sfc: Hold MAC lock for longer in efx_init_port()
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "efx.h"
25#include "mdio_10g.h"
26#include "falcon.h"
8ceee660 27
c459302d
BH
28/**************************************************************************
29 *
30 * Type name strings
31 *
32 **************************************************************************
33 */
34
35/* Loopback mode names (see LOOPBACK_MODE()) */
36const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
37const char *efx_loopback_mode_names[] = {
38 [LOOPBACK_NONE] = "NONE",
39 [LOOPBACK_GMAC] = "GMAC",
40 [LOOPBACK_XGMII] = "XGMII",
41 [LOOPBACK_XGXS] = "XGXS",
42 [LOOPBACK_XAUI] = "XAUI",
43 [LOOPBACK_GPHY] = "GPHY",
44 [LOOPBACK_PHYXS] = "PHYXS",
45 [LOOPBACK_PCS] = "PCS",
46 [LOOPBACK_PMAPMD] = "PMA/PMD",
47 [LOOPBACK_NETWORK] = "NETWORK",
48};
49
50/* Interrupt mode names (see INT_MODE())) */
51const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
52const char *efx_interrupt_mode_names[] = {
53 [EFX_INT_MODE_MSIX] = "MSI-X",
54 [EFX_INT_MODE_MSI] = "MSI",
55 [EFX_INT_MODE_LEGACY] = "legacy",
56};
57
58const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
59const char *efx_reset_type_names[] = {
60 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
61 [RESET_TYPE_ALL] = "ALL",
62 [RESET_TYPE_WORLD] = "WORLD",
63 [RESET_TYPE_DISABLE] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
66 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
67 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
68 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
69 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
70};
71
8ceee660
BH
72#define EFX_MAX_MTU (9 * 1024)
73
74/* RX slow fill workqueue. If memory allocation fails in the fast path,
75 * a work item is pushed onto this work queue to retry the allocation later,
76 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
77 * workqueue, there is nothing to be gained in making it per NIC
78 */
79static struct workqueue_struct *refill_workqueue;
80
1ab00629
SH
81/* Reset workqueue. If any NIC has a hardware failure then a reset will be
82 * queued onto this work queue. This is not a per-nic work queue, because
83 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
84 */
85static struct workqueue_struct *reset_workqueue;
86
8ceee660
BH
87/**************************************************************************
88 *
89 * Configurable values
90 *
91 *************************************************************************/
92
8ceee660
BH
93/*
94 * Use separate channels for TX and RX events
95 *
28b581ab
NT
96 * Set this to 1 to use separate channels for TX and RX. It allows us
97 * to control interrupt affinity separately for TX and RX.
8ceee660 98 *
28b581ab 99 * This is only used in MSI-X interrupt mode
8ceee660 100 */
28b581ab
NT
101static unsigned int separate_tx_channels;
102module_param(separate_tx_channels, uint, 0644);
103MODULE_PARM_DESC(separate_tx_channels,
104 "Use separate channels for TX and RX");
8ceee660
BH
105
106/* This is the weight assigned to each of the (per-channel) virtual
107 * NAPI devices.
108 */
109static int napi_weight = 64;
110
111/* This is the time (in jiffies) between invocations of the hardware
112 * monitor, which checks for known hardware bugs and resets the
113 * hardware and driver as necessary.
114 */
115unsigned int efx_monitor_interval = 1 * HZ;
116
8ceee660
BH
117/* This controls whether or not the driver will initialise devices
118 * with invalid MAC addresses stored in the EEPROM or flash. If true,
119 * such devices will be initialised with a random locally-generated
120 * MAC address. This allows for loading the sfc_mtd driver to
121 * reprogram the flash, even if the flash contents (including the MAC
122 * address) have previously been erased.
123 */
124static unsigned int allow_bad_hwaddr;
125
126/* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132static unsigned int rx_irq_mod_usec = 60;
133
134/* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
142 */
143static unsigned int tx_irq_mod_usec = 150;
144
145/* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150static unsigned int interrupt_mode;
151
152/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157 * The default (0) means to assign an interrupt to each package (level II cache)
158 */
159static unsigned int rss_cpus;
160module_param(rss_cpus, uint, 0444);
161MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
84ae48fe
BH
163static int phy_flash_cfg;
164module_param(phy_flash_cfg, int, 0644);
165MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
6fb70fd1
BH
167static unsigned irq_adapt_low_thresh = 10000;
168module_param(irq_adapt_low_thresh, uint, 0644);
169MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
171
172static unsigned irq_adapt_high_thresh = 20000;
173module_param(irq_adapt_high_thresh, uint, 0644);
174MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
176
8ceee660
BH
177/**************************************************************************
178 *
179 * Utility functions and prototypes
180 *
181 *************************************************************************/
182static void efx_remove_channel(struct efx_channel *channel);
183static void efx_remove_port(struct efx_nic *efx);
184static void efx_fini_napi(struct efx_nic *efx);
185static void efx_fini_channels(struct efx_nic *efx);
186
187#define EFX_ASSERT_RESET_SERIALISED(efx) \
188 do { \
332c1ce9
BH
189 if ((efx->state == STATE_RUNNING) || \
190 (efx->state == STATE_DISABLED)) \
8ceee660
BH
191 ASSERT_RTNL(); \
192 } while (0)
193
194/**************************************************************************
195 *
196 * Event queue processing
197 *
198 *************************************************************************/
199
200/* Process channel's event queue
201 *
202 * This function is responsible for processing the event queue of a
203 * single channel. The caller must guarantee that this function will
204 * never be concurrently called more than once on the same channel,
205 * though different channels may be being processed concurrently.
206 */
4d566063 207static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 208{
42cbe2d7
BH
209 struct efx_nic *efx = channel->efx;
210 int rx_packets;
8ceee660 211
42cbe2d7 212 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 213 !channel->enabled))
42cbe2d7 214 return 0;
8ceee660 215
42cbe2d7
BH
216 rx_packets = falcon_process_eventq(channel, rx_quota);
217 if (rx_packets == 0)
218 return 0;
8ceee660
BH
219
220 /* Deliver last RX packet. */
221 if (channel->rx_pkt) {
222 __efx_rx_packet(channel, channel->rx_pkt,
223 channel->rx_pkt_csummed);
224 channel->rx_pkt = NULL;
225 }
226
8ceee660
BH
227 efx_rx_strategy(channel);
228
42cbe2d7 229 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 230
42cbe2d7 231 return rx_packets;
8ceee660
BH
232}
233
234/* Mark channel as finished processing
235 *
236 * Note that since we will not receive further interrupts for this
237 * channel before we finish processing and call the eventq_read_ack()
238 * method, there is no need to use the interrupt hold-off timers.
239 */
240static inline void efx_channel_processed(struct efx_channel *channel)
241{
5b9e207c
BH
242 /* The interrupt handler for this channel may set work_pending
243 * as soon as we acknowledge the events we've seen. Make sure
244 * it's cleared before then. */
dc8cfa55 245 channel->work_pending = false;
5b9e207c
BH
246 smp_wmb();
247
8ceee660
BH
248 falcon_eventq_read_ack(channel);
249}
250
251/* NAPI poll handler
252 *
253 * NAPI guarantees serialisation of polls of the same device, which
254 * provides the guarantee required by efx_process_channel().
255 */
256static int efx_poll(struct napi_struct *napi, int budget)
257{
258 struct efx_channel *channel =
259 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
260 int rx_packets;
261
262 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
263 channel->channel, raw_smp_processor_id());
264
42cbe2d7 265 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
266
267 if (rx_packets < budget) {
6fb70fd1
BH
268 struct efx_nic *efx = channel->efx;
269
270 if (channel->used_flags & EFX_USED_BY_RX &&
271 efx->irq_rx_adaptive &&
272 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
273 if (unlikely(channel->irq_mod_score <
274 irq_adapt_low_thresh)) {
0d86ebd8
BH
275 if (channel->irq_moderation > 1) {
276 channel->irq_moderation -= 1;
277 falcon_set_int_moderation(channel);
278 }
6fb70fd1
BH
279 } else if (unlikely(channel->irq_mod_score >
280 irq_adapt_high_thresh)) {
0d86ebd8
BH
281 if (channel->irq_moderation <
282 efx->irq_rx_moderation) {
283 channel->irq_moderation += 1;
284 falcon_set_int_moderation(channel);
285 }
6fb70fd1 286 }
6fb70fd1
BH
287 channel->irq_count = 0;
288 channel->irq_mod_score = 0;
289 }
290
8ceee660 291 /* There is no race here; although napi_disable() will
288379f0 292 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
293 * since efx_channel_processed() will have no effect if
294 * interrupts have already been disabled.
295 */
288379f0 296 napi_complete(napi);
8ceee660
BH
297 efx_channel_processed(channel);
298 }
299
300 return rx_packets;
301}
302
303/* Process the eventq of the specified channel immediately on this CPU
304 *
305 * Disable hardware generated interrupts, wait for any existing
306 * processing to finish, then directly poll (and ack ) the eventq.
307 * Finally reenable NAPI and interrupts.
308 *
309 * Since we are touching interrupts the caller should hold the suspend lock
310 */
311void efx_process_channel_now(struct efx_channel *channel)
312{
313 struct efx_nic *efx = channel->efx;
314
315 BUG_ON(!channel->used_flags);
316 BUG_ON(!channel->enabled);
317
318 /* Disable interrupts and wait for ISRs to complete */
319 falcon_disable_interrupts(efx);
320 if (efx->legacy_irq)
321 synchronize_irq(efx->legacy_irq);
64ee3120 322 if (channel->irq)
8ceee660
BH
323 synchronize_irq(channel->irq);
324
325 /* Wait for any NAPI processing to complete */
326 napi_disable(&channel->napi_str);
327
328 /* Poll the channel */
3ffeabdd 329 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
330
331 /* Ack the eventq. This may cause an interrupt to be generated
332 * when they are reenabled */
333 efx_channel_processed(channel);
334
335 napi_enable(&channel->napi_str);
336 falcon_enable_interrupts(efx);
337}
338
339/* Create event queue
340 * Event queue memory allocations are done only once. If the channel
341 * is reset, the memory buffer will be reused; this guards against
342 * errors during channel reset and also simplifies interrupt handling.
343 */
344static int efx_probe_eventq(struct efx_channel *channel)
345{
346 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
347
348 return falcon_probe_eventq(channel);
349}
350
351/* Prepare channel's event queue */
bc3c90a2 352static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
353{
354 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
355
356 channel->eventq_read_ptr = 0;
357
bc3c90a2 358 falcon_init_eventq(channel);
8ceee660
BH
359}
360
361static void efx_fini_eventq(struct efx_channel *channel)
362{
363 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
364
365 falcon_fini_eventq(channel);
366}
367
368static void efx_remove_eventq(struct efx_channel *channel)
369{
370 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
371
372 falcon_remove_eventq(channel);
373}
374
375/**************************************************************************
376 *
377 * Channel handling
378 *
379 *************************************************************************/
380
8ceee660
BH
381static int efx_probe_channel(struct efx_channel *channel)
382{
383 struct efx_tx_queue *tx_queue;
384 struct efx_rx_queue *rx_queue;
385 int rc;
386
387 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
388
389 rc = efx_probe_eventq(channel);
390 if (rc)
391 goto fail1;
392
393 efx_for_each_channel_tx_queue(tx_queue, channel) {
394 rc = efx_probe_tx_queue(tx_queue);
395 if (rc)
396 goto fail2;
397 }
398
399 efx_for_each_channel_rx_queue(rx_queue, channel) {
400 rc = efx_probe_rx_queue(rx_queue);
401 if (rc)
402 goto fail3;
403 }
404
405 channel->n_rx_frm_trunc = 0;
406
407 return 0;
408
409 fail3:
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_remove_rx_queue(rx_queue);
412 fail2:
413 efx_for_each_channel_tx_queue(tx_queue, channel)
414 efx_remove_tx_queue(tx_queue);
415 fail1:
416 return rc;
417}
418
419
56536e9c
BH
420static void efx_set_channel_names(struct efx_nic *efx)
421{
422 struct efx_channel *channel;
423 const char *type = "";
424 int number;
425
426 efx_for_each_channel(channel, efx) {
427 number = channel->channel;
428 if (efx->n_channels > efx->n_rx_queues) {
429 if (channel->channel < efx->n_rx_queues) {
430 type = "-rx";
431 } else {
432 type = "-tx";
433 number -= efx->n_rx_queues;
434 }
435 }
436 snprintf(channel->name, sizeof(channel->name),
437 "%s%s-%d", efx->name, type, number);
438 }
439}
440
8ceee660
BH
441/* Channels are shutdown and reinitialised whilst the NIC is running
442 * to propagate configuration changes (mtu, checksum offload), or
443 * to clear hardware error conditions
444 */
bc3c90a2 445static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
446{
447 struct efx_tx_queue *tx_queue;
448 struct efx_rx_queue *rx_queue;
449 struct efx_channel *channel;
8ceee660 450
f7f13b0b
BH
451 /* Calculate the rx buffer allocation parameters required to
452 * support the current MTU, including padding for header
453 * alignment and overruns.
454 */
455 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
456 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
457 efx->type->rx_buffer_padding);
458 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
459
460 /* Initialise the channels */
461 efx_for_each_channel(channel, efx) {
462 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
463
bc3c90a2 464 efx_init_eventq(channel);
8ceee660 465
bc3c90a2
BH
466 efx_for_each_channel_tx_queue(tx_queue, channel)
467 efx_init_tx_queue(tx_queue);
8ceee660
BH
468
469 /* The rx buffer allocation strategy is MTU dependent */
470 efx_rx_strategy(channel);
471
bc3c90a2
BH
472 efx_for_each_channel_rx_queue(rx_queue, channel)
473 efx_init_rx_queue(rx_queue);
8ceee660
BH
474
475 WARN_ON(channel->rx_pkt != NULL);
476 efx_rx_strategy(channel);
477 }
8ceee660
BH
478}
479
480/* This enables event queue processing and packet transmission.
481 *
482 * Note that this function is not allowed to fail, since that would
483 * introduce too much complexity into the suspend/resume path.
484 */
485static void efx_start_channel(struct efx_channel *channel)
486{
487 struct efx_rx_queue *rx_queue;
488
489 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
490
5b9e207c
BH
491 /* The interrupt handler for this channel may set work_pending
492 * as soon as we enable it. Make sure it's cleared before
493 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
494 channel->work_pending = false;
495 channel->enabled = true;
5b9e207c 496 smp_wmb();
8ceee660
BH
497
498 napi_enable(&channel->napi_str);
499
500 /* Load up RX descriptors */
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_fast_push_rx_descriptors(rx_queue);
503}
504
505/* This disables event queue processing and packet transmission.
506 * This function does not guarantee that all queue processing
507 * (e.g. RX refill) is complete.
508 */
509static void efx_stop_channel(struct efx_channel *channel)
510{
511 struct efx_rx_queue *rx_queue;
512
513 if (!channel->enabled)
514 return;
515
516 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
517
dc8cfa55 518 channel->enabled = false;
8ceee660
BH
519 napi_disable(&channel->napi_str);
520
521 /* Ensure that any worker threads have exited or will be no-ops */
522 efx_for_each_channel_rx_queue(rx_queue, channel) {
523 spin_lock_bh(&rx_queue->add_lock);
524 spin_unlock_bh(&rx_queue->add_lock);
525 }
526}
527
528static void efx_fini_channels(struct efx_nic *efx)
529{
530 struct efx_channel *channel;
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
6bc5d3a9 533 int rc;
8ceee660
BH
534
535 EFX_ASSERT_RESET_SERIALISED(efx);
536 BUG_ON(efx->port_enabled);
537
6bc5d3a9
BH
538 rc = falcon_flush_queues(efx);
539 if (rc)
540 EFX_ERR(efx, "failed to flush queues\n");
541 else
542 EFX_LOG(efx, "successfully flushed all queues\n");
543
8ceee660
BH
544 efx_for_each_channel(channel, efx) {
545 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
546
547 efx_for_each_channel_rx_queue(rx_queue, channel)
548 efx_fini_rx_queue(rx_queue);
549 efx_for_each_channel_tx_queue(tx_queue, channel)
550 efx_fini_tx_queue(tx_queue);
8ceee660
BH
551 efx_fini_eventq(channel);
552 }
553}
554
555static void efx_remove_channel(struct efx_channel *channel)
556{
557 struct efx_tx_queue *tx_queue;
558 struct efx_rx_queue *rx_queue;
559
560 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
561
562 efx_for_each_channel_rx_queue(rx_queue, channel)
563 efx_remove_rx_queue(rx_queue);
564 efx_for_each_channel_tx_queue(tx_queue, channel)
565 efx_remove_tx_queue(tx_queue);
566 efx_remove_eventq(channel);
567
568 channel->used_flags = 0;
569}
570
571void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
572{
573 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
574}
575
576/**************************************************************************
577 *
578 * Port handling
579 *
580 **************************************************************************/
581
582/* This ensures that the kernel is kept informed (via
583 * netif_carrier_on/off) of the link status, and also maintains the
584 * link status's stop on the port's TX queue.
585 */
586static void efx_link_status_changed(struct efx_nic *efx)
587{
eb50c0d6
BH
588 struct efx_link_state *link_state = &efx->link_state;
589
8ceee660
BH
590 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
591 * that no events are triggered between unregister_netdev() and the
592 * driver unloading. A more general condition is that NETDEV_CHANGE
593 * can only be generated between NETDEV_UP and NETDEV_DOWN */
594 if (!netif_running(efx->net_dev))
595 return;
596
8c8661e4
BH
597 if (efx->port_inhibited) {
598 netif_carrier_off(efx->net_dev);
599 return;
600 }
601
eb50c0d6 602 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
603 efx->n_link_state_changes++;
604
eb50c0d6 605 if (link_state->up)
8ceee660
BH
606 netif_carrier_on(efx->net_dev);
607 else
608 netif_carrier_off(efx->net_dev);
609 }
610
611 /* Status message for kernel log */
eb50c0d6 612 if (link_state->up) {
f31a45d2 613 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 614 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
615 efx->net_dev->mtu,
616 (efx->promiscuous ? " [PROMISC]" : ""));
617 } else {
618 EFX_INFO(efx, "link down\n");
619 }
620
621}
622
115122af
BH
623static void efx_fini_port(struct efx_nic *efx);
624
8ceee660
BH
625/* This call reinitialises the MAC to pick up new PHY settings. The
626 * caller must hold the mac_lock */
8c8661e4 627void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
628{
629 WARN_ON(!mutex_is_locked(&efx->mac_lock));
630
631 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
632 raw_smp_processor_id());
633
a816f75a
BH
634 /* Serialise the promiscuous flag with efx_set_multicast_list. */
635 if (efx_dev_registered(efx)) {
636 netif_addr_lock_bh(efx->net_dev);
637 netif_addr_unlock_bh(efx->net_dev);
638 }
639
177dfcd8
BH
640 falcon_deconfigure_mac_wrapper(efx);
641
642 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
643 if (LOOPBACK_INTERNAL(efx))
644 efx->phy_mode |= PHY_MODE_TX_DISABLED;
645 else
646 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
647 efx->phy_op->reconfigure(efx);
648
649 if (falcon_switch_mac(efx))
650 goto fail;
651
652 efx->mac_op->reconfigure(efx);
8ceee660
BH
653
654 /* Inform kernel of loss/gain of carrier */
655 efx_link_status_changed(efx);
177dfcd8
BH
656 return;
657
658fail:
659 EFX_ERR(efx, "failed to reconfigure MAC\n");
115122af
BH
660 efx->port_enabled = false;
661 efx_fini_port(efx);
8ceee660
BH
662}
663
664/* Reinitialise the MAC to pick up new PHY settings, even if the port is
665 * disabled. */
666void efx_reconfigure_port(struct efx_nic *efx)
667{
668 EFX_ASSERT_RESET_SERIALISED(efx);
669
670 mutex_lock(&efx->mac_lock);
671 __efx_reconfigure_port(efx);
672 mutex_unlock(&efx->mac_lock);
673}
674
675/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
676 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
677 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 678static void efx_phy_work(struct work_struct *data)
8ceee660 679{
766ca0fa 680 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
681
682 mutex_lock(&efx->mac_lock);
683 if (efx->port_enabled)
684 __efx_reconfigure_port(efx);
685 mutex_unlock(&efx->mac_lock);
686}
687
766ca0fa
BH
688static void efx_mac_work(struct work_struct *data)
689{
690 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
691
692 mutex_lock(&efx->mac_lock);
693 if (efx->port_enabled)
694 efx->mac_op->irq(efx);
695 mutex_unlock(&efx->mac_lock);
696}
697
8ceee660
BH
698static int efx_probe_port(struct efx_nic *efx)
699{
700 int rc;
701
702 EFX_LOG(efx, "create port\n");
703
704 /* Connect up MAC/PHY operations table and read MAC address */
705 rc = falcon_probe_port(efx);
706 if (rc)
707 goto err;
708
84ae48fe
BH
709 if (phy_flash_cfg)
710 efx->phy_mode = PHY_MODE_SPECIAL;
711
8ceee660
BH
712 /* Sanity check MAC address */
713 if (is_valid_ether_addr(efx->mac_address)) {
714 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
715 } else {
e174961c
JB
716 EFX_ERR(efx, "invalid MAC address %pM\n",
717 efx->mac_address);
8ceee660
BH
718 if (!allow_bad_hwaddr) {
719 rc = -EINVAL;
720 goto err;
721 }
722 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
723 EFX_INFO(efx, "using locally-generated MAC %pM\n",
724 efx->net_dev->dev_addr);
8ceee660
BH
725 }
726
727 return 0;
728
729 err:
730 efx_remove_port(efx);
731 return rc;
732}
733
734static int efx_init_port(struct efx_nic *efx)
735{
736 int rc;
737
738 EFX_LOG(efx, "init port\n");
739
1dfc5cea
BH
740 mutex_lock(&efx->mac_lock);
741
177dfcd8 742 rc = efx->phy_op->init(efx);
8ceee660 743 if (rc)
1dfc5cea 744 goto fail1;
4b988280 745 efx->phy_op->reconfigure(efx);
177dfcd8 746 rc = falcon_switch_mac(efx);
177dfcd8 747 if (rc)
1dfc5cea 748 goto fail2;
177dfcd8 749 efx->mac_op->reconfigure(efx);
8ceee660 750
dc8cfa55 751 efx->port_initialized = true;
1974cc20 752 efx_stats_enable(efx);
1dfc5cea
BH
753
754 mutex_unlock(&efx->mac_lock);
8ceee660 755 return 0;
177dfcd8 756
1dfc5cea 757fail2:
177dfcd8 758 efx->phy_op->fini(efx);
1dfc5cea
BH
759fail1:
760 mutex_unlock(&efx->mac_lock);
177dfcd8 761 return rc;
8ceee660
BH
762}
763
764/* Allow efx_reconfigure_port() to be scheduled, and close the window
765 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 766 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
767static void efx_start_port(struct efx_nic *efx)
768{
769 EFX_LOG(efx, "start port\n");
770 BUG_ON(efx->port_enabled);
771
772 mutex_lock(&efx->mac_lock);
dc8cfa55 773 efx->port_enabled = true;
8ceee660 774 __efx_reconfigure_port(efx);
766ca0fa 775 efx->mac_op->irq(efx);
8ceee660
BH
776 mutex_unlock(&efx->mac_lock);
777}
778
766ca0fa
BH
779/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
780 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
781 * and efx_mac_work may still be scheduled via NAPI processing until
782 * efx_flush_all() is called */
8ceee660
BH
783static void efx_stop_port(struct efx_nic *efx)
784{
785 EFX_LOG(efx, "stop port\n");
786
787 mutex_lock(&efx->mac_lock);
dc8cfa55 788 efx->port_enabled = false;
8ceee660
BH
789 mutex_unlock(&efx->mac_lock);
790
791 /* Serialise against efx_set_multicast_list() */
55668611 792 if (efx_dev_registered(efx)) {
b9e40857
DM
793 netif_addr_lock_bh(efx->net_dev);
794 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
795 }
796}
797
798static void efx_fini_port(struct efx_nic *efx)
799{
800 EFX_LOG(efx, "shut down port\n");
801
802 if (!efx->port_initialized)
803 return;
804
1974cc20 805 efx_stats_disable(efx);
177dfcd8 806 efx->phy_op->fini(efx);
dc8cfa55 807 efx->port_initialized = false;
8ceee660 808
eb50c0d6 809 efx->link_state.up = false;
8ceee660
BH
810 efx_link_status_changed(efx);
811}
812
813static void efx_remove_port(struct efx_nic *efx)
814{
815 EFX_LOG(efx, "destroying port\n");
816
817 falcon_remove_port(efx);
818}
819
820/**************************************************************************
821 *
822 * NIC handling
823 *
824 **************************************************************************/
825
826/* This configures the PCI device to enable I/O and DMA. */
827static int efx_init_io(struct efx_nic *efx)
828{
829 struct pci_dev *pci_dev = efx->pci_dev;
830 dma_addr_t dma_mask = efx->type->max_dma_mask;
831 int rc;
832
833 EFX_LOG(efx, "initialising I/O\n");
834
835 rc = pci_enable_device(pci_dev);
836 if (rc) {
837 EFX_ERR(efx, "failed to enable PCI device\n");
838 goto fail1;
839 }
840
841 pci_set_master(pci_dev);
842
843 /* Set the PCI DMA mask. Try all possibilities from our
844 * genuine mask down to 32 bits, because some architectures
845 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
846 * masks event though they reject 46 bit masks.
847 */
848 while (dma_mask > 0x7fffffffUL) {
849 if (pci_dma_supported(pci_dev, dma_mask) &&
850 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
851 break;
852 dma_mask >>= 1;
853 }
854 if (rc) {
855 EFX_ERR(efx, "could not find a suitable DMA mask\n");
856 goto fail2;
857 }
858 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
859 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
860 if (rc) {
861 /* pci_set_consistent_dma_mask() is not *allowed* to
862 * fail with a mask that pci_set_dma_mask() accepted,
863 * but just in case...
864 */
865 EFX_ERR(efx, "failed to set consistent DMA mask\n");
866 goto fail2;
867 }
868
dc803df8
BH
869 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
870 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
871 if (rc) {
872 EFX_ERR(efx, "request for memory BAR failed\n");
873 rc = -EIO;
874 goto fail3;
875 }
876 efx->membase = ioremap_nocache(efx->membase_phys,
877 efx->type->mem_map_size);
878 if (!efx->membase) {
dc803df8 879 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 880 (unsigned long long)efx->membase_phys,
8ceee660
BH
881 efx->type->mem_map_size);
882 rc = -ENOMEM;
883 goto fail4;
884 }
dc803df8
BH
885 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
886 (unsigned long long)efx->membase_phys,
086ea356 887 efx->type->mem_map_size, efx->membase);
8ceee660
BH
888
889 return 0;
890
891 fail4:
dc803df8 892 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 893 fail3:
2c118e0f 894 efx->membase_phys = 0;
8ceee660
BH
895 fail2:
896 pci_disable_device(efx->pci_dev);
897 fail1:
898 return rc;
899}
900
901static void efx_fini_io(struct efx_nic *efx)
902{
903 EFX_LOG(efx, "shutting down I/O\n");
904
905 if (efx->membase) {
906 iounmap(efx->membase);
907 efx->membase = NULL;
908 }
909
910 if (efx->membase_phys) {
dc803df8 911 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 912 efx->membase_phys = 0;
8ceee660
BH
913 }
914
915 pci_disable_device(efx->pci_dev);
916}
917
46123d04
BH
918/* Get number of RX queues wanted. Return number of online CPU
919 * packages in the expectation that an IRQ balancer will spread
920 * interrupts across them. */
921static int efx_wanted_rx_queues(void)
922{
2f8975fb 923 cpumask_var_t core_mask;
46123d04
BH
924 int count;
925 int cpu;
926
79f55997 927 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 928 printk(KERN_WARNING
3977d033 929 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
930 return 1;
931 }
932
46123d04
BH
933 count = 0;
934 for_each_online_cpu(cpu) {
2f8975fb 935 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 936 ++count;
2f8975fb 937 cpumask_or(core_mask, core_mask,
fbd59a8d 938 topology_core_cpumask(cpu));
46123d04
BH
939 }
940 }
941
2f8975fb 942 free_cpumask_var(core_mask);
46123d04
BH
943 return count;
944}
945
946/* Probe the number and type of interrupts we are able to obtain, and
947 * the resulting numbers of channels and RX queues.
948 */
8ceee660
BH
949static void efx_probe_interrupts(struct efx_nic *efx)
950{
46123d04
BH
951 int max_channels =
952 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
953 int rc, i;
954
955 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
956 struct msix_entry xentries[EFX_MAX_CHANNELS];
957 int wanted_ints;
28b581ab 958 int rx_queues;
aa6ef27e 959
46123d04
BH
960 /* We want one RX queue and interrupt per CPU package
961 * (or as specified by the rss_cpus module parameter).
962 * We will need one channel per interrupt.
963 */
28b581ab
NT
964 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
965 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
966 wanted_ints = min(wanted_ints, max_channels);
8ceee660 967
28b581ab 968 for (i = 0; i < wanted_ints; i++)
8ceee660 969 xentries[i].entry = i;
28b581ab 970 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 971 if (rc > 0) {
28b581ab
NT
972 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
973 " available (%d < %d).\n", rc, wanted_ints);
974 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
975 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
976 wanted_ints = rc;
8ceee660 977 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 978 wanted_ints);
8ceee660
BH
979 }
980
981 if (rc == 0) {
28b581ab
NT
982 efx->n_rx_queues = min(rx_queues, wanted_ints);
983 efx->n_channels = wanted_ints;
984 for (i = 0; i < wanted_ints; i++)
8ceee660 985 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
986 } else {
987 /* Fall back to single channel MSI */
988 efx->interrupt_mode = EFX_INT_MODE_MSI;
989 EFX_ERR(efx, "could not enable MSI-X\n");
990 }
991 }
992
993 /* Try single interrupt MSI */
994 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 995 efx->n_rx_queues = 1;
28b581ab 996 efx->n_channels = 1;
8ceee660
BH
997 rc = pci_enable_msi(efx->pci_dev);
998 if (rc == 0) {
999 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1000 } else {
1001 EFX_ERR(efx, "could not enable MSI\n");
1002 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1003 }
1004 }
1005
1006 /* Assume legacy interrupts */
1007 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 1008 efx->n_rx_queues = 1;
28b581ab 1009 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
1010 efx->legacy_irq = efx->pci_dev->irq;
1011 }
1012}
1013
1014static void efx_remove_interrupts(struct efx_nic *efx)
1015{
1016 struct efx_channel *channel;
1017
1018 /* Remove MSI/MSI-X interrupts */
64ee3120 1019 efx_for_each_channel(channel, efx)
8ceee660
BH
1020 channel->irq = 0;
1021 pci_disable_msi(efx->pci_dev);
1022 pci_disable_msix(efx->pci_dev);
1023
1024 /* Remove legacy interrupt */
1025 efx->legacy_irq = 0;
1026}
1027
8831da7b 1028static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
1029{
1030 struct efx_tx_queue *tx_queue;
1031 struct efx_rx_queue *rx_queue;
8ceee660 1032
60ac1065 1033 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
1034 if (separate_tx_channels)
1035 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
1036 else
1037 tx_queue->channel = &efx->channel[0];
1038 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1039 }
8ceee660 1040
8831da7b
BH
1041 efx_for_each_rx_queue(rx_queue, efx) {
1042 rx_queue->channel = &efx->channel[rx_queue->queue];
1043 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
1044 }
1045}
1046
1047static int efx_probe_nic(struct efx_nic *efx)
1048{
1049 int rc;
1050
1051 EFX_LOG(efx, "creating NIC\n");
1052
1053 /* Carry out hardware-type specific initialisation */
1054 rc = falcon_probe_nic(efx);
1055 if (rc)
1056 return rc;
1057
1058 /* Determine the number of channels and RX queues by trying to hook
1059 * in MSI-X interrupts. */
1060 efx_probe_interrupts(efx);
1061
8831da7b 1062 efx_set_channels(efx);
8ceee660
BH
1063
1064 /* Initialise the interrupt moderation settings */
6fb70fd1 1065 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1066
1067 return 0;
1068}
1069
1070static void efx_remove_nic(struct efx_nic *efx)
1071{
1072 EFX_LOG(efx, "destroying NIC\n");
1073
1074 efx_remove_interrupts(efx);
1075 falcon_remove_nic(efx);
1076}
1077
1078/**************************************************************************
1079 *
1080 * NIC startup/shutdown
1081 *
1082 *************************************************************************/
1083
1084static int efx_probe_all(struct efx_nic *efx)
1085{
1086 struct efx_channel *channel;
1087 int rc;
1088
1089 /* Create NIC */
1090 rc = efx_probe_nic(efx);
1091 if (rc) {
1092 EFX_ERR(efx, "failed to create NIC\n");
1093 goto fail1;
1094 }
1095
1096 /* Create port */
1097 rc = efx_probe_port(efx);
1098 if (rc) {
1099 EFX_ERR(efx, "failed to create port\n");
1100 goto fail2;
1101 }
1102
1103 /* Create channels */
1104 efx_for_each_channel(channel, efx) {
1105 rc = efx_probe_channel(channel);
1106 if (rc) {
1107 EFX_ERR(efx, "failed to create channel %d\n",
1108 channel->channel);
1109 goto fail3;
1110 }
1111 }
56536e9c 1112 efx_set_channel_names(efx);
8ceee660
BH
1113
1114 return 0;
1115
1116 fail3:
1117 efx_for_each_channel(channel, efx)
1118 efx_remove_channel(channel);
1119 efx_remove_port(efx);
1120 fail2:
1121 efx_remove_nic(efx);
1122 fail1:
1123 return rc;
1124}
1125
1126/* Called after previous invocation(s) of efx_stop_all, restarts the
1127 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1128 * and ensures that the port is scheduled to be reconfigured.
1129 * This function is safe to call multiple times when the NIC is in any
1130 * state. */
1131static void efx_start_all(struct efx_nic *efx)
1132{
1133 struct efx_channel *channel;
1134
1135 EFX_ASSERT_RESET_SERIALISED(efx);
1136
1137 /* Check that it is appropriate to restart the interface. All
1138 * of these flags are safe to read under just the rtnl lock */
1139 if (efx->port_enabled)
1140 return;
1141 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1142 return;
55668611 1143 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1144 return;
1145
1146 /* Mark the port as enabled so port reconfigurations can start, then
1147 * restart the transmit interface early so the watchdog timer stops */
1148 efx_start_port(efx);
dacccc74
SH
1149 if (efx_dev_registered(efx))
1150 efx_wake_queue(efx);
8ceee660
BH
1151
1152 efx_for_each_channel(channel, efx)
1153 efx_start_channel(channel);
1154
1155 falcon_enable_interrupts(efx);
1156
1157 /* Start hardware monitor if we're in RUNNING */
1158 if (efx->state == STATE_RUNNING)
1159 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1160 efx_monitor_interval);
1161}
1162
1163/* Flush all delayed work. Should only be called when no more delayed work
1164 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1165 * since we're holding the rtnl_lock at this point. */
1166static void efx_flush_all(struct efx_nic *efx)
1167{
1168 struct efx_rx_queue *rx_queue;
1169
1170 /* Make sure the hardware monitor is stopped */
1171 cancel_delayed_work_sync(&efx->monitor_work);
1172
1173 /* Ensure that all RX slow refills are complete. */
b3475645 1174 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1175 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1176
1177 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1178 cancel_work_sync(&efx->mac_work);
1179 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1180
1181}
1182
1183/* Quiesce hardware and software without bringing the link down.
1184 * Safe to call multiple times, when the nic and interface is in any
1185 * state. The caller is guaranteed to subsequently be in a position
1186 * to modify any hardware and software state they see fit without
1187 * taking locks. */
1188static void efx_stop_all(struct efx_nic *efx)
1189{
1190 struct efx_channel *channel;
1191
1192 EFX_ASSERT_RESET_SERIALISED(efx);
1193
1194 /* port_enabled can be read safely under the rtnl lock */
1195 if (!efx->port_enabled)
1196 return;
1197
1198 /* Disable interrupts and wait for ISR to complete */
1199 falcon_disable_interrupts(efx);
1200 if (efx->legacy_irq)
1201 synchronize_irq(efx->legacy_irq);
64ee3120 1202 efx_for_each_channel(channel, efx) {
8ceee660
BH
1203 if (channel->irq)
1204 synchronize_irq(channel->irq);
b3475645 1205 }
8ceee660
BH
1206
1207 /* Stop all NAPI processing and synchronous rx refills */
1208 efx_for_each_channel(channel, efx)
1209 efx_stop_channel(channel);
1210
1211 /* Stop all asynchronous port reconfigurations. Since all
1212 * event processing has already been stopped, there is no
1213 * window to loose phy events */
1214 efx_stop_port(efx);
1215
766ca0fa 1216 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1217 efx_flush_all(efx);
1218
1219 /* Isolate the MAC from the TX and RX engines, so that queue
1220 * flushes will complete in a timely fashion. */
5c8af3b9
BH
1221 falcon_deconfigure_mac_wrapper(efx);
1222 msleep(10); /* Let the Rx FIFO drain */
8ceee660
BH
1223 falcon_drain_tx_fifo(efx);
1224
1225 /* Stop the kernel transmit interface late, so the watchdog
1226 * timer isn't ticking over the flush */
55668611 1227 if (efx_dev_registered(efx)) {
dacccc74 1228 efx_stop_queue(efx);
8ceee660
BH
1229 netif_tx_lock_bh(efx->net_dev);
1230 netif_tx_unlock_bh(efx->net_dev);
1231 }
1232}
1233
1234static void efx_remove_all(struct efx_nic *efx)
1235{
1236 struct efx_channel *channel;
1237
1238 efx_for_each_channel(channel, efx)
1239 efx_remove_channel(channel);
1240 efx_remove_port(efx);
1241 efx_remove_nic(efx);
1242}
1243
8ceee660
BH
1244/**************************************************************************
1245 *
1246 * Interrupt moderation
1247 *
1248 **************************************************************************/
1249
0d86ebd8
BH
1250static unsigned irq_mod_ticks(int usecs, int resolution)
1251{
1252 if (usecs <= 0)
1253 return 0; /* cannot receive interrupts ahead of time :-) */
1254 if (usecs < resolution)
1255 return 1; /* never round down to 0 */
1256 return usecs / resolution;
1257}
1258
8ceee660 1259/* Set interrupt moderation parameters */
6fb70fd1
BH
1260void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1261 bool rx_adaptive)
8ceee660
BH
1262{
1263 struct efx_tx_queue *tx_queue;
1264 struct efx_rx_queue *rx_queue;
0d86ebd8
BH
1265 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1266 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
8ceee660
BH
1267
1268 EFX_ASSERT_RESET_SERIALISED(efx);
1269
1270 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1271 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1272
6fb70fd1 1273 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1274 efx->irq_rx_moderation = rx_ticks;
8ceee660 1275 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1276 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1277}
1278
1279/**************************************************************************
1280 *
1281 * Hardware monitor
1282 *
1283 **************************************************************************/
1284
1285/* Run periodically off the general workqueue. Serialised against
1286 * efx_reconfigure_port via the mac_lock */
1287static void efx_monitor(struct work_struct *data)
1288{
1289 struct efx_nic *efx = container_of(data, struct efx_nic,
1290 monitor_work.work);
766ca0fa 1291 int rc;
8ceee660
BH
1292
1293 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1294 raw_smp_processor_id());
1295
8ceee660
BH
1296 /* If the mac_lock is already held then it is likely a port
1297 * reconfiguration is already in place, which will likely do
1298 * most of the work of check_hw() anyway. */
766ca0fa
BH
1299 if (!mutex_trylock(&efx->mac_lock))
1300 goto out_requeue;
1301 if (!efx->port_enabled)
1302 goto out_unlock;
44838a44 1303 rc = falcon_board(efx)->type->monitor(efx);
766ca0fa
BH
1304 if (rc) {
1305 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1306 (rc == -ERANGE) ? "reported fault" : "failed");
1307 efx->phy_mode |= PHY_MODE_LOW_POWER;
1308 falcon_sim_phy_event(efx);
8ceee660 1309 }
766ca0fa
BH
1310 efx->phy_op->poll(efx);
1311 efx->mac_op->poll(efx);
8ceee660 1312
766ca0fa 1313out_unlock:
8ceee660 1314 mutex_unlock(&efx->mac_lock);
766ca0fa 1315out_requeue:
8ceee660
BH
1316 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1317 efx_monitor_interval);
1318}
1319
1320/**************************************************************************
1321 *
1322 * ioctls
1323 *
1324 *************************************************************************/
1325
1326/* Net device ioctl
1327 * Context: process, rtnl_lock() held.
1328 */
1329static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1330{
767e468c 1331 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1332 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1333
1334 EFX_ASSERT_RESET_SERIALISED(efx);
1335
68e7f45e
BH
1336 /* Convert phy_id from older PRTAD/DEVAD format */
1337 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1338 (data->phy_id & 0xfc00) == 0x0400)
1339 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1340
1341 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1342}
1343
1344/**************************************************************************
1345 *
1346 * NAPI interface
1347 *
1348 **************************************************************************/
1349
1350static int efx_init_napi(struct efx_nic *efx)
1351{
1352 struct efx_channel *channel;
8ceee660
BH
1353
1354 efx_for_each_channel(channel, efx) {
1355 channel->napi_dev = efx->net_dev;
718cff1e
BH
1356 netif_napi_add(channel->napi_dev, &channel->napi_str,
1357 efx_poll, napi_weight);
8ceee660
BH
1358 }
1359 return 0;
8ceee660
BH
1360}
1361
1362static void efx_fini_napi(struct efx_nic *efx)
1363{
1364 struct efx_channel *channel;
1365
1366 efx_for_each_channel(channel, efx) {
718cff1e
BH
1367 if (channel->napi_dev)
1368 netif_napi_del(&channel->napi_str);
8ceee660
BH
1369 channel->napi_dev = NULL;
1370 }
1371}
1372
1373/**************************************************************************
1374 *
1375 * Kernel netpoll interface
1376 *
1377 *************************************************************************/
1378
1379#ifdef CONFIG_NET_POLL_CONTROLLER
1380
1381/* Although in the common case interrupts will be disabled, this is not
1382 * guaranteed. However, all our work happens inside the NAPI callback,
1383 * so no locking is required.
1384 */
1385static void efx_netpoll(struct net_device *net_dev)
1386{
767e468c 1387 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1388 struct efx_channel *channel;
1389
64ee3120 1390 efx_for_each_channel(channel, efx)
8ceee660
BH
1391 efx_schedule_channel(channel);
1392}
1393
1394#endif
1395
1396/**************************************************************************
1397 *
1398 * Kernel net device interface
1399 *
1400 *************************************************************************/
1401
1402/* Context: process, rtnl_lock() held. */
1403static int efx_net_open(struct net_device *net_dev)
1404{
767e468c 1405 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1406 EFX_ASSERT_RESET_SERIALISED(efx);
1407
1408 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1409 raw_smp_processor_id());
1410
f4bd954e
BH
1411 if (efx->state == STATE_DISABLED)
1412 return -EIO;
f8b87c17
BH
1413 if (efx->phy_mode & PHY_MODE_SPECIAL)
1414 return -EBUSY;
1415
8ceee660
BH
1416 efx_start_all(efx);
1417 return 0;
1418}
1419
1420/* Context: process, rtnl_lock() held.
1421 * Note that the kernel will ignore our return code; this method
1422 * should really be a void.
1423 */
1424static int efx_net_stop(struct net_device *net_dev)
1425{
767e468c 1426 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1427
1428 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1429 raw_smp_processor_id());
1430
f4bd954e
BH
1431 if (efx->state != STATE_DISABLED) {
1432 /* Stop the device and flush all the channels */
1433 efx_stop_all(efx);
1434 efx_fini_channels(efx);
1435 efx_init_channels(efx);
1436 }
8ceee660
BH
1437
1438 return 0;
1439}
1440
1974cc20
BH
1441void efx_stats_disable(struct efx_nic *efx)
1442{
1443 spin_lock(&efx->stats_lock);
1444 ++efx->stats_disable_count;
1445 spin_unlock(&efx->stats_lock);
1446}
1447
1448void efx_stats_enable(struct efx_nic *efx)
1449{
1450 spin_lock(&efx->stats_lock);
1451 --efx->stats_disable_count;
1452 spin_unlock(&efx->stats_lock);
1453}
1454
5b9e207c 1455/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1456static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1457{
767e468c 1458 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1459 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1460 struct net_device_stats *stats = &net_dev->stats;
1461
5b9e207c 1462 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1463 * is updating them or if MAC stats fetches are temporarily
1464 * disabled; slightly stale stats are acceptable.
5b9e207c 1465 */
8ceee660
BH
1466 if (!spin_trylock(&efx->stats_lock))
1467 return stats;
1974cc20 1468 if (!efx->stats_disable_count) {
177dfcd8 1469 efx->mac_op->update_stats(efx);
8ceee660
BH
1470 falcon_update_nic_stats(efx);
1471 }
1472 spin_unlock(&efx->stats_lock);
1473
1474 stats->rx_packets = mac_stats->rx_packets;
1475 stats->tx_packets = mac_stats->tx_packets;
1476 stats->rx_bytes = mac_stats->rx_bytes;
1477 stats->tx_bytes = mac_stats->tx_bytes;
1478 stats->multicast = mac_stats->rx_multicast;
1479 stats->collisions = mac_stats->tx_collision;
1480 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1481 mac_stats->rx_length_error);
1482 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1483 stats->rx_crc_errors = mac_stats->rx_bad;
1484 stats->rx_frame_errors = mac_stats->rx_align_error;
1485 stats->rx_fifo_errors = mac_stats->rx_overflow;
1486 stats->rx_missed_errors = mac_stats->rx_missed;
1487 stats->tx_window_errors = mac_stats->tx_late_collision;
1488
1489 stats->rx_errors = (stats->rx_length_errors +
1490 stats->rx_over_errors +
1491 stats->rx_crc_errors +
1492 stats->rx_frame_errors +
1493 stats->rx_fifo_errors +
1494 stats->rx_missed_errors +
1495 mac_stats->rx_symbol_error);
1496 stats->tx_errors = (stats->tx_window_errors +
1497 mac_stats->tx_bad);
1498
1499 return stats;
1500}
1501
1502/* Context: netif_tx_lock held, BHs disabled. */
1503static void efx_watchdog(struct net_device *net_dev)
1504{
767e468c 1505 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1506
739bb23d
BH
1507 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1508 " resetting channels\n",
1509 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1510
739bb23d 1511 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1512}
1513
1514
1515/* Context: process, rtnl_lock() held. */
1516static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1517{
767e468c 1518 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1519 int rc = 0;
1520
1521 EFX_ASSERT_RESET_SERIALISED(efx);
1522
1523 if (new_mtu > EFX_MAX_MTU)
1524 return -EINVAL;
1525
1526 efx_stop_all(efx);
1527
1528 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1529
1530 efx_fini_channels(efx);
1531 net_dev->mtu = new_mtu;
bc3c90a2 1532 efx_init_channels(efx);
8ceee660
BH
1533
1534 efx_start_all(efx);
1535 return rc;
8ceee660
BH
1536}
1537
1538static int efx_set_mac_address(struct net_device *net_dev, void *data)
1539{
767e468c 1540 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1541 struct sockaddr *addr = data;
1542 char *new_addr = addr->sa_data;
1543
1544 EFX_ASSERT_RESET_SERIALISED(efx);
1545
1546 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1547 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1548 new_addr);
8ceee660
BH
1549 return -EINVAL;
1550 }
1551
1552 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1553
1554 /* Reconfigure the MAC */
1555 efx_reconfigure_port(efx);
1556
1557 return 0;
1558}
1559
a816f75a 1560/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1561static void efx_set_multicast_list(struct net_device *net_dev)
1562{
767e468c 1563 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1564 struct dev_mc_list *mc_list = net_dev->mc_list;
1565 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1566 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1567 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1568 u32 crc;
1569 int bit;
1570 int i;
1571
a816f75a 1572 efx->promiscuous = promiscuous;
8ceee660
BH
1573
1574 /* Build multicast hash table */
1575 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1576 memset(mc_hash, 0xff, sizeof(*mc_hash));
1577 } else {
1578 memset(mc_hash, 0x00, sizeof(*mc_hash));
1579 for (i = 0; i < net_dev->mc_count; i++) {
1580 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1581 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1582 set_bit_le(bit, mc_hash->byte);
1583 mc_list = mc_list->next;
1584 }
1585 }
1586
a816f75a
BH
1587 if (!efx->port_enabled)
1588 /* Delay pushing settings until efx_start_port() */
1589 return;
1590
1591 if (changed)
766ca0fa 1592 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1593
8ceee660
BH
1594 /* Create and activate new global multicast hash table */
1595 falcon_set_multicast_hash(efx);
1596}
1597
c3ecb9f3
SH
1598static const struct net_device_ops efx_netdev_ops = {
1599 .ndo_open = efx_net_open,
1600 .ndo_stop = efx_net_stop,
1601 .ndo_get_stats = efx_net_stats,
1602 .ndo_tx_timeout = efx_watchdog,
1603 .ndo_start_xmit = efx_hard_start_xmit,
1604 .ndo_validate_addr = eth_validate_addr,
1605 .ndo_do_ioctl = efx_ioctl,
1606 .ndo_change_mtu = efx_change_mtu,
1607 .ndo_set_mac_address = efx_set_mac_address,
1608 .ndo_set_multicast_list = efx_set_multicast_list,
1609#ifdef CONFIG_NET_POLL_CONTROLLER
1610 .ndo_poll_controller = efx_netpoll,
1611#endif
1612};
1613
7dde596e
BH
1614static void efx_update_name(struct efx_nic *efx)
1615{
1616 strcpy(efx->name, efx->net_dev->name);
1617 efx_mtd_rename(efx);
1618 efx_set_channel_names(efx);
1619}
1620
8ceee660
BH
1621static int efx_netdev_event(struct notifier_block *this,
1622 unsigned long event, void *ptr)
1623{
d3208b5e 1624 struct net_device *net_dev = ptr;
8ceee660 1625
7dde596e
BH
1626 if (net_dev->netdev_ops == &efx_netdev_ops &&
1627 event == NETDEV_CHANGENAME)
1628 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1629
1630 return NOTIFY_DONE;
1631}
1632
1633static struct notifier_block efx_netdev_notifier = {
1634 .notifier_call = efx_netdev_event,
1635};
1636
06d5e193
BH
1637static ssize_t
1638show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1639{
1640 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1641 return sprintf(buf, "%d\n", efx->phy_type);
1642}
1643static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1644
8ceee660
BH
1645static int efx_register_netdev(struct efx_nic *efx)
1646{
1647 struct net_device *net_dev = efx->net_dev;
1648 int rc;
1649
1650 net_dev->watchdog_timeo = 5 * HZ;
1651 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1652 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1653 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1654 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1655
8ceee660 1656 /* Clear MAC statistics */
177dfcd8 1657 efx->mac_op->update_stats(efx);
8ceee660
BH
1658 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1659
7dde596e 1660 rtnl_lock();
aed0628d
BH
1661
1662 rc = dev_alloc_name(net_dev, net_dev->name);
1663 if (rc < 0)
1664 goto fail_locked;
7dde596e 1665 efx_update_name(efx);
aed0628d
BH
1666
1667 rc = register_netdevice(net_dev);
1668 if (rc)
1669 goto fail_locked;
1670
1671 /* Always start with carrier off; PHY events will detect the link */
1672 netif_carrier_off(efx->net_dev);
1673
7dde596e 1674 rtnl_unlock();
8ceee660 1675
06d5e193
BH
1676 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1677 if (rc) {
1678 EFX_ERR(efx, "failed to init net dev attributes\n");
1679 goto fail_registered;
1680 }
1681
8ceee660 1682 return 0;
06d5e193 1683
aed0628d
BH
1684fail_locked:
1685 rtnl_unlock();
1686 EFX_ERR(efx, "could not register net dev\n");
1687 return rc;
1688
06d5e193
BH
1689fail_registered:
1690 unregister_netdev(net_dev);
1691 return rc;
8ceee660
BH
1692}
1693
1694static void efx_unregister_netdev(struct efx_nic *efx)
1695{
1696 struct efx_tx_queue *tx_queue;
1697
1698 if (!efx->net_dev)
1699 return;
1700
767e468c 1701 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1702
1703 /* Free up any skbs still remaining. This has to happen before
1704 * we try to unregister the netdev as running their destructors
1705 * may be needed to get the device ref. count to 0. */
1706 efx_for_each_tx_queue(tx_queue, efx)
1707 efx_release_tx_buffers(tx_queue);
1708
55668611 1709 if (efx_dev_registered(efx)) {
8ceee660 1710 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1711 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1712 unregister_netdev(efx->net_dev);
1713 }
1714}
1715
1716/**************************************************************************
1717 *
1718 * Device reset and suspend
1719 *
1720 **************************************************************************/
1721
2467ca46
BH
1722/* Tears down the entire software state and most of the hardware state
1723 * before reset. */
4b988280
SH
1724void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1725 struct ethtool_cmd *ecmd)
8ceee660 1726{
8ceee660
BH
1727 EFX_ASSERT_RESET_SERIALISED(efx);
1728
1974cc20 1729 efx_stats_disable(efx);
2467ca46
BH
1730 efx_stop_all(efx);
1731 mutex_lock(&efx->mac_lock);
f4150724 1732 mutex_lock(&efx->spi_lock);
2467ca46 1733
177dfcd8 1734 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1735
1736 efx_fini_channels(efx);
4b988280
SH
1737 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1738 efx->phy_op->fini(efx);
8ceee660
BH
1739}
1740
2467ca46
BH
1741/* This function will always ensure that the locks acquired in
1742 * efx_reset_down() are released. A failure return code indicates
1743 * that we were unable to reinitialise the hardware, and the
1744 * driver should be disabled. If ok is false, then the rx and tx
1745 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1746int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1747 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1748{
1749 int rc;
1750
2467ca46 1751 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1752
2467ca46 1753 rc = falcon_init_nic(efx);
8ceee660 1754 if (rc) {
2467ca46
BH
1755 EFX_ERR(efx, "failed to initialise NIC\n");
1756 ok = false;
8ceee660
BH
1757 }
1758
4b988280
SH
1759 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1760 if (ok) {
1761 rc = efx->phy_op->init(efx);
1762 if (rc)
1763 ok = false;
115122af
BH
1764 }
1765 if (!ok)
4b988280
SH
1766 efx->port_initialized = false;
1767 }
1768
2467ca46
BH
1769 if (ok) {
1770 efx_init_channels(efx);
8ceee660 1771
177dfcd8 1772 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1773 EFX_ERR(efx, "could not restore PHY settings\n");
1774 }
1775
f4150724 1776 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1777 mutex_unlock(&efx->mac_lock);
1778
8c8661e4 1779 if (ok) {
2467ca46 1780 efx_start_all(efx);
1974cc20 1781 efx_stats_enable(efx);
8c8661e4 1782 }
8ceee660
BH
1783 return rc;
1784}
1785
1786/* Reset the NIC as transparently as possible. Do not reset the PHY
1787 * Note that the reset may fail, in which case the card will be left
1788 * in a most-probably-unusable state.
1789 *
1790 * This function will sleep. You cannot reset from within an atomic
1791 * state; use efx_schedule_reset() instead.
1792 *
1793 * Grabs the rtnl_lock.
1794 */
1795static int efx_reset(struct efx_nic *efx)
1796{
1797 struct ethtool_cmd ecmd;
1798 enum reset_type method = efx->reset_pending;
f4bd954e 1799 int rc = 0;
8ceee660
BH
1800
1801 /* Serialise with kernel interfaces */
1802 rtnl_lock();
1803
1804 /* If we're not RUNNING then don't reset. Leave the reset_pending
1805 * flag set so that efx_pci_probe_main will be retried */
1806 if (efx->state != STATE_RUNNING) {
1807 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1808 goto out_unlock;
8ceee660
BH
1809 }
1810
c459302d 1811 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1812
4b988280 1813 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1814
1815 rc = falcon_reset_hw(efx, method);
1816 if (rc) {
1817 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1818 goto out_disable;
8ceee660
BH
1819 }
1820
1821 /* Allow resets to be rescheduled. */
1822 efx->reset_pending = RESET_TYPE_NONE;
1823
1824 /* Reinitialise bus-mastering, which may have been turned off before
1825 * the reset was scheduled. This is still appropriate, even in the
1826 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1827 * can respond to requests. */
1828 pci_set_master(efx->pci_dev);
1829
8ceee660
BH
1830 /* Leave device stopped if necessary */
1831 if (method == RESET_TYPE_DISABLE) {
4b988280 1832 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1833 rc = -EIO;
f4bd954e 1834 } else {
4b988280 1835 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1836 }
1837
f4bd954e
BH
1838out_disable:
1839 if (rc) {
1840 EFX_ERR(efx, "has been disabled\n");
1841 efx->state = STATE_DISABLED;
1842 dev_close(efx->net_dev);
1843 } else {
1844 EFX_LOG(efx, "reset complete\n");
1845 }
8ceee660 1846
f4bd954e 1847out_unlock:
8ceee660 1848 rtnl_unlock();
8ceee660
BH
1849 return rc;
1850}
1851
1852/* The worker thread exists so that code that cannot sleep can
1853 * schedule a reset for later.
1854 */
1855static void efx_reset_work(struct work_struct *data)
1856{
1857 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1858
1859 efx_reset(nic);
1860}
1861
1862void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1863{
1864 enum reset_type method;
1865
1866 if (efx->reset_pending != RESET_TYPE_NONE) {
1867 EFX_INFO(efx, "quenching already scheduled reset\n");
1868 return;
1869 }
1870
1871 switch (type) {
1872 case RESET_TYPE_INVISIBLE:
1873 case RESET_TYPE_ALL:
1874 case RESET_TYPE_WORLD:
1875 case RESET_TYPE_DISABLE:
1876 method = type;
1877 break;
1878 case RESET_TYPE_RX_RECOVERY:
1879 case RESET_TYPE_RX_DESC_FETCH:
1880 case RESET_TYPE_TX_DESC_FETCH:
1881 case RESET_TYPE_TX_SKIP:
1882 method = RESET_TYPE_INVISIBLE;
1883 break;
1884 default:
1885 method = RESET_TYPE_ALL;
1886 break;
1887 }
1888
1889 if (method != type)
c459302d
BH
1890 EFX_LOG(efx, "scheduling %s reset for %s\n",
1891 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1892 else
c459302d 1893 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1894
1895 efx->reset_pending = method;
1896
1ab00629 1897 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1898}
1899
1900/**************************************************************************
1901 *
1902 * List of NICs we support
1903 *
1904 **************************************************************************/
1905
1906/* PCI device ID table */
1907static struct pci_device_id efx_pci_table[] __devinitdata = {
1908 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1909 .driver_data = (unsigned long) &falcon_a_nic_type},
1910 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1911 .driver_data = (unsigned long) &falcon_b_nic_type},
1912 {0} /* end of list */
1913};
1914
1915/**************************************************************************
1916 *
3759433d 1917 * Dummy PHY/MAC operations
8ceee660 1918 *
01aad7b6 1919 * Can be used for some unimplemented operations
8ceee660
BH
1920 * Needed so all function pointers are valid and do not have to be tested
1921 * before use
1922 *
1923 **************************************************************************/
1924int efx_port_dummy_op_int(struct efx_nic *efx)
1925{
1926 return 0;
1927}
1928void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1929void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1930{
1931}
8ceee660 1932
177dfcd8
BH
1933static struct efx_mac_operations efx_dummy_mac_operations = {
1934 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1935 .poll = efx_port_dummy_op_void,
1936 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1937};
1938
8ceee660
BH
1939static struct efx_phy_operations efx_dummy_phy_operations = {
1940 .init = efx_port_dummy_op_int,
1941 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1942 .poll = efx_port_dummy_op_void,
8ceee660
BH
1943 .fini = efx_port_dummy_op_void,
1944 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1945};
1946
8ceee660
BH
1947/**************************************************************************
1948 *
1949 * Data housekeeping
1950 *
1951 **************************************************************************/
1952
1953/* This zeroes out and then fills in the invariants in a struct
1954 * efx_nic (including all sub-structures).
1955 */
1956static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1957 struct pci_dev *pci_dev, struct net_device *net_dev)
1958{
1959 struct efx_channel *channel;
1960 struct efx_tx_queue *tx_queue;
1961 struct efx_rx_queue *rx_queue;
1ab00629 1962 int i;
8ceee660
BH
1963
1964 /* Initialise common structures */
1965 memset(efx, 0, sizeof(*efx));
1966 spin_lock_init(&efx->biu_lock);
1967 spin_lock_init(&efx->phy_lock);
f4150724 1968 mutex_init(&efx->spi_lock);
8ceee660
BH
1969 INIT_WORK(&efx->reset_work, efx_reset_work);
1970 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1971 efx->pci_dev = pci_dev;
1972 efx->state = STATE_INIT;
1973 efx->reset_pending = RESET_TYPE_NONE;
1974 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
1975
1976 efx->net_dev = net_dev;
dc8cfa55 1977 efx->rx_checksum_enabled = true;
8ceee660
BH
1978 spin_lock_init(&efx->netif_stop_lock);
1979 spin_lock_init(&efx->stats_lock);
1974cc20 1980 efx->stats_disable_count = 1;
8ceee660 1981 mutex_init(&efx->mac_lock);
177dfcd8 1982 efx->mac_op = &efx_dummy_mac_operations;
8ceee660 1983 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 1984 efx->mdio.dev = net_dev;
766ca0fa
BH
1985 INIT_WORK(&efx->phy_work, efx_phy_work);
1986 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1987 atomic_set(&efx->netif_stop_count, 1);
1988
1989 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1990 channel = &efx->channel[i];
1991 channel->efx = efx;
1992 channel->channel = i;
dc8cfa55 1993 channel->work_pending = false;
8ceee660 1994 }
60ac1065 1995 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1996 tx_queue = &efx->tx_queue[i];
1997 tx_queue->efx = efx;
1998 tx_queue->queue = i;
1999 tx_queue->buffer = NULL;
2000 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2001 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2002 }
2003 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2004 rx_queue = &efx->rx_queue[i];
2005 rx_queue->efx = efx;
2006 rx_queue->queue = i;
2007 rx_queue->channel = &efx->channel[0]; /* for safety */
2008 rx_queue->buffer = NULL;
2009 spin_lock_init(&rx_queue->add_lock);
2010 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2011 }
2012
2013 efx->type = type;
2014
8ceee660 2015 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2016 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2017
8ceee660
BH
2018 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2019
2020 /* Higher numbered interrupt modes are less capable! */
2021 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2022 interrupt_mode);
2023
6977dc63
BH
2024 /* Would be good to use the net_dev name, but we're too early */
2025 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2026 pci_name(pci_dev));
2027 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2028 if (!efx->workqueue)
2029 return -ENOMEM;
8d9853d9 2030
8ceee660 2031 return 0;
8ceee660
BH
2032}
2033
2034static void efx_fini_struct(struct efx_nic *efx)
2035{
2036 if (efx->workqueue) {
2037 destroy_workqueue(efx->workqueue);
2038 efx->workqueue = NULL;
2039 }
2040}
2041
2042/**************************************************************************
2043 *
2044 * PCI interface
2045 *
2046 **************************************************************************/
2047
2048/* Main body of final NIC shutdown code
2049 * This is called only at module unload (or hotplug removal).
2050 */
2051static void efx_pci_remove_main(struct efx_nic *efx)
2052{
f01865f0 2053 falcon_fini_interrupt(efx);
8ceee660
BH
2054 efx_fini_channels(efx);
2055 efx_fini_port(efx);
8ceee660
BH
2056 efx_fini_napi(efx);
2057 efx_remove_all(efx);
2058}
2059
2060/* Final NIC shutdown
2061 * This is called only at module unload (or hotplug removal).
2062 */
2063static void efx_pci_remove(struct pci_dev *pci_dev)
2064{
2065 struct efx_nic *efx;
2066
2067 efx = pci_get_drvdata(pci_dev);
2068 if (!efx)
2069 return;
2070
2071 /* Mark the NIC as fini, then stop the interface */
2072 rtnl_lock();
2073 efx->state = STATE_FINI;
2074 dev_close(efx->net_dev);
2075
2076 /* Allow any queued efx_resets() to complete */
2077 rtnl_unlock();
2078
8ceee660
BH
2079 efx_unregister_netdev(efx);
2080
7dde596e
BH
2081 efx_mtd_remove(efx);
2082
8ceee660
BH
2083 /* Wait for any scheduled resets to complete. No more will be
2084 * scheduled from this point because efx_stop_all() has been
2085 * called, we are no longer registered with driverlink, and
2086 * the net_device's have been removed. */
1ab00629 2087 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2088
2089 efx_pci_remove_main(efx);
2090
8ceee660
BH
2091 efx_fini_io(efx);
2092 EFX_LOG(efx, "shutdown successful\n");
2093
2094 pci_set_drvdata(pci_dev, NULL);
2095 efx_fini_struct(efx);
2096 free_netdev(efx->net_dev);
2097};
2098
2099/* Main body of NIC initialisation
2100 * This is called at module load (or hotplug insertion, theoretically).
2101 */
2102static int efx_pci_probe_main(struct efx_nic *efx)
2103{
2104 int rc;
2105
2106 /* Do start-of-day initialisation */
2107 rc = efx_probe_all(efx);
2108 if (rc)
2109 goto fail1;
2110
2111 rc = efx_init_napi(efx);
2112 if (rc)
2113 goto fail2;
2114
8ceee660
BH
2115 rc = falcon_init_nic(efx);
2116 if (rc) {
2117 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2118 goto fail3;
8ceee660
BH
2119 }
2120
2121 rc = efx_init_port(efx);
2122 if (rc) {
2123 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2124 goto fail4;
8ceee660
BH
2125 }
2126
bc3c90a2 2127 efx_init_channels(efx);
8ceee660
BH
2128
2129 rc = falcon_init_interrupt(efx);
2130 if (rc)
278c0621 2131 goto fail5;
8ceee660
BH
2132
2133 return 0;
2134
278c0621 2135 fail5:
bc3c90a2 2136 efx_fini_channels(efx);
8ceee660 2137 efx_fini_port(efx);
8ceee660
BH
2138 fail4:
2139 fail3:
2140 efx_fini_napi(efx);
2141 fail2:
2142 efx_remove_all(efx);
2143 fail1:
2144 return rc;
2145}
2146
2147/* NIC initialisation
2148 *
2149 * This is called at module load (or hotplug insertion,
2150 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2151 * sets up and registers the network devices with the kernel and hooks
2152 * the interrupt service routine. It does not prepare the device for
2153 * transmission; this is left to the first time one of the network
2154 * interfaces is brought up (i.e. efx_net_open).
2155 */
2156static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2157 const struct pci_device_id *entry)
2158{
2159 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2160 struct net_device *net_dev;
2161 struct efx_nic *efx;
2162 int i, rc;
2163
2164 /* Allocate and initialise a struct net_device and struct efx_nic */
2165 net_dev = alloc_etherdev(sizeof(*efx));
2166 if (!net_dev)
2167 return -ENOMEM;
b9b39b62 2168 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
97bc5415
BH
2169 NETIF_F_HIGHDMA | NETIF_F_TSO |
2170 NETIF_F_GRO);
28506563
BH
2171 /* Mask for features that also apply to VLAN devices */
2172 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2173 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2174 efx = netdev_priv(net_dev);
8ceee660
BH
2175 pci_set_drvdata(pci_dev, efx);
2176 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2177 if (rc)
2178 goto fail1;
2179
2180 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2181
2182 /* Set up basic I/O (BAR mappings etc) */
2183 rc = efx_init_io(efx);
2184 if (rc)
2185 goto fail2;
2186
2187 /* No serialisation is required with the reset path because
2188 * we're in STATE_INIT. */
2189 for (i = 0; i < 5; i++) {
2190 rc = efx_pci_probe_main(efx);
8ceee660
BH
2191
2192 /* Serialise against efx_reset(). No more resets will be
2193 * scheduled since efx_stop_all() has been called, and we
2194 * have not and never have been registered with either
2195 * the rtnetlink or driverlink layers. */
1ab00629 2196 cancel_work_sync(&efx->reset_work);
8ceee660 2197
fa402b2e
SH
2198 if (rc == 0) {
2199 if (efx->reset_pending != RESET_TYPE_NONE) {
2200 /* If there was a scheduled reset during
2201 * probe, the NIC is probably hosed anyway */
2202 efx_pci_remove_main(efx);
2203 rc = -EIO;
2204 } else {
2205 break;
2206 }
2207 }
2208
8ceee660
BH
2209 /* Retry if a recoverably reset event has been scheduled */
2210 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2211 (efx->reset_pending != RESET_TYPE_ALL))
2212 goto fail3;
2213
2214 efx->reset_pending = RESET_TYPE_NONE;
2215 }
2216
2217 if (rc) {
2218 EFX_ERR(efx, "Could not reset NIC\n");
2219 goto fail4;
2220 }
2221
2222 /* Switch to the running state before we expose the device to
2223 * the OS. This is to ensure that the initial gathering of
2224 * MAC stats succeeds. */
8ceee660 2225 efx->state = STATE_RUNNING;
7dde596e 2226
8ceee660
BH
2227 rc = efx_register_netdev(efx);
2228 if (rc)
2229 goto fail5;
2230
2231 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2232
2233 rtnl_lock();
2234 efx_mtd_probe(efx); /* allowed to fail */
2235 rtnl_unlock();
8ceee660
BH
2236 return 0;
2237
2238 fail5:
2239 efx_pci_remove_main(efx);
2240 fail4:
2241 fail3:
2242 efx_fini_io(efx);
2243 fail2:
2244 efx_fini_struct(efx);
2245 fail1:
2246 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2247 free_netdev(net_dev);
2248 return rc;
2249}
2250
2251static struct pci_driver efx_pci_driver = {
2252 .name = EFX_DRIVER_NAME,
2253 .id_table = efx_pci_table,
2254 .probe = efx_pci_probe,
2255 .remove = efx_pci_remove,
2256};
2257
2258/**************************************************************************
2259 *
2260 * Kernel module interface
2261 *
2262 *************************************************************************/
2263
2264module_param(interrupt_mode, uint, 0444);
2265MODULE_PARM_DESC(interrupt_mode,
2266 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2267
2268static int __init efx_init_module(void)
2269{
2270 int rc;
2271
2272 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2273
2274 rc = register_netdevice_notifier(&efx_netdev_notifier);
2275 if (rc)
2276 goto err_notifier;
2277
2278 refill_workqueue = create_workqueue("sfc_refill");
2279 if (!refill_workqueue) {
2280 rc = -ENOMEM;
2281 goto err_refill;
2282 }
1ab00629
SH
2283 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2284 if (!reset_workqueue) {
2285 rc = -ENOMEM;
2286 goto err_reset;
2287 }
8ceee660
BH
2288
2289 rc = pci_register_driver(&efx_pci_driver);
2290 if (rc < 0)
2291 goto err_pci;
2292
2293 return 0;
2294
2295 err_pci:
1ab00629
SH
2296 destroy_workqueue(reset_workqueue);
2297 err_reset:
8ceee660
BH
2298 destroy_workqueue(refill_workqueue);
2299 err_refill:
2300 unregister_netdevice_notifier(&efx_netdev_notifier);
2301 err_notifier:
2302 return rc;
2303}
2304
2305static void __exit efx_exit_module(void)
2306{
2307 printk(KERN_INFO "Solarflare NET driver unloading\n");
2308
2309 pci_unregister_driver(&efx_pci_driver);
1ab00629 2310 destroy_workqueue(reset_workqueue);
8ceee660
BH
2311 destroy_workqueue(refill_workqueue);
2312 unregister_netdevice_notifier(&efx_netdev_notifier);
2313
2314}
2315
2316module_init(efx_init_module);
2317module_exit(efx_exit_module);
2318
2319MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2320 "Solarflare Communications");
2321MODULE_DESCRIPTION("Solarflare Communications network driver");
2322MODULE_LICENSE("GPL");
2323MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.357261 seconds and 5 git commands to generate.