netxen: convert to net_device_ops
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
dc8cfa55 54static int lro = true;
8ceee660
BH
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
dc8cfa55 67static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
8ceee660
BH
80/* This controls whether or not the driver will initialise devices
81 * with invalid MAC addresses stored in the EEPROM or flash. If true,
82 * such devices will be initialised with a random locally-generated
83 * MAC address. This allows for loading the sfc_mtd driver to
84 * reprogram the flash, even if the flash contents (including the MAC
85 * address) have previously been erased.
86 */
87static unsigned int allow_bad_hwaddr;
88
89/* Initial interrupt moderation settings. They can be modified after
90 * module load with ethtool.
91 *
92 * The default for RX should strike a balance between increasing the
93 * round-trip latency and reducing overhead.
94 */
95static unsigned int rx_irq_mod_usec = 60;
96
97/* Initial interrupt moderation settings. They can be modified after
98 * module load with ethtool.
99 *
100 * This default is chosen to ensure that a 10G link does not go idle
101 * while a TX queue is stopped after it has become full. A queue is
102 * restarted when it drops below half full. The time this takes (assuming
103 * worst case 3 descriptors per packet and 1024 descriptors) is
104 * 512 / 3 * 1.2 = 205 usec.
105 */
106static unsigned int tx_irq_mod_usec = 150;
107
108/* This is the first interrupt mode to try out of:
109 * 0 => MSI-X
110 * 1 => MSI
111 * 2 => legacy
112 */
113static unsigned int interrupt_mode;
114
115/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
116 * i.e. the number of CPUs among which we may distribute simultaneous
117 * interrupt handling.
118 *
119 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
120 * The default (0) means to assign an interrupt to each package (level II cache)
121 */
122static unsigned int rss_cpus;
123module_param(rss_cpus, uint, 0444);
124MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
125
126/**************************************************************************
127 *
128 * Utility functions and prototypes
129 *
130 *************************************************************************/
131static void efx_remove_channel(struct efx_channel *channel);
132static void efx_remove_port(struct efx_nic *efx);
133static void efx_fini_napi(struct efx_nic *efx);
134static void efx_fini_channels(struct efx_nic *efx);
135
136#define EFX_ASSERT_RESET_SERIALISED(efx) \
137 do { \
3c78708f 138 if (efx->state == STATE_RUNNING) \
8ceee660
BH
139 ASSERT_RTNL(); \
140 } while (0)
141
142/**************************************************************************
143 *
144 * Event queue processing
145 *
146 *************************************************************************/
147
148/* Process channel's event queue
149 *
150 * This function is responsible for processing the event queue of a
151 * single channel. The caller must guarantee that this function will
152 * never be concurrently called more than once on the same channel,
153 * though different channels may be being processed concurrently.
154 */
4d566063 155static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 156{
42cbe2d7
BH
157 struct efx_nic *efx = channel->efx;
158 int rx_packets;
8ceee660 159
42cbe2d7 160 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 161 !channel->enabled))
42cbe2d7 162 return 0;
8ceee660 163
42cbe2d7
BH
164 rx_packets = falcon_process_eventq(channel, rx_quota);
165 if (rx_packets == 0)
166 return 0;
8ceee660
BH
167
168 /* Deliver last RX packet. */
169 if (channel->rx_pkt) {
170 __efx_rx_packet(channel, channel->rx_pkt,
171 channel->rx_pkt_csummed);
172 channel->rx_pkt = NULL;
173 }
174
175 efx_flush_lro(channel);
176 efx_rx_strategy(channel);
177
42cbe2d7 178 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 179
42cbe2d7 180 return rx_packets;
8ceee660
BH
181}
182
183/* Mark channel as finished processing
184 *
185 * Note that since we will not receive further interrupts for this
186 * channel before we finish processing and call the eventq_read_ack()
187 * method, there is no need to use the interrupt hold-off timers.
188 */
189static inline void efx_channel_processed(struct efx_channel *channel)
190{
5b9e207c
BH
191 /* The interrupt handler for this channel may set work_pending
192 * as soon as we acknowledge the events we've seen. Make sure
193 * it's cleared before then. */
dc8cfa55 194 channel->work_pending = false;
5b9e207c
BH
195 smp_wmb();
196
8ceee660
BH
197 falcon_eventq_read_ack(channel);
198}
199
200/* NAPI poll handler
201 *
202 * NAPI guarantees serialisation of polls of the same device, which
203 * provides the guarantee required by efx_process_channel().
204 */
205static int efx_poll(struct napi_struct *napi, int budget)
206{
207 struct efx_channel *channel =
208 container_of(napi, struct efx_channel, napi_str);
209 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
210 int rx_packets;
211
212 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
213 channel->channel, raw_smp_processor_id());
214
42cbe2d7 215 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
216
217 if (rx_packets < budget) {
218 /* There is no race here; although napi_disable() will
219 * only wait for netif_rx_complete(), this isn't a problem
220 * since efx_channel_processed() will have no effect if
221 * interrupts have already been disabled.
222 */
223 netif_rx_complete(napi_dev, napi);
224 efx_channel_processed(channel);
225 }
226
227 return rx_packets;
228}
229
230/* Process the eventq of the specified channel immediately on this CPU
231 *
232 * Disable hardware generated interrupts, wait for any existing
233 * processing to finish, then directly poll (and ack ) the eventq.
234 * Finally reenable NAPI and interrupts.
235 *
236 * Since we are touching interrupts the caller should hold the suspend lock
237 */
238void efx_process_channel_now(struct efx_channel *channel)
239{
240 struct efx_nic *efx = channel->efx;
241
242 BUG_ON(!channel->used_flags);
243 BUG_ON(!channel->enabled);
244
245 /* Disable interrupts and wait for ISRs to complete */
246 falcon_disable_interrupts(efx);
247 if (efx->legacy_irq)
248 synchronize_irq(efx->legacy_irq);
64ee3120 249 if (channel->irq)
8ceee660
BH
250 synchronize_irq(channel->irq);
251
252 /* Wait for any NAPI processing to complete */
253 napi_disable(&channel->napi_str);
254
255 /* Poll the channel */
91ad757c 256 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
257
258 /* Ack the eventq. This may cause an interrupt to be generated
259 * when they are reenabled */
260 efx_channel_processed(channel);
261
262 napi_enable(&channel->napi_str);
263 falcon_enable_interrupts(efx);
264}
265
266/* Create event queue
267 * Event queue memory allocations are done only once. If the channel
268 * is reset, the memory buffer will be reused; this guards against
269 * errors during channel reset and also simplifies interrupt handling.
270 */
271static int efx_probe_eventq(struct efx_channel *channel)
272{
273 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
274
275 return falcon_probe_eventq(channel);
276}
277
278/* Prepare channel's event queue */
bc3c90a2 279static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
280{
281 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
282
283 channel->eventq_read_ptr = 0;
284
bc3c90a2 285 falcon_init_eventq(channel);
8ceee660
BH
286}
287
288static void efx_fini_eventq(struct efx_channel *channel)
289{
290 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
291
292 falcon_fini_eventq(channel);
293}
294
295static void efx_remove_eventq(struct efx_channel *channel)
296{
297 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
298
299 falcon_remove_eventq(channel);
300}
301
302/**************************************************************************
303 *
304 * Channel handling
305 *
306 *************************************************************************/
307
8ceee660
BH
308static int efx_probe_channel(struct efx_channel *channel)
309{
310 struct efx_tx_queue *tx_queue;
311 struct efx_rx_queue *rx_queue;
312 int rc;
313
314 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
315
316 rc = efx_probe_eventq(channel);
317 if (rc)
318 goto fail1;
319
320 efx_for_each_channel_tx_queue(tx_queue, channel) {
321 rc = efx_probe_tx_queue(tx_queue);
322 if (rc)
323 goto fail2;
324 }
325
326 efx_for_each_channel_rx_queue(rx_queue, channel) {
327 rc = efx_probe_rx_queue(rx_queue);
328 if (rc)
329 goto fail3;
330 }
331
332 channel->n_rx_frm_trunc = 0;
333
334 return 0;
335
336 fail3:
337 efx_for_each_channel_rx_queue(rx_queue, channel)
338 efx_remove_rx_queue(rx_queue);
339 fail2:
340 efx_for_each_channel_tx_queue(tx_queue, channel)
341 efx_remove_tx_queue(tx_queue);
342 fail1:
343 return rc;
344}
345
346
347/* Channels are shutdown and reinitialised whilst the NIC is running
348 * to propagate configuration changes (mtu, checksum offload), or
349 * to clear hardware error conditions
350 */
bc3c90a2 351static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
352{
353 struct efx_tx_queue *tx_queue;
354 struct efx_rx_queue *rx_queue;
355 struct efx_channel *channel;
8ceee660 356
f7f13b0b
BH
357 /* Calculate the rx buffer allocation parameters required to
358 * support the current MTU, including padding for header
359 * alignment and overruns.
360 */
361 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
362 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
363 efx->type->rx_buffer_padding);
364 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
365
366 /* Initialise the channels */
367 efx_for_each_channel(channel, efx) {
368 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
369
bc3c90a2 370 efx_init_eventq(channel);
8ceee660 371
bc3c90a2
BH
372 efx_for_each_channel_tx_queue(tx_queue, channel)
373 efx_init_tx_queue(tx_queue);
8ceee660
BH
374
375 /* The rx buffer allocation strategy is MTU dependent */
376 efx_rx_strategy(channel);
377
bc3c90a2
BH
378 efx_for_each_channel_rx_queue(rx_queue, channel)
379 efx_init_rx_queue(rx_queue);
8ceee660
BH
380
381 WARN_ON(channel->rx_pkt != NULL);
382 efx_rx_strategy(channel);
383 }
8ceee660
BH
384}
385
386/* This enables event queue processing and packet transmission.
387 *
388 * Note that this function is not allowed to fail, since that would
389 * introduce too much complexity into the suspend/resume path.
390 */
391static void efx_start_channel(struct efx_channel *channel)
392{
393 struct efx_rx_queue *rx_queue;
394
395 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
396
397 if (!(channel->efx->net_dev->flags & IFF_UP))
398 netif_napi_add(channel->napi_dev, &channel->napi_str,
399 efx_poll, napi_weight);
400
5b9e207c
BH
401 /* The interrupt handler for this channel may set work_pending
402 * as soon as we enable it. Make sure it's cleared before
403 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
404 channel->work_pending = false;
405 channel->enabled = true;
5b9e207c 406 smp_wmb();
8ceee660
BH
407
408 napi_enable(&channel->napi_str);
409
410 /* Load up RX descriptors */
411 efx_for_each_channel_rx_queue(rx_queue, channel)
412 efx_fast_push_rx_descriptors(rx_queue);
413}
414
415/* This disables event queue processing and packet transmission.
416 * This function does not guarantee that all queue processing
417 * (e.g. RX refill) is complete.
418 */
419static void efx_stop_channel(struct efx_channel *channel)
420{
421 struct efx_rx_queue *rx_queue;
422
423 if (!channel->enabled)
424 return;
425
426 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
427
dc8cfa55 428 channel->enabled = false;
8ceee660
BH
429 napi_disable(&channel->napi_str);
430
431 /* Ensure that any worker threads have exited or will be no-ops */
432 efx_for_each_channel_rx_queue(rx_queue, channel) {
433 spin_lock_bh(&rx_queue->add_lock);
434 spin_unlock_bh(&rx_queue->add_lock);
435 }
436}
437
438static void efx_fini_channels(struct efx_nic *efx)
439{
440 struct efx_channel *channel;
441 struct efx_tx_queue *tx_queue;
442 struct efx_rx_queue *rx_queue;
6bc5d3a9 443 int rc;
8ceee660
BH
444
445 EFX_ASSERT_RESET_SERIALISED(efx);
446 BUG_ON(efx->port_enabled);
447
6bc5d3a9
BH
448 rc = falcon_flush_queues(efx);
449 if (rc)
450 EFX_ERR(efx, "failed to flush queues\n");
451 else
452 EFX_LOG(efx, "successfully flushed all queues\n");
453
8ceee660
BH
454 efx_for_each_channel(channel, efx) {
455 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
456
457 efx_for_each_channel_rx_queue(rx_queue, channel)
458 efx_fini_rx_queue(rx_queue);
459 efx_for_each_channel_tx_queue(tx_queue, channel)
460 efx_fini_tx_queue(tx_queue);
8ceee660
BH
461 efx_fini_eventq(channel);
462 }
463}
464
465static void efx_remove_channel(struct efx_channel *channel)
466{
467 struct efx_tx_queue *tx_queue;
468 struct efx_rx_queue *rx_queue;
469
470 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
471
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_remove_rx_queue(rx_queue);
474 efx_for_each_channel_tx_queue(tx_queue, channel)
475 efx_remove_tx_queue(tx_queue);
476 efx_remove_eventq(channel);
477
478 channel->used_flags = 0;
479}
480
481void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
482{
483 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
484}
485
486/**************************************************************************
487 *
488 * Port handling
489 *
490 **************************************************************************/
491
492/* This ensures that the kernel is kept informed (via
493 * netif_carrier_on/off) of the link status, and also maintains the
494 * link status's stop on the port's TX queue.
495 */
496static void efx_link_status_changed(struct efx_nic *efx)
497{
8ceee660
BH
498 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
499 * that no events are triggered between unregister_netdev() and the
500 * driver unloading. A more general condition is that NETDEV_CHANGE
501 * can only be generated between NETDEV_UP and NETDEV_DOWN */
502 if (!netif_running(efx->net_dev))
503 return;
504
8c8661e4
BH
505 if (efx->port_inhibited) {
506 netif_carrier_off(efx->net_dev);
507 return;
508 }
509
dc8cfa55 510 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
511 efx->n_link_state_changes++;
512
513 if (efx->link_up)
514 netif_carrier_on(efx->net_dev);
515 else
516 netif_carrier_off(efx->net_dev);
517 }
518
519 /* Status message for kernel log */
520 if (efx->link_up) {
521 struct mii_if_info *gmii = &efx->mii;
522 unsigned adv, lpa;
523 /* NONE here means direct XAUI from the controller, with no
524 * MDIO-attached device we can query. */
525 if (efx->phy_type != PHY_TYPE_NONE) {
526 adv = gmii_advertised(gmii);
527 lpa = gmii_lpa(gmii);
528 } else {
529 lpa = GM_LPA_10000 | LPA_DUPLEX;
530 adv = lpa;
531 }
532 EFX_INFO(efx, "link up at %dMbps %s-duplex "
533 "(adv %04x lpa %04x) (MTU %d)%s\n",
534 (efx->link_options & GM_LPA_10000 ? 10000 :
535 (efx->link_options & GM_LPA_1000 ? 1000 :
536 (efx->link_options & GM_LPA_100 ? 100 :
537 10))),
538 (efx->link_options & GM_LPA_DUPLEX ?
539 "full" : "half"),
540 adv, lpa,
541 efx->net_dev->mtu,
542 (efx->promiscuous ? " [PROMISC]" : ""));
543 } else {
544 EFX_INFO(efx, "link down\n");
545 }
546
547}
548
549/* This call reinitialises the MAC to pick up new PHY settings. The
550 * caller must hold the mac_lock */
8c8661e4 551void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
552{
553 WARN_ON(!mutex_is_locked(&efx->mac_lock));
554
555 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
556 raw_smp_processor_id());
557
a816f75a
BH
558 /* Serialise the promiscuous flag with efx_set_multicast_list. */
559 if (efx_dev_registered(efx)) {
560 netif_addr_lock_bh(efx->net_dev);
561 netif_addr_unlock_bh(efx->net_dev);
562 }
563
8ceee660
BH
564 falcon_reconfigure_xmac(efx);
565
566 /* Inform kernel of loss/gain of carrier */
567 efx_link_status_changed(efx);
568}
569
570/* Reinitialise the MAC to pick up new PHY settings, even if the port is
571 * disabled. */
572void efx_reconfigure_port(struct efx_nic *efx)
573{
574 EFX_ASSERT_RESET_SERIALISED(efx);
575
576 mutex_lock(&efx->mac_lock);
577 __efx_reconfigure_port(efx);
578 mutex_unlock(&efx->mac_lock);
579}
580
581/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
582 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
583 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
584static void efx_reconfigure_work(struct work_struct *data)
585{
586 struct efx_nic *efx = container_of(data, struct efx_nic,
587 reconfigure_work);
588
589 mutex_lock(&efx->mac_lock);
590 if (efx->port_enabled)
591 __efx_reconfigure_port(efx);
592 mutex_unlock(&efx->mac_lock);
593}
594
595static int efx_probe_port(struct efx_nic *efx)
596{
597 int rc;
598
599 EFX_LOG(efx, "create port\n");
600
601 /* Connect up MAC/PHY operations table and read MAC address */
602 rc = falcon_probe_port(efx);
603 if (rc)
604 goto err;
605
606 /* Sanity check MAC address */
607 if (is_valid_ether_addr(efx->mac_address)) {
608 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
609 } else {
e174961c
JB
610 EFX_ERR(efx, "invalid MAC address %pM\n",
611 efx->mac_address);
8ceee660
BH
612 if (!allow_bad_hwaddr) {
613 rc = -EINVAL;
614 goto err;
615 }
616 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
617 EFX_INFO(efx, "using locally-generated MAC %pM\n",
618 efx->net_dev->dev_addr);
8ceee660
BH
619 }
620
621 return 0;
622
623 err:
624 efx_remove_port(efx);
625 return rc;
626}
627
628static int efx_init_port(struct efx_nic *efx)
629{
630 int rc;
631
632 EFX_LOG(efx, "init port\n");
633
634 /* Initialise the MAC and PHY */
635 rc = falcon_init_xmac(efx);
636 if (rc)
637 return rc;
638
dc8cfa55 639 efx->port_initialized = true;
8c8661e4 640 efx->stats_enabled = true;
8ceee660
BH
641
642 /* Reconfigure port to program MAC registers */
643 falcon_reconfigure_xmac(efx);
644
645 return 0;
646}
647
648/* Allow efx_reconfigure_port() to be scheduled, and close the window
649 * between efx_stop_port and efx_flush_all whereby a previously scheduled
650 * efx_reconfigure_port() may have been cancelled */
651static void efx_start_port(struct efx_nic *efx)
652{
653 EFX_LOG(efx, "start port\n");
654 BUG_ON(efx->port_enabled);
655
656 mutex_lock(&efx->mac_lock);
dc8cfa55 657 efx->port_enabled = true;
8ceee660
BH
658 __efx_reconfigure_port(efx);
659 mutex_unlock(&efx->mac_lock);
660}
661
662/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
663 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
664 * efx_reconfigure_work can still be scheduled via NAPI processing
665 * until efx_flush_all() is called */
666static void efx_stop_port(struct efx_nic *efx)
667{
668 EFX_LOG(efx, "stop port\n");
669
670 mutex_lock(&efx->mac_lock);
dc8cfa55 671 efx->port_enabled = false;
8ceee660
BH
672 mutex_unlock(&efx->mac_lock);
673
674 /* Serialise against efx_set_multicast_list() */
55668611 675 if (efx_dev_registered(efx)) {
b9e40857
DM
676 netif_addr_lock_bh(efx->net_dev);
677 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
678 }
679}
680
681static void efx_fini_port(struct efx_nic *efx)
682{
683 EFX_LOG(efx, "shut down port\n");
684
685 if (!efx->port_initialized)
686 return;
687
688 falcon_fini_xmac(efx);
dc8cfa55 689 efx->port_initialized = false;
8ceee660 690
dc8cfa55 691 efx->link_up = false;
8ceee660
BH
692 efx_link_status_changed(efx);
693}
694
695static void efx_remove_port(struct efx_nic *efx)
696{
697 EFX_LOG(efx, "destroying port\n");
698
699 falcon_remove_port(efx);
700}
701
702/**************************************************************************
703 *
704 * NIC handling
705 *
706 **************************************************************************/
707
708/* This configures the PCI device to enable I/O and DMA. */
709static int efx_init_io(struct efx_nic *efx)
710{
711 struct pci_dev *pci_dev = efx->pci_dev;
712 dma_addr_t dma_mask = efx->type->max_dma_mask;
713 int rc;
714
715 EFX_LOG(efx, "initialising I/O\n");
716
717 rc = pci_enable_device(pci_dev);
718 if (rc) {
719 EFX_ERR(efx, "failed to enable PCI device\n");
720 goto fail1;
721 }
722
723 pci_set_master(pci_dev);
724
725 /* Set the PCI DMA mask. Try all possibilities from our
726 * genuine mask down to 32 bits, because some architectures
727 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
728 * masks event though they reject 46 bit masks.
729 */
730 while (dma_mask > 0x7fffffffUL) {
731 if (pci_dma_supported(pci_dev, dma_mask) &&
732 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
733 break;
734 dma_mask >>= 1;
735 }
736 if (rc) {
737 EFX_ERR(efx, "could not find a suitable DMA mask\n");
738 goto fail2;
739 }
740 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
741 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
742 if (rc) {
743 /* pci_set_consistent_dma_mask() is not *allowed* to
744 * fail with a mask that pci_set_dma_mask() accepted,
745 * but just in case...
746 */
747 EFX_ERR(efx, "failed to set consistent DMA mask\n");
748 goto fail2;
749 }
750
751 efx->membase_phys = pci_resource_start(efx->pci_dev,
752 efx->type->mem_bar);
753 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
754 if (rc) {
755 EFX_ERR(efx, "request for memory BAR failed\n");
756 rc = -EIO;
757 goto fail3;
758 }
759 efx->membase = ioremap_nocache(efx->membase_phys,
760 efx->type->mem_map_size);
761 if (!efx->membase) {
086ea356
BH
762 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
763 efx->type->mem_bar,
764 (unsigned long long)efx->membase_phys,
8ceee660
BH
765 efx->type->mem_map_size);
766 rc = -ENOMEM;
767 goto fail4;
768 }
086ea356
BH
769 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
770 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
771 efx->type->mem_map_size, efx->membase);
8ceee660
BH
772
773 return 0;
774
775 fail4:
e1074a0d 776 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 777 fail3:
2c118e0f 778 efx->membase_phys = 0;
8ceee660
BH
779 fail2:
780 pci_disable_device(efx->pci_dev);
781 fail1:
782 return rc;
783}
784
785static void efx_fini_io(struct efx_nic *efx)
786{
787 EFX_LOG(efx, "shutting down I/O\n");
788
789 if (efx->membase) {
790 iounmap(efx->membase);
791 efx->membase = NULL;
792 }
793
794 if (efx->membase_phys) {
795 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 796 efx->membase_phys = 0;
8ceee660
BH
797 }
798
799 pci_disable_device(efx->pci_dev);
800}
801
46123d04
BH
802/* Get number of RX queues wanted. Return number of online CPU
803 * packages in the expectation that an IRQ balancer will spread
804 * interrupts across them. */
805static int efx_wanted_rx_queues(void)
806{
807 cpumask_t core_mask;
808 int count;
809 int cpu;
810
811 cpus_clear(core_mask);
812 count = 0;
813 for_each_online_cpu(cpu) {
814 if (!cpu_isset(cpu, core_mask)) {
815 ++count;
816 cpus_or(core_mask, core_mask,
817 topology_core_siblings(cpu));
818 }
819 }
820
821 return count;
822}
823
824/* Probe the number and type of interrupts we are able to obtain, and
825 * the resulting numbers of channels and RX queues.
826 */
8ceee660
BH
827static void efx_probe_interrupts(struct efx_nic *efx)
828{
46123d04
BH
829 int max_channels =
830 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
831 int rc, i;
832
833 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
834 struct msix_entry xentries[EFX_MAX_CHANNELS];
835 int wanted_ints;
aa6ef27e 836
46123d04
BH
837 /* We want one RX queue and interrupt per CPU package
838 * (or as specified by the rss_cpus module parameter).
839 * We will need one channel per interrupt.
840 */
841 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
8831da7b 842 efx->n_rx_queues = min(wanted_ints, max_channels);
8ceee660 843
8831da7b 844 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 845 xentries[i].entry = i;
8831da7b 846 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
8ceee660 847 if (rc > 0) {
8831da7b
BH
848 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
849 efx->n_rx_queues = rc;
8ceee660 850 rc = pci_enable_msix(efx->pci_dev, xentries,
8831da7b 851 efx->n_rx_queues);
8ceee660
BH
852 }
853
854 if (rc == 0) {
8831da7b 855 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 856 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
857 } else {
858 /* Fall back to single channel MSI */
859 efx->interrupt_mode = EFX_INT_MODE_MSI;
860 EFX_ERR(efx, "could not enable MSI-X\n");
861 }
862 }
863
864 /* Try single interrupt MSI */
865 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 866 efx->n_rx_queues = 1;
8ceee660
BH
867 rc = pci_enable_msi(efx->pci_dev);
868 if (rc == 0) {
869 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
870 } else {
871 EFX_ERR(efx, "could not enable MSI\n");
872 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
873 }
874 }
875
876 /* Assume legacy interrupts */
877 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 878 efx->n_rx_queues = 1;
8ceee660
BH
879 efx->legacy_irq = efx->pci_dev->irq;
880 }
881}
882
883static void efx_remove_interrupts(struct efx_nic *efx)
884{
885 struct efx_channel *channel;
886
887 /* Remove MSI/MSI-X interrupts */
64ee3120 888 efx_for_each_channel(channel, efx)
8ceee660
BH
889 channel->irq = 0;
890 pci_disable_msi(efx->pci_dev);
891 pci_disable_msix(efx->pci_dev);
892
893 /* Remove legacy interrupt */
894 efx->legacy_irq = 0;
895}
896
8831da7b 897static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
898{
899 struct efx_tx_queue *tx_queue;
900 struct efx_rx_queue *rx_queue;
8ceee660 901
60ac1065
BH
902 efx_for_each_tx_queue(tx_queue, efx) {
903 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
904 tx_queue->channel = &efx->channel[1];
905 else
906 tx_queue->channel = &efx->channel[0];
907 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
908 }
8ceee660 909
8831da7b
BH
910 efx_for_each_rx_queue(rx_queue, efx) {
911 rx_queue->channel = &efx->channel[rx_queue->queue];
912 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
913 }
914}
915
916static int efx_probe_nic(struct efx_nic *efx)
917{
918 int rc;
919
920 EFX_LOG(efx, "creating NIC\n");
921
922 /* Carry out hardware-type specific initialisation */
923 rc = falcon_probe_nic(efx);
924 if (rc)
925 return rc;
926
927 /* Determine the number of channels and RX queues by trying to hook
928 * in MSI-X interrupts. */
929 efx_probe_interrupts(efx);
930
8831da7b 931 efx_set_channels(efx);
8ceee660
BH
932
933 /* Initialise the interrupt moderation settings */
934 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
935
936 return 0;
937}
938
939static void efx_remove_nic(struct efx_nic *efx)
940{
941 EFX_LOG(efx, "destroying NIC\n");
942
943 efx_remove_interrupts(efx);
944 falcon_remove_nic(efx);
945}
946
947/**************************************************************************
948 *
949 * NIC startup/shutdown
950 *
951 *************************************************************************/
952
953static int efx_probe_all(struct efx_nic *efx)
954{
955 struct efx_channel *channel;
956 int rc;
957
958 /* Create NIC */
959 rc = efx_probe_nic(efx);
960 if (rc) {
961 EFX_ERR(efx, "failed to create NIC\n");
962 goto fail1;
963 }
964
965 /* Create port */
966 rc = efx_probe_port(efx);
967 if (rc) {
968 EFX_ERR(efx, "failed to create port\n");
969 goto fail2;
970 }
971
972 /* Create channels */
973 efx_for_each_channel(channel, efx) {
974 rc = efx_probe_channel(channel);
975 if (rc) {
976 EFX_ERR(efx, "failed to create channel %d\n",
977 channel->channel);
978 goto fail3;
979 }
980 }
981
982 return 0;
983
984 fail3:
985 efx_for_each_channel(channel, efx)
986 efx_remove_channel(channel);
987 efx_remove_port(efx);
988 fail2:
989 efx_remove_nic(efx);
990 fail1:
991 return rc;
992}
993
994/* Called after previous invocation(s) of efx_stop_all, restarts the
995 * port, kernel transmit queue, NAPI processing and hardware interrupts,
996 * and ensures that the port is scheduled to be reconfigured.
997 * This function is safe to call multiple times when the NIC is in any
998 * state. */
999static void efx_start_all(struct efx_nic *efx)
1000{
1001 struct efx_channel *channel;
1002
1003 EFX_ASSERT_RESET_SERIALISED(efx);
1004
1005 /* Check that it is appropriate to restart the interface. All
1006 * of these flags are safe to read under just the rtnl lock */
1007 if (efx->port_enabled)
1008 return;
1009 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1010 return;
55668611 1011 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1012 return;
1013
1014 /* Mark the port as enabled so port reconfigurations can start, then
1015 * restart the transmit interface early so the watchdog timer stops */
1016 efx_start_port(efx);
dacccc74
SH
1017 if (efx_dev_registered(efx))
1018 efx_wake_queue(efx);
8ceee660
BH
1019
1020 efx_for_each_channel(channel, efx)
1021 efx_start_channel(channel);
1022
1023 falcon_enable_interrupts(efx);
1024
1025 /* Start hardware monitor if we're in RUNNING */
1026 if (efx->state == STATE_RUNNING)
1027 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1028 efx_monitor_interval);
1029}
1030
1031/* Flush all delayed work. Should only be called when no more delayed work
1032 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1033 * since we're holding the rtnl_lock at this point. */
1034static void efx_flush_all(struct efx_nic *efx)
1035{
1036 struct efx_rx_queue *rx_queue;
1037
1038 /* Make sure the hardware monitor is stopped */
1039 cancel_delayed_work_sync(&efx->monitor_work);
1040
1041 /* Ensure that all RX slow refills are complete. */
b3475645 1042 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1043 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1044
1045 /* Stop scheduled port reconfigurations */
1046 cancel_work_sync(&efx->reconfigure_work);
1047
1048}
1049
1050/* Quiesce hardware and software without bringing the link down.
1051 * Safe to call multiple times, when the nic and interface is in any
1052 * state. The caller is guaranteed to subsequently be in a position
1053 * to modify any hardware and software state they see fit without
1054 * taking locks. */
1055static void efx_stop_all(struct efx_nic *efx)
1056{
1057 struct efx_channel *channel;
1058
1059 EFX_ASSERT_RESET_SERIALISED(efx);
1060
1061 /* port_enabled can be read safely under the rtnl lock */
1062 if (!efx->port_enabled)
1063 return;
1064
1065 /* Disable interrupts and wait for ISR to complete */
1066 falcon_disable_interrupts(efx);
1067 if (efx->legacy_irq)
1068 synchronize_irq(efx->legacy_irq);
64ee3120 1069 efx_for_each_channel(channel, efx) {
8ceee660
BH
1070 if (channel->irq)
1071 synchronize_irq(channel->irq);
b3475645 1072 }
8ceee660
BH
1073
1074 /* Stop all NAPI processing and synchronous rx refills */
1075 efx_for_each_channel(channel, efx)
1076 efx_stop_channel(channel);
1077
1078 /* Stop all asynchronous port reconfigurations. Since all
1079 * event processing has already been stopped, there is no
1080 * window to loose phy events */
1081 efx_stop_port(efx);
1082
1083 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1084 efx_flush_all(efx);
1085
1086 /* Isolate the MAC from the TX and RX engines, so that queue
1087 * flushes will complete in a timely fashion. */
8ceee660
BH
1088 falcon_drain_tx_fifo(efx);
1089
1090 /* Stop the kernel transmit interface late, so the watchdog
1091 * timer isn't ticking over the flush */
55668611 1092 if (efx_dev_registered(efx)) {
dacccc74 1093 efx_stop_queue(efx);
8ceee660
BH
1094 netif_tx_lock_bh(efx->net_dev);
1095 netif_tx_unlock_bh(efx->net_dev);
1096 }
1097}
1098
1099static void efx_remove_all(struct efx_nic *efx)
1100{
1101 struct efx_channel *channel;
1102
1103 efx_for_each_channel(channel, efx)
1104 efx_remove_channel(channel);
1105 efx_remove_port(efx);
1106 efx_remove_nic(efx);
1107}
1108
1109/* A convinience function to safely flush all the queues */
bc3c90a2 1110void efx_flush_queues(struct efx_nic *efx)
8ceee660 1111{
8ceee660
BH
1112 EFX_ASSERT_RESET_SERIALISED(efx);
1113
1114 efx_stop_all(efx);
1115
1116 efx_fini_channels(efx);
bc3c90a2 1117 efx_init_channels(efx);
8ceee660
BH
1118
1119 efx_start_all(efx);
8ceee660
BH
1120}
1121
1122/**************************************************************************
1123 *
1124 * Interrupt moderation
1125 *
1126 **************************************************************************/
1127
1128/* Set interrupt moderation parameters */
1129void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1130{
1131 struct efx_tx_queue *tx_queue;
1132 struct efx_rx_queue *rx_queue;
1133
1134 EFX_ASSERT_RESET_SERIALISED(efx);
1135
1136 efx_for_each_tx_queue(tx_queue, efx)
1137 tx_queue->channel->irq_moderation = tx_usecs;
1138
1139 efx_for_each_rx_queue(rx_queue, efx)
1140 rx_queue->channel->irq_moderation = rx_usecs;
1141}
1142
1143/**************************************************************************
1144 *
1145 * Hardware monitor
1146 *
1147 **************************************************************************/
1148
1149/* Run periodically off the general workqueue. Serialised against
1150 * efx_reconfigure_port via the mac_lock */
1151static void efx_monitor(struct work_struct *data)
1152{
1153 struct efx_nic *efx = container_of(data, struct efx_nic,
1154 monitor_work.work);
1155 int rc = 0;
1156
1157 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1158 raw_smp_processor_id());
1159
1160
1161 /* If the mac_lock is already held then it is likely a port
1162 * reconfiguration is already in place, which will likely do
1163 * most of the work of check_hw() anyway. */
1164 if (!mutex_trylock(&efx->mac_lock)) {
1165 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1166 efx_monitor_interval);
1167 return;
1168 }
1169
1170 if (efx->port_enabled)
1171 rc = falcon_check_xmac(efx);
1172 mutex_unlock(&efx->mac_lock);
1173
8ceee660
BH
1174 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1175 efx_monitor_interval);
1176}
1177
1178/**************************************************************************
1179 *
1180 * ioctls
1181 *
1182 *************************************************************************/
1183
1184/* Net device ioctl
1185 * Context: process, rtnl_lock() held.
1186 */
1187static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1188{
767e468c 1189 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1190
1191 EFX_ASSERT_RESET_SERIALISED(efx);
1192
1193 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1194}
1195
1196/**************************************************************************
1197 *
1198 * NAPI interface
1199 *
1200 **************************************************************************/
1201
1202static int efx_init_napi(struct efx_nic *efx)
1203{
1204 struct efx_channel *channel;
1205 int rc;
1206
1207 efx_for_each_channel(channel, efx) {
1208 channel->napi_dev = efx->net_dev;
1209 rc = efx_lro_init(&channel->lro_mgr, efx);
1210 if (rc)
1211 goto err;
1212 }
1213 return 0;
1214 err:
1215 efx_fini_napi(efx);
1216 return rc;
1217}
1218
1219static void efx_fini_napi(struct efx_nic *efx)
1220{
1221 struct efx_channel *channel;
1222
1223 efx_for_each_channel(channel, efx) {
1224 efx_lro_fini(&channel->lro_mgr);
1225 channel->napi_dev = NULL;
1226 }
1227}
1228
1229/**************************************************************************
1230 *
1231 * Kernel netpoll interface
1232 *
1233 *************************************************************************/
1234
1235#ifdef CONFIG_NET_POLL_CONTROLLER
1236
1237/* Although in the common case interrupts will be disabled, this is not
1238 * guaranteed. However, all our work happens inside the NAPI callback,
1239 * so no locking is required.
1240 */
1241static void efx_netpoll(struct net_device *net_dev)
1242{
767e468c 1243 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1244 struct efx_channel *channel;
1245
64ee3120 1246 efx_for_each_channel(channel, efx)
8ceee660
BH
1247 efx_schedule_channel(channel);
1248}
1249
1250#endif
1251
1252/**************************************************************************
1253 *
1254 * Kernel net device interface
1255 *
1256 *************************************************************************/
1257
1258/* Context: process, rtnl_lock() held. */
1259static int efx_net_open(struct net_device *net_dev)
1260{
767e468c 1261 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1262 EFX_ASSERT_RESET_SERIALISED(efx);
1263
1264 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1265 raw_smp_processor_id());
1266
f8b87c17
BH
1267 if (efx->phy_mode & PHY_MODE_SPECIAL)
1268 return -EBUSY;
1269
8ceee660
BH
1270 efx_start_all(efx);
1271 return 0;
1272}
1273
1274/* Context: process, rtnl_lock() held.
1275 * Note that the kernel will ignore our return code; this method
1276 * should really be a void.
1277 */
1278static int efx_net_stop(struct net_device *net_dev)
1279{
767e468c 1280 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1281
1282 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1283 raw_smp_processor_id());
1284
1285 /* Stop the device and flush all the channels */
1286 efx_stop_all(efx);
1287 efx_fini_channels(efx);
bc3c90a2 1288 efx_init_channels(efx);
8ceee660
BH
1289
1290 return 0;
1291}
1292
5b9e207c 1293/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1294static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1295{
767e468c 1296 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1297 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1298 struct net_device_stats *stats = &net_dev->stats;
1299
5b9e207c
BH
1300 /* Update stats if possible, but do not wait if another thread
1301 * is updating them (or resetting the NIC); slightly stale
1302 * stats are acceptable.
1303 */
8ceee660
BH
1304 if (!spin_trylock(&efx->stats_lock))
1305 return stats;
8c8661e4 1306 if (efx->stats_enabled) {
8ceee660
BH
1307 falcon_update_stats_xmac(efx);
1308 falcon_update_nic_stats(efx);
1309 }
1310 spin_unlock(&efx->stats_lock);
1311
1312 stats->rx_packets = mac_stats->rx_packets;
1313 stats->tx_packets = mac_stats->tx_packets;
1314 stats->rx_bytes = mac_stats->rx_bytes;
1315 stats->tx_bytes = mac_stats->tx_bytes;
1316 stats->multicast = mac_stats->rx_multicast;
1317 stats->collisions = mac_stats->tx_collision;
1318 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1319 mac_stats->rx_length_error);
1320 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1321 stats->rx_crc_errors = mac_stats->rx_bad;
1322 stats->rx_frame_errors = mac_stats->rx_align_error;
1323 stats->rx_fifo_errors = mac_stats->rx_overflow;
1324 stats->rx_missed_errors = mac_stats->rx_missed;
1325 stats->tx_window_errors = mac_stats->tx_late_collision;
1326
1327 stats->rx_errors = (stats->rx_length_errors +
1328 stats->rx_over_errors +
1329 stats->rx_crc_errors +
1330 stats->rx_frame_errors +
1331 stats->rx_fifo_errors +
1332 stats->rx_missed_errors +
1333 mac_stats->rx_symbol_error);
1334 stats->tx_errors = (stats->tx_window_errors +
1335 mac_stats->tx_bad);
1336
1337 return stats;
1338}
1339
1340/* Context: netif_tx_lock held, BHs disabled. */
1341static void efx_watchdog(struct net_device *net_dev)
1342{
767e468c 1343 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1344
739bb23d
BH
1345 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1346 " resetting channels\n",
1347 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1348
739bb23d 1349 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1350}
1351
1352
1353/* Context: process, rtnl_lock() held. */
1354static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1355{
767e468c 1356 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1357 int rc = 0;
1358
1359 EFX_ASSERT_RESET_SERIALISED(efx);
1360
1361 if (new_mtu > EFX_MAX_MTU)
1362 return -EINVAL;
1363
1364 efx_stop_all(efx);
1365
1366 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1367
1368 efx_fini_channels(efx);
1369 net_dev->mtu = new_mtu;
bc3c90a2 1370 efx_init_channels(efx);
8ceee660
BH
1371
1372 efx_start_all(efx);
1373 return rc;
8ceee660
BH
1374}
1375
1376static int efx_set_mac_address(struct net_device *net_dev, void *data)
1377{
767e468c 1378 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1379 struct sockaddr *addr = data;
1380 char *new_addr = addr->sa_data;
1381
1382 EFX_ASSERT_RESET_SERIALISED(efx);
1383
1384 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1385 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1386 new_addr);
8ceee660
BH
1387 return -EINVAL;
1388 }
1389
1390 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1391
1392 /* Reconfigure the MAC */
1393 efx_reconfigure_port(efx);
1394
1395 return 0;
1396}
1397
a816f75a 1398/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1399static void efx_set_multicast_list(struct net_device *net_dev)
1400{
767e468c 1401 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1402 struct dev_mc_list *mc_list = net_dev->mc_list;
1403 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1404 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1405 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1406 u32 crc;
1407 int bit;
1408 int i;
1409
a816f75a 1410 efx->promiscuous = promiscuous;
8ceee660
BH
1411
1412 /* Build multicast hash table */
1413 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1414 memset(mc_hash, 0xff, sizeof(*mc_hash));
1415 } else {
1416 memset(mc_hash, 0x00, sizeof(*mc_hash));
1417 for (i = 0; i < net_dev->mc_count; i++) {
1418 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1419 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1420 set_bit_le(bit, mc_hash->byte);
1421 mc_list = mc_list->next;
1422 }
1423 }
1424
a816f75a
BH
1425 if (!efx->port_enabled)
1426 /* Delay pushing settings until efx_start_port() */
1427 return;
1428
1429 if (changed)
1430 queue_work(efx->workqueue, &efx->reconfigure_work);
1431
8ceee660
BH
1432 /* Create and activate new global multicast hash table */
1433 falcon_set_multicast_hash(efx);
1434}
1435
1436static int efx_netdev_event(struct notifier_block *this,
1437 unsigned long event, void *ptr)
1438{
d3208b5e 1439 struct net_device *net_dev = ptr;
8ceee660
BH
1440
1441 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1442 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1443
1444 strcpy(efx->name, net_dev->name);
f4150724 1445 efx_mtd_rename(efx);
8ceee660
BH
1446 }
1447
1448 return NOTIFY_DONE;
1449}
1450
1451static struct notifier_block efx_netdev_notifier = {
1452 .notifier_call = efx_netdev_event,
1453};
1454
1455static int efx_register_netdev(struct efx_nic *efx)
1456{
1457 struct net_device *net_dev = efx->net_dev;
1458 int rc;
1459
1460 net_dev->watchdog_timeo = 5 * HZ;
1461 net_dev->irq = efx->pci_dev->irq;
1462 net_dev->open = efx_net_open;
1463 net_dev->stop = efx_net_stop;
1464 net_dev->get_stats = efx_net_stats;
1465 net_dev->tx_timeout = &efx_watchdog;
1466 net_dev->hard_start_xmit = efx_hard_start_xmit;
1467 net_dev->do_ioctl = efx_ioctl;
1468 net_dev->change_mtu = efx_change_mtu;
1469 net_dev->set_mac_address = efx_set_mac_address;
1470 net_dev->set_multicast_list = efx_set_multicast_list;
1471#ifdef CONFIG_NET_POLL_CONTROLLER
1472 net_dev->poll_controller = efx_netpoll;
1473#endif
1474 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1475 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1476
1477 /* Always start with carrier off; PHY events will detect the link */
1478 netif_carrier_off(efx->net_dev);
1479
1480 /* Clear MAC statistics */
1481 falcon_update_stats_xmac(efx);
1482 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1483
1484 rc = register_netdev(net_dev);
1485 if (rc) {
1486 EFX_ERR(efx, "could not register net dev\n");
1487 return rc;
1488 }
1489 strcpy(efx->name, net_dev->name);
1490
1491 return 0;
1492}
1493
1494static void efx_unregister_netdev(struct efx_nic *efx)
1495{
1496 struct efx_tx_queue *tx_queue;
1497
1498 if (!efx->net_dev)
1499 return;
1500
767e468c 1501 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1502
1503 /* Free up any skbs still remaining. This has to happen before
1504 * we try to unregister the netdev as running their destructors
1505 * may be needed to get the device ref. count to 0. */
1506 efx_for_each_tx_queue(tx_queue, efx)
1507 efx_release_tx_buffers(tx_queue);
1508
55668611 1509 if (efx_dev_registered(efx)) {
8ceee660
BH
1510 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1511 unregister_netdev(efx->net_dev);
1512 }
1513}
1514
1515/**************************************************************************
1516 *
1517 * Device reset and suspend
1518 *
1519 **************************************************************************/
1520
2467ca46
BH
1521/* Tears down the entire software state and most of the hardware state
1522 * before reset. */
8c8661e4 1523void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660
BH
1524{
1525 int rc;
1526
1527 EFX_ASSERT_RESET_SERIALISED(efx);
1528
2467ca46
BH
1529 /* The net_dev->get_stats handler is quite slow, and will fail
1530 * if a fetch is pending over reset. Serialise against it. */
1531 spin_lock(&efx->stats_lock);
8c8661e4 1532 efx->stats_enabled = false;
2467ca46
BH
1533 spin_unlock(&efx->stats_lock);
1534
1535 efx_stop_all(efx);
1536 mutex_lock(&efx->mac_lock);
f4150724 1537 mutex_lock(&efx->spi_lock);
2467ca46 1538
8ceee660 1539 rc = falcon_xmac_get_settings(efx, ecmd);
2467ca46 1540 if (rc)
8ceee660 1541 EFX_ERR(efx, "could not back up PHY settings\n");
8ceee660
BH
1542
1543 efx_fini_channels(efx);
8ceee660
BH
1544}
1545
2467ca46
BH
1546/* This function will always ensure that the locks acquired in
1547 * efx_reset_down() are released. A failure return code indicates
1548 * that we were unable to reinitialise the hardware, and the
1549 * driver should be disabled. If ok is false, then the rx and tx
1550 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1551int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1552{
1553 int rc;
1554
2467ca46 1555 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1556
2467ca46 1557 rc = falcon_init_nic(efx);
8ceee660 1558 if (rc) {
2467ca46
BH
1559 EFX_ERR(efx, "failed to initialise NIC\n");
1560 ok = false;
8ceee660
BH
1561 }
1562
2467ca46
BH
1563 if (ok) {
1564 efx_init_channels(efx);
8ceee660 1565
2467ca46
BH
1566 if (falcon_xmac_set_settings(efx, ecmd))
1567 EFX_ERR(efx, "could not restore PHY settings\n");
1568 }
1569
f4150724 1570 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1571 mutex_unlock(&efx->mac_lock);
1572
8c8661e4 1573 if (ok) {
2467ca46 1574 efx_start_all(efx);
8c8661e4
BH
1575 efx->stats_enabled = true;
1576 }
8ceee660
BH
1577 return rc;
1578}
1579
1580/* Reset the NIC as transparently as possible. Do not reset the PHY
1581 * Note that the reset may fail, in which case the card will be left
1582 * in a most-probably-unusable state.
1583 *
1584 * This function will sleep. You cannot reset from within an atomic
1585 * state; use efx_schedule_reset() instead.
1586 *
1587 * Grabs the rtnl_lock.
1588 */
1589static int efx_reset(struct efx_nic *efx)
1590{
1591 struct ethtool_cmd ecmd;
1592 enum reset_type method = efx->reset_pending;
1593 int rc;
1594
1595 /* Serialise with kernel interfaces */
1596 rtnl_lock();
1597
1598 /* If we're not RUNNING then don't reset. Leave the reset_pending
1599 * flag set so that efx_pci_probe_main will be retried */
1600 if (efx->state != STATE_RUNNING) {
1601 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1602 goto unlock_rtnl;
1603 }
1604
8ceee660
BH
1605 EFX_INFO(efx, "resetting (%d)\n", method);
1606
2467ca46 1607 efx_reset_down(efx, &ecmd);
8ceee660
BH
1608
1609 rc = falcon_reset_hw(efx, method);
1610 if (rc) {
1611 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1612 goto fail;
8ceee660
BH
1613 }
1614
1615 /* Allow resets to be rescheduled. */
1616 efx->reset_pending = RESET_TYPE_NONE;
1617
1618 /* Reinitialise bus-mastering, which may have been turned off before
1619 * the reset was scheduled. This is still appropriate, even in the
1620 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1621 * can respond to requests. */
1622 pci_set_master(efx->pci_dev);
1623
8ceee660
BH
1624 /* Leave device stopped if necessary */
1625 if (method == RESET_TYPE_DISABLE) {
8ceee660 1626 rc = -EIO;
2467ca46 1627 goto fail;
8ceee660
BH
1628 }
1629
2467ca46 1630 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1631 if (rc)
2467ca46 1632 goto disable;
8ceee660 1633
8ceee660 1634 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1635 unlock_rtnl:
1636 rtnl_unlock();
1637 return 0;
1638
2467ca46
BH
1639 fail:
1640 efx_reset_up(efx, &ecmd, false);
1641 disable:
8ceee660
BH
1642 EFX_ERR(efx, "has been disabled\n");
1643 efx->state = STATE_DISABLED;
1644
8ceee660
BH
1645 rtnl_unlock();
1646 efx_unregister_netdev(efx);
1647 efx_fini_port(efx);
1648 return rc;
1649}
1650
1651/* The worker thread exists so that code that cannot sleep can
1652 * schedule a reset for later.
1653 */
1654static void efx_reset_work(struct work_struct *data)
1655{
1656 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1657
1658 efx_reset(nic);
1659}
1660
1661void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1662{
1663 enum reset_type method;
1664
1665 if (efx->reset_pending != RESET_TYPE_NONE) {
1666 EFX_INFO(efx, "quenching already scheduled reset\n");
1667 return;
1668 }
1669
1670 switch (type) {
1671 case RESET_TYPE_INVISIBLE:
1672 case RESET_TYPE_ALL:
1673 case RESET_TYPE_WORLD:
1674 case RESET_TYPE_DISABLE:
1675 method = type;
1676 break;
1677 case RESET_TYPE_RX_RECOVERY:
1678 case RESET_TYPE_RX_DESC_FETCH:
1679 case RESET_TYPE_TX_DESC_FETCH:
1680 case RESET_TYPE_TX_SKIP:
1681 method = RESET_TYPE_INVISIBLE;
1682 break;
1683 default:
1684 method = RESET_TYPE_ALL;
1685 break;
1686 }
1687
1688 if (method != type)
1689 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1690 else
1691 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1692
1693 efx->reset_pending = method;
1694
8d9853d9 1695 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1696}
1697
1698/**************************************************************************
1699 *
1700 * List of NICs we support
1701 *
1702 **************************************************************************/
1703
1704/* PCI device ID table */
1705static struct pci_device_id efx_pci_table[] __devinitdata = {
1706 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1707 .driver_data = (unsigned long) &falcon_a_nic_type},
1708 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1709 .driver_data = (unsigned long) &falcon_b_nic_type},
1710 {0} /* end of list */
1711};
1712
1713/**************************************************************************
1714 *
1715 * Dummy PHY/MAC/Board operations
1716 *
01aad7b6 1717 * Can be used for some unimplemented operations
8ceee660
BH
1718 * Needed so all function pointers are valid and do not have to be tested
1719 * before use
1720 *
1721 **************************************************************************/
1722int efx_port_dummy_op_int(struct efx_nic *efx)
1723{
1724 return 0;
1725}
1726void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1727void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1728
1729static struct efx_phy_operations efx_dummy_phy_operations = {
1730 .init = efx_port_dummy_op_int,
1731 .reconfigure = efx_port_dummy_op_void,
1732 .check_hw = efx_port_dummy_op_int,
1733 .fini = efx_port_dummy_op_void,
1734 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1735};
1736
8ceee660 1737static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1738 .init = efx_port_dummy_op_int,
1739 .init_leds = efx_port_dummy_op_int,
1740 .set_fault_led = efx_port_dummy_op_blink,
1741 .blink = efx_port_dummy_op_blink,
1742 .fini = efx_port_dummy_op_void,
8ceee660
BH
1743};
1744
1745/**************************************************************************
1746 *
1747 * Data housekeeping
1748 *
1749 **************************************************************************/
1750
1751/* This zeroes out and then fills in the invariants in a struct
1752 * efx_nic (including all sub-structures).
1753 */
1754static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1755 struct pci_dev *pci_dev, struct net_device *net_dev)
1756{
1757 struct efx_channel *channel;
1758 struct efx_tx_queue *tx_queue;
1759 struct efx_rx_queue *rx_queue;
1760 int i, rc;
1761
1762 /* Initialise common structures */
1763 memset(efx, 0, sizeof(*efx));
1764 spin_lock_init(&efx->biu_lock);
1765 spin_lock_init(&efx->phy_lock);
f4150724 1766 mutex_init(&efx->spi_lock);
8ceee660
BH
1767 INIT_WORK(&efx->reset_work, efx_reset_work);
1768 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1769 efx->pci_dev = pci_dev;
1770 efx->state = STATE_INIT;
1771 efx->reset_pending = RESET_TYPE_NONE;
1772 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1773 efx->board_info = efx_dummy_board_info;
1774
1775 efx->net_dev = net_dev;
dc8cfa55 1776 efx->rx_checksum_enabled = true;
8ceee660
BH
1777 spin_lock_init(&efx->netif_stop_lock);
1778 spin_lock_init(&efx->stats_lock);
1779 mutex_init(&efx->mac_lock);
1780 efx->phy_op = &efx_dummy_phy_operations;
1781 efx->mii.dev = net_dev;
1782 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1783 atomic_set(&efx->netif_stop_count, 1);
1784
1785 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1786 channel = &efx->channel[i];
1787 channel->efx = efx;
1788 channel->channel = i;
dc8cfa55 1789 channel->work_pending = false;
8ceee660 1790 }
60ac1065 1791 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1792 tx_queue = &efx->tx_queue[i];
1793 tx_queue->efx = efx;
1794 tx_queue->queue = i;
1795 tx_queue->buffer = NULL;
1796 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1797 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1798 }
1799 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1800 rx_queue = &efx->rx_queue[i];
1801 rx_queue->efx = efx;
1802 rx_queue->queue = i;
1803 rx_queue->channel = &efx->channel[0]; /* for safety */
1804 rx_queue->buffer = NULL;
1805 spin_lock_init(&rx_queue->add_lock);
1806 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1807 }
1808
1809 efx->type = type;
1810
1811 /* Sanity-check NIC type */
1812 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1813 (efx->type->txd_ring_mask + 1));
1814 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1815 (efx->type->rxd_ring_mask + 1));
1816 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1817 (efx->type->evq_size - 1));
1818 /* As close as we can get to guaranteeing that we don't overflow */
1819 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1820 (efx->type->txd_ring_mask + 1 +
1821 efx->type->rxd_ring_mask + 1));
1822 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1823
1824 /* Higher numbered interrupt modes are less capable! */
1825 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1826 interrupt_mode);
1827
1828 efx->workqueue = create_singlethread_workqueue("sfc_work");
1829 if (!efx->workqueue) {
1830 rc = -ENOMEM;
1831 goto fail1;
1832 }
1833
8d9853d9
BH
1834 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1835 if (!efx->reset_workqueue) {
1836 rc = -ENOMEM;
1837 goto fail2;
1838 }
1839
8ceee660
BH
1840 return 0;
1841
8d9853d9
BH
1842 fail2:
1843 destroy_workqueue(efx->workqueue);
1844 efx->workqueue = NULL;
1845
8ceee660
BH
1846 fail1:
1847 return rc;
1848}
1849
1850static void efx_fini_struct(struct efx_nic *efx)
1851{
8d9853d9
BH
1852 if (efx->reset_workqueue) {
1853 destroy_workqueue(efx->reset_workqueue);
1854 efx->reset_workqueue = NULL;
1855 }
8ceee660
BH
1856 if (efx->workqueue) {
1857 destroy_workqueue(efx->workqueue);
1858 efx->workqueue = NULL;
1859 }
1860}
1861
1862/**************************************************************************
1863 *
1864 * PCI interface
1865 *
1866 **************************************************************************/
1867
1868/* Main body of final NIC shutdown code
1869 * This is called only at module unload (or hotplug removal).
1870 */
1871static void efx_pci_remove_main(struct efx_nic *efx)
1872{
1873 EFX_ASSERT_RESET_SERIALISED(efx);
1874
1875 /* Skip everything if we never obtained a valid membase */
1876 if (!efx->membase)
1877 return;
1878
1879 efx_fini_channels(efx);
1880 efx_fini_port(efx);
1881
1882 /* Shutdown the board, then the NIC and board state */
37b5a603 1883 efx->board_info.fini(efx);
8ceee660
BH
1884 falcon_fini_interrupt(efx);
1885
1886 efx_fini_napi(efx);
1887 efx_remove_all(efx);
1888}
1889
1890/* Final NIC shutdown
1891 * This is called only at module unload (or hotplug removal).
1892 */
1893static void efx_pci_remove(struct pci_dev *pci_dev)
1894{
1895 struct efx_nic *efx;
1896
1897 efx = pci_get_drvdata(pci_dev);
1898 if (!efx)
1899 return;
1900
f4150724
BH
1901 efx_mtd_remove(efx);
1902
8ceee660
BH
1903 /* Mark the NIC as fini, then stop the interface */
1904 rtnl_lock();
1905 efx->state = STATE_FINI;
1906 dev_close(efx->net_dev);
1907
1908 /* Allow any queued efx_resets() to complete */
1909 rtnl_unlock();
1910
1911 if (efx->membase == NULL)
1912 goto out;
1913
1914 efx_unregister_netdev(efx);
1915
1916 /* Wait for any scheduled resets to complete. No more will be
1917 * scheduled from this point because efx_stop_all() has been
1918 * called, we are no longer registered with driverlink, and
1919 * the net_device's have been removed. */
8d9853d9 1920 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
1921
1922 efx_pci_remove_main(efx);
1923
1924out:
1925 efx_fini_io(efx);
1926 EFX_LOG(efx, "shutdown successful\n");
1927
1928 pci_set_drvdata(pci_dev, NULL);
1929 efx_fini_struct(efx);
1930 free_netdev(efx->net_dev);
1931};
1932
1933/* Main body of NIC initialisation
1934 * This is called at module load (or hotplug insertion, theoretically).
1935 */
1936static int efx_pci_probe_main(struct efx_nic *efx)
1937{
1938 int rc;
1939
1940 /* Do start-of-day initialisation */
1941 rc = efx_probe_all(efx);
1942 if (rc)
1943 goto fail1;
1944
1945 rc = efx_init_napi(efx);
1946 if (rc)
1947 goto fail2;
1948
1949 /* Initialise the board */
1950 rc = efx->board_info.init(efx);
1951 if (rc) {
1952 EFX_ERR(efx, "failed to initialise board\n");
1953 goto fail3;
1954 }
1955
1956 rc = falcon_init_nic(efx);
1957 if (rc) {
1958 EFX_ERR(efx, "failed to initialise NIC\n");
1959 goto fail4;
1960 }
1961
1962 rc = efx_init_port(efx);
1963 if (rc) {
1964 EFX_ERR(efx, "failed to initialise port\n");
1965 goto fail5;
1966 }
1967
bc3c90a2 1968 efx_init_channels(efx);
8ceee660
BH
1969
1970 rc = falcon_init_interrupt(efx);
1971 if (rc)
bc3c90a2 1972 goto fail6;
8ceee660
BH
1973
1974 return 0;
1975
8ceee660 1976 fail6:
bc3c90a2 1977 efx_fini_channels(efx);
8ceee660
BH
1978 efx_fini_port(efx);
1979 fail5:
1980 fail4:
1981 fail3:
1982 efx_fini_napi(efx);
1983 fail2:
1984 efx_remove_all(efx);
1985 fail1:
1986 return rc;
1987}
1988
1989/* NIC initialisation
1990 *
1991 * This is called at module load (or hotplug insertion,
1992 * theoretically). It sets up PCI mappings, tests and resets the NIC,
1993 * sets up and registers the network devices with the kernel and hooks
1994 * the interrupt service routine. It does not prepare the device for
1995 * transmission; this is left to the first time one of the network
1996 * interfaces is brought up (i.e. efx_net_open).
1997 */
1998static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
1999 const struct pci_device_id *entry)
2000{
2001 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2002 struct net_device *net_dev;
2003 struct efx_nic *efx;
2004 int i, rc;
2005
2006 /* Allocate and initialise a struct net_device and struct efx_nic */
2007 net_dev = alloc_etherdev(sizeof(*efx));
2008 if (!net_dev)
2009 return -ENOMEM;
b9b39b62
BH
2010 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2011 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2012 if (lro)
2013 net_dev->features |= NETIF_F_LRO;
28506563
BH
2014 /* Mask for features that also apply to VLAN devices */
2015 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2016 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2017 efx = netdev_priv(net_dev);
8ceee660
BH
2018 pci_set_drvdata(pci_dev, efx);
2019 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2020 if (rc)
2021 goto fail1;
2022
2023 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2024
2025 /* Set up basic I/O (BAR mappings etc) */
2026 rc = efx_init_io(efx);
2027 if (rc)
2028 goto fail2;
2029
2030 /* No serialisation is required with the reset path because
2031 * we're in STATE_INIT. */
2032 for (i = 0; i < 5; i++) {
2033 rc = efx_pci_probe_main(efx);
2034 if (rc == 0)
2035 break;
2036
2037 /* Serialise against efx_reset(). No more resets will be
2038 * scheduled since efx_stop_all() has been called, and we
2039 * have not and never have been registered with either
2040 * the rtnetlink or driverlink layers. */
8d9853d9 2041 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2042
2043 /* Retry if a recoverably reset event has been scheduled */
2044 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2045 (efx->reset_pending != RESET_TYPE_ALL))
2046 goto fail3;
2047
2048 efx->reset_pending = RESET_TYPE_NONE;
2049 }
2050
2051 if (rc) {
2052 EFX_ERR(efx, "Could not reset NIC\n");
2053 goto fail4;
2054 }
2055
2056 /* Switch to the running state before we expose the device to
2057 * the OS. This is to ensure that the initial gathering of
2058 * MAC stats succeeds. */
2059 rtnl_lock();
2060 efx->state = STATE_RUNNING;
2061 rtnl_unlock();
2062
2063 rc = efx_register_netdev(efx);
2064 if (rc)
2065 goto fail5;
2066
2067 EFX_LOG(efx, "initialisation successful\n");
2068
f4150724 2069 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2070 return 0;
2071
2072 fail5:
2073 efx_pci_remove_main(efx);
2074 fail4:
2075 fail3:
2076 efx_fini_io(efx);
2077 fail2:
2078 efx_fini_struct(efx);
2079 fail1:
2080 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2081 free_netdev(net_dev);
2082 return rc;
2083}
2084
2085static struct pci_driver efx_pci_driver = {
2086 .name = EFX_DRIVER_NAME,
2087 .id_table = efx_pci_table,
2088 .probe = efx_pci_probe,
2089 .remove = efx_pci_remove,
2090};
2091
2092/**************************************************************************
2093 *
2094 * Kernel module interface
2095 *
2096 *************************************************************************/
2097
2098module_param(interrupt_mode, uint, 0444);
2099MODULE_PARM_DESC(interrupt_mode,
2100 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2101
2102static int __init efx_init_module(void)
2103{
2104 int rc;
2105
2106 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2107
2108 rc = register_netdevice_notifier(&efx_netdev_notifier);
2109 if (rc)
2110 goto err_notifier;
2111
2112 refill_workqueue = create_workqueue("sfc_refill");
2113 if (!refill_workqueue) {
2114 rc = -ENOMEM;
2115 goto err_refill;
2116 }
2117
2118 rc = pci_register_driver(&efx_pci_driver);
2119 if (rc < 0)
2120 goto err_pci;
2121
2122 return 0;
2123
2124 err_pci:
2125 destroy_workqueue(refill_workqueue);
2126 err_refill:
2127 unregister_netdevice_notifier(&efx_netdev_notifier);
2128 err_notifier:
2129 return rc;
2130}
2131
2132static void __exit efx_exit_module(void)
2133{
2134 printk(KERN_INFO "Solarflare NET driver unloading\n");
2135
2136 pci_unregister_driver(&efx_pci_driver);
2137 destroy_workqueue(refill_workqueue);
2138 unregister_netdevice_notifier(&efx_netdev_notifier);
2139
2140}
2141
2142module_init(efx_init_module);
2143module_exit(efx_exit_module);
2144
2145MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2146 "Solarflare Communications");
2147MODULE_DESCRIPTION("Solarflare Communications network driver");
2148MODULE_LICENSE("GPL");
2149MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.187745 seconds and 5 git commands to generate.