * s2io_link - stops/starts the Tx queue.
7630 * @sp : private member of the device structure, which is a pointer to the
7631 * s2io_nic structure.
7632 * @link : inidicates whether link is UP/DOWN.
7633 * Description:
7634 * This function stops/starts the Tx queue depending on whether the link
20346722 7635 * status of the NIC is is down or up. This is called by the Alarm
7636 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7637 * Return value:
7638 * void.
7639 */
7640
d44570e4 7641static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7642{
d44570e4 7643 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7644 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7645
7646 if (link != sp->last_link_state) {
b7c5678f 7647 init_tti(sp, link);
1da177e4
LT
7648 if (link == LINK_DOWN) {
7649 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7650 s2io_stop_all_tx_queue(sp);
1da177e4 7651 netif_carrier_off(dev);
ffb5df6c
JP
7652 if (swstats->link_up_cnt)
7653 swstats->link_up_time =
7654 jiffies - sp->start_time;
7655 swstats->link_down_cnt++;
1da177e4
LT
7656 } else {
7657 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7658 if (swstats->link_down_cnt)
7659 swstats->link_down_time =
d44570e4 7660 jiffies - sp->start_time;
ffb5df6c 7661 swstats->link_up_cnt++;
1da177e4 7662 netif_carrier_on(dev);
3a3d5756 7663 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7664 }
7665 }
7666 sp->last_link_state = link;
491976b2 7667 sp->start_time = jiffies;
1da177e4
LT
7668}
7669
20346722 7670/**
7671 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7672 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7673 * s2io_nic structure.
7674 * Description:
7675 * This function initializes a few of the PCI and PCI-X configuration registers
7676 * with recommended values.
7677 * Return value:
7678 * void
7679 */
7680
d44570e4 7681static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7682{
20346722 7683 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7684
7685 /* Enable Data Parity Error Recovery in PCI-X command register. */
7686 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7687 &(pcix_cmd));
1da177e4 7688 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7689 (pcix_cmd | 1));
1da177e4 7690 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7691 &(pcix_cmd));
1da177e4
LT
7692
7693 /* Set the PErr Response bit in PCI command register. */
7694 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7695 pci_write_config_word(sp->pdev, PCI_COMMAND,
7696 (pci_cmd | PCI_COMMAND_PARITY));
7697 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7698}
7699
3a3d5756 7700static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7701 u8 *dev_multiq)
9dc737a7 7702{
d44570e4 7703 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7704 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7705 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7706
7707 if (tx_fifo_num < 1)
7708 tx_fifo_num = 1;
7709 else
7710 tx_fifo_num = MAX_TX_FIFOS;
7711
9e39f7c5 7712 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7713 }
2fda096d 7714
6cfc482b 7715 if (multiq)
3a3d5756 7716 *dev_multiq = multiq;
6cfc482b
SH
7717
7718 if (tx_steering_type && (1 == tx_fifo_num)) {
7719 if (tx_steering_type != TX_DEFAULT_STEERING)
7720 DBG_PRINT(ERR_DBG,
9e39f7c5 7721 "Tx steering is not supported with "
d44570e4 7722 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7723 tx_steering_type = NO_STEERING;
7724 }
7725
7726 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7727 (tx_steering_type > TX_DEFAULT_STEERING)) {
7728 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7729 "Requested transmit steering not supported\n");
7730 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7731 tx_steering_type = NO_STEERING;
3a3d5756
SH
7732 }
7733
0425b46a 7734 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7735 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7736 "Requested number of rx rings not supported\n");
7737 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7738 MAX_RX_RINGS);
0425b46a 7739 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7740 }
0425b46a 7741
eccb8628 7742 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7743 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7744 "Defaulting to INTA\n");
7745 *dev_intr_type = INTA;
7746 }
596c5c97 7747
9dc737a7 7748 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7749 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7750 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7751 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7752 "Defaulting to INTA\n");
9dc737a7
AR
7753 *dev_intr_type = INTA;
7754 }
fb6a825b 7755
6d517a27 7756 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7757 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7758 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7759 rx_ring_mode = 1;
9dc737a7
AR
7760 }
7761 return SUCCESS;
7762}
7763
9fc93a41
SS
7764/**
7765 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7766 * or Traffic class respectively.
b7c5678f 7767 * @nic: device private variable
9fc93a41
SS
7768 * Description: The function configures the receive steering to
7769 * desired receive ring.
7770 * Return Value: SUCCESS on success and
7771 * '-1' on failure (endian settings incorrect).
7772 */
7773static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7774{
7775 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7776 register u64 val64 = 0;
7777
7778 if (ds_codepoint > 63)
7779 return FAILURE;
7780
7781 val64 = RTS_DS_MEM_DATA(ring);
7782 writeq(val64, &bar0->rts_ds_mem_data);
7783
7784 val64 = RTS_DS_MEM_CTRL_WE |
7785 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7786 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7787
7788 writeq(val64, &bar0->rts_ds_mem_ctrl);
7789
7790 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7791 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7792 S2IO_BIT_RESET);
9fc93a41
SS
7793}
7794
04025095
SH
7795static const struct net_device_ops s2io_netdev_ops = {
7796 .ndo_open = s2io_open,
7797 .ndo_stop = s2io_close,
7798 .ndo_get_stats = s2io_get_stats,
7799 .ndo_start_xmit = s2io_xmit,
7800 .ndo_validate_addr = eth_validate_addr,
7801 .ndo_set_multicast_list = s2io_set_multicast,
7802 .ndo_do_ioctl = s2io_ioctl,
7803 .ndo_set_mac_address = s2io_set_mac_addr,
7804 .ndo_change_mtu = s2io_change_mtu,
7805 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7806 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7807 .ndo_tx_timeout = s2io_tx_watchdog,
7808#ifdef CONFIG_NET_POLL_CONTROLLER
7809 .ndo_poll_controller = s2io_netpoll,
7810#endif
7811};
7812
1da177e4 7813/**
20346722 7814 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7815 * @pdev : structure containing the PCI related information of the device.
7816 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7817 * Description:
7818 * The function initializes an adapter identified by the pci_dec structure.
20346722 7819 * All OS related initialization including memory and device structure and
7820 * initlaization of the device private variable is done. Also the swapper
7821 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7822 * registers of the device.
7823 * Return value:
7824 * returns 0 on success and negative on failure.
7825 */
7826
7827static int __devinit
7828s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7829{
1ee6dd77 7830 struct s2io_nic *sp;
1da177e4 7831 struct net_device *dev;
1da177e4 7832 int i, j, ret;
f957bcf0 7833 int dma_flag = false;
1da177e4
LT
7834 u32 mac_up, mac_down;
7835 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7836 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7837 u16 subid;
1da177e4 7838 struct config_param *config;
ffb5df6c 7839 struct mac_info *mac_control;
541ae68f 7840 int mode;
cc6e7c44 7841 u8 dev_intr_type = intr_type;
3a3d5756 7842 u8 dev_multiq = 0;
1da177e4 7843
3a3d5756
SH
7844 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7845 if (ret)
9dc737a7 7846 return ret;
1da177e4 7847
d44570e4
JP
7848 ret = pci_enable_device(pdev);
7849 if (ret) {
1da177e4 7850 DBG_PRINT(ERR_DBG,
9e39f7c5 7851 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7852 return ret;
7853 }
7854
6a35528a 7855 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7856 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7857 dma_flag = true;
d44570e4 7858 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7859 DBG_PRINT(ERR_DBG,
d44570e4
JP
7860 "Unable to obtain 64bit DMA "
7861 "for consistent allocations\n");
1da177e4
LT
7862 pci_disable_device(pdev);
7863 return -ENOMEM;
7864 }
284901a9 7865 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7866 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7867 } else {
7868 pci_disable_device(pdev);
7869 return -ENOMEM;
7870 }
d44570e4
JP
7871 ret = pci_request_regions(pdev, s2io_driver_name);
7872 if (ret) {
9e39f7c5 7873 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7874 __func__, ret);
eccb8628
VP
7875 pci_disable_device(pdev);
7876 return -ENODEV;
1da177e4 7877 }
3a3d5756 7878 if (dev_multiq)
6cfc482b 7879 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7880 else
b19fa1fa 7881 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7882 if (dev == NULL) {
7883 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7884 pci_disable_device(pdev);
7885 pci_release_regions(pdev);
7886 return -ENODEV;
7887 }
7888
7889 pci_set_master(pdev);
7890 pci_set_drvdata(pdev, dev);
1da177e4
LT
7891 SET_NETDEV_DEV(dev, &pdev->dev);
7892
7893 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7894 sp = netdev_priv(dev);
1da177e4
LT
7895 sp->dev = dev;
7896 sp->pdev = pdev;
1da177e4 7897 sp->high_dma_flag = dma_flag;
f957bcf0 7898 sp->device_enabled_once = false;
da6971d8
AR
7899 if (rx_ring_mode == 1)
7900 sp->rxd_mode = RXD_MODE_1;
7901 if (rx_ring_mode == 2)
7902 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7903
eaae7f72 7904 sp->config.intr_type = dev_intr_type;
1da177e4 7905
541ae68f 7906 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7907 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f 7908 sp->device_type = XFRAME_II_DEVICE;
7909 else
7910 sp->device_type = XFRAME_I_DEVICE;
7911
43b7c451 7912 sp->lro = lro_enable;
6aa20a22 7913
1da177e4
LT
7914 /* Initialize some PCI/PCI-X fields of the NIC. */
7915 s2io_init_pci(sp);
7916
20346722 7917 /*
1da177e4 7918 * Setting the device configuration parameters.
20346722 7919 * Most of these parameters can be specified by the user during
7920 * module insertion as they are module loadable parameters. If
7921 * these parameters are not not specified during load time, they
1da177e4
LT
7922 * are initialized with default values.
7923 */
1da177e4 7924 config = &sp->config;
ffb5df6c 7925 mac_control = &sp->mac_control;
1da177e4 7926
596c5c97 7927 config->napi = napi;
6cfc482b 7928 config->tx_steering_type = tx_steering_type;
596c5c97 7929
1da177e4 7930 /* Tx side parameters. */
6cfc482b
SH
7931 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7932 config->tx_fifo_num = MAX_TX_FIFOS;
7933 else
7934 config->tx_fifo_num = tx_fifo_num;
7935
7936 /* Initialize the fifos used for tx steering */
7937 if (config->tx_fifo_num < 5) {
d44570e4
JP
7938 if (config->tx_fifo_num == 1)
7939 sp->total_tcp_fifos = 1;
7940 else
7941 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7942 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7943 sp->total_udp_fifos = 1;
7944 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7945 } else {
7946 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7947 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7948 sp->udp_fifo_idx = sp->total_tcp_fifos;
7949 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7950 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7951 }
7952
3a3d5756 7953 config->multiq = dev_multiq;
6cfc482b 7954 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7955 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7956
7957 tx_cfg->fifo_len = tx_fifo_len[i];
7958 tx_cfg->fifo_priority = i;
1da177e4
LT
7959 }
7960
20346722 7961 /* mapping the QoS priority to the configured fifos */
7962 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7963 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7964
6cfc482b
SH
7965 /* map the hashing selector table to the configured fifos */
7966 for (i = 0; i < config->tx_fifo_num; i++)
7967 sp->fifo_selector[i] = fifo_selector[i];
7968
7969
1da177e4
LT
7970 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7971 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7972 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7973
7974 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7975 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7976 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7977 break;
7978 }
7979 }
fed5eccd
AR
7980 /* + 2 because one Txd for skb->data and one Txd for UFO */
7981 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7982
7983 /* Rx side parameters. */
1da177e4 7984 config->rx_ring_num = rx_ring_num;
0425b46a 7985 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7986 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7987 struct ring_info *ring = &mac_control->rings[i];
7988
7989 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7990 rx_cfg->ring_priority = i;
7991 ring->rx_bufs_left = 0;
7992 ring->rxd_mode = sp->rxd_mode;
7993 ring->rxd_count = rxd_count[sp->rxd_mode];
7994 ring->pdev = sp->pdev;
7995 ring->dev = sp->dev;
1da177e4
LT
7996 }
7997
7998 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7999 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8000
8001 rx_cfg->ring_org = RING_ORG_BUFF1;
8002 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
8003 }
8004
8005 /* Setting Mac Control parameters */
8006 mac_control->rmac_pause_time = rmac_pause_time;
8007 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8008 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8009
8010
1da177e4
LT
8011 /* initialize the shared memory used by the NIC and the host */
8012 if (init_shared_mem(sp)) {
d44570e4 8013 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
8014 ret = -ENOMEM;
8015 goto mem_alloc_failed;
8016 }
8017
275f165f 8018 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 8019 if (!sp->bar0) {
19a60522 8020 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
8021 dev->name);
8022 ret = -ENOMEM;
8023 goto bar0_remap_failed;
8024 }
8025
275f165f 8026 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 8027 if (!sp->bar1) {
19a60522 8028 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
8029 dev->name);
8030 ret = -ENOMEM;
8031 goto bar1_remap_failed;
8032 }
8033
8034 dev->irq = pdev->irq;
d44570e4 8035 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
8036
8037 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8038 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
8039 mac_control->tx_FIFO_start[j] =
8040 (struct TxFIFO_element __iomem *)
8041 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
8042 }
8043
8044 /* Driver entry points */
04025095 8045 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 8046 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 8047 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
958de193
JM
8048 if (lro_enable)
8049 dev->features |= NETIF_F_LRO;
1da177e4 8050 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 8051 if (sp->high_dma_flag == true)
1da177e4 8052 dev->features |= NETIF_F_HIGHDMA;
1da177e4 8053 dev->features |= NETIF_F_TSO;
f83ef8c0 8054 dev->features |= NETIF_F_TSO6;
db874e65 8055 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
8056 dev->features |= NETIF_F_UFO;
8057 dev->features |= NETIF_F_HW_CSUM;
8058 }
1da177e4 8059 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
8060 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8061 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 8062
e960fc5c 8063 pci_save_state(sp->pdev);
1da177e4
LT
8064
8065 /* Setting swapper control on the NIC, for proper reset operation */
8066 if (s2io_set_swapper(sp)) {
9e39f7c5 8067 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
8068 dev->name);
8069 ret = -EAGAIN;
8070 goto set_swap_failed;
8071 }
8072
541ae68f 8073 /* Verify if the Herc works on the slot its placed into */
8074 if (sp->device_type & XFRAME_II_DEVICE) {
8075 mode = s2io_verify_pci_mode(sp);
8076 if (mode < 0) {
9e39f7c5
JP
8077 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8078 __func__);
541ae68f 8079 ret = -EBADSLT;
8080 goto set_swap_failed;
8081 }
8082 }
8083
f61e0a35
SH
8084 if (sp->config.intr_type == MSI_X) {
8085 sp->num_entries = config->rx_ring_num + 1;
8086 ret = s2io_enable_msi_x(sp);
8087
8088 if (!ret) {
8089 ret = s2io_test_msi(sp);
8090 /* rollback MSI-X, will re-enable during add_isr() */
8091 remove_msix_isr(sp);
8092 }
8093 if (ret) {
8094
8095 DBG_PRINT(ERR_DBG,
9e39f7c5 8096 "MSI-X requested but failed to enable\n");
f61e0a35
SH
8097 sp->config.intr_type = INTA;
8098 }
8099 }
8100
8101 if (config->intr_type == MSI_X) {
13d866a9
JP
8102 for (i = 0; i < config->rx_ring_num ; i++) {
8103 struct ring_info *ring = &mac_control->rings[i];
8104
8105 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8106 }
f61e0a35
SH
8107 } else {
8108 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8109 }
8110
541ae68f 8111 /* Not needed for Herc */
8112 if (sp->device_type & XFRAME_I_DEVICE) {
8113 /*
8114 * Fix for all "FFs" MAC address problems observed on
8115 * Alpha platforms
8116 */
8117 fix_mac_address(sp);
8118 s2io_reset(sp);
8119 }
1da177e4
LT
8120
8121 /*
1da177e4
LT
8122 * MAC address initialization.
8123 * For now only one mac address will be read and used.
8124 */
8125 bar0 = sp->bar0;
8126 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8127 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8128 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8129 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8130 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8131 S2IO_BIT_RESET);
1da177e4 8132 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8133 mac_down = (u32)tmp64;
1da177e4
LT
8134 mac_up = (u32) (tmp64 >> 32);
8135
1da177e4
LT
8136 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8137 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8138 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8139 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8140 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8141 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8142
1da177e4
LT
8143 /* Set the factory defined MAC address initially */
8144 dev->addr_len = ETH_ALEN;
8145 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8146 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8147
faa4f796
SH
8148 /* initialize number of multicast & unicast MAC entries variables */
8149 if (sp->device_type == XFRAME_I_DEVICE) {
8150 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8151 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8152 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8153 } else if (sp->device_type == XFRAME_II_DEVICE) {
8154 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8155 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8156 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8157 }
8158
8159 /* store mac addresses from CAM to s2io_nic structure */
8160 do_s2io_store_unicast_mc(sp);
8161
f61e0a35
SH
8162 /* Configure MSIX vector for number of rings configured plus one */
8163 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8164 (config->intr_type == MSI_X))
f61e0a35
SH
8165 sp->num_entries = config->rx_ring_num + 1;
8166
d44570e4 8167 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8168 store_xmsi_data(sp);
b41477f3
AR
8169 /* reset Nic and bring it to known state */
8170 s2io_reset(sp);
8171
1da177e4 8172 /*
99993af6 8173 * Initialize link state flags
541ae68f 8174 * and the card state parameter
1da177e4 8175 */
92b84437 8176 sp->state = 0;
1da177e4 8177
1da177e4 8178 /* Initialize spinlocks */
13d866a9
JP
8179 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8180 struct fifo_info *fifo = &mac_control->fifos[i];
8181
8182 spin_lock_init(&fifo->tx_lock);
8183 }
db874e65 8184
20346722 8185 /*
8186 * SXE-002: Configure link and activity LED to init state
8187 * on driver load.
1da177e4
LT
8188 */
8189 subid = sp->pdev->subsystem_device;
8190 if ((subid & 0xFF) >= 0x07) {
8191 val64 = readq(&bar0->gpio_control);
8192 val64 |= 0x0000800000000000ULL;
8193 writeq(val64, &bar0->gpio_control);
8194 val64 = 0x0411040400000000ULL;
d44570e4 8195 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8196 val64 = readq(&bar0->gpio_control);
8197 }
8198
8199 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8200
8201 if (register_netdev(dev)) {
8202 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8203 ret = -ENODEV;
8204 goto register_failed;
8205 }
9dc737a7 8206 s2io_vpd_read(sp);
926bd900 8207 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
d44570e4 8208 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8209 sp->product_name, pdev->revision);
b41477f3
AR
8210 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8211 s2io_driver_version);
9e39f7c5
JP
8212 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8213 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8214 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8215 mode = s2io_print_pci_mode(sp);
541ae68f 8216 if (mode < 0) {
541ae68f 8217 ret = -EBADSLT;
9dc737a7 8218 unregister_netdev(dev);
541ae68f 8219 goto set_swap_failed;
8220 }
541ae68f 8221 }
d44570e4
JP
8222 switch (sp->rxd_mode) {
8223 case RXD_MODE_1:
8224 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8225 dev->name);
8226 break;
8227 case RXD_MODE_3B:
8228 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8229 dev->name);
8230 break;
9dc737a7 8231 }
db874e65 8232
f61e0a35
SH
8233 switch (sp->config.napi) {
8234 case 0:
8235 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8236 break;
8237 case 1:
db874e65 8238 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8239 break;
8240 }
3a3d5756
SH
8241
8242 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8243 sp->config.tx_fifo_num);
3a3d5756 8244
0425b46a
SH
8245 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8246 sp->config.rx_ring_num);
8247
d44570e4
JP
8248 switch (sp->config.intr_type) {
8249 case INTA:
8250 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8251 break;
8252 case MSI_X:
8253 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8254 break;
9dc737a7 8255 }
3a3d5756 8256 if (sp->config.multiq) {
13d866a9
JP
8257 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8258 struct fifo_info *fifo = &mac_control->fifos[i];
8259
8260 fifo->multiq = config->multiq;
8261 }
3a3d5756 8262 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8263 dev->name);
3a3d5756
SH
8264 } else
8265 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8266 dev->name);
3a3d5756 8267
6cfc482b
SH
8268 switch (sp->config.tx_steering_type) {
8269 case NO_STEERING:
d44570e4
JP
8270 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8271 dev->name);
8272 break;
6cfc482b 8273 case TX_PRIORITY_STEERING:
d44570e4
JP
8274 DBG_PRINT(ERR_DBG,
8275 "%s: Priority steering enabled for transmit\n",
8276 dev->name);
6cfc482b
SH
8277 break;
8278 case TX_DEFAULT_STEERING:
d44570e4
JP
8279 DBG_PRINT(ERR_DBG,
8280 "%s: Default steering enabled for transmit\n",
8281 dev->name);
6cfc482b
SH
8282 }
8283
7d3d0439
RA
8284 if (sp->lro)
8285 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8286 dev->name);
db874e65 8287 if (ufo)
d44570e4
JP
8288 DBG_PRINT(ERR_DBG,
8289 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8290 dev->name);
7ba013ac 8291 /* Initialize device name */
9dc737a7 8292 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8293
cd0fce03
BL
8294 if (vlan_tag_strip)
8295 sp->vlan_strip_flag = 1;
8296 else
8297 sp->vlan_strip_flag = 0;
8298
20346722 8299 /*
8300 * Make Link state as off at this point, when the Link change
8301 * interrupt comes the state will be automatically changed to
1da177e4
LT
8302 * the right state.
8303 */
8304 netif_carrier_off(dev);
1da177e4
LT
8305
8306 return 0;
8307
d44570e4
JP
8308register_failed:
8309set_swap_failed:
1da177e4 8310 iounmap(sp->bar1);
d44570e4 8311bar1_remap_failed:
1da177e4 8312 iounmap(sp->bar0);
d44570e4
JP
8313bar0_remap_failed:
8314mem_alloc_failed:
1da177e4
LT
8315 free_shared_mem(sp);
8316 pci_disable_device(pdev);
eccb8628 8317 pci_release_regions(pdev);
1da177e4
LT
8318 pci_set_drvdata(pdev, NULL);
8319 free_netdev(dev);
8320
8321 return ret;
8322}
8323
8324/**
20346722 8325 * s2io_rem_nic - Free the PCI device
1da177e4 8326 * @pdev: structure containing the PCI related information of the device.
20346722 8327 * Description: This function is called by the Pci subsystem to release a
1da177e4 8328 * PCI device and free up all resource held up by the device. This could
20346722 8329 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8330 * from memory.
8331 */
8332
8333static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8334{
8335 struct net_device *dev =
d44570e4 8336 (struct net_device *)pci_get_drvdata(pdev);
1ee6dd77 8337 struct s2io_nic *sp;
1da177e4
LT
8338
8339 if (dev == NULL) {
8340 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8341 return;
8342 }
8343
22747d6b
FR
8344 flush_scheduled_work();
8345
4cf1653a 8346 sp = netdev_priv(dev);
1da177e4
LT
8347 unregister_netdev(dev);
8348
8349 free_shared_mem(sp);
8350 iounmap(sp->bar0);
8351 iounmap(sp->bar1);
eccb8628 8352 pci_release_regions(pdev);
1da177e4 8353 pci_set_drvdata(pdev, NULL);
1da177e4 8354 free_netdev(dev);
19a60522 8355 pci_disable_device(pdev);
1da177e4
LT
8356}
8357
8358/**
8359 * s2io_starter - Entry point for the driver
8360 * Description: This function is the entry point for the driver. It verifies
8361 * the module loadable parameters and initializes PCI configuration space.
8362 */
8363
43b7c451 8364static int __init s2io_starter(void)
1da177e4 8365{
29917620 8366 return pci_register_driver(&s2io_driver);
1da177e4
LT
8367}
8368
8369/**
20346722 8370 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8371 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8372 */
8373
372cc597 8374static __exit void s2io_closer(void)
1da177e4
LT
8375{
8376 pci_unregister_driver(&s2io_driver);
8377 DBG_PRINT(INIT_DBG, "cleanup done\n");
8378}
8379
8380module_init(s2io_starter);
8381module_exit(s2io_closer);
7d3d0439 8382
6aa20a22 8383static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8384 struct tcphdr **tcp, struct RxD_t *rxdp,
8385 struct s2io_nic *sp)
7d3d0439
RA
8386{
8387 int ip_off;
8388 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8389
8390 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8391 DBG_PRINT(INIT_DBG,
8392 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8393 __func__);
7d3d0439
RA
8394 return -1;
8395 }
8396
cdb5bf02 8397 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8398 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8399 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8400 /*
8401 * If vlan stripping is disabled and the frame is VLAN tagged,
8402 * shift the offset by the VLAN header size bytes.
8403 */
cd0fce03 8404 if ((!sp->vlan_strip_flag) &&
d44570e4 8405 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8406 ip_off += HEADER_VLAN_SIZE;
8407 } else {
7d3d0439 8408 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8409 return -1;
7d3d0439
RA
8410 }
8411
8412 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8413 ip_len = (u8)((*ip)->ihl);
8414 ip_len <<= 2;
8415 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8416
8417 return 0;
8418}
8419
1ee6dd77 8420static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8421 struct tcphdr *tcp)
8422{
d44570e4
JP
8423 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8424 if ((lro->iph->saddr != ip->saddr) ||
8425 (lro->iph->daddr != ip->daddr) ||
8426 (lro->tcph->source != tcp->source) ||
8427 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8428 return -1;
8429 return 0;
8430}
8431
8432static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8433{
d44570e4 8434 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8435}
8436
1ee6dd77 8437static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8438 struct iphdr *ip, struct tcphdr *tcp,
8439 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8440{
d44570e4 8441 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8442 lro->l2h = l2h;
8443 lro->iph = ip;
8444 lro->tcph = tcp;
8445 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8446 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8447 lro->sg_num = 1;
8448 lro->total_len = ntohs(ip->tot_len);
8449 lro->frags_len = 0;
cdb5bf02 8450 lro->vlan_tag = vlan_tag;
6aa20a22 8451 /*
d44570e4
JP
8452 * Check if we saw TCP timestamp.
8453 * Other consistency checks have already been done.
8454 */
7d3d0439 8455 if (tcp->doff == 8) {
c8855953
SR
8456 __be32 *ptr;
8457 ptr = (__be32 *)(tcp+1);
7d3d0439 8458 lro->saw_ts = 1;
c8855953 8459 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8460 lro->cur_tsecr = *(ptr+2);
8461 }
8462 lro->in_use = 1;
8463}
8464
1ee6dd77 8465static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8466{
8467 struct iphdr *ip = lro->iph;
8468 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8469 __sum16 nchk;
ffb5df6c
JP
8470 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8471
d44570e4 8472 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8473
8474 /* Update L3 header */
8475 ip->tot_len = htons(lro->total_len);
8476 ip->check = 0;
8477 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8478 ip->check = nchk;
8479
8480 /* Update L4 header */
8481 tcp->ack_seq = lro->tcp_ack;
8482 tcp->window = lro->window;
8483
8484 /* Update tsecr field if this session has timestamps enabled */
8485 if (lro->saw_ts) {
c8855953 8486 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8487 *(ptr+2) = lro->cur_tsecr;
8488 }
8489
8490 /* Update counters required for calculation of
8491 * average no. of packets aggregated.
8492 */
ffb5df6c
JP
8493 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8494 swstats->num_aggregations++;
7d3d0439
RA
8495}
8496
1ee6dd77 8497static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8498 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8499{
d44570e4 8500 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8501 lro->total_len += l4_pyld;
8502 lro->frags_len += l4_pyld;
8503 lro->tcp_next_seq += l4_pyld;
8504 lro->sg_num++;
8505
8506 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8507 lro->tcp_ack = tcp->ack_seq;
8508 lro->window = tcp->window;
6aa20a22 8509
7d3d0439 8510 if (lro->saw_ts) {
c8855953 8511 __be32 *ptr;
7d3d0439 8512 /* Update tsecr and tsval from this packet */
c8855953
SR
8513 ptr = (__be32 *)(tcp+1);
8514 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8515 lro->cur_tsecr = *(ptr + 2);
8516 }
8517}
8518
1ee6dd77 8519static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8520 struct tcphdr *tcp, u32 tcp_pyld_len)
8521{
7d3d0439
RA
8522 u8 *ptr;
8523
d44570e4 8524 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8525
7d3d0439
RA
8526 if (!tcp_pyld_len) {
8527 /* Runt frame or a pure ack */
8528 return -1;
8529 }
8530
8531 if (ip->ihl != 5) /* IP has options */
8532 return -1;
8533
75c30b13
AR
8534 /* If we see CE codepoint in IP header, packet is not mergeable */
8535 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8536 return -1;
8537
8538 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8539 if (tcp->urg || tcp->psh || tcp->rst ||
8540 tcp->syn || tcp->fin ||
8541 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8542 /*
8543 * Currently recognize only the ack control word and
8544 * any other control field being set would result in
8545 * flushing the LRO session
8546 */
8547 return -1;
8548 }
8549
6aa20a22 8550 /*
7d3d0439
RA
8551 * Allow only one TCP timestamp option. Don't aggregate if
8552 * any other options are detected.
8553 */
8554 if (tcp->doff != 5 && tcp->doff != 8)
8555 return -1;
8556
8557 if (tcp->doff == 8) {
6aa20a22 8558 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8559 while (*ptr == TCPOPT_NOP)
8560 ptr++;
8561 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8562 return -1;
8563
8564 /* Ensure timestamp value increases monotonically */
8565 if (l_lro)
c8855953 8566 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8567 return -1;
8568
8569 /* timestamp echo reply should be non-zero */
c8855953 8570 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8571 return -1;
8572 }
8573
8574 return 0;
8575}
8576
d44570e4
JP
8577static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8578 u8 **tcp, u32 *tcp_len, struct lro **lro,
8579 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8580{
8581 struct iphdr *ip;
8582 struct tcphdr *tcph;
8583 int ret = 0, i;
cdb5bf02 8584 u16 vlan_tag = 0;
ffb5df6c 8585 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8586
d44570e4
JP
8587 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8588 rxdp, sp);
8589 if (ret)
7d3d0439 8590 return ret;
7d3d0439 8591
d44570e4
JP
8592 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8593
cdb5bf02 8594 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8595 tcph = (struct tcphdr *)*tcp;
8596 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8597 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8598 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8599 if (l_lro->in_use) {
8600 if (check_for_socket_match(l_lro, ip, tcph))
8601 continue;
8602 /* Sock pair matched */
8603 *lro = l_lro;
8604
8605 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8606 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8607 "expected 0x%x, actual 0x%x\n",
8608 __func__,
7d3d0439
RA
8609 (*lro)->tcp_next_seq,
8610 ntohl(tcph->seq));
8611
ffb5df6c 8612 swstats->outof_sequence_pkts++;
7d3d0439
RA
8613 ret = 2;
8614 break;
8615 }
8616
d44570e4
JP
8617 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8618 *tcp_len))
7d3d0439
RA
8619 ret = 1; /* Aggregate */
8620 else
8621 ret = 2; /* Flush both */
8622 break;
8623 }
8624 }
8625
8626 if (ret == 0) {
8627 /* Before searching for available LRO objects,
8628 * check if the pkt is L3/L4 aggregatable. If not
8629 * don't create new LRO session. Just send this
8630 * packet up.
8631 */
d44570e4 8632 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8633 return 5;
7d3d0439 8634
d44570e4 8635 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8636 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8637 if (!(l_lro->in_use)) {
8638 *lro = l_lro;
8639 ret = 3; /* Begin anew */
8640 break;
8641 }
8642 }
8643 }
8644
8645 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8646 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8647 __func__);
7d3d0439
RA
8648 *lro = NULL;
8649 return ret;
8650 }
8651
8652 switch (ret) {
d44570e4
JP
8653 case 3:
8654 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8655 vlan_tag);
8656 break;
8657 case 2:
8658 update_L3L4_header(sp, *lro);
8659 break;
8660 case 1:
8661 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8662 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8663 update_L3L4_header(sp, *lro);
d44570e4
JP
8664 ret = 4; /* Flush the LRO */
8665 }
8666 break;
8667 default:
9e39f7c5 8668 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8669 break;
7d3d0439
RA
8670 }
8671
8672 return ret;
8673}
8674
1ee6dd77 8675static void clear_lro_session(struct lro *lro)
7d3d0439 8676{
1ee6dd77 8677 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8678
8679 memset(lro, 0, lro_struct_size);
8680}
8681
cdb5bf02 8682static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8683{
8684 struct net_device *dev = skb->dev;
4cf1653a 8685 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8686
8687 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8688 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8689 /* Queueing the vlan frame to the upper layer */
8690 if (sp->config.napi)
8691 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8692 else
8693 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8694 } else {
8695 if (sp->config.napi)
8696 netif_receive_skb(skb);
8697 else
8698 netif_rx(skb);
8699 }
7d3d0439
RA
8700}
8701
1ee6dd77 8702static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8703 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8704{
75c30b13 8705 struct sk_buff *first = lro->parent;
ffb5df6c 8706 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8707
8708 first->len += tcp_len;
8709 first->data_len = lro->frags_len;
8710 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8711 if (skb_shinfo(first)->frag_list)
8712 lro->last_frag->next = skb;
7d3d0439
RA
8713 else
8714 skb_shinfo(first)->frag_list = skb;
372cc597 8715 first->truesize += skb->truesize;
75c30b13 8716 lro->last_frag = skb;
ffb5df6c 8717 swstats->clubbed_frms_cnt++;
7d3d0439 8718}
d796fdb7
LV
8719
8720/**
8721 * s2io_io_error_detected - called when PCI error is detected
8722 * @pdev: Pointer to PCI device
8453d43f 8723 * @state: The current pci connection state
d796fdb7
LV
8724 *
8725 * This function is called after a PCI bus error affecting
8726 * this device has been detected.
8727 */
8728static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8729 pci_channel_state_t state)
d796fdb7
LV
8730{
8731 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8732 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8733
8734 netif_device_detach(netdev);
8735
1e3c8bd6
DN
8736 if (state == pci_channel_io_perm_failure)
8737 return PCI_ERS_RESULT_DISCONNECT;
8738
d796fdb7
LV
8739 if (netif_running(netdev)) {
8740 /* Bring down the card, while avoiding PCI I/O */
8741 do_s2io_card_down(sp, 0);
d796fdb7
LV
8742 }
8743 pci_disable_device(pdev);
8744
8745 return PCI_ERS_RESULT_NEED_RESET;
8746}
8747
8748/**
8749 * s2io_io_slot_reset - called after the pci bus has been reset.
8750 * @pdev: Pointer to PCI device
8751 *
8752 * Restart the card from scratch, as if from a cold-boot.
8753 * At this point, the card has exprienced a hard reset,
8754 * followed by fixups by BIOS, and has its config space
8755 * set up identically to what it was at cold boot.
8756 */
8757static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8758{
8759 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8760 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8761
8762 if (pci_enable_device(pdev)) {
6cef2b8e 8763 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8764 return PCI_ERS_RESULT_DISCONNECT;
8765 }
8766
8767 pci_set_master(pdev);
8768 s2io_reset(sp);
8769
8770 return PCI_ERS_RESULT_RECOVERED;
8771}
8772
8773/**
8774 * s2io_io_resume - called when traffic can start flowing again.
8775 * @pdev: Pointer to PCI device
8776 *
8777 * This callback is called when the error recovery driver tells
8778 * us that its OK to resume normal operation.
8779 */
8780static void s2io_io_resume(struct pci_dev *pdev)
8781{
8782 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8783 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8784
8785 if (netif_running(netdev)) {
8786 if (s2io_card_up(sp)) {
6cef2b8e 8787 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8788 return;
8789 }
8790
8791 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8792 s2io_card_down(sp);
6cef2b8e 8793 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8794 return;
8795 }
8796 }
8797
8798 netif_device_attach(netdev);
fd2ea0a7 8799 netif_tx_wake_all_queues(netdev);
d796fdb7 8800}
This page took 1.485014 seconds and 5 git commands to generate.