mdio: Add generic MDIO (clause 45) support functions
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52/*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
dc8cfa55 58static int lro = true;
8ceee660
BH
59module_param(lro, int, 0644);
60MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62/*
63 * Use separate channels for TX and RX events
64 *
28b581ab
NT
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
8ceee660 67 *
28b581ab 68 * This is only used in MSI-X interrupt mode
8ceee660 69 */
28b581ab
NT
70static unsigned int separate_tx_channels;
71module_param(separate_tx_channels, uint, 0644);
72MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
6fb70fd1
BH
136static unsigned irq_adapt_low_thresh = 10000;
137module_param(irq_adapt_low_thresh, uint, 0644);
138MODULE_PARM_DESC(irq_adapt_low_thresh,
139 "Threshold score for reducing IRQ moderation");
140
141static unsigned irq_adapt_high_thresh = 20000;
142module_param(irq_adapt_high_thresh, uint, 0644);
143MODULE_PARM_DESC(irq_adapt_high_thresh,
144 "Threshold score for increasing IRQ moderation");
145
8ceee660
BH
146/**************************************************************************
147 *
148 * Utility functions and prototypes
149 *
150 *************************************************************************/
151static void efx_remove_channel(struct efx_channel *channel);
152static void efx_remove_port(struct efx_nic *efx);
153static void efx_fini_napi(struct efx_nic *efx);
154static void efx_fini_channels(struct efx_nic *efx);
155
156#define EFX_ASSERT_RESET_SERIALISED(efx) \
157 do { \
3c78708f 158 if (efx->state == STATE_RUNNING) \
8ceee660
BH
159 ASSERT_RTNL(); \
160 } while (0)
161
162/**************************************************************************
163 *
164 * Event queue processing
165 *
166 *************************************************************************/
167
168/* Process channel's event queue
169 *
170 * This function is responsible for processing the event queue of a
171 * single channel. The caller must guarantee that this function will
172 * never be concurrently called more than once on the same channel,
173 * though different channels may be being processed concurrently.
174 */
4d566063 175static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 176{
42cbe2d7
BH
177 struct efx_nic *efx = channel->efx;
178 int rx_packets;
8ceee660 179
42cbe2d7 180 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 181 !channel->enabled))
42cbe2d7 182 return 0;
8ceee660 183
42cbe2d7
BH
184 rx_packets = falcon_process_eventq(channel, rx_quota);
185 if (rx_packets == 0)
186 return 0;
8ceee660
BH
187
188 /* Deliver last RX packet. */
189 if (channel->rx_pkt) {
190 __efx_rx_packet(channel, channel->rx_pkt,
191 channel->rx_pkt_csummed);
192 channel->rx_pkt = NULL;
193 }
194
8ceee660
BH
195 efx_rx_strategy(channel);
196
42cbe2d7 197 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 198
42cbe2d7 199 return rx_packets;
8ceee660
BH
200}
201
202/* Mark channel as finished processing
203 *
204 * Note that since we will not receive further interrupts for this
205 * channel before we finish processing and call the eventq_read_ack()
206 * method, there is no need to use the interrupt hold-off timers.
207 */
208static inline void efx_channel_processed(struct efx_channel *channel)
209{
5b9e207c
BH
210 /* The interrupt handler for this channel may set work_pending
211 * as soon as we acknowledge the events we've seen. Make sure
212 * it's cleared before then. */
dc8cfa55 213 channel->work_pending = false;
5b9e207c
BH
214 smp_wmb();
215
8ceee660
BH
216 falcon_eventq_read_ack(channel);
217}
218
219/* NAPI poll handler
220 *
221 * NAPI guarantees serialisation of polls of the same device, which
222 * provides the guarantee required by efx_process_channel().
223 */
224static int efx_poll(struct napi_struct *napi, int budget)
225{
226 struct efx_channel *channel =
227 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
228 int rx_packets;
229
230 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
231 channel->channel, raw_smp_processor_id());
232
42cbe2d7 233 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
234
235 if (rx_packets < budget) {
6fb70fd1
BH
236 struct efx_nic *efx = channel->efx;
237
238 if (channel->used_flags & EFX_USED_BY_RX &&
239 efx->irq_rx_adaptive &&
240 unlikely(++channel->irq_count == 1000)) {
241 unsigned old_irq_moderation = channel->irq_moderation;
242
243 if (unlikely(channel->irq_mod_score <
244 irq_adapt_low_thresh)) {
245 channel->irq_moderation =
246 max_t(int,
247 channel->irq_moderation -
248 FALCON_IRQ_MOD_RESOLUTION,
249 FALCON_IRQ_MOD_RESOLUTION);
250 } else if (unlikely(channel->irq_mod_score >
251 irq_adapt_high_thresh)) {
252 channel->irq_moderation =
253 min(channel->irq_moderation +
254 FALCON_IRQ_MOD_RESOLUTION,
255 efx->irq_rx_moderation);
256 }
257
258 if (channel->irq_moderation != old_irq_moderation)
259 falcon_set_int_moderation(channel);
260
261 channel->irq_count = 0;
262 channel->irq_mod_score = 0;
263 }
264
8ceee660 265 /* There is no race here; although napi_disable() will
288379f0 266 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
267 * since efx_channel_processed() will have no effect if
268 * interrupts have already been disabled.
269 */
288379f0 270 napi_complete(napi);
8ceee660
BH
271 efx_channel_processed(channel);
272 }
273
274 return rx_packets;
275}
276
277/* Process the eventq of the specified channel immediately on this CPU
278 *
279 * Disable hardware generated interrupts, wait for any existing
280 * processing to finish, then directly poll (and ack ) the eventq.
281 * Finally reenable NAPI and interrupts.
282 *
283 * Since we are touching interrupts the caller should hold the suspend lock
284 */
285void efx_process_channel_now(struct efx_channel *channel)
286{
287 struct efx_nic *efx = channel->efx;
288
289 BUG_ON(!channel->used_flags);
290 BUG_ON(!channel->enabled);
291
292 /* Disable interrupts and wait for ISRs to complete */
293 falcon_disable_interrupts(efx);
294 if (efx->legacy_irq)
295 synchronize_irq(efx->legacy_irq);
64ee3120 296 if (channel->irq)
8ceee660
BH
297 synchronize_irq(channel->irq);
298
299 /* Wait for any NAPI processing to complete */
300 napi_disable(&channel->napi_str);
301
302 /* Poll the channel */
91ad757c 303 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
304
305 /* Ack the eventq. This may cause an interrupt to be generated
306 * when they are reenabled */
307 efx_channel_processed(channel);
308
309 napi_enable(&channel->napi_str);
310 falcon_enable_interrupts(efx);
311}
312
313/* Create event queue
314 * Event queue memory allocations are done only once. If the channel
315 * is reset, the memory buffer will be reused; this guards against
316 * errors during channel reset and also simplifies interrupt handling.
317 */
318static int efx_probe_eventq(struct efx_channel *channel)
319{
320 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
321
322 return falcon_probe_eventq(channel);
323}
324
325/* Prepare channel's event queue */
bc3c90a2 326static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
327{
328 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
329
330 channel->eventq_read_ptr = 0;
331
bc3c90a2 332 falcon_init_eventq(channel);
8ceee660
BH
333}
334
335static void efx_fini_eventq(struct efx_channel *channel)
336{
337 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
338
339 falcon_fini_eventq(channel);
340}
341
342static void efx_remove_eventq(struct efx_channel *channel)
343{
344 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
345
346 falcon_remove_eventq(channel);
347}
348
349/**************************************************************************
350 *
351 * Channel handling
352 *
353 *************************************************************************/
354
8ceee660
BH
355static int efx_probe_channel(struct efx_channel *channel)
356{
357 struct efx_tx_queue *tx_queue;
358 struct efx_rx_queue *rx_queue;
359 int rc;
360
361 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
362
363 rc = efx_probe_eventq(channel);
364 if (rc)
365 goto fail1;
366
367 efx_for_each_channel_tx_queue(tx_queue, channel) {
368 rc = efx_probe_tx_queue(tx_queue);
369 if (rc)
370 goto fail2;
371 }
372
373 efx_for_each_channel_rx_queue(rx_queue, channel) {
374 rc = efx_probe_rx_queue(rx_queue);
375 if (rc)
376 goto fail3;
377 }
378
379 channel->n_rx_frm_trunc = 0;
380
381 return 0;
382
383 fail3:
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_remove_rx_queue(rx_queue);
386 fail2:
387 efx_for_each_channel_tx_queue(tx_queue, channel)
388 efx_remove_tx_queue(tx_queue);
389 fail1:
390 return rc;
391}
392
393
56536e9c
BH
394static void efx_set_channel_names(struct efx_nic *efx)
395{
396 struct efx_channel *channel;
397 const char *type = "";
398 int number;
399
400 efx_for_each_channel(channel, efx) {
401 number = channel->channel;
402 if (efx->n_channels > efx->n_rx_queues) {
403 if (channel->channel < efx->n_rx_queues) {
404 type = "-rx";
405 } else {
406 type = "-tx";
407 number -= efx->n_rx_queues;
408 }
409 }
410 snprintf(channel->name, sizeof(channel->name),
411 "%s%s-%d", efx->name, type, number);
412 }
413}
414
8ceee660
BH
415/* Channels are shutdown and reinitialised whilst the NIC is running
416 * to propagate configuration changes (mtu, checksum offload), or
417 * to clear hardware error conditions
418 */
bc3c90a2 419static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
420{
421 struct efx_tx_queue *tx_queue;
422 struct efx_rx_queue *rx_queue;
423 struct efx_channel *channel;
8ceee660 424
f7f13b0b
BH
425 /* Calculate the rx buffer allocation parameters required to
426 * support the current MTU, including padding for header
427 * alignment and overruns.
428 */
429 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
430 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
431 efx->type->rx_buffer_padding);
432 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
433
434 /* Initialise the channels */
435 efx_for_each_channel(channel, efx) {
436 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
437
bc3c90a2 438 efx_init_eventq(channel);
8ceee660 439
bc3c90a2
BH
440 efx_for_each_channel_tx_queue(tx_queue, channel)
441 efx_init_tx_queue(tx_queue);
8ceee660
BH
442
443 /* The rx buffer allocation strategy is MTU dependent */
444 efx_rx_strategy(channel);
445
bc3c90a2
BH
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_init_rx_queue(rx_queue);
8ceee660
BH
448
449 WARN_ON(channel->rx_pkt != NULL);
450 efx_rx_strategy(channel);
451 }
8ceee660
BH
452}
453
454/* This enables event queue processing and packet transmission.
455 *
456 * Note that this function is not allowed to fail, since that would
457 * introduce too much complexity into the suspend/resume path.
458 */
459static void efx_start_channel(struct efx_channel *channel)
460{
461 struct efx_rx_queue *rx_queue;
462
463 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
464
5b9e207c
BH
465 /* The interrupt handler for this channel may set work_pending
466 * as soon as we enable it. Make sure it's cleared before
467 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
468 channel->work_pending = false;
469 channel->enabled = true;
5b9e207c 470 smp_wmb();
8ceee660
BH
471
472 napi_enable(&channel->napi_str);
473
474 /* Load up RX descriptors */
475 efx_for_each_channel_rx_queue(rx_queue, channel)
476 efx_fast_push_rx_descriptors(rx_queue);
477}
478
479/* This disables event queue processing and packet transmission.
480 * This function does not guarantee that all queue processing
481 * (e.g. RX refill) is complete.
482 */
483static void efx_stop_channel(struct efx_channel *channel)
484{
485 struct efx_rx_queue *rx_queue;
486
487 if (!channel->enabled)
488 return;
489
490 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
491
dc8cfa55 492 channel->enabled = false;
8ceee660
BH
493 napi_disable(&channel->napi_str);
494
495 /* Ensure that any worker threads have exited or will be no-ops */
496 efx_for_each_channel_rx_queue(rx_queue, channel) {
497 spin_lock_bh(&rx_queue->add_lock);
498 spin_unlock_bh(&rx_queue->add_lock);
499 }
500}
501
502static void efx_fini_channels(struct efx_nic *efx)
503{
504 struct efx_channel *channel;
505 struct efx_tx_queue *tx_queue;
506 struct efx_rx_queue *rx_queue;
6bc5d3a9 507 int rc;
8ceee660
BH
508
509 EFX_ASSERT_RESET_SERIALISED(efx);
510 BUG_ON(efx->port_enabled);
511
6bc5d3a9
BH
512 rc = falcon_flush_queues(efx);
513 if (rc)
514 EFX_ERR(efx, "failed to flush queues\n");
515 else
516 EFX_LOG(efx, "successfully flushed all queues\n");
517
8ceee660
BH
518 efx_for_each_channel(channel, efx) {
519 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
520
521 efx_for_each_channel_rx_queue(rx_queue, channel)
522 efx_fini_rx_queue(rx_queue);
523 efx_for_each_channel_tx_queue(tx_queue, channel)
524 efx_fini_tx_queue(tx_queue);
8ceee660
BH
525 efx_fini_eventq(channel);
526 }
527}
528
529static void efx_remove_channel(struct efx_channel *channel)
530{
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533
534 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
535
536 efx_for_each_channel_rx_queue(rx_queue, channel)
537 efx_remove_rx_queue(rx_queue);
538 efx_for_each_channel_tx_queue(tx_queue, channel)
539 efx_remove_tx_queue(tx_queue);
540 efx_remove_eventq(channel);
541
542 channel->used_flags = 0;
543}
544
545void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
546{
547 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
548}
549
550/**************************************************************************
551 *
552 * Port handling
553 *
554 **************************************************************************/
555
556/* This ensures that the kernel is kept informed (via
557 * netif_carrier_on/off) of the link status, and also maintains the
558 * link status's stop on the port's TX queue.
559 */
560static void efx_link_status_changed(struct efx_nic *efx)
561{
8ceee660
BH
562 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
563 * that no events are triggered between unregister_netdev() and the
564 * driver unloading. A more general condition is that NETDEV_CHANGE
565 * can only be generated between NETDEV_UP and NETDEV_DOWN */
566 if (!netif_running(efx->net_dev))
567 return;
568
8c8661e4
BH
569 if (efx->port_inhibited) {
570 netif_carrier_off(efx->net_dev);
571 return;
572 }
573
dc8cfa55 574 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
575 efx->n_link_state_changes++;
576
577 if (efx->link_up)
578 netif_carrier_on(efx->net_dev);
579 else
580 netif_carrier_off(efx->net_dev);
581 }
582
583 /* Status message for kernel log */
584 if (efx->link_up) {
f31a45d2
BH
585 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
586 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
587 efx->net_dev->mtu,
588 (efx->promiscuous ? " [PROMISC]" : ""));
589 } else {
590 EFX_INFO(efx, "link down\n");
591 }
592
593}
594
115122af
BH
595static void efx_fini_port(struct efx_nic *efx);
596
8ceee660
BH
597/* This call reinitialises the MAC to pick up new PHY settings. The
598 * caller must hold the mac_lock */
8c8661e4 599void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
600{
601 WARN_ON(!mutex_is_locked(&efx->mac_lock));
602
603 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
604 raw_smp_processor_id());
605
a816f75a
BH
606 /* Serialise the promiscuous flag with efx_set_multicast_list. */
607 if (efx_dev_registered(efx)) {
608 netif_addr_lock_bh(efx->net_dev);
609 netif_addr_unlock_bh(efx->net_dev);
610 }
611
177dfcd8
BH
612 falcon_deconfigure_mac_wrapper(efx);
613
614 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
615 if (LOOPBACK_INTERNAL(efx))
616 efx->phy_mode |= PHY_MODE_TX_DISABLED;
617 else
618 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
619 efx->phy_op->reconfigure(efx);
620
621 if (falcon_switch_mac(efx))
622 goto fail;
623
624 efx->mac_op->reconfigure(efx);
8ceee660
BH
625
626 /* Inform kernel of loss/gain of carrier */
627 efx_link_status_changed(efx);
177dfcd8
BH
628 return;
629
630fail:
631 EFX_ERR(efx, "failed to reconfigure MAC\n");
115122af
BH
632 efx->port_enabled = false;
633 efx_fini_port(efx);
8ceee660
BH
634}
635
636/* Reinitialise the MAC to pick up new PHY settings, even if the port is
637 * disabled. */
638void efx_reconfigure_port(struct efx_nic *efx)
639{
640 EFX_ASSERT_RESET_SERIALISED(efx);
641
642 mutex_lock(&efx->mac_lock);
643 __efx_reconfigure_port(efx);
644 mutex_unlock(&efx->mac_lock);
645}
646
647/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
648 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
649 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 650static void efx_phy_work(struct work_struct *data)
8ceee660 651{
766ca0fa 652 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
653
654 mutex_lock(&efx->mac_lock);
655 if (efx->port_enabled)
656 __efx_reconfigure_port(efx);
657 mutex_unlock(&efx->mac_lock);
658}
659
766ca0fa
BH
660static void efx_mac_work(struct work_struct *data)
661{
662 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
663
664 mutex_lock(&efx->mac_lock);
665 if (efx->port_enabled)
666 efx->mac_op->irq(efx);
667 mutex_unlock(&efx->mac_lock);
668}
669
8ceee660
BH
670static int efx_probe_port(struct efx_nic *efx)
671{
672 int rc;
673
674 EFX_LOG(efx, "create port\n");
675
676 /* Connect up MAC/PHY operations table and read MAC address */
677 rc = falcon_probe_port(efx);
678 if (rc)
679 goto err;
680
84ae48fe
BH
681 if (phy_flash_cfg)
682 efx->phy_mode = PHY_MODE_SPECIAL;
683
8ceee660
BH
684 /* Sanity check MAC address */
685 if (is_valid_ether_addr(efx->mac_address)) {
686 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
687 } else {
e174961c
JB
688 EFX_ERR(efx, "invalid MAC address %pM\n",
689 efx->mac_address);
8ceee660
BH
690 if (!allow_bad_hwaddr) {
691 rc = -EINVAL;
692 goto err;
693 }
694 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
695 EFX_INFO(efx, "using locally-generated MAC %pM\n",
696 efx->net_dev->dev_addr);
8ceee660
BH
697 }
698
699 return 0;
700
701 err:
702 efx_remove_port(efx);
703 return rc;
704}
705
706static int efx_init_port(struct efx_nic *efx)
707{
708 int rc;
709
710 EFX_LOG(efx, "init port\n");
711
177dfcd8 712 rc = efx->phy_op->init(efx);
8ceee660
BH
713 if (rc)
714 return rc;
177dfcd8 715 mutex_lock(&efx->mac_lock);
4b988280 716 efx->phy_op->reconfigure(efx);
177dfcd8
BH
717 rc = falcon_switch_mac(efx);
718 mutex_unlock(&efx->mac_lock);
719 if (rc)
720 goto fail;
721 efx->mac_op->reconfigure(efx);
8ceee660 722
dc8cfa55 723 efx->port_initialized = true;
1974cc20 724 efx_stats_enable(efx);
8ceee660 725 return 0;
177dfcd8
BH
726
727fail:
728 efx->phy_op->fini(efx);
729 return rc;
8ceee660
BH
730}
731
732/* Allow efx_reconfigure_port() to be scheduled, and close the window
733 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 734 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
735static void efx_start_port(struct efx_nic *efx)
736{
737 EFX_LOG(efx, "start port\n");
738 BUG_ON(efx->port_enabled);
739
740 mutex_lock(&efx->mac_lock);
dc8cfa55 741 efx->port_enabled = true;
8ceee660 742 __efx_reconfigure_port(efx);
766ca0fa 743 efx->mac_op->irq(efx);
8ceee660
BH
744 mutex_unlock(&efx->mac_lock);
745}
746
766ca0fa
BH
747/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
748 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
749 * and efx_mac_work may still be scheduled via NAPI processing until
750 * efx_flush_all() is called */
8ceee660
BH
751static void efx_stop_port(struct efx_nic *efx)
752{
753 EFX_LOG(efx, "stop port\n");
754
755 mutex_lock(&efx->mac_lock);
dc8cfa55 756 efx->port_enabled = false;
8ceee660
BH
757 mutex_unlock(&efx->mac_lock);
758
759 /* Serialise against efx_set_multicast_list() */
55668611 760 if (efx_dev_registered(efx)) {
b9e40857
DM
761 netif_addr_lock_bh(efx->net_dev);
762 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
763 }
764}
765
766static void efx_fini_port(struct efx_nic *efx)
767{
768 EFX_LOG(efx, "shut down port\n");
769
770 if (!efx->port_initialized)
771 return;
772
1974cc20 773 efx_stats_disable(efx);
177dfcd8 774 efx->phy_op->fini(efx);
dc8cfa55 775 efx->port_initialized = false;
8ceee660 776
dc8cfa55 777 efx->link_up = false;
8ceee660
BH
778 efx_link_status_changed(efx);
779}
780
781static void efx_remove_port(struct efx_nic *efx)
782{
783 EFX_LOG(efx, "destroying port\n");
784
785 falcon_remove_port(efx);
786}
787
788/**************************************************************************
789 *
790 * NIC handling
791 *
792 **************************************************************************/
793
794/* This configures the PCI device to enable I/O and DMA. */
795static int efx_init_io(struct efx_nic *efx)
796{
797 struct pci_dev *pci_dev = efx->pci_dev;
798 dma_addr_t dma_mask = efx->type->max_dma_mask;
799 int rc;
800
801 EFX_LOG(efx, "initialising I/O\n");
802
803 rc = pci_enable_device(pci_dev);
804 if (rc) {
805 EFX_ERR(efx, "failed to enable PCI device\n");
806 goto fail1;
807 }
808
809 pci_set_master(pci_dev);
810
811 /* Set the PCI DMA mask. Try all possibilities from our
812 * genuine mask down to 32 bits, because some architectures
813 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
814 * masks event though they reject 46 bit masks.
815 */
816 while (dma_mask > 0x7fffffffUL) {
817 if (pci_dma_supported(pci_dev, dma_mask) &&
818 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
819 break;
820 dma_mask >>= 1;
821 }
822 if (rc) {
823 EFX_ERR(efx, "could not find a suitable DMA mask\n");
824 goto fail2;
825 }
826 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
827 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
828 if (rc) {
829 /* pci_set_consistent_dma_mask() is not *allowed* to
830 * fail with a mask that pci_set_dma_mask() accepted,
831 * but just in case...
832 */
833 EFX_ERR(efx, "failed to set consistent DMA mask\n");
834 goto fail2;
835 }
836
837 efx->membase_phys = pci_resource_start(efx->pci_dev,
838 efx->type->mem_bar);
839 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
840 if (rc) {
841 EFX_ERR(efx, "request for memory BAR failed\n");
842 rc = -EIO;
843 goto fail3;
844 }
845 efx->membase = ioremap_nocache(efx->membase_phys,
846 efx->type->mem_map_size);
847 if (!efx->membase) {
086ea356
BH
848 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
849 efx->type->mem_bar,
850 (unsigned long long)efx->membase_phys,
8ceee660
BH
851 efx->type->mem_map_size);
852 rc = -ENOMEM;
853 goto fail4;
854 }
086ea356
BH
855 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
856 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
857 efx->type->mem_map_size, efx->membase);
8ceee660
BH
858
859 return 0;
860
861 fail4:
e1074a0d 862 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 863 fail3:
2c118e0f 864 efx->membase_phys = 0;
8ceee660
BH
865 fail2:
866 pci_disable_device(efx->pci_dev);
867 fail1:
868 return rc;
869}
870
871static void efx_fini_io(struct efx_nic *efx)
872{
873 EFX_LOG(efx, "shutting down I/O\n");
874
875 if (efx->membase) {
876 iounmap(efx->membase);
877 efx->membase = NULL;
878 }
879
880 if (efx->membase_phys) {
881 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 882 efx->membase_phys = 0;
8ceee660
BH
883 }
884
885 pci_disable_device(efx->pci_dev);
886}
887
46123d04
BH
888/* Get number of RX queues wanted. Return number of online CPU
889 * packages in the expectation that an IRQ balancer will spread
890 * interrupts across them. */
891static int efx_wanted_rx_queues(void)
892{
2f8975fb 893 cpumask_var_t core_mask;
46123d04
BH
894 int count;
895 int cpu;
896
2f8975fb
RR
897 if (!alloc_cpumask_var(&core_mask, GFP_KERNEL)) {
898 printk(KERN_WARNING
899 "efx.c: allocation failure, irq balancing hobbled\n");
900 return 1;
901 }
902
903 cpumask_clear(core_mask);
46123d04
BH
904 count = 0;
905 for_each_online_cpu(cpu) {
2f8975fb 906 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 907 ++count;
2f8975fb 908 cpumask_or(core_mask, core_mask,
fbd59a8d 909 topology_core_cpumask(cpu));
46123d04
BH
910 }
911 }
912
2f8975fb 913 free_cpumask_var(core_mask);
46123d04
BH
914 return count;
915}
916
917/* Probe the number and type of interrupts we are able to obtain, and
918 * the resulting numbers of channels and RX queues.
919 */
8ceee660
BH
920static void efx_probe_interrupts(struct efx_nic *efx)
921{
46123d04
BH
922 int max_channels =
923 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
924 int rc, i;
925
926 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
927 struct msix_entry xentries[EFX_MAX_CHANNELS];
928 int wanted_ints;
28b581ab 929 int rx_queues;
aa6ef27e 930
46123d04
BH
931 /* We want one RX queue and interrupt per CPU package
932 * (or as specified by the rss_cpus module parameter).
933 * We will need one channel per interrupt.
934 */
28b581ab
NT
935 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
936 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
937 wanted_ints = min(wanted_ints, max_channels);
8ceee660 938
28b581ab 939 for (i = 0; i < wanted_ints; i++)
8ceee660 940 xentries[i].entry = i;
28b581ab 941 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 942 if (rc > 0) {
28b581ab
NT
943 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
944 " available (%d < %d).\n", rc, wanted_ints);
945 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
946 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
947 wanted_ints = rc;
8ceee660 948 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 949 wanted_ints);
8ceee660
BH
950 }
951
952 if (rc == 0) {
28b581ab
NT
953 efx->n_rx_queues = min(rx_queues, wanted_ints);
954 efx->n_channels = wanted_ints;
955 for (i = 0; i < wanted_ints; i++)
8ceee660 956 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
957 } else {
958 /* Fall back to single channel MSI */
959 efx->interrupt_mode = EFX_INT_MODE_MSI;
960 EFX_ERR(efx, "could not enable MSI-X\n");
961 }
962 }
963
964 /* Try single interrupt MSI */
965 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 966 efx->n_rx_queues = 1;
28b581ab 967 efx->n_channels = 1;
8ceee660
BH
968 rc = pci_enable_msi(efx->pci_dev);
969 if (rc == 0) {
970 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
971 } else {
972 EFX_ERR(efx, "could not enable MSI\n");
973 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
974 }
975 }
976
977 /* Assume legacy interrupts */
978 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 979 efx->n_rx_queues = 1;
28b581ab 980 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
981 efx->legacy_irq = efx->pci_dev->irq;
982 }
983}
984
985static void efx_remove_interrupts(struct efx_nic *efx)
986{
987 struct efx_channel *channel;
988
989 /* Remove MSI/MSI-X interrupts */
64ee3120 990 efx_for_each_channel(channel, efx)
8ceee660
BH
991 channel->irq = 0;
992 pci_disable_msi(efx->pci_dev);
993 pci_disable_msix(efx->pci_dev);
994
995 /* Remove legacy interrupt */
996 efx->legacy_irq = 0;
997}
998
8831da7b 999static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
1000{
1001 struct efx_tx_queue *tx_queue;
1002 struct efx_rx_queue *rx_queue;
8ceee660 1003
60ac1065 1004 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
1005 if (separate_tx_channels)
1006 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
1007 else
1008 tx_queue->channel = &efx->channel[0];
1009 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1010 }
8ceee660 1011
8831da7b
BH
1012 efx_for_each_rx_queue(rx_queue, efx) {
1013 rx_queue->channel = &efx->channel[rx_queue->queue];
1014 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
1015 }
1016}
1017
1018static int efx_probe_nic(struct efx_nic *efx)
1019{
1020 int rc;
1021
1022 EFX_LOG(efx, "creating NIC\n");
1023
1024 /* Carry out hardware-type specific initialisation */
1025 rc = falcon_probe_nic(efx);
1026 if (rc)
1027 return rc;
1028
1029 /* Determine the number of channels and RX queues by trying to hook
1030 * in MSI-X interrupts. */
1031 efx_probe_interrupts(efx);
1032
8831da7b 1033 efx_set_channels(efx);
8ceee660
BH
1034
1035 /* Initialise the interrupt moderation settings */
6fb70fd1 1036 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1037
1038 return 0;
1039}
1040
1041static void efx_remove_nic(struct efx_nic *efx)
1042{
1043 EFX_LOG(efx, "destroying NIC\n");
1044
1045 efx_remove_interrupts(efx);
1046 falcon_remove_nic(efx);
1047}
1048
1049/**************************************************************************
1050 *
1051 * NIC startup/shutdown
1052 *
1053 *************************************************************************/
1054
1055static int efx_probe_all(struct efx_nic *efx)
1056{
1057 struct efx_channel *channel;
1058 int rc;
1059
1060 /* Create NIC */
1061 rc = efx_probe_nic(efx);
1062 if (rc) {
1063 EFX_ERR(efx, "failed to create NIC\n");
1064 goto fail1;
1065 }
1066
1067 /* Create port */
1068 rc = efx_probe_port(efx);
1069 if (rc) {
1070 EFX_ERR(efx, "failed to create port\n");
1071 goto fail2;
1072 }
1073
1074 /* Create channels */
1075 efx_for_each_channel(channel, efx) {
1076 rc = efx_probe_channel(channel);
1077 if (rc) {
1078 EFX_ERR(efx, "failed to create channel %d\n",
1079 channel->channel);
1080 goto fail3;
1081 }
1082 }
56536e9c 1083 efx_set_channel_names(efx);
8ceee660
BH
1084
1085 return 0;
1086
1087 fail3:
1088 efx_for_each_channel(channel, efx)
1089 efx_remove_channel(channel);
1090 efx_remove_port(efx);
1091 fail2:
1092 efx_remove_nic(efx);
1093 fail1:
1094 return rc;
1095}
1096
1097/* Called after previous invocation(s) of efx_stop_all, restarts the
1098 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1099 * and ensures that the port is scheduled to be reconfigured.
1100 * This function is safe to call multiple times when the NIC is in any
1101 * state. */
1102static void efx_start_all(struct efx_nic *efx)
1103{
1104 struct efx_channel *channel;
1105
1106 EFX_ASSERT_RESET_SERIALISED(efx);
1107
1108 /* Check that it is appropriate to restart the interface. All
1109 * of these flags are safe to read under just the rtnl lock */
1110 if (efx->port_enabled)
1111 return;
1112 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1113 return;
55668611 1114 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1115 return;
1116
1117 /* Mark the port as enabled so port reconfigurations can start, then
1118 * restart the transmit interface early so the watchdog timer stops */
1119 efx_start_port(efx);
dacccc74
SH
1120 if (efx_dev_registered(efx))
1121 efx_wake_queue(efx);
8ceee660
BH
1122
1123 efx_for_each_channel(channel, efx)
1124 efx_start_channel(channel);
1125
1126 falcon_enable_interrupts(efx);
1127
1128 /* Start hardware monitor if we're in RUNNING */
1129 if (efx->state == STATE_RUNNING)
1130 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1131 efx_monitor_interval);
1132}
1133
1134/* Flush all delayed work. Should only be called when no more delayed work
1135 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1136 * since we're holding the rtnl_lock at this point. */
1137static void efx_flush_all(struct efx_nic *efx)
1138{
1139 struct efx_rx_queue *rx_queue;
1140
1141 /* Make sure the hardware monitor is stopped */
1142 cancel_delayed_work_sync(&efx->monitor_work);
1143
1144 /* Ensure that all RX slow refills are complete. */
b3475645 1145 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1146 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1147
1148 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1149 cancel_work_sync(&efx->mac_work);
1150 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1151
1152}
1153
1154/* Quiesce hardware and software without bringing the link down.
1155 * Safe to call multiple times, when the nic and interface is in any
1156 * state. The caller is guaranteed to subsequently be in a position
1157 * to modify any hardware and software state they see fit without
1158 * taking locks. */
1159static void efx_stop_all(struct efx_nic *efx)
1160{
1161 struct efx_channel *channel;
1162
1163 EFX_ASSERT_RESET_SERIALISED(efx);
1164
1165 /* port_enabled can be read safely under the rtnl lock */
1166 if (!efx->port_enabled)
1167 return;
1168
1169 /* Disable interrupts and wait for ISR to complete */
1170 falcon_disable_interrupts(efx);
1171 if (efx->legacy_irq)
1172 synchronize_irq(efx->legacy_irq);
64ee3120 1173 efx_for_each_channel(channel, efx) {
8ceee660
BH
1174 if (channel->irq)
1175 synchronize_irq(channel->irq);
b3475645 1176 }
8ceee660
BH
1177
1178 /* Stop all NAPI processing and synchronous rx refills */
1179 efx_for_each_channel(channel, efx)
1180 efx_stop_channel(channel);
1181
1182 /* Stop all asynchronous port reconfigurations. Since all
1183 * event processing has already been stopped, there is no
1184 * window to loose phy events */
1185 efx_stop_port(efx);
1186
766ca0fa 1187 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1188 efx_flush_all(efx);
1189
1190 /* Isolate the MAC from the TX and RX engines, so that queue
1191 * flushes will complete in a timely fashion. */
8ceee660
BH
1192 falcon_drain_tx_fifo(efx);
1193
1194 /* Stop the kernel transmit interface late, so the watchdog
1195 * timer isn't ticking over the flush */
55668611 1196 if (efx_dev_registered(efx)) {
dacccc74 1197 efx_stop_queue(efx);
8ceee660
BH
1198 netif_tx_lock_bh(efx->net_dev);
1199 netif_tx_unlock_bh(efx->net_dev);
1200 }
1201}
1202
1203static void efx_remove_all(struct efx_nic *efx)
1204{
1205 struct efx_channel *channel;
1206
1207 efx_for_each_channel(channel, efx)
1208 efx_remove_channel(channel);
1209 efx_remove_port(efx);
1210 efx_remove_nic(efx);
1211}
1212
1213/* A convinience function to safely flush all the queues */
bc3c90a2 1214void efx_flush_queues(struct efx_nic *efx)
8ceee660 1215{
8ceee660
BH
1216 EFX_ASSERT_RESET_SERIALISED(efx);
1217
1218 efx_stop_all(efx);
1219
1220 efx_fini_channels(efx);
bc3c90a2 1221 efx_init_channels(efx);
8ceee660
BH
1222
1223 efx_start_all(efx);
8ceee660
BH
1224}
1225
1226/**************************************************************************
1227 *
1228 * Interrupt moderation
1229 *
1230 **************************************************************************/
1231
1232/* Set interrupt moderation parameters */
6fb70fd1
BH
1233void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1234 bool rx_adaptive)
8ceee660
BH
1235{
1236 struct efx_tx_queue *tx_queue;
1237 struct efx_rx_queue *rx_queue;
1238
1239 EFX_ASSERT_RESET_SERIALISED(efx);
1240
1241 efx_for_each_tx_queue(tx_queue, efx)
1242 tx_queue->channel->irq_moderation = tx_usecs;
1243
6fb70fd1
BH
1244 efx->irq_rx_adaptive = rx_adaptive;
1245 efx->irq_rx_moderation = rx_usecs;
8ceee660
BH
1246 efx_for_each_rx_queue(rx_queue, efx)
1247 rx_queue->channel->irq_moderation = rx_usecs;
1248}
1249
1250/**************************************************************************
1251 *
1252 * Hardware monitor
1253 *
1254 **************************************************************************/
1255
1256/* Run periodically off the general workqueue. Serialised against
1257 * efx_reconfigure_port via the mac_lock */
1258static void efx_monitor(struct work_struct *data)
1259{
1260 struct efx_nic *efx = container_of(data, struct efx_nic,
1261 monitor_work.work);
766ca0fa 1262 int rc;
8ceee660
BH
1263
1264 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1265 raw_smp_processor_id());
1266
8ceee660
BH
1267 /* If the mac_lock is already held then it is likely a port
1268 * reconfiguration is already in place, which will likely do
1269 * most of the work of check_hw() anyway. */
766ca0fa
BH
1270 if (!mutex_trylock(&efx->mac_lock))
1271 goto out_requeue;
1272 if (!efx->port_enabled)
1273 goto out_unlock;
1274 rc = efx->board_info.monitor(efx);
1275 if (rc) {
1276 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1277 (rc == -ERANGE) ? "reported fault" : "failed");
1278 efx->phy_mode |= PHY_MODE_LOW_POWER;
1279 falcon_sim_phy_event(efx);
8ceee660 1280 }
766ca0fa
BH
1281 efx->phy_op->poll(efx);
1282 efx->mac_op->poll(efx);
8ceee660 1283
766ca0fa 1284out_unlock:
8ceee660 1285 mutex_unlock(&efx->mac_lock);
766ca0fa 1286out_requeue:
8ceee660
BH
1287 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1288 efx_monitor_interval);
1289}
1290
1291/**************************************************************************
1292 *
1293 * ioctls
1294 *
1295 *************************************************************************/
1296
1297/* Net device ioctl
1298 * Context: process, rtnl_lock() held.
1299 */
1300static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1301{
767e468c 1302 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1303
1304 EFX_ASSERT_RESET_SERIALISED(efx);
1305
1306 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1307}
1308
1309/**************************************************************************
1310 *
1311 * NAPI interface
1312 *
1313 **************************************************************************/
1314
1315static int efx_init_napi(struct efx_nic *efx)
1316{
1317 struct efx_channel *channel;
8ceee660
BH
1318
1319 efx_for_each_channel(channel, efx) {
1320 channel->napi_dev = efx->net_dev;
718cff1e
BH
1321 netif_napi_add(channel->napi_dev, &channel->napi_str,
1322 efx_poll, napi_weight);
8ceee660
BH
1323 }
1324 return 0;
8ceee660
BH
1325}
1326
1327static void efx_fini_napi(struct efx_nic *efx)
1328{
1329 struct efx_channel *channel;
1330
1331 efx_for_each_channel(channel, efx) {
718cff1e
BH
1332 if (channel->napi_dev)
1333 netif_napi_del(&channel->napi_str);
8ceee660
BH
1334 channel->napi_dev = NULL;
1335 }
1336}
1337
1338/**************************************************************************
1339 *
1340 * Kernel netpoll interface
1341 *
1342 *************************************************************************/
1343
1344#ifdef CONFIG_NET_POLL_CONTROLLER
1345
1346/* Although in the common case interrupts will be disabled, this is not
1347 * guaranteed. However, all our work happens inside the NAPI callback,
1348 * so no locking is required.
1349 */
1350static void efx_netpoll(struct net_device *net_dev)
1351{
767e468c 1352 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1353 struct efx_channel *channel;
1354
64ee3120 1355 efx_for_each_channel(channel, efx)
8ceee660
BH
1356 efx_schedule_channel(channel);
1357}
1358
1359#endif
1360
1361/**************************************************************************
1362 *
1363 * Kernel net device interface
1364 *
1365 *************************************************************************/
1366
1367/* Context: process, rtnl_lock() held. */
1368static int efx_net_open(struct net_device *net_dev)
1369{
767e468c 1370 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1371 EFX_ASSERT_RESET_SERIALISED(efx);
1372
1373 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1374 raw_smp_processor_id());
1375
f4bd954e
BH
1376 if (efx->state == STATE_DISABLED)
1377 return -EIO;
f8b87c17
BH
1378 if (efx->phy_mode & PHY_MODE_SPECIAL)
1379 return -EBUSY;
1380
8ceee660
BH
1381 efx_start_all(efx);
1382 return 0;
1383}
1384
1385/* Context: process, rtnl_lock() held.
1386 * Note that the kernel will ignore our return code; this method
1387 * should really be a void.
1388 */
1389static int efx_net_stop(struct net_device *net_dev)
1390{
767e468c 1391 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1392
1393 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1394 raw_smp_processor_id());
1395
f4bd954e
BH
1396 if (efx->state != STATE_DISABLED) {
1397 /* Stop the device and flush all the channels */
1398 efx_stop_all(efx);
1399 efx_fini_channels(efx);
1400 efx_init_channels(efx);
1401 }
8ceee660
BH
1402
1403 return 0;
1404}
1405
1974cc20
BH
1406void efx_stats_disable(struct efx_nic *efx)
1407{
1408 spin_lock(&efx->stats_lock);
1409 ++efx->stats_disable_count;
1410 spin_unlock(&efx->stats_lock);
1411}
1412
1413void efx_stats_enable(struct efx_nic *efx)
1414{
1415 spin_lock(&efx->stats_lock);
1416 --efx->stats_disable_count;
1417 spin_unlock(&efx->stats_lock);
1418}
1419
5b9e207c 1420/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1421static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1422{
767e468c 1423 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1424 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1425 struct net_device_stats *stats = &net_dev->stats;
1426
5b9e207c 1427 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1428 * is updating them or if MAC stats fetches are temporarily
1429 * disabled; slightly stale stats are acceptable.
5b9e207c 1430 */
8ceee660
BH
1431 if (!spin_trylock(&efx->stats_lock))
1432 return stats;
1974cc20 1433 if (!efx->stats_disable_count) {
177dfcd8 1434 efx->mac_op->update_stats(efx);
8ceee660
BH
1435 falcon_update_nic_stats(efx);
1436 }
1437 spin_unlock(&efx->stats_lock);
1438
1439 stats->rx_packets = mac_stats->rx_packets;
1440 stats->tx_packets = mac_stats->tx_packets;
1441 stats->rx_bytes = mac_stats->rx_bytes;
1442 stats->tx_bytes = mac_stats->tx_bytes;
1443 stats->multicast = mac_stats->rx_multicast;
1444 stats->collisions = mac_stats->tx_collision;
1445 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1446 mac_stats->rx_length_error);
1447 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1448 stats->rx_crc_errors = mac_stats->rx_bad;
1449 stats->rx_frame_errors = mac_stats->rx_align_error;
1450 stats->rx_fifo_errors = mac_stats->rx_overflow;
1451 stats->rx_missed_errors = mac_stats->rx_missed;
1452 stats->tx_window_errors = mac_stats->tx_late_collision;
1453
1454 stats->rx_errors = (stats->rx_length_errors +
1455 stats->rx_over_errors +
1456 stats->rx_crc_errors +
1457 stats->rx_frame_errors +
1458 stats->rx_fifo_errors +
1459 stats->rx_missed_errors +
1460 mac_stats->rx_symbol_error);
1461 stats->tx_errors = (stats->tx_window_errors +
1462 mac_stats->tx_bad);
1463
1464 return stats;
1465}
1466
1467/* Context: netif_tx_lock held, BHs disabled. */
1468static void efx_watchdog(struct net_device *net_dev)
1469{
767e468c 1470 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1471
739bb23d
BH
1472 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1473 " resetting channels\n",
1474 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1475
739bb23d 1476 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1477}
1478
1479
1480/* Context: process, rtnl_lock() held. */
1481static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1482{
767e468c 1483 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1484 int rc = 0;
1485
1486 EFX_ASSERT_RESET_SERIALISED(efx);
1487
1488 if (new_mtu > EFX_MAX_MTU)
1489 return -EINVAL;
1490
1491 efx_stop_all(efx);
1492
1493 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1494
1495 efx_fini_channels(efx);
1496 net_dev->mtu = new_mtu;
bc3c90a2 1497 efx_init_channels(efx);
8ceee660
BH
1498
1499 efx_start_all(efx);
1500 return rc;
8ceee660
BH
1501}
1502
1503static int efx_set_mac_address(struct net_device *net_dev, void *data)
1504{
767e468c 1505 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1506 struct sockaddr *addr = data;
1507 char *new_addr = addr->sa_data;
1508
1509 EFX_ASSERT_RESET_SERIALISED(efx);
1510
1511 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1512 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1513 new_addr);
8ceee660
BH
1514 return -EINVAL;
1515 }
1516
1517 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1518
1519 /* Reconfigure the MAC */
1520 efx_reconfigure_port(efx);
1521
1522 return 0;
1523}
1524
a816f75a 1525/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1526static void efx_set_multicast_list(struct net_device *net_dev)
1527{
767e468c 1528 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1529 struct dev_mc_list *mc_list = net_dev->mc_list;
1530 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1531 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1532 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1533 u32 crc;
1534 int bit;
1535 int i;
1536
a816f75a 1537 efx->promiscuous = promiscuous;
8ceee660
BH
1538
1539 /* Build multicast hash table */
1540 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1541 memset(mc_hash, 0xff, sizeof(*mc_hash));
1542 } else {
1543 memset(mc_hash, 0x00, sizeof(*mc_hash));
1544 for (i = 0; i < net_dev->mc_count; i++) {
1545 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1546 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1547 set_bit_le(bit, mc_hash->byte);
1548 mc_list = mc_list->next;
1549 }
1550 }
1551
a816f75a
BH
1552 if (!efx->port_enabled)
1553 /* Delay pushing settings until efx_start_port() */
1554 return;
1555
1556 if (changed)
766ca0fa 1557 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1558
8ceee660
BH
1559 /* Create and activate new global multicast hash table */
1560 falcon_set_multicast_hash(efx);
1561}
1562
c3ecb9f3
SH
1563static const struct net_device_ops efx_netdev_ops = {
1564 .ndo_open = efx_net_open,
1565 .ndo_stop = efx_net_stop,
1566 .ndo_get_stats = efx_net_stats,
1567 .ndo_tx_timeout = efx_watchdog,
1568 .ndo_start_xmit = efx_hard_start_xmit,
1569 .ndo_validate_addr = eth_validate_addr,
1570 .ndo_do_ioctl = efx_ioctl,
1571 .ndo_change_mtu = efx_change_mtu,
1572 .ndo_set_mac_address = efx_set_mac_address,
1573 .ndo_set_multicast_list = efx_set_multicast_list,
1574#ifdef CONFIG_NET_POLL_CONTROLLER
1575 .ndo_poll_controller = efx_netpoll,
1576#endif
1577};
1578
7dde596e
BH
1579static void efx_update_name(struct efx_nic *efx)
1580{
1581 strcpy(efx->name, efx->net_dev->name);
1582 efx_mtd_rename(efx);
1583 efx_set_channel_names(efx);
1584}
1585
8ceee660
BH
1586static int efx_netdev_event(struct notifier_block *this,
1587 unsigned long event, void *ptr)
1588{
d3208b5e 1589 struct net_device *net_dev = ptr;
8ceee660 1590
7dde596e
BH
1591 if (net_dev->netdev_ops == &efx_netdev_ops &&
1592 event == NETDEV_CHANGENAME)
1593 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1594
1595 return NOTIFY_DONE;
1596}
1597
1598static struct notifier_block efx_netdev_notifier = {
1599 .notifier_call = efx_netdev_event,
1600};
1601
06d5e193
BH
1602static ssize_t
1603show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1604{
1605 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1606 return sprintf(buf, "%d\n", efx->phy_type);
1607}
1608static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1609
8ceee660
BH
1610static int efx_register_netdev(struct efx_nic *efx)
1611{
1612 struct net_device *net_dev = efx->net_dev;
1613 int rc;
1614
1615 net_dev->watchdog_timeo = 5 * HZ;
1616 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1617 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1618 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1619 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1620
1621 /* Always start with carrier off; PHY events will detect the link */
1622 netif_carrier_off(efx->net_dev);
1623
1624 /* Clear MAC statistics */
177dfcd8 1625 efx->mac_op->update_stats(efx);
8ceee660
BH
1626 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1627
1628 rc = register_netdev(net_dev);
1629 if (rc) {
1630 EFX_ERR(efx, "could not register net dev\n");
1631 return rc;
1632 }
7dde596e
BH
1633
1634 rtnl_lock();
1635 efx_update_name(efx);
1636 rtnl_unlock();
8ceee660 1637
06d5e193
BH
1638 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1639 if (rc) {
1640 EFX_ERR(efx, "failed to init net dev attributes\n");
1641 goto fail_registered;
1642 }
1643
8ceee660 1644 return 0;
06d5e193
BH
1645
1646fail_registered:
1647 unregister_netdev(net_dev);
1648 return rc;
8ceee660
BH
1649}
1650
1651static void efx_unregister_netdev(struct efx_nic *efx)
1652{
1653 struct efx_tx_queue *tx_queue;
1654
1655 if (!efx->net_dev)
1656 return;
1657
767e468c 1658 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1659
1660 /* Free up any skbs still remaining. This has to happen before
1661 * we try to unregister the netdev as running their destructors
1662 * may be needed to get the device ref. count to 0. */
1663 efx_for_each_tx_queue(tx_queue, efx)
1664 efx_release_tx_buffers(tx_queue);
1665
55668611 1666 if (efx_dev_registered(efx)) {
8ceee660 1667 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1668 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1669 unregister_netdev(efx->net_dev);
1670 }
1671}
1672
1673/**************************************************************************
1674 *
1675 * Device reset and suspend
1676 *
1677 **************************************************************************/
1678
2467ca46
BH
1679/* Tears down the entire software state and most of the hardware state
1680 * before reset. */
4b988280
SH
1681void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1682 struct ethtool_cmd *ecmd)
8ceee660 1683{
8ceee660
BH
1684 EFX_ASSERT_RESET_SERIALISED(efx);
1685
1974cc20 1686 efx_stats_disable(efx);
2467ca46
BH
1687 efx_stop_all(efx);
1688 mutex_lock(&efx->mac_lock);
f4150724 1689 mutex_lock(&efx->spi_lock);
2467ca46 1690
177dfcd8 1691 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1692
1693 efx_fini_channels(efx);
4b988280
SH
1694 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1695 efx->phy_op->fini(efx);
8ceee660
BH
1696}
1697
2467ca46
BH
1698/* This function will always ensure that the locks acquired in
1699 * efx_reset_down() are released. A failure return code indicates
1700 * that we were unable to reinitialise the hardware, and the
1701 * driver should be disabled. If ok is false, then the rx and tx
1702 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1703int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1704 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1705{
1706 int rc;
1707
2467ca46 1708 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1709
2467ca46 1710 rc = falcon_init_nic(efx);
8ceee660 1711 if (rc) {
2467ca46
BH
1712 EFX_ERR(efx, "failed to initialise NIC\n");
1713 ok = false;
8ceee660
BH
1714 }
1715
4b988280
SH
1716 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1717 if (ok) {
1718 rc = efx->phy_op->init(efx);
1719 if (rc)
1720 ok = false;
115122af
BH
1721 }
1722 if (!ok)
4b988280
SH
1723 efx->port_initialized = false;
1724 }
1725
2467ca46
BH
1726 if (ok) {
1727 efx_init_channels(efx);
8ceee660 1728
177dfcd8 1729 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1730 EFX_ERR(efx, "could not restore PHY settings\n");
1731 }
1732
f4150724 1733 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1734 mutex_unlock(&efx->mac_lock);
1735
8c8661e4 1736 if (ok) {
2467ca46 1737 efx_start_all(efx);
1974cc20 1738 efx_stats_enable(efx);
8c8661e4 1739 }
8ceee660
BH
1740 return rc;
1741}
1742
1743/* Reset the NIC as transparently as possible. Do not reset the PHY
1744 * Note that the reset may fail, in which case the card will be left
1745 * in a most-probably-unusable state.
1746 *
1747 * This function will sleep. You cannot reset from within an atomic
1748 * state; use efx_schedule_reset() instead.
1749 *
1750 * Grabs the rtnl_lock.
1751 */
1752static int efx_reset(struct efx_nic *efx)
1753{
1754 struct ethtool_cmd ecmd;
1755 enum reset_type method = efx->reset_pending;
f4bd954e 1756 int rc = 0;
8ceee660
BH
1757
1758 /* Serialise with kernel interfaces */
1759 rtnl_lock();
1760
1761 /* If we're not RUNNING then don't reset. Leave the reset_pending
1762 * flag set so that efx_pci_probe_main will be retried */
1763 if (efx->state != STATE_RUNNING) {
1764 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1765 goto out_unlock;
8ceee660
BH
1766 }
1767
8ceee660
BH
1768 EFX_INFO(efx, "resetting (%d)\n", method);
1769
4b988280 1770 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1771
1772 rc = falcon_reset_hw(efx, method);
1773 if (rc) {
1774 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1775 goto out_disable;
8ceee660
BH
1776 }
1777
1778 /* Allow resets to be rescheduled. */
1779 efx->reset_pending = RESET_TYPE_NONE;
1780
1781 /* Reinitialise bus-mastering, which may have been turned off before
1782 * the reset was scheduled. This is still appropriate, even in the
1783 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1784 * can respond to requests. */
1785 pci_set_master(efx->pci_dev);
1786
8ceee660
BH
1787 /* Leave device stopped if necessary */
1788 if (method == RESET_TYPE_DISABLE) {
4b988280 1789 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1790 rc = -EIO;
f4bd954e 1791 } else {
4b988280 1792 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1793 }
1794
f4bd954e
BH
1795out_disable:
1796 if (rc) {
1797 EFX_ERR(efx, "has been disabled\n");
1798 efx->state = STATE_DISABLED;
1799 dev_close(efx->net_dev);
1800 } else {
1801 EFX_LOG(efx, "reset complete\n");
1802 }
8ceee660 1803
f4bd954e 1804out_unlock:
8ceee660 1805 rtnl_unlock();
8ceee660
BH
1806 return rc;
1807}
1808
1809/* The worker thread exists so that code that cannot sleep can
1810 * schedule a reset for later.
1811 */
1812static void efx_reset_work(struct work_struct *data)
1813{
1814 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1815
1816 efx_reset(nic);
1817}
1818
1819void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1820{
1821 enum reset_type method;
1822
1823 if (efx->reset_pending != RESET_TYPE_NONE) {
1824 EFX_INFO(efx, "quenching already scheduled reset\n");
1825 return;
1826 }
1827
1828 switch (type) {
1829 case RESET_TYPE_INVISIBLE:
1830 case RESET_TYPE_ALL:
1831 case RESET_TYPE_WORLD:
1832 case RESET_TYPE_DISABLE:
1833 method = type;
1834 break;
1835 case RESET_TYPE_RX_RECOVERY:
1836 case RESET_TYPE_RX_DESC_FETCH:
1837 case RESET_TYPE_TX_DESC_FETCH:
1838 case RESET_TYPE_TX_SKIP:
1839 method = RESET_TYPE_INVISIBLE;
1840 break;
1841 default:
1842 method = RESET_TYPE_ALL;
1843 break;
1844 }
1845
1846 if (method != type)
1847 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1848 else
1849 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1850
1851 efx->reset_pending = method;
1852
1ab00629 1853 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1854}
1855
1856/**************************************************************************
1857 *
1858 * List of NICs we support
1859 *
1860 **************************************************************************/
1861
1862/* PCI device ID table */
1863static struct pci_device_id efx_pci_table[] __devinitdata = {
1864 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1865 .driver_data = (unsigned long) &falcon_a_nic_type},
1866 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1867 .driver_data = (unsigned long) &falcon_b_nic_type},
1868 {0} /* end of list */
1869};
1870
1871/**************************************************************************
1872 *
1873 * Dummy PHY/MAC/Board operations
1874 *
01aad7b6 1875 * Can be used for some unimplemented operations
8ceee660
BH
1876 * Needed so all function pointers are valid and do not have to be tested
1877 * before use
1878 *
1879 **************************************************************************/
1880int efx_port_dummy_op_int(struct efx_nic *efx)
1881{
1882 return 0;
1883}
1884void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1885void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660 1886
177dfcd8
BH
1887static struct efx_mac_operations efx_dummy_mac_operations = {
1888 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1889 .poll = efx_port_dummy_op_void,
1890 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1891};
1892
8ceee660
BH
1893static struct efx_phy_operations efx_dummy_phy_operations = {
1894 .init = efx_port_dummy_op_int,
1895 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1896 .poll = efx_port_dummy_op_void,
8ceee660
BH
1897 .fini = efx_port_dummy_op_void,
1898 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1899};
1900
8ceee660 1901static struct efx_board efx_dummy_board_info = {
01aad7b6 1902 .init = efx_port_dummy_op_int,
8129d217
BH
1903 .init_leds = efx_port_dummy_op_void,
1904 .set_id_led = efx_port_dummy_op_blink,
a17102b1 1905 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1906 .blink = efx_port_dummy_op_blink,
1907 .fini = efx_port_dummy_op_void,
8ceee660
BH
1908};
1909
1910/**************************************************************************
1911 *
1912 * Data housekeeping
1913 *
1914 **************************************************************************/
1915
1916/* This zeroes out and then fills in the invariants in a struct
1917 * efx_nic (including all sub-structures).
1918 */
1919static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1920 struct pci_dev *pci_dev, struct net_device *net_dev)
1921{
1922 struct efx_channel *channel;
1923 struct efx_tx_queue *tx_queue;
1924 struct efx_rx_queue *rx_queue;
1ab00629 1925 int i;
8ceee660
BH
1926
1927 /* Initialise common structures */
1928 memset(efx, 0, sizeof(*efx));
1929 spin_lock_init(&efx->biu_lock);
1930 spin_lock_init(&efx->phy_lock);
f4150724 1931 mutex_init(&efx->spi_lock);
8ceee660
BH
1932 INIT_WORK(&efx->reset_work, efx_reset_work);
1933 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1934 efx->pci_dev = pci_dev;
1935 efx->state = STATE_INIT;
1936 efx->reset_pending = RESET_TYPE_NONE;
1937 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1938 efx->board_info = efx_dummy_board_info;
1939
1940 efx->net_dev = net_dev;
dc8cfa55 1941 efx->rx_checksum_enabled = true;
8ceee660
BH
1942 spin_lock_init(&efx->netif_stop_lock);
1943 spin_lock_init(&efx->stats_lock);
1974cc20 1944 efx->stats_disable_count = 1;
8ceee660 1945 mutex_init(&efx->mac_lock);
177dfcd8 1946 efx->mac_op = &efx_dummy_mac_operations;
8ceee660
BH
1947 efx->phy_op = &efx_dummy_phy_operations;
1948 efx->mii.dev = net_dev;
766ca0fa
BH
1949 INIT_WORK(&efx->phy_work, efx_phy_work);
1950 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1951 atomic_set(&efx->netif_stop_count, 1);
1952
1953 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1954 channel = &efx->channel[i];
1955 channel->efx = efx;
1956 channel->channel = i;
dc8cfa55 1957 channel->work_pending = false;
8ceee660 1958 }
60ac1065 1959 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1960 tx_queue = &efx->tx_queue[i];
1961 tx_queue->efx = efx;
1962 tx_queue->queue = i;
1963 tx_queue->buffer = NULL;
1964 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1965 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1966 }
1967 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1968 rx_queue = &efx->rx_queue[i];
1969 rx_queue->efx = efx;
1970 rx_queue->queue = i;
1971 rx_queue->channel = &efx->channel[0]; /* for safety */
1972 rx_queue->buffer = NULL;
1973 spin_lock_init(&rx_queue->add_lock);
1974 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1975 }
1976
1977 efx->type = type;
1978
1979 /* Sanity-check NIC type */
1980 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1981 (efx->type->txd_ring_mask + 1));
1982 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1983 (efx->type->rxd_ring_mask + 1));
1984 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1985 (efx->type->evq_size - 1));
1986 /* As close as we can get to guaranteeing that we don't overflow */
1987 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1988 (efx->type->txd_ring_mask + 1 +
1989 efx->type->rxd_ring_mask + 1));
1990 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1991
1992 /* Higher numbered interrupt modes are less capable! */
1993 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1994 interrupt_mode);
1995
6977dc63
BH
1996 /* Would be good to use the net_dev name, but we're too early */
1997 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1998 pci_name(pci_dev));
1999 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2000 if (!efx->workqueue)
2001 return -ENOMEM;
8d9853d9 2002
8ceee660 2003 return 0;
8ceee660
BH
2004}
2005
2006static void efx_fini_struct(struct efx_nic *efx)
2007{
2008 if (efx->workqueue) {
2009 destroy_workqueue(efx->workqueue);
2010 efx->workqueue = NULL;
2011 }
2012}
2013
2014/**************************************************************************
2015 *
2016 * PCI interface
2017 *
2018 **************************************************************************/
2019
2020/* Main body of final NIC shutdown code
2021 * This is called only at module unload (or hotplug removal).
2022 */
2023static void efx_pci_remove_main(struct efx_nic *efx)
2024{
2025 EFX_ASSERT_RESET_SERIALISED(efx);
2026
2027 /* Skip everything if we never obtained a valid membase */
2028 if (!efx->membase)
2029 return;
2030
2031 efx_fini_channels(efx);
2032 efx_fini_port(efx);
2033
2034 /* Shutdown the board, then the NIC and board state */
37b5a603 2035 efx->board_info.fini(efx);
8ceee660
BH
2036 falcon_fini_interrupt(efx);
2037
2038 efx_fini_napi(efx);
2039 efx_remove_all(efx);
2040}
2041
2042/* Final NIC shutdown
2043 * This is called only at module unload (or hotplug removal).
2044 */
2045static void efx_pci_remove(struct pci_dev *pci_dev)
2046{
2047 struct efx_nic *efx;
2048
2049 efx = pci_get_drvdata(pci_dev);
2050 if (!efx)
2051 return;
2052
2053 /* Mark the NIC as fini, then stop the interface */
2054 rtnl_lock();
2055 efx->state = STATE_FINI;
2056 dev_close(efx->net_dev);
2057
2058 /* Allow any queued efx_resets() to complete */
2059 rtnl_unlock();
2060
2061 if (efx->membase == NULL)
2062 goto out;
2063
2064 efx_unregister_netdev(efx);
2065
7dde596e
BH
2066 efx_mtd_remove(efx);
2067
8ceee660
BH
2068 /* Wait for any scheduled resets to complete. No more will be
2069 * scheduled from this point because efx_stop_all() has been
2070 * called, we are no longer registered with driverlink, and
2071 * the net_device's have been removed. */
1ab00629 2072 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2073
2074 efx_pci_remove_main(efx);
2075
2076out:
2077 efx_fini_io(efx);
2078 EFX_LOG(efx, "shutdown successful\n");
2079
2080 pci_set_drvdata(pci_dev, NULL);
2081 efx_fini_struct(efx);
2082 free_netdev(efx->net_dev);
2083};
2084
2085/* Main body of NIC initialisation
2086 * This is called at module load (or hotplug insertion, theoretically).
2087 */
2088static int efx_pci_probe_main(struct efx_nic *efx)
2089{
2090 int rc;
2091
2092 /* Do start-of-day initialisation */
2093 rc = efx_probe_all(efx);
2094 if (rc)
2095 goto fail1;
2096
2097 rc = efx_init_napi(efx);
2098 if (rc)
2099 goto fail2;
2100
2101 /* Initialise the board */
2102 rc = efx->board_info.init(efx);
2103 if (rc) {
2104 EFX_ERR(efx, "failed to initialise board\n");
2105 goto fail3;
2106 }
2107
2108 rc = falcon_init_nic(efx);
2109 if (rc) {
2110 EFX_ERR(efx, "failed to initialise NIC\n");
2111 goto fail4;
2112 }
2113
2114 rc = efx_init_port(efx);
2115 if (rc) {
2116 EFX_ERR(efx, "failed to initialise port\n");
2117 goto fail5;
2118 }
2119
bc3c90a2 2120 efx_init_channels(efx);
8ceee660
BH
2121
2122 rc = falcon_init_interrupt(efx);
2123 if (rc)
bc3c90a2 2124 goto fail6;
8ceee660
BH
2125
2126 return 0;
2127
8ceee660 2128 fail6:
bc3c90a2 2129 efx_fini_channels(efx);
8ceee660
BH
2130 efx_fini_port(efx);
2131 fail5:
2132 fail4:
a17102b1 2133 efx->board_info.fini(efx);
8ceee660
BH
2134 fail3:
2135 efx_fini_napi(efx);
2136 fail2:
2137 efx_remove_all(efx);
2138 fail1:
2139 return rc;
2140}
2141
2142/* NIC initialisation
2143 *
2144 * This is called at module load (or hotplug insertion,
2145 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2146 * sets up and registers the network devices with the kernel and hooks
2147 * the interrupt service routine. It does not prepare the device for
2148 * transmission; this is left to the first time one of the network
2149 * interfaces is brought up (i.e. efx_net_open).
2150 */
2151static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2152 const struct pci_device_id *entry)
2153{
2154 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2155 struct net_device *net_dev;
2156 struct efx_nic *efx;
2157 int i, rc;
2158
2159 /* Allocate and initialise a struct net_device and struct efx_nic */
2160 net_dev = alloc_etherdev(sizeof(*efx));
2161 if (!net_dev)
2162 return -ENOMEM;
b9b39b62
BH
2163 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2164 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660 2165 if (lro)
da3bc071 2166 net_dev->features |= NETIF_F_GRO;
28506563
BH
2167 /* Mask for features that also apply to VLAN devices */
2168 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2169 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2170 efx = netdev_priv(net_dev);
8ceee660
BH
2171 pci_set_drvdata(pci_dev, efx);
2172 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2173 if (rc)
2174 goto fail1;
2175
2176 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2177
2178 /* Set up basic I/O (BAR mappings etc) */
2179 rc = efx_init_io(efx);
2180 if (rc)
2181 goto fail2;
2182
2183 /* No serialisation is required with the reset path because
2184 * we're in STATE_INIT. */
2185 for (i = 0; i < 5; i++) {
2186 rc = efx_pci_probe_main(efx);
8ceee660
BH
2187
2188 /* Serialise against efx_reset(). No more resets will be
2189 * scheduled since efx_stop_all() has been called, and we
2190 * have not and never have been registered with either
2191 * the rtnetlink or driverlink layers. */
1ab00629 2192 cancel_work_sync(&efx->reset_work);
8ceee660 2193
fa402b2e
SH
2194 if (rc == 0) {
2195 if (efx->reset_pending != RESET_TYPE_NONE) {
2196 /* If there was a scheduled reset during
2197 * probe, the NIC is probably hosed anyway */
2198 efx_pci_remove_main(efx);
2199 rc = -EIO;
2200 } else {
2201 break;
2202 }
2203 }
2204
8ceee660
BH
2205 /* Retry if a recoverably reset event has been scheduled */
2206 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2207 (efx->reset_pending != RESET_TYPE_ALL))
2208 goto fail3;
2209
2210 efx->reset_pending = RESET_TYPE_NONE;
2211 }
2212
2213 if (rc) {
2214 EFX_ERR(efx, "Could not reset NIC\n");
2215 goto fail4;
2216 }
2217
2218 /* Switch to the running state before we expose the device to
2219 * the OS. This is to ensure that the initial gathering of
2220 * MAC stats succeeds. */
8ceee660 2221 efx->state = STATE_RUNNING;
7dde596e
BH
2222
2223 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2224
2225 rc = efx_register_netdev(efx);
2226 if (rc)
2227 goto fail5;
2228
2229 EFX_LOG(efx, "initialisation successful\n");
8ceee660
BH
2230 return 0;
2231
2232 fail5:
2233 efx_pci_remove_main(efx);
2234 fail4:
2235 fail3:
2236 efx_fini_io(efx);
2237 fail2:
2238 efx_fini_struct(efx);
2239 fail1:
2240 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2241 free_netdev(net_dev);
2242 return rc;
2243}
2244
2245static struct pci_driver efx_pci_driver = {
2246 .name = EFX_DRIVER_NAME,
2247 .id_table = efx_pci_table,
2248 .probe = efx_pci_probe,
2249 .remove = efx_pci_remove,
2250};
2251
2252/**************************************************************************
2253 *
2254 * Kernel module interface
2255 *
2256 *************************************************************************/
2257
2258module_param(interrupt_mode, uint, 0444);
2259MODULE_PARM_DESC(interrupt_mode,
2260 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2261
2262static int __init efx_init_module(void)
2263{
2264 int rc;
2265
2266 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2267
2268 rc = register_netdevice_notifier(&efx_netdev_notifier);
2269 if (rc)
2270 goto err_notifier;
2271
2272 refill_workqueue = create_workqueue("sfc_refill");
2273 if (!refill_workqueue) {
2274 rc = -ENOMEM;
2275 goto err_refill;
2276 }
1ab00629
SH
2277 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2278 if (!reset_workqueue) {
2279 rc = -ENOMEM;
2280 goto err_reset;
2281 }
8ceee660
BH
2282
2283 rc = pci_register_driver(&efx_pci_driver);
2284 if (rc < 0)
2285 goto err_pci;
2286
2287 return 0;
2288
2289 err_pci:
1ab00629
SH
2290 destroy_workqueue(reset_workqueue);
2291 err_reset:
8ceee660
BH
2292 destroy_workqueue(refill_workqueue);
2293 err_refill:
2294 unregister_netdevice_notifier(&efx_netdev_notifier);
2295 err_notifier:
2296 return rc;
2297}
2298
2299static void __exit efx_exit_module(void)
2300{
2301 printk(KERN_INFO "Solarflare NET driver unloading\n");
2302
2303 pci_unregister_driver(&efx_pci_driver);
1ab00629 2304 destroy_workqueue(reset_workqueue);
8ceee660
BH
2305 destroy_workqueue(refill_workqueue);
2306 unregister_netdevice_notifier(&efx_netdev_notifier);
2307
2308}
2309
2310module_init(efx_init_module);
2311module_exit(efx_exit_module);
2312
2313MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2314 "Solarflare Communications");
2315MODULE_DESCRIPTION("Solarflare Communications network driver");
2316MODULE_LICENSE("GPL");
2317MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.284563 seconds and 5 git commands to generate.