sfc: Implement auto-negotiation
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52/*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
dc8cfa55 58static int lro = true;
8ceee660
BH
59module_param(lro, int, 0644);
60MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62/*
63 * Use separate channels for TX and RX events
64 *
28b581ab
NT
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
8ceee660 67 *
28b581ab 68 * This is only used in MSI-X interrupt mode
8ceee660 69 */
28b581ab
NT
70static unsigned int separate_tx_channels;
71module_param(separate_tx_channels, uint, 0644);
72MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
8ceee660
BH
136/**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141static void efx_remove_channel(struct efx_channel *channel);
142static void efx_remove_port(struct efx_nic *efx);
143static void efx_fini_napi(struct efx_nic *efx);
144static void efx_fini_channels(struct efx_nic *efx);
145
146#define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
3c78708f 148 if (efx->state == STATE_RUNNING) \
8ceee660
BH
149 ASSERT_RTNL(); \
150 } while (0)
151
152/**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158/* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
4d566063 165static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 166{
42cbe2d7
BH
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
8ceee660 169
42cbe2d7 170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 171 !channel->enabled))
42cbe2d7 172 return 0;
8ceee660 173
42cbe2d7
BH
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
8ceee660
BH
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_flush_lro(channel);
186 efx_rx_strategy(channel);
187
42cbe2d7 188 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 189
42cbe2d7 190 return rx_packets;
8ceee660
BH
191}
192
193/* Mark channel as finished processing
194 *
195 * Note that since we will not receive further interrupts for this
196 * channel before we finish processing and call the eventq_read_ack()
197 * method, there is no need to use the interrupt hold-off timers.
198 */
199static inline void efx_channel_processed(struct efx_channel *channel)
200{
5b9e207c
BH
201 /* The interrupt handler for this channel may set work_pending
202 * as soon as we acknowledge the events we've seen. Make sure
203 * it's cleared before then. */
dc8cfa55 204 channel->work_pending = false;
5b9e207c
BH
205 smp_wmb();
206
8ceee660
BH
207 falcon_eventq_read_ack(channel);
208}
209
210/* NAPI poll handler
211 *
212 * NAPI guarantees serialisation of polls of the same device, which
213 * provides the guarantee required by efx_process_channel().
214 */
215static int efx_poll(struct napi_struct *napi, int budget)
216{
217 struct efx_channel *channel =
218 container_of(napi, struct efx_channel, napi_str);
219 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
220 int rx_packets;
221
222 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
223 channel->channel, raw_smp_processor_id());
224
42cbe2d7 225 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
226
227 if (rx_packets < budget) {
228 /* There is no race here; although napi_disable() will
229 * only wait for netif_rx_complete(), this isn't a problem
230 * since efx_channel_processed() will have no effect if
231 * interrupts have already been disabled.
232 */
233 netif_rx_complete(napi_dev, napi);
234 efx_channel_processed(channel);
235 }
236
237 return rx_packets;
238}
239
240/* Process the eventq of the specified channel immediately on this CPU
241 *
242 * Disable hardware generated interrupts, wait for any existing
243 * processing to finish, then directly poll (and ack ) the eventq.
244 * Finally reenable NAPI and interrupts.
245 *
246 * Since we are touching interrupts the caller should hold the suspend lock
247 */
248void efx_process_channel_now(struct efx_channel *channel)
249{
250 struct efx_nic *efx = channel->efx;
251
252 BUG_ON(!channel->used_flags);
253 BUG_ON(!channel->enabled);
254
255 /* Disable interrupts and wait for ISRs to complete */
256 falcon_disable_interrupts(efx);
257 if (efx->legacy_irq)
258 synchronize_irq(efx->legacy_irq);
64ee3120 259 if (channel->irq)
8ceee660
BH
260 synchronize_irq(channel->irq);
261
262 /* Wait for any NAPI processing to complete */
263 napi_disable(&channel->napi_str);
264
265 /* Poll the channel */
91ad757c 266 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
267
268 /* Ack the eventq. This may cause an interrupt to be generated
269 * when they are reenabled */
270 efx_channel_processed(channel);
271
272 napi_enable(&channel->napi_str);
273 falcon_enable_interrupts(efx);
274}
275
276/* Create event queue
277 * Event queue memory allocations are done only once. If the channel
278 * is reset, the memory buffer will be reused; this guards against
279 * errors during channel reset and also simplifies interrupt handling.
280 */
281static int efx_probe_eventq(struct efx_channel *channel)
282{
283 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
284
285 return falcon_probe_eventq(channel);
286}
287
288/* Prepare channel's event queue */
bc3c90a2 289static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
290{
291 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
292
293 channel->eventq_read_ptr = 0;
294
bc3c90a2 295 falcon_init_eventq(channel);
8ceee660
BH
296}
297
298static void efx_fini_eventq(struct efx_channel *channel)
299{
300 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
301
302 falcon_fini_eventq(channel);
303}
304
305static void efx_remove_eventq(struct efx_channel *channel)
306{
307 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
308
309 falcon_remove_eventq(channel);
310}
311
312/**************************************************************************
313 *
314 * Channel handling
315 *
316 *************************************************************************/
317
8ceee660
BH
318static int efx_probe_channel(struct efx_channel *channel)
319{
320 struct efx_tx_queue *tx_queue;
321 struct efx_rx_queue *rx_queue;
322 int rc;
323
324 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
325
326 rc = efx_probe_eventq(channel);
327 if (rc)
328 goto fail1;
329
330 efx_for_each_channel_tx_queue(tx_queue, channel) {
331 rc = efx_probe_tx_queue(tx_queue);
332 if (rc)
333 goto fail2;
334 }
335
336 efx_for_each_channel_rx_queue(rx_queue, channel) {
337 rc = efx_probe_rx_queue(rx_queue);
338 if (rc)
339 goto fail3;
340 }
341
342 channel->n_rx_frm_trunc = 0;
343
344 return 0;
345
346 fail3:
347 efx_for_each_channel_rx_queue(rx_queue, channel)
348 efx_remove_rx_queue(rx_queue);
349 fail2:
350 efx_for_each_channel_tx_queue(tx_queue, channel)
351 efx_remove_tx_queue(tx_queue);
352 fail1:
353 return rc;
354}
355
356
56536e9c
BH
357static void efx_set_channel_names(struct efx_nic *efx)
358{
359 struct efx_channel *channel;
360 const char *type = "";
361 int number;
362
363 efx_for_each_channel(channel, efx) {
364 number = channel->channel;
365 if (efx->n_channels > efx->n_rx_queues) {
366 if (channel->channel < efx->n_rx_queues) {
367 type = "-rx";
368 } else {
369 type = "-tx";
370 number -= efx->n_rx_queues;
371 }
372 }
373 snprintf(channel->name, sizeof(channel->name),
374 "%s%s-%d", efx->name, type, number);
375 }
376}
377
8ceee660
BH
378/* Channels are shutdown and reinitialised whilst the NIC is running
379 * to propagate configuration changes (mtu, checksum offload), or
380 * to clear hardware error conditions
381 */
bc3c90a2 382static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
383{
384 struct efx_tx_queue *tx_queue;
385 struct efx_rx_queue *rx_queue;
386 struct efx_channel *channel;
8ceee660 387
f7f13b0b
BH
388 /* Calculate the rx buffer allocation parameters required to
389 * support the current MTU, including padding for header
390 * alignment and overruns.
391 */
392 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
393 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
394 efx->type->rx_buffer_padding);
395 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
396
397 /* Initialise the channels */
398 efx_for_each_channel(channel, efx) {
399 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
400
bc3c90a2 401 efx_init_eventq(channel);
8ceee660 402
bc3c90a2
BH
403 efx_for_each_channel_tx_queue(tx_queue, channel)
404 efx_init_tx_queue(tx_queue);
8ceee660
BH
405
406 /* The rx buffer allocation strategy is MTU dependent */
407 efx_rx_strategy(channel);
408
bc3c90a2
BH
409 efx_for_each_channel_rx_queue(rx_queue, channel)
410 efx_init_rx_queue(rx_queue);
8ceee660
BH
411
412 WARN_ON(channel->rx_pkt != NULL);
413 efx_rx_strategy(channel);
414 }
8ceee660
BH
415}
416
417/* This enables event queue processing and packet transmission.
418 *
419 * Note that this function is not allowed to fail, since that would
420 * introduce too much complexity into the suspend/resume path.
421 */
422static void efx_start_channel(struct efx_channel *channel)
423{
424 struct efx_rx_queue *rx_queue;
425
426 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427
428 if (!(channel->efx->net_dev->flags & IFF_UP))
429 netif_napi_add(channel->napi_dev, &channel->napi_str,
430 efx_poll, napi_weight);
431
5b9e207c
BH
432 /* The interrupt handler for this channel may set work_pending
433 * as soon as we enable it. Make sure it's cleared before
434 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
435 channel->work_pending = false;
436 channel->enabled = true;
5b9e207c 437 smp_wmb();
8ceee660
BH
438
439 napi_enable(&channel->napi_str);
440
441 /* Load up RX descriptors */
442 efx_for_each_channel_rx_queue(rx_queue, channel)
443 efx_fast_push_rx_descriptors(rx_queue);
444}
445
446/* This disables event queue processing and packet transmission.
447 * This function does not guarantee that all queue processing
448 * (e.g. RX refill) is complete.
449 */
450static void efx_stop_channel(struct efx_channel *channel)
451{
452 struct efx_rx_queue *rx_queue;
453
454 if (!channel->enabled)
455 return;
456
457 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458
dc8cfa55 459 channel->enabled = false;
8ceee660
BH
460 napi_disable(&channel->napi_str);
461
462 /* Ensure that any worker threads have exited or will be no-ops */
463 efx_for_each_channel_rx_queue(rx_queue, channel) {
464 spin_lock_bh(&rx_queue->add_lock);
465 spin_unlock_bh(&rx_queue->add_lock);
466 }
467}
468
469static void efx_fini_channels(struct efx_nic *efx)
470{
471 struct efx_channel *channel;
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
6bc5d3a9 474 int rc;
8ceee660
BH
475
476 EFX_ASSERT_RESET_SERIALISED(efx);
477 BUG_ON(efx->port_enabled);
478
6bc5d3a9
BH
479 rc = falcon_flush_queues(efx);
480 if (rc)
481 EFX_ERR(efx, "failed to flush queues\n");
482 else
483 EFX_LOG(efx, "successfully flushed all queues\n");
484
8ceee660
BH
485 efx_for_each_channel(channel, efx) {
486 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
487
488 efx_for_each_channel_rx_queue(rx_queue, channel)
489 efx_fini_rx_queue(rx_queue);
490 efx_for_each_channel_tx_queue(tx_queue, channel)
491 efx_fini_tx_queue(tx_queue);
8ceee660
BH
492 efx_fini_eventq(channel);
493 }
494}
495
496static void efx_remove_channel(struct efx_channel *channel)
497{
498 struct efx_tx_queue *tx_queue;
499 struct efx_rx_queue *rx_queue;
500
501 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502
503 efx_for_each_channel_rx_queue(rx_queue, channel)
504 efx_remove_rx_queue(rx_queue);
505 efx_for_each_channel_tx_queue(tx_queue, channel)
506 efx_remove_tx_queue(tx_queue);
507 efx_remove_eventq(channel);
508
509 channel->used_flags = 0;
510}
511
512void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513{
514 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
515}
516
517/**************************************************************************
518 *
519 * Port handling
520 *
521 **************************************************************************/
522
523/* This ensures that the kernel is kept informed (via
524 * netif_carrier_on/off) of the link status, and also maintains the
525 * link status's stop on the port's TX queue.
526 */
527static void efx_link_status_changed(struct efx_nic *efx)
528{
8ceee660
BH
529 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
530 * that no events are triggered between unregister_netdev() and the
531 * driver unloading. A more general condition is that NETDEV_CHANGE
532 * can only be generated between NETDEV_UP and NETDEV_DOWN */
533 if (!netif_running(efx->net_dev))
534 return;
535
8c8661e4
BH
536 if (efx->port_inhibited) {
537 netif_carrier_off(efx->net_dev);
538 return;
539 }
540
dc8cfa55 541 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
542 efx->n_link_state_changes++;
543
544 if (efx->link_up)
545 netif_carrier_on(efx->net_dev);
546 else
547 netif_carrier_off(efx->net_dev);
548 }
549
550 /* Status message for kernel log */
551 if (efx->link_up) {
f31a45d2
BH
552 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
553 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
554 efx->net_dev->mtu,
555 (efx->promiscuous ? " [PROMISC]" : ""));
556 } else {
557 EFX_INFO(efx, "link down\n");
558 }
559
560}
561
562/* This call reinitialises the MAC to pick up new PHY settings. The
563 * caller must hold the mac_lock */
8c8661e4 564void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
565{
566 WARN_ON(!mutex_is_locked(&efx->mac_lock));
567
568 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
569 raw_smp_processor_id());
570
a816f75a
BH
571 /* Serialise the promiscuous flag with efx_set_multicast_list. */
572 if (efx_dev_registered(efx)) {
573 netif_addr_lock_bh(efx->net_dev);
574 netif_addr_unlock_bh(efx->net_dev);
575 }
576
177dfcd8
BH
577 falcon_deconfigure_mac_wrapper(efx);
578
579 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
580 if (LOOPBACK_INTERNAL(efx))
581 efx->phy_mode |= PHY_MODE_TX_DISABLED;
582 else
583 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
584 efx->phy_op->reconfigure(efx);
585
586 if (falcon_switch_mac(efx))
587 goto fail;
588
589 efx->mac_op->reconfigure(efx);
8ceee660
BH
590
591 /* Inform kernel of loss/gain of carrier */
592 efx_link_status_changed(efx);
177dfcd8
BH
593 return;
594
595fail:
596 EFX_ERR(efx, "failed to reconfigure MAC\n");
597 efx->phy_op->fini(efx);
598 efx->port_initialized = false;
8ceee660
BH
599}
600
601/* Reinitialise the MAC to pick up new PHY settings, even if the port is
602 * disabled. */
603void efx_reconfigure_port(struct efx_nic *efx)
604{
605 EFX_ASSERT_RESET_SERIALISED(efx);
606
607 mutex_lock(&efx->mac_lock);
608 __efx_reconfigure_port(efx);
609 mutex_unlock(&efx->mac_lock);
610}
611
612/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
613 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
614 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
615static void efx_reconfigure_work(struct work_struct *data)
616{
617 struct efx_nic *efx = container_of(data, struct efx_nic,
618 reconfigure_work);
619
620 mutex_lock(&efx->mac_lock);
621 if (efx->port_enabled)
622 __efx_reconfigure_port(efx);
623 mutex_unlock(&efx->mac_lock);
624}
625
626static int efx_probe_port(struct efx_nic *efx)
627{
628 int rc;
629
630 EFX_LOG(efx, "create port\n");
631
632 /* Connect up MAC/PHY operations table and read MAC address */
633 rc = falcon_probe_port(efx);
634 if (rc)
635 goto err;
636
84ae48fe
BH
637 if (phy_flash_cfg)
638 efx->phy_mode = PHY_MODE_SPECIAL;
639
8ceee660
BH
640 /* Sanity check MAC address */
641 if (is_valid_ether_addr(efx->mac_address)) {
642 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
643 } else {
e174961c
JB
644 EFX_ERR(efx, "invalid MAC address %pM\n",
645 efx->mac_address);
8ceee660
BH
646 if (!allow_bad_hwaddr) {
647 rc = -EINVAL;
648 goto err;
649 }
650 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
651 EFX_INFO(efx, "using locally-generated MAC %pM\n",
652 efx->net_dev->dev_addr);
8ceee660
BH
653 }
654
655 return 0;
656
657 err:
658 efx_remove_port(efx);
659 return rc;
660}
661
662static int efx_init_port(struct efx_nic *efx)
663{
664 int rc;
665
666 EFX_LOG(efx, "init port\n");
667
177dfcd8 668 rc = efx->phy_op->init(efx);
8ceee660
BH
669 if (rc)
670 return rc;
177dfcd8
BH
671 efx->phy_op->reconfigure(efx);
672
673 mutex_lock(&efx->mac_lock);
674 rc = falcon_switch_mac(efx);
675 mutex_unlock(&efx->mac_lock);
676 if (rc)
677 goto fail;
678 efx->mac_op->reconfigure(efx);
8ceee660 679
dc8cfa55 680 efx->port_initialized = true;
8c8661e4 681 efx->stats_enabled = true;
8ceee660 682 return 0;
177dfcd8
BH
683
684fail:
685 efx->phy_op->fini(efx);
686 return rc;
8ceee660
BH
687}
688
689/* Allow efx_reconfigure_port() to be scheduled, and close the window
690 * between efx_stop_port and efx_flush_all whereby a previously scheduled
691 * efx_reconfigure_port() may have been cancelled */
692static void efx_start_port(struct efx_nic *efx)
693{
694 EFX_LOG(efx, "start port\n");
695 BUG_ON(efx->port_enabled);
696
697 mutex_lock(&efx->mac_lock);
dc8cfa55 698 efx->port_enabled = true;
8ceee660
BH
699 __efx_reconfigure_port(efx);
700 mutex_unlock(&efx->mac_lock);
701}
702
703/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
704 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
705 * efx_reconfigure_work can still be scheduled via NAPI processing
706 * until efx_flush_all() is called */
707static void efx_stop_port(struct efx_nic *efx)
708{
709 EFX_LOG(efx, "stop port\n");
710
711 mutex_lock(&efx->mac_lock);
dc8cfa55 712 efx->port_enabled = false;
8ceee660
BH
713 mutex_unlock(&efx->mac_lock);
714
715 /* Serialise against efx_set_multicast_list() */
55668611 716 if (efx_dev_registered(efx)) {
b9e40857
DM
717 netif_addr_lock_bh(efx->net_dev);
718 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
719 }
720}
721
722static void efx_fini_port(struct efx_nic *efx)
723{
724 EFX_LOG(efx, "shut down port\n");
725
726 if (!efx->port_initialized)
727 return;
728
177dfcd8 729 efx->phy_op->fini(efx);
dc8cfa55 730 efx->port_initialized = false;
8ceee660 731
dc8cfa55 732 efx->link_up = false;
8ceee660
BH
733 efx_link_status_changed(efx);
734}
735
736static void efx_remove_port(struct efx_nic *efx)
737{
738 EFX_LOG(efx, "destroying port\n");
739
740 falcon_remove_port(efx);
741}
742
743/**************************************************************************
744 *
745 * NIC handling
746 *
747 **************************************************************************/
748
749/* This configures the PCI device to enable I/O and DMA. */
750static int efx_init_io(struct efx_nic *efx)
751{
752 struct pci_dev *pci_dev = efx->pci_dev;
753 dma_addr_t dma_mask = efx->type->max_dma_mask;
754 int rc;
755
756 EFX_LOG(efx, "initialising I/O\n");
757
758 rc = pci_enable_device(pci_dev);
759 if (rc) {
760 EFX_ERR(efx, "failed to enable PCI device\n");
761 goto fail1;
762 }
763
764 pci_set_master(pci_dev);
765
766 /* Set the PCI DMA mask. Try all possibilities from our
767 * genuine mask down to 32 bits, because some architectures
768 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
769 * masks event though they reject 46 bit masks.
770 */
771 while (dma_mask > 0x7fffffffUL) {
772 if (pci_dma_supported(pci_dev, dma_mask) &&
773 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
774 break;
775 dma_mask >>= 1;
776 }
777 if (rc) {
778 EFX_ERR(efx, "could not find a suitable DMA mask\n");
779 goto fail2;
780 }
781 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
782 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
783 if (rc) {
784 /* pci_set_consistent_dma_mask() is not *allowed* to
785 * fail with a mask that pci_set_dma_mask() accepted,
786 * but just in case...
787 */
788 EFX_ERR(efx, "failed to set consistent DMA mask\n");
789 goto fail2;
790 }
791
792 efx->membase_phys = pci_resource_start(efx->pci_dev,
793 efx->type->mem_bar);
794 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
795 if (rc) {
796 EFX_ERR(efx, "request for memory BAR failed\n");
797 rc = -EIO;
798 goto fail3;
799 }
800 efx->membase = ioremap_nocache(efx->membase_phys,
801 efx->type->mem_map_size);
802 if (!efx->membase) {
086ea356
BH
803 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
804 efx->type->mem_bar,
805 (unsigned long long)efx->membase_phys,
8ceee660
BH
806 efx->type->mem_map_size);
807 rc = -ENOMEM;
808 goto fail4;
809 }
086ea356
BH
810 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
811 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
812 efx->type->mem_map_size, efx->membase);
8ceee660
BH
813
814 return 0;
815
816 fail4:
e1074a0d 817 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 818 fail3:
2c118e0f 819 efx->membase_phys = 0;
8ceee660
BH
820 fail2:
821 pci_disable_device(efx->pci_dev);
822 fail1:
823 return rc;
824}
825
826static void efx_fini_io(struct efx_nic *efx)
827{
828 EFX_LOG(efx, "shutting down I/O\n");
829
830 if (efx->membase) {
831 iounmap(efx->membase);
832 efx->membase = NULL;
833 }
834
835 if (efx->membase_phys) {
836 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 837 efx->membase_phys = 0;
8ceee660
BH
838 }
839
840 pci_disable_device(efx->pci_dev);
841}
842
46123d04
BH
843/* Get number of RX queues wanted. Return number of online CPU
844 * packages in the expectation that an IRQ balancer will spread
845 * interrupts across them. */
846static int efx_wanted_rx_queues(void)
847{
848 cpumask_t core_mask;
849 int count;
850 int cpu;
851
852 cpus_clear(core_mask);
853 count = 0;
854 for_each_online_cpu(cpu) {
855 if (!cpu_isset(cpu, core_mask)) {
856 ++count;
857 cpus_or(core_mask, core_mask,
858 topology_core_siblings(cpu));
859 }
860 }
861
862 return count;
863}
864
865/* Probe the number and type of interrupts we are able to obtain, and
866 * the resulting numbers of channels and RX queues.
867 */
8ceee660
BH
868static void efx_probe_interrupts(struct efx_nic *efx)
869{
46123d04
BH
870 int max_channels =
871 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
872 int rc, i;
873
874 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
875 struct msix_entry xentries[EFX_MAX_CHANNELS];
876 int wanted_ints;
28b581ab 877 int rx_queues;
aa6ef27e 878
46123d04
BH
879 /* We want one RX queue and interrupt per CPU package
880 * (or as specified by the rss_cpus module parameter).
881 * We will need one channel per interrupt.
882 */
28b581ab
NT
883 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
884 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
885 wanted_ints = min(wanted_ints, max_channels);
8ceee660 886
28b581ab 887 for (i = 0; i < wanted_ints; i++)
8ceee660 888 xentries[i].entry = i;
28b581ab 889 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 890 if (rc > 0) {
28b581ab
NT
891 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
892 " available (%d < %d).\n", rc, wanted_ints);
893 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
894 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
895 wanted_ints = rc;
8ceee660 896 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 897 wanted_ints);
8ceee660
BH
898 }
899
900 if (rc == 0) {
28b581ab
NT
901 efx->n_rx_queues = min(rx_queues, wanted_ints);
902 efx->n_channels = wanted_ints;
903 for (i = 0; i < wanted_ints; i++)
8ceee660 904 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
905 } else {
906 /* Fall back to single channel MSI */
907 efx->interrupt_mode = EFX_INT_MODE_MSI;
908 EFX_ERR(efx, "could not enable MSI-X\n");
909 }
910 }
911
912 /* Try single interrupt MSI */
913 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 914 efx->n_rx_queues = 1;
28b581ab 915 efx->n_channels = 1;
8ceee660
BH
916 rc = pci_enable_msi(efx->pci_dev);
917 if (rc == 0) {
918 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
919 } else {
920 EFX_ERR(efx, "could not enable MSI\n");
921 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
922 }
923 }
924
925 /* Assume legacy interrupts */
926 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 927 efx->n_rx_queues = 1;
28b581ab 928 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
929 efx->legacy_irq = efx->pci_dev->irq;
930 }
931}
932
933static void efx_remove_interrupts(struct efx_nic *efx)
934{
935 struct efx_channel *channel;
936
937 /* Remove MSI/MSI-X interrupts */
64ee3120 938 efx_for_each_channel(channel, efx)
8ceee660
BH
939 channel->irq = 0;
940 pci_disable_msi(efx->pci_dev);
941 pci_disable_msix(efx->pci_dev);
942
943 /* Remove legacy interrupt */
944 efx->legacy_irq = 0;
945}
946
8831da7b 947static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
948{
949 struct efx_tx_queue *tx_queue;
950 struct efx_rx_queue *rx_queue;
8ceee660 951
60ac1065 952 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
953 if (separate_tx_channels)
954 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
955 else
956 tx_queue->channel = &efx->channel[0];
957 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
958 }
8ceee660 959
8831da7b
BH
960 efx_for_each_rx_queue(rx_queue, efx) {
961 rx_queue->channel = &efx->channel[rx_queue->queue];
962 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
963 }
964}
965
966static int efx_probe_nic(struct efx_nic *efx)
967{
968 int rc;
969
970 EFX_LOG(efx, "creating NIC\n");
971
972 /* Carry out hardware-type specific initialisation */
973 rc = falcon_probe_nic(efx);
974 if (rc)
975 return rc;
976
977 /* Determine the number of channels and RX queues by trying to hook
978 * in MSI-X interrupts. */
979 efx_probe_interrupts(efx);
980
8831da7b 981 efx_set_channels(efx);
8ceee660
BH
982
983 /* Initialise the interrupt moderation settings */
984 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
985
986 return 0;
987}
988
989static void efx_remove_nic(struct efx_nic *efx)
990{
991 EFX_LOG(efx, "destroying NIC\n");
992
993 efx_remove_interrupts(efx);
994 falcon_remove_nic(efx);
995}
996
997/**************************************************************************
998 *
999 * NIC startup/shutdown
1000 *
1001 *************************************************************************/
1002
1003static int efx_probe_all(struct efx_nic *efx)
1004{
1005 struct efx_channel *channel;
1006 int rc;
1007
1008 /* Create NIC */
1009 rc = efx_probe_nic(efx);
1010 if (rc) {
1011 EFX_ERR(efx, "failed to create NIC\n");
1012 goto fail1;
1013 }
1014
1015 /* Create port */
1016 rc = efx_probe_port(efx);
1017 if (rc) {
1018 EFX_ERR(efx, "failed to create port\n");
1019 goto fail2;
1020 }
1021
1022 /* Create channels */
1023 efx_for_each_channel(channel, efx) {
1024 rc = efx_probe_channel(channel);
1025 if (rc) {
1026 EFX_ERR(efx, "failed to create channel %d\n",
1027 channel->channel);
1028 goto fail3;
1029 }
1030 }
56536e9c 1031 efx_set_channel_names(efx);
8ceee660
BH
1032
1033 return 0;
1034
1035 fail3:
1036 efx_for_each_channel(channel, efx)
1037 efx_remove_channel(channel);
1038 efx_remove_port(efx);
1039 fail2:
1040 efx_remove_nic(efx);
1041 fail1:
1042 return rc;
1043}
1044
1045/* Called after previous invocation(s) of efx_stop_all, restarts the
1046 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1047 * and ensures that the port is scheduled to be reconfigured.
1048 * This function is safe to call multiple times when the NIC is in any
1049 * state. */
1050static void efx_start_all(struct efx_nic *efx)
1051{
1052 struct efx_channel *channel;
1053
1054 EFX_ASSERT_RESET_SERIALISED(efx);
1055
1056 /* Check that it is appropriate to restart the interface. All
1057 * of these flags are safe to read under just the rtnl lock */
1058 if (efx->port_enabled)
1059 return;
1060 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1061 return;
55668611 1062 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1063 return;
1064
1065 /* Mark the port as enabled so port reconfigurations can start, then
1066 * restart the transmit interface early so the watchdog timer stops */
1067 efx_start_port(efx);
dacccc74
SH
1068 if (efx_dev_registered(efx))
1069 efx_wake_queue(efx);
8ceee660
BH
1070
1071 efx_for_each_channel(channel, efx)
1072 efx_start_channel(channel);
1073
1074 falcon_enable_interrupts(efx);
1075
1076 /* Start hardware monitor if we're in RUNNING */
1077 if (efx->state == STATE_RUNNING)
1078 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1079 efx_monitor_interval);
1080}
1081
1082/* Flush all delayed work. Should only be called when no more delayed work
1083 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1084 * since we're holding the rtnl_lock at this point. */
1085static void efx_flush_all(struct efx_nic *efx)
1086{
1087 struct efx_rx_queue *rx_queue;
1088
1089 /* Make sure the hardware monitor is stopped */
1090 cancel_delayed_work_sync(&efx->monitor_work);
1091
1092 /* Ensure that all RX slow refills are complete. */
b3475645 1093 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1094 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1095
1096 /* Stop scheduled port reconfigurations */
1097 cancel_work_sync(&efx->reconfigure_work);
1098
1099}
1100
1101/* Quiesce hardware and software without bringing the link down.
1102 * Safe to call multiple times, when the nic and interface is in any
1103 * state. The caller is guaranteed to subsequently be in a position
1104 * to modify any hardware and software state they see fit without
1105 * taking locks. */
1106static void efx_stop_all(struct efx_nic *efx)
1107{
1108 struct efx_channel *channel;
1109
1110 EFX_ASSERT_RESET_SERIALISED(efx);
1111
1112 /* port_enabled can be read safely under the rtnl lock */
1113 if (!efx->port_enabled)
1114 return;
1115
1116 /* Disable interrupts and wait for ISR to complete */
1117 falcon_disable_interrupts(efx);
1118 if (efx->legacy_irq)
1119 synchronize_irq(efx->legacy_irq);
64ee3120 1120 efx_for_each_channel(channel, efx) {
8ceee660
BH
1121 if (channel->irq)
1122 synchronize_irq(channel->irq);
b3475645 1123 }
8ceee660
BH
1124
1125 /* Stop all NAPI processing and synchronous rx refills */
1126 efx_for_each_channel(channel, efx)
1127 efx_stop_channel(channel);
1128
1129 /* Stop all asynchronous port reconfigurations. Since all
1130 * event processing has already been stopped, there is no
1131 * window to loose phy events */
1132 efx_stop_port(efx);
1133
1134 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1135 efx_flush_all(efx);
1136
1137 /* Isolate the MAC from the TX and RX engines, so that queue
1138 * flushes will complete in a timely fashion. */
8ceee660
BH
1139 falcon_drain_tx_fifo(efx);
1140
1141 /* Stop the kernel transmit interface late, so the watchdog
1142 * timer isn't ticking over the flush */
55668611 1143 if (efx_dev_registered(efx)) {
dacccc74 1144 efx_stop_queue(efx);
8ceee660
BH
1145 netif_tx_lock_bh(efx->net_dev);
1146 netif_tx_unlock_bh(efx->net_dev);
1147 }
1148}
1149
1150static void efx_remove_all(struct efx_nic *efx)
1151{
1152 struct efx_channel *channel;
1153
1154 efx_for_each_channel(channel, efx)
1155 efx_remove_channel(channel);
1156 efx_remove_port(efx);
1157 efx_remove_nic(efx);
1158}
1159
1160/* A convinience function to safely flush all the queues */
bc3c90a2 1161void efx_flush_queues(struct efx_nic *efx)
8ceee660 1162{
8ceee660
BH
1163 EFX_ASSERT_RESET_SERIALISED(efx);
1164
1165 efx_stop_all(efx);
1166
1167 efx_fini_channels(efx);
bc3c90a2 1168 efx_init_channels(efx);
8ceee660
BH
1169
1170 efx_start_all(efx);
8ceee660
BH
1171}
1172
1173/**************************************************************************
1174 *
1175 * Interrupt moderation
1176 *
1177 **************************************************************************/
1178
1179/* Set interrupt moderation parameters */
1180void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1181{
1182 struct efx_tx_queue *tx_queue;
1183 struct efx_rx_queue *rx_queue;
1184
1185 EFX_ASSERT_RESET_SERIALISED(efx);
1186
1187 efx_for_each_tx_queue(tx_queue, efx)
1188 tx_queue->channel->irq_moderation = tx_usecs;
1189
1190 efx_for_each_rx_queue(rx_queue, efx)
1191 rx_queue->channel->irq_moderation = rx_usecs;
1192}
1193
1194/**************************************************************************
1195 *
1196 * Hardware monitor
1197 *
1198 **************************************************************************/
1199
1200/* Run periodically off the general workqueue. Serialised against
1201 * efx_reconfigure_port via the mac_lock */
1202static void efx_monitor(struct work_struct *data)
1203{
1204 struct efx_nic *efx = container_of(data, struct efx_nic,
1205 monitor_work.work);
8ceee660
BH
1206
1207 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1208 raw_smp_processor_id());
1209
1210
1211 /* If the mac_lock is already held then it is likely a port
1212 * reconfiguration is already in place, which will likely do
1213 * most of the work of check_hw() anyway. */
1214 if (!mutex_trylock(&efx->mac_lock)) {
1215 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1216 efx_monitor_interval);
1217 return;
1218 }
1219
1220 if (efx->port_enabled)
177dfcd8 1221 efx->mac_op->check_hw(efx);
8ceee660
BH
1222 mutex_unlock(&efx->mac_lock);
1223
8ceee660
BH
1224 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1225 efx_monitor_interval);
1226}
1227
1228/**************************************************************************
1229 *
1230 * ioctls
1231 *
1232 *************************************************************************/
1233
1234/* Net device ioctl
1235 * Context: process, rtnl_lock() held.
1236 */
1237static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1238{
767e468c 1239 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1240
1241 EFX_ASSERT_RESET_SERIALISED(efx);
1242
1243 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1244}
1245
1246/**************************************************************************
1247 *
1248 * NAPI interface
1249 *
1250 **************************************************************************/
1251
1252static int efx_init_napi(struct efx_nic *efx)
1253{
1254 struct efx_channel *channel;
1255 int rc;
1256
1257 efx_for_each_channel(channel, efx) {
1258 channel->napi_dev = efx->net_dev;
1259 rc = efx_lro_init(&channel->lro_mgr, efx);
1260 if (rc)
1261 goto err;
1262 }
1263 return 0;
1264 err:
1265 efx_fini_napi(efx);
1266 return rc;
1267}
1268
1269static void efx_fini_napi(struct efx_nic *efx)
1270{
1271 struct efx_channel *channel;
1272
1273 efx_for_each_channel(channel, efx) {
1274 efx_lro_fini(&channel->lro_mgr);
1275 channel->napi_dev = NULL;
1276 }
1277}
1278
1279/**************************************************************************
1280 *
1281 * Kernel netpoll interface
1282 *
1283 *************************************************************************/
1284
1285#ifdef CONFIG_NET_POLL_CONTROLLER
1286
1287/* Although in the common case interrupts will be disabled, this is not
1288 * guaranteed. However, all our work happens inside the NAPI callback,
1289 * so no locking is required.
1290 */
1291static void efx_netpoll(struct net_device *net_dev)
1292{
767e468c 1293 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1294 struct efx_channel *channel;
1295
64ee3120 1296 efx_for_each_channel(channel, efx)
8ceee660
BH
1297 efx_schedule_channel(channel);
1298}
1299
1300#endif
1301
1302/**************************************************************************
1303 *
1304 * Kernel net device interface
1305 *
1306 *************************************************************************/
1307
1308/* Context: process, rtnl_lock() held. */
1309static int efx_net_open(struct net_device *net_dev)
1310{
767e468c 1311 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1312 EFX_ASSERT_RESET_SERIALISED(efx);
1313
1314 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1315 raw_smp_processor_id());
1316
f8b87c17
BH
1317 if (efx->phy_mode & PHY_MODE_SPECIAL)
1318 return -EBUSY;
1319
8ceee660
BH
1320 efx_start_all(efx);
1321 return 0;
1322}
1323
1324/* Context: process, rtnl_lock() held.
1325 * Note that the kernel will ignore our return code; this method
1326 * should really be a void.
1327 */
1328static int efx_net_stop(struct net_device *net_dev)
1329{
767e468c 1330 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1331
1332 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1333 raw_smp_processor_id());
1334
1335 /* Stop the device and flush all the channels */
1336 efx_stop_all(efx);
1337 efx_fini_channels(efx);
bc3c90a2 1338 efx_init_channels(efx);
8ceee660
BH
1339
1340 return 0;
1341}
1342
5b9e207c 1343/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1344static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1345{
767e468c 1346 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1347 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1348 struct net_device_stats *stats = &net_dev->stats;
1349
5b9e207c
BH
1350 /* Update stats if possible, but do not wait if another thread
1351 * is updating them (or resetting the NIC); slightly stale
1352 * stats are acceptable.
1353 */
8ceee660
BH
1354 if (!spin_trylock(&efx->stats_lock))
1355 return stats;
8c8661e4 1356 if (efx->stats_enabled) {
177dfcd8 1357 efx->mac_op->update_stats(efx);
8ceee660
BH
1358 falcon_update_nic_stats(efx);
1359 }
1360 spin_unlock(&efx->stats_lock);
1361
1362 stats->rx_packets = mac_stats->rx_packets;
1363 stats->tx_packets = mac_stats->tx_packets;
1364 stats->rx_bytes = mac_stats->rx_bytes;
1365 stats->tx_bytes = mac_stats->tx_bytes;
1366 stats->multicast = mac_stats->rx_multicast;
1367 stats->collisions = mac_stats->tx_collision;
1368 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1369 mac_stats->rx_length_error);
1370 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1371 stats->rx_crc_errors = mac_stats->rx_bad;
1372 stats->rx_frame_errors = mac_stats->rx_align_error;
1373 stats->rx_fifo_errors = mac_stats->rx_overflow;
1374 stats->rx_missed_errors = mac_stats->rx_missed;
1375 stats->tx_window_errors = mac_stats->tx_late_collision;
1376
1377 stats->rx_errors = (stats->rx_length_errors +
1378 stats->rx_over_errors +
1379 stats->rx_crc_errors +
1380 stats->rx_frame_errors +
1381 stats->rx_fifo_errors +
1382 stats->rx_missed_errors +
1383 mac_stats->rx_symbol_error);
1384 stats->tx_errors = (stats->tx_window_errors +
1385 mac_stats->tx_bad);
1386
1387 return stats;
1388}
1389
1390/* Context: netif_tx_lock held, BHs disabled. */
1391static void efx_watchdog(struct net_device *net_dev)
1392{
767e468c 1393 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1394
739bb23d
BH
1395 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1396 " resetting channels\n",
1397 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1398
739bb23d 1399 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1400}
1401
1402
1403/* Context: process, rtnl_lock() held. */
1404static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1405{
767e468c 1406 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1407 int rc = 0;
1408
1409 EFX_ASSERT_RESET_SERIALISED(efx);
1410
1411 if (new_mtu > EFX_MAX_MTU)
1412 return -EINVAL;
1413
1414 efx_stop_all(efx);
1415
1416 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1417
1418 efx_fini_channels(efx);
1419 net_dev->mtu = new_mtu;
bc3c90a2 1420 efx_init_channels(efx);
8ceee660
BH
1421
1422 efx_start_all(efx);
1423 return rc;
8ceee660
BH
1424}
1425
1426static int efx_set_mac_address(struct net_device *net_dev, void *data)
1427{
767e468c 1428 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1429 struct sockaddr *addr = data;
1430 char *new_addr = addr->sa_data;
1431
1432 EFX_ASSERT_RESET_SERIALISED(efx);
1433
1434 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1435 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1436 new_addr);
8ceee660
BH
1437 return -EINVAL;
1438 }
1439
1440 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1441
1442 /* Reconfigure the MAC */
1443 efx_reconfigure_port(efx);
1444
1445 return 0;
1446}
1447
a816f75a 1448/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1449static void efx_set_multicast_list(struct net_device *net_dev)
1450{
767e468c 1451 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1452 struct dev_mc_list *mc_list = net_dev->mc_list;
1453 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1454 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1455 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1456 u32 crc;
1457 int bit;
1458 int i;
1459
a816f75a 1460 efx->promiscuous = promiscuous;
8ceee660
BH
1461
1462 /* Build multicast hash table */
1463 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1464 memset(mc_hash, 0xff, sizeof(*mc_hash));
1465 } else {
1466 memset(mc_hash, 0x00, sizeof(*mc_hash));
1467 for (i = 0; i < net_dev->mc_count; i++) {
1468 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1469 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1470 set_bit_le(bit, mc_hash->byte);
1471 mc_list = mc_list->next;
1472 }
1473 }
1474
a816f75a
BH
1475 if (!efx->port_enabled)
1476 /* Delay pushing settings until efx_start_port() */
1477 return;
1478
1479 if (changed)
1480 queue_work(efx->workqueue, &efx->reconfigure_work);
1481
8ceee660
BH
1482 /* Create and activate new global multicast hash table */
1483 falcon_set_multicast_hash(efx);
1484}
1485
c3ecb9f3
SH
1486static const struct net_device_ops efx_netdev_ops = {
1487 .ndo_open = efx_net_open,
1488 .ndo_stop = efx_net_stop,
1489 .ndo_get_stats = efx_net_stats,
1490 .ndo_tx_timeout = efx_watchdog,
1491 .ndo_start_xmit = efx_hard_start_xmit,
1492 .ndo_validate_addr = eth_validate_addr,
1493 .ndo_do_ioctl = efx_ioctl,
1494 .ndo_change_mtu = efx_change_mtu,
1495 .ndo_set_mac_address = efx_set_mac_address,
1496 .ndo_set_multicast_list = efx_set_multicast_list,
1497#ifdef CONFIG_NET_POLL_CONTROLLER
1498 .ndo_poll_controller = efx_netpoll,
1499#endif
1500};
1501
8ceee660
BH
1502static int efx_netdev_event(struct notifier_block *this,
1503 unsigned long event, void *ptr)
1504{
d3208b5e 1505 struct net_device *net_dev = ptr;
8ceee660 1506
c3ecb9f3 1507 if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) {
767e468c 1508 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1509
1510 strcpy(efx->name, net_dev->name);
f4150724 1511 efx_mtd_rename(efx);
56536e9c 1512 efx_set_channel_names(efx);
8ceee660
BH
1513 }
1514
1515 return NOTIFY_DONE;
1516}
1517
1518static struct notifier_block efx_netdev_notifier = {
1519 .notifier_call = efx_netdev_event,
1520};
1521
06d5e193
BH
1522static ssize_t
1523show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1524{
1525 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1526 return sprintf(buf, "%d\n", efx->phy_type);
1527}
1528static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1529
8ceee660
BH
1530static int efx_register_netdev(struct efx_nic *efx)
1531{
1532 struct net_device *net_dev = efx->net_dev;
1533 int rc;
1534
1535 net_dev->watchdog_timeo = 5 * HZ;
1536 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1537 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1538 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1539 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1540
1541 /* Always start with carrier off; PHY events will detect the link */
1542 netif_carrier_off(efx->net_dev);
1543
1544 /* Clear MAC statistics */
177dfcd8 1545 efx->mac_op->update_stats(efx);
8ceee660
BH
1546 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1547
1548 rc = register_netdev(net_dev);
1549 if (rc) {
1550 EFX_ERR(efx, "could not register net dev\n");
1551 return rc;
1552 }
1553 strcpy(efx->name, net_dev->name);
56536e9c 1554 efx_set_channel_names(efx);
8ceee660 1555
06d5e193
BH
1556 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1557 if (rc) {
1558 EFX_ERR(efx, "failed to init net dev attributes\n");
1559 goto fail_registered;
1560 }
1561
8ceee660 1562 return 0;
06d5e193
BH
1563
1564fail_registered:
1565 unregister_netdev(net_dev);
1566 return rc;
8ceee660
BH
1567}
1568
1569static void efx_unregister_netdev(struct efx_nic *efx)
1570{
1571 struct efx_tx_queue *tx_queue;
1572
1573 if (!efx->net_dev)
1574 return;
1575
767e468c 1576 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1577
1578 /* Free up any skbs still remaining. This has to happen before
1579 * we try to unregister the netdev as running their destructors
1580 * may be needed to get the device ref. count to 0. */
1581 efx_for_each_tx_queue(tx_queue, efx)
1582 efx_release_tx_buffers(tx_queue);
1583
55668611 1584 if (efx_dev_registered(efx)) {
8ceee660 1585 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1586 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1587 unregister_netdev(efx->net_dev);
1588 }
1589}
1590
1591/**************************************************************************
1592 *
1593 * Device reset and suspend
1594 *
1595 **************************************************************************/
1596
2467ca46
BH
1597/* Tears down the entire software state and most of the hardware state
1598 * before reset. */
8c8661e4 1599void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660 1600{
8ceee660
BH
1601 EFX_ASSERT_RESET_SERIALISED(efx);
1602
2467ca46
BH
1603 /* The net_dev->get_stats handler is quite slow, and will fail
1604 * if a fetch is pending over reset. Serialise against it. */
1605 spin_lock(&efx->stats_lock);
8c8661e4 1606 efx->stats_enabled = false;
2467ca46
BH
1607 spin_unlock(&efx->stats_lock);
1608
1609 efx_stop_all(efx);
1610 mutex_lock(&efx->mac_lock);
f4150724 1611 mutex_lock(&efx->spi_lock);
2467ca46 1612
177dfcd8 1613 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1614
1615 efx_fini_channels(efx);
8ceee660
BH
1616}
1617
2467ca46
BH
1618/* This function will always ensure that the locks acquired in
1619 * efx_reset_down() are released. A failure return code indicates
1620 * that we were unable to reinitialise the hardware, and the
1621 * driver should be disabled. If ok is false, then the rx and tx
1622 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1623int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1624{
1625 int rc;
1626
2467ca46 1627 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1628
2467ca46 1629 rc = falcon_init_nic(efx);
8ceee660 1630 if (rc) {
2467ca46
BH
1631 EFX_ERR(efx, "failed to initialise NIC\n");
1632 ok = false;
8ceee660
BH
1633 }
1634
2467ca46
BH
1635 if (ok) {
1636 efx_init_channels(efx);
8ceee660 1637
177dfcd8 1638 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1639 EFX_ERR(efx, "could not restore PHY settings\n");
1640 }
1641
f4150724 1642 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1643 mutex_unlock(&efx->mac_lock);
1644
8c8661e4 1645 if (ok) {
2467ca46 1646 efx_start_all(efx);
8c8661e4
BH
1647 efx->stats_enabled = true;
1648 }
8ceee660
BH
1649 return rc;
1650}
1651
1652/* Reset the NIC as transparently as possible. Do not reset the PHY
1653 * Note that the reset may fail, in which case the card will be left
1654 * in a most-probably-unusable state.
1655 *
1656 * This function will sleep. You cannot reset from within an atomic
1657 * state; use efx_schedule_reset() instead.
1658 *
1659 * Grabs the rtnl_lock.
1660 */
1661static int efx_reset(struct efx_nic *efx)
1662{
1663 struct ethtool_cmd ecmd;
1664 enum reset_type method = efx->reset_pending;
1665 int rc;
1666
1667 /* Serialise with kernel interfaces */
1668 rtnl_lock();
1669
1670 /* If we're not RUNNING then don't reset. Leave the reset_pending
1671 * flag set so that efx_pci_probe_main will be retried */
1672 if (efx->state != STATE_RUNNING) {
1673 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1674 goto unlock_rtnl;
1675 }
1676
8ceee660
BH
1677 EFX_INFO(efx, "resetting (%d)\n", method);
1678
2467ca46 1679 efx_reset_down(efx, &ecmd);
8ceee660
BH
1680
1681 rc = falcon_reset_hw(efx, method);
1682 if (rc) {
1683 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1684 goto fail;
8ceee660
BH
1685 }
1686
1687 /* Allow resets to be rescheduled. */
1688 efx->reset_pending = RESET_TYPE_NONE;
1689
1690 /* Reinitialise bus-mastering, which may have been turned off before
1691 * the reset was scheduled. This is still appropriate, even in the
1692 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1693 * can respond to requests. */
1694 pci_set_master(efx->pci_dev);
1695
8ceee660
BH
1696 /* Leave device stopped if necessary */
1697 if (method == RESET_TYPE_DISABLE) {
8ceee660 1698 rc = -EIO;
2467ca46 1699 goto fail;
8ceee660
BH
1700 }
1701
2467ca46 1702 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1703 if (rc)
2467ca46 1704 goto disable;
8ceee660 1705
8ceee660 1706 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1707 unlock_rtnl:
1708 rtnl_unlock();
1709 return 0;
1710
2467ca46
BH
1711 fail:
1712 efx_reset_up(efx, &ecmd, false);
1713 disable:
8ceee660
BH
1714 EFX_ERR(efx, "has been disabled\n");
1715 efx->state = STATE_DISABLED;
1716
8ceee660
BH
1717 rtnl_unlock();
1718 efx_unregister_netdev(efx);
1719 efx_fini_port(efx);
1720 return rc;
1721}
1722
1723/* The worker thread exists so that code that cannot sleep can
1724 * schedule a reset for later.
1725 */
1726static void efx_reset_work(struct work_struct *data)
1727{
1728 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1729
1730 efx_reset(nic);
1731}
1732
1733void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1734{
1735 enum reset_type method;
1736
1737 if (efx->reset_pending != RESET_TYPE_NONE) {
1738 EFX_INFO(efx, "quenching already scheduled reset\n");
1739 return;
1740 }
1741
1742 switch (type) {
1743 case RESET_TYPE_INVISIBLE:
1744 case RESET_TYPE_ALL:
1745 case RESET_TYPE_WORLD:
1746 case RESET_TYPE_DISABLE:
1747 method = type;
1748 break;
1749 case RESET_TYPE_RX_RECOVERY:
1750 case RESET_TYPE_RX_DESC_FETCH:
1751 case RESET_TYPE_TX_DESC_FETCH:
1752 case RESET_TYPE_TX_SKIP:
1753 method = RESET_TYPE_INVISIBLE;
1754 break;
1755 default:
1756 method = RESET_TYPE_ALL;
1757 break;
1758 }
1759
1760 if (method != type)
1761 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1762 else
1763 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1764
1765 efx->reset_pending = method;
1766
1ab00629 1767 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1768}
1769
1770/**************************************************************************
1771 *
1772 * List of NICs we support
1773 *
1774 **************************************************************************/
1775
1776/* PCI device ID table */
1777static struct pci_device_id efx_pci_table[] __devinitdata = {
1778 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1779 .driver_data = (unsigned long) &falcon_a_nic_type},
1780 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1781 .driver_data = (unsigned long) &falcon_b_nic_type},
1782 {0} /* end of list */
1783};
1784
1785/**************************************************************************
1786 *
1787 * Dummy PHY/MAC/Board operations
1788 *
01aad7b6 1789 * Can be used for some unimplemented operations
8ceee660
BH
1790 * Needed so all function pointers are valid and do not have to be tested
1791 * before use
1792 *
1793 **************************************************************************/
1794int efx_port_dummy_op_int(struct efx_nic *efx)
1795{
1796 return 0;
1797}
1798void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1799void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660 1800
177dfcd8
BH
1801static struct efx_mac_operations efx_dummy_mac_operations = {
1802 .reconfigure = efx_port_dummy_op_void,
1803};
1804
8ceee660
BH
1805static struct efx_phy_operations efx_dummy_phy_operations = {
1806 .init = efx_port_dummy_op_int,
1807 .reconfigure = efx_port_dummy_op_void,
1808 .check_hw = efx_port_dummy_op_int,
1809 .fini = efx_port_dummy_op_void,
1810 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1811};
1812
8ceee660 1813static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1814 .init = efx_port_dummy_op_int,
1815 .init_leds = efx_port_dummy_op_int,
1816 .set_fault_led = efx_port_dummy_op_blink,
a17102b1 1817 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1818 .blink = efx_port_dummy_op_blink,
1819 .fini = efx_port_dummy_op_void,
8ceee660
BH
1820};
1821
1822/**************************************************************************
1823 *
1824 * Data housekeeping
1825 *
1826 **************************************************************************/
1827
1828/* This zeroes out and then fills in the invariants in a struct
1829 * efx_nic (including all sub-structures).
1830 */
1831static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1832 struct pci_dev *pci_dev, struct net_device *net_dev)
1833{
1834 struct efx_channel *channel;
1835 struct efx_tx_queue *tx_queue;
1836 struct efx_rx_queue *rx_queue;
1ab00629 1837 int i;
8ceee660
BH
1838
1839 /* Initialise common structures */
1840 memset(efx, 0, sizeof(*efx));
1841 spin_lock_init(&efx->biu_lock);
1842 spin_lock_init(&efx->phy_lock);
f4150724 1843 mutex_init(&efx->spi_lock);
8ceee660
BH
1844 INIT_WORK(&efx->reset_work, efx_reset_work);
1845 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1846 efx->pci_dev = pci_dev;
1847 efx->state = STATE_INIT;
1848 efx->reset_pending = RESET_TYPE_NONE;
1849 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1850 efx->board_info = efx_dummy_board_info;
1851
1852 efx->net_dev = net_dev;
dc8cfa55 1853 efx->rx_checksum_enabled = true;
8ceee660
BH
1854 spin_lock_init(&efx->netif_stop_lock);
1855 spin_lock_init(&efx->stats_lock);
1856 mutex_init(&efx->mac_lock);
177dfcd8 1857 efx->mac_op = &efx_dummy_mac_operations;
8ceee660
BH
1858 efx->phy_op = &efx_dummy_phy_operations;
1859 efx->mii.dev = net_dev;
1860 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1861 atomic_set(&efx->netif_stop_count, 1);
1862
1863 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1864 channel = &efx->channel[i];
1865 channel->efx = efx;
1866 channel->channel = i;
dc8cfa55 1867 channel->work_pending = false;
8ceee660 1868 }
60ac1065 1869 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1870 tx_queue = &efx->tx_queue[i];
1871 tx_queue->efx = efx;
1872 tx_queue->queue = i;
1873 tx_queue->buffer = NULL;
1874 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1875 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1876 }
1877 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1878 rx_queue = &efx->rx_queue[i];
1879 rx_queue->efx = efx;
1880 rx_queue->queue = i;
1881 rx_queue->channel = &efx->channel[0]; /* for safety */
1882 rx_queue->buffer = NULL;
1883 spin_lock_init(&rx_queue->add_lock);
1884 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1885 }
1886
1887 efx->type = type;
1888
1889 /* Sanity-check NIC type */
1890 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1891 (efx->type->txd_ring_mask + 1));
1892 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1893 (efx->type->rxd_ring_mask + 1));
1894 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1895 (efx->type->evq_size - 1));
1896 /* As close as we can get to guaranteeing that we don't overflow */
1897 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1898 (efx->type->txd_ring_mask + 1 +
1899 efx->type->rxd_ring_mask + 1));
1900 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1901
1902 /* Higher numbered interrupt modes are less capable! */
1903 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1904 interrupt_mode);
1905
1906 efx->workqueue = create_singlethread_workqueue("sfc_work");
1ab00629
SH
1907 if (!efx->workqueue)
1908 return -ENOMEM;
8d9853d9 1909
8ceee660 1910 return 0;
8ceee660
BH
1911}
1912
1913static void efx_fini_struct(struct efx_nic *efx)
1914{
1915 if (efx->workqueue) {
1916 destroy_workqueue(efx->workqueue);
1917 efx->workqueue = NULL;
1918 }
1919}
1920
1921/**************************************************************************
1922 *
1923 * PCI interface
1924 *
1925 **************************************************************************/
1926
1927/* Main body of final NIC shutdown code
1928 * This is called only at module unload (or hotplug removal).
1929 */
1930static void efx_pci_remove_main(struct efx_nic *efx)
1931{
1932 EFX_ASSERT_RESET_SERIALISED(efx);
1933
1934 /* Skip everything if we never obtained a valid membase */
1935 if (!efx->membase)
1936 return;
1937
1938 efx_fini_channels(efx);
1939 efx_fini_port(efx);
1940
1941 /* Shutdown the board, then the NIC and board state */
37b5a603 1942 efx->board_info.fini(efx);
8ceee660
BH
1943 falcon_fini_interrupt(efx);
1944
1945 efx_fini_napi(efx);
1946 efx_remove_all(efx);
1947}
1948
1949/* Final NIC shutdown
1950 * This is called only at module unload (or hotplug removal).
1951 */
1952static void efx_pci_remove(struct pci_dev *pci_dev)
1953{
1954 struct efx_nic *efx;
1955
1956 efx = pci_get_drvdata(pci_dev);
1957 if (!efx)
1958 return;
1959
f4150724
BH
1960 efx_mtd_remove(efx);
1961
8ceee660
BH
1962 /* Mark the NIC as fini, then stop the interface */
1963 rtnl_lock();
1964 efx->state = STATE_FINI;
1965 dev_close(efx->net_dev);
1966
1967 /* Allow any queued efx_resets() to complete */
1968 rtnl_unlock();
1969
1970 if (efx->membase == NULL)
1971 goto out;
1972
1973 efx_unregister_netdev(efx);
1974
1975 /* Wait for any scheduled resets to complete. No more will be
1976 * scheduled from this point because efx_stop_all() has been
1977 * called, we are no longer registered with driverlink, and
1978 * the net_device's have been removed. */
1ab00629 1979 cancel_work_sync(&efx->reset_work);
8ceee660
BH
1980
1981 efx_pci_remove_main(efx);
1982
1983out:
1984 efx_fini_io(efx);
1985 EFX_LOG(efx, "shutdown successful\n");
1986
1987 pci_set_drvdata(pci_dev, NULL);
1988 efx_fini_struct(efx);
1989 free_netdev(efx->net_dev);
1990};
1991
1992/* Main body of NIC initialisation
1993 * This is called at module load (or hotplug insertion, theoretically).
1994 */
1995static int efx_pci_probe_main(struct efx_nic *efx)
1996{
1997 int rc;
1998
1999 /* Do start-of-day initialisation */
2000 rc = efx_probe_all(efx);
2001 if (rc)
2002 goto fail1;
2003
2004 rc = efx_init_napi(efx);
2005 if (rc)
2006 goto fail2;
2007
2008 /* Initialise the board */
2009 rc = efx->board_info.init(efx);
2010 if (rc) {
2011 EFX_ERR(efx, "failed to initialise board\n");
2012 goto fail3;
2013 }
2014
2015 rc = falcon_init_nic(efx);
2016 if (rc) {
2017 EFX_ERR(efx, "failed to initialise NIC\n");
2018 goto fail4;
2019 }
2020
2021 rc = efx_init_port(efx);
2022 if (rc) {
2023 EFX_ERR(efx, "failed to initialise port\n");
2024 goto fail5;
2025 }
2026
bc3c90a2 2027 efx_init_channels(efx);
8ceee660
BH
2028
2029 rc = falcon_init_interrupt(efx);
2030 if (rc)
bc3c90a2 2031 goto fail6;
8ceee660
BH
2032
2033 return 0;
2034
8ceee660 2035 fail6:
bc3c90a2 2036 efx_fini_channels(efx);
8ceee660
BH
2037 efx_fini_port(efx);
2038 fail5:
2039 fail4:
a17102b1 2040 efx->board_info.fini(efx);
8ceee660
BH
2041 fail3:
2042 efx_fini_napi(efx);
2043 fail2:
2044 efx_remove_all(efx);
2045 fail1:
2046 return rc;
2047}
2048
2049/* NIC initialisation
2050 *
2051 * This is called at module load (or hotplug insertion,
2052 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2053 * sets up and registers the network devices with the kernel and hooks
2054 * the interrupt service routine. It does not prepare the device for
2055 * transmission; this is left to the first time one of the network
2056 * interfaces is brought up (i.e. efx_net_open).
2057 */
2058static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2059 const struct pci_device_id *entry)
2060{
2061 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2062 struct net_device *net_dev;
2063 struct efx_nic *efx;
2064 int i, rc;
2065
2066 /* Allocate and initialise a struct net_device and struct efx_nic */
2067 net_dev = alloc_etherdev(sizeof(*efx));
2068 if (!net_dev)
2069 return -ENOMEM;
b9b39b62
BH
2070 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2071 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2072 if (lro)
2073 net_dev->features |= NETIF_F_LRO;
28506563
BH
2074 /* Mask for features that also apply to VLAN devices */
2075 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2076 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2077 efx = netdev_priv(net_dev);
8ceee660
BH
2078 pci_set_drvdata(pci_dev, efx);
2079 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2080 if (rc)
2081 goto fail1;
2082
2083 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2084
2085 /* Set up basic I/O (BAR mappings etc) */
2086 rc = efx_init_io(efx);
2087 if (rc)
2088 goto fail2;
2089
2090 /* No serialisation is required with the reset path because
2091 * we're in STATE_INIT. */
2092 for (i = 0; i < 5; i++) {
2093 rc = efx_pci_probe_main(efx);
2094 if (rc == 0)
2095 break;
2096
2097 /* Serialise against efx_reset(). No more resets will be
2098 * scheduled since efx_stop_all() has been called, and we
2099 * have not and never have been registered with either
2100 * the rtnetlink or driverlink layers. */
1ab00629 2101 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2102
2103 /* Retry if a recoverably reset event has been scheduled */
2104 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2105 (efx->reset_pending != RESET_TYPE_ALL))
2106 goto fail3;
2107
2108 efx->reset_pending = RESET_TYPE_NONE;
2109 }
2110
2111 if (rc) {
2112 EFX_ERR(efx, "Could not reset NIC\n");
2113 goto fail4;
2114 }
2115
2116 /* Switch to the running state before we expose the device to
2117 * the OS. This is to ensure that the initial gathering of
2118 * MAC stats succeeds. */
2119 rtnl_lock();
2120 efx->state = STATE_RUNNING;
2121 rtnl_unlock();
2122
2123 rc = efx_register_netdev(efx);
2124 if (rc)
2125 goto fail5;
2126
2127 EFX_LOG(efx, "initialisation successful\n");
2128
f4150724 2129 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2130 return 0;
2131
2132 fail5:
2133 efx_pci_remove_main(efx);
2134 fail4:
2135 fail3:
2136 efx_fini_io(efx);
2137 fail2:
2138 efx_fini_struct(efx);
2139 fail1:
2140 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2141 free_netdev(net_dev);
2142 return rc;
2143}
2144
2145static struct pci_driver efx_pci_driver = {
2146 .name = EFX_DRIVER_NAME,
2147 .id_table = efx_pci_table,
2148 .probe = efx_pci_probe,
2149 .remove = efx_pci_remove,
2150};
2151
2152/**************************************************************************
2153 *
2154 * Kernel module interface
2155 *
2156 *************************************************************************/
2157
2158module_param(interrupt_mode, uint, 0444);
2159MODULE_PARM_DESC(interrupt_mode,
2160 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2161
2162static int __init efx_init_module(void)
2163{
2164 int rc;
2165
2166 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2167
2168 rc = register_netdevice_notifier(&efx_netdev_notifier);
2169 if (rc)
2170 goto err_notifier;
2171
2172 refill_workqueue = create_workqueue("sfc_refill");
2173 if (!refill_workqueue) {
2174 rc = -ENOMEM;
2175 goto err_refill;
2176 }
1ab00629
SH
2177 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2178 if (!reset_workqueue) {
2179 rc = -ENOMEM;
2180 goto err_reset;
2181 }
8ceee660
BH
2182
2183 rc = pci_register_driver(&efx_pci_driver);
2184 if (rc < 0)
2185 goto err_pci;
2186
2187 return 0;
2188
2189 err_pci:
1ab00629
SH
2190 destroy_workqueue(reset_workqueue);
2191 err_reset:
8ceee660
BH
2192 destroy_workqueue(refill_workqueue);
2193 err_refill:
2194 unregister_netdevice_notifier(&efx_netdev_notifier);
2195 err_notifier:
2196 return rc;
2197}
2198
2199static void __exit efx_exit_module(void)
2200{
2201 printk(KERN_INFO "Solarflare NET driver unloading\n");
2202
2203 pci_unregister_driver(&efx_pci_driver);
1ab00629 2204 destroy_workqueue(reset_workqueue);
8ceee660
BH
2205 destroy_workqueue(refill_workqueue);
2206 unregister_netdevice_notifier(&efx_netdev_notifier);
2207
2208}
2209
2210module_init(efx_init_module);
2211module_exit(efx_exit_module);
2212
2213MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2214 "Solarflare Communications");
2215MODULE_DESCRIPTION("Solarflare Communications network driver");
2216MODULE_LICENSE("GPL");
2217MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.208736 seconds and 5 git commands to generate.