sfc: Recycle discarded rx buffers back onto the queue
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
8ceee660
BH
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
197static void efx_remove_channel(struct efx_channel *channel);
198static void efx_remove_port(struct efx_nic *efx);
199static void efx_fini_napi(struct efx_nic *efx);
200static void efx_fini_channels(struct efx_nic *efx);
201
202#define EFX_ASSERT_RESET_SERIALISED(efx) \
203 do { \
332c1ce9
BH
204 if ((efx->state == STATE_RUNNING) || \
205 (efx->state == STATE_DISABLED)) \
8ceee660
BH
206 ASSERT_RTNL(); \
207 } while (0)
208
209/**************************************************************************
210 *
211 * Event queue processing
212 *
213 *************************************************************************/
214
215/* Process channel's event queue
216 *
217 * This function is responsible for processing the event queue of a
218 * single channel. The caller must guarantee that this function will
219 * never be concurrently called more than once on the same channel,
220 * though different channels may be being processed concurrently.
221 */
fa236e18 222static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 223{
42cbe2d7 224 struct efx_nic *efx = channel->efx;
fa236e18 225 int spent;
8ceee660 226
42cbe2d7 227 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 228 !channel->enabled))
42cbe2d7 229 return 0;
8ceee660 230
fa236e18
BH
231 spent = efx_nic_process_eventq(channel, budget);
232 if (spent == 0)
42cbe2d7 233 return 0;
8ceee660
BH
234
235 /* Deliver last RX packet. */
236 if (channel->rx_pkt) {
237 __efx_rx_packet(channel, channel->rx_pkt,
238 channel->rx_pkt_csummed);
239 channel->rx_pkt = NULL;
240 }
241
8ceee660
BH
242 efx_rx_strategy(channel);
243
42cbe2d7 244 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 245
fa236e18 246 return spent;
8ceee660
BH
247}
248
249/* Mark channel as finished processing
250 *
251 * Note that since we will not receive further interrupts for this
252 * channel before we finish processing and call the eventq_read_ack()
253 * method, there is no need to use the interrupt hold-off timers.
254 */
255static inline void efx_channel_processed(struct efx_channel *channel)
256{
5b9e207c
BH
257 /* The interrupt handler for this channel may set work_pending
258 * as soon as we acknowledge the events we've seen. Make sure
259 * it's cleared before then. */
dc8cfa55 260 channel->work_pending = false;
5b9e207c
BH
261 smp_wmb();
262
152b6a62 263 efx_nic_eventq_read_ack(channel);
8ceee660
BH
264}
265
266/* NAPI poll handler
267 *
268 * NAPI guarantees serialisation of polls of the same device, which
269 * provides the guarantee required by efx_process_channel().
270 */
271static int efx_poll(struct napi_struct *napi, int budget)
272{
273 struct efx_channel *channel =
274 container_of(napi, struct efx_channel, napi_str);
fa236e18 275 int spent;
8ceee660
BH
276
277 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
278 channel->channel, raw_smp_processor_id());
279
fa236e18 280 spent = efx_process_channel(channel, budget);
8ceee660 281
fa236e18 282 if (spent < budget) {
6fb70fd1
BH
283 struct efx_nic *efx = channel->efx;
284
a4900ac9 285 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
286 efx->irq_rx_adaptive &&
287 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
288 if (unlikely(channel->irq_mod_score <
289 irq_adapt_low_thresh)) {
0d86ebd8
BH
290 if (channel->irq_moderation > 1) {
291 channel->irq_moderation -= 1;
ef2b90ee 292 efx->type->push_irq_moderation(channel);
0d86ebd8 293 }
6fb70fd1
BH
294 } else if (unlikely(channel->irq_mod_score >
295 irq_adapt_high_thresh)) {
0d86ebd8
BH
296 if (channel->irq_moderation <
297 efx->irq_rx_moderation) {
298 channel->irq_moderation += 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1 301 }
6fb70fd1
BH
302 channel->irq_count = 0;
303 channel->irq_mod_score = 0;
304 }
305
8ceee660 306 /* There is no race here; although napi_disable() will
288379f0 307 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
308 * since efx_channel_processed() will have no effect if
309 * interrupts have already been disabled.
310 */
288379f0 311 napi_complete(napi);
8ceee660
BH
312 efx_channel_processed(channel);
313 }
314
fa236e18 315 return spent;
8ceee660
BH
316}
317
318/* Process the eventq of the specified channel immediately on this CPU
319 *
320 * Disable hardware generated interrupts, wait for any existing
321 * processing to finish, then directly poll (and ack ) the eventq.
322 * Finally reenable NAPI and interrupts.
323 *
324 * Since we are touching interrupts the caller should hold the suspend lock
325 */
326void efx_process_channel_now(struct efx_channel *channel)
327{
328 struct efx_nic *efx = channel->efx;
329
8ceee660
BH
330 BUG_ON(!channel->enabled);
331
332 /* Disable interrupts and wait for ISRs to complete */
152b6a62 333 efx_nic_disable_interrupts(efx);
8ceee660
BH
334 if (efx->legacy_irq)
335 synchronize_irq(efx->legacy_irq);
64ee3120 336 if (channel->irq)
8ceee660
BH
337 synchronize_irq(channel->irq);
338
339 /* Wait for any NAPI processing to complete */
340 napi_disable(&channel->napi_str);
341
342 /* Poll the channel */
3ffeabdd 343 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
344
345 /* Ack the eventq. This may cause an interrupt to be generated
346 * when they are reenabled */
347 efx_channel_processed(channel);
348
349 napi_enable(&channel->napi_str);
152b6a62 350 efx_nic_enable_interrupts(efx);
8ceee660
BH
351}
352
353/* Create event queue
354 * Event queue memory allocations are done only once. If the channel
355 * is reset, the memory buffer will be reused; this guards against
356 * errors during channel reset and also simplifies interrupt handling.
357 */
358static int efx_probe_eventq(struct efx_channel *channel)
359{
360 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
361
152b6a62 362 return efx_nic_probe_eventq(channel);
8ceee660
BH
363}
364
365/* Prepare channel's event queue */
bc3c90a2 366static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
367{
368 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
369
370 channel->eventq_read_ptr = 0;
371
152b6a62 372 efx_nic_init_eventq(channel);
8ceee660
BH
373}
374
375static void efx_fini_eventq(struct efx_channel *channel)
376{
377 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
378
152b6a62 379 efx_nic_fini_eventq(channel);
8ceee660
BH
380}
381
382static void efx_remove_eventq(struct efx_channel *channel)
383{
384 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
385
152b6a62 386 efx_nic_remove_eventq(channel);
8ceee660
BH
387}
388
389/**************************************************************************
390 *
391 * Channel handling
392 *
393 *************************************************************************/
394
8ceee660
BH
395static int efx_probe_channel(struct efx_channel *channel)
396{
397 struct efx_tx_queue *tx_queue;
398 struct efx_rx_queue *rx_queue;
399 int rc;
400
401 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
402
403 rc = efx_probe_eventq(channel);
404 if (rc)
405 goto fail1;
406
407 efx_for_each_channel_tx_queue(tx_queue, channel) {
408 rc = efx_probe_tx_queue(tx_queue);
409 if (rc)
410 goto fail2;
411 }
412
413 efx_for_each_channel_rx_queue(rx_queue, channel) {
414 rc = efx_probe_rx_queue(rx_queue);
415 if (rc)
416 goto fail3;
417 }
418
419 channel->n_rx_frm_trunc = 0;
420
421 return 0;
422
423 fail3:
424 efx_for_each_channel_rx_queue(rx_queue, channel)
425 efx_remove_rx_queue(rx_queue);
426 fail2:
427 efx_for_each_channel_tx_queue(tx_queue, channel)
428 efx_remove_tx_queue(tx_queue);
429 fail1:
430 return rc;
431}
432
433
56536e9c
BH
434static void efx_set_channel_names(struct efx_nic *efx)
435{
436 struct efx_channel *channel;
437 const char *type = "";
438 int number;
439
440 efx_for_each_channel(channel, efx) {
441 number = channel->channel;
a4900ac9
BH
442 if (efx->n_channels > efx->n_rx_channels) {
443 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
444 type = "-rx";
445 } else {
446 type = "-tx";
a4900ac9 447 number -= efx->n_rx_channels;
56536e9c
BH
448 }
449 }
450 snprintf(channel->name, sizeof(channel->name),
451 "%s%s-%d", efx->name, type, number);
452 }
453}
454
8ceee660
BH
455/* Channels are shutdown and reinitialised whilst the NIC is running
456 * to propagate configuration changes (mtu, checksum offload), or
457 * to clear hardware error conditions
458 */
bc3c90a2 459static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
460{
461 struct efx_tx_queue *tx_queue;
462 struct efx_rx_queue *rx_queue;
463 struct efx_channel *channel;
8ceee660 464
f7f13b0b
BH
465 /* Calculate the rx buffer allocation parameters required to
466 * support the current MTU, including padding for header
467 * alignment and overruns.
468 */
469 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
470 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
471 efx->type->rx_buffer_padding);
472 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
473
474 /* Initialise the channels */
475 efx_for_each_channel(channel, efx) {
476 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
477
bc3c90a2 478 efx_init_eventq(channel);
8ceee660 479
bc3c90a2
BH
480 efx_for_each_channel_tx_queue(tx_queue, channel)
481 efx_init_tx_queue(tx_queue);
8ceee660
BH
482
483 /* The rx buffer allocation strategy is MTU dependent */
484 efx_rx_strategy(channel);
485
bc3c90a2
BH
486 efx_for_each_channel_rx_queue(rx_queue, channel)
487 efx_init_rx_queue(rx_queue);
8ceee660
BH
488
489 WARN_ON(channel->rx_pkt != NULL);
490 efx_rx_strategy(channel);
491 }
8ceee660
BH
492}
493
494/* This enables event queue processing and packet transmission.
495 *
496 * Note that this function is not allowed to fail, since that would
497 * introduce too much complexity into the suspend/resume path.
498 */
499static void efx_start_channel(struct efx_channel *channel)
500{
501 struct efx_rx_queue *rx_queue;
502
503 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
504
5b9e207c
BH
505 /* The interrupt handler for this channel may set work_pending
506 * as soon as we enable it. Make sure it's cleared before
507 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
508 channel->work_pending = false;
509 channel->enabled = true;
5b9e207c 510 smp_wmb();
8ceee660 511
90d683af 512 /* Fill the queues before enabling NAPI */
8ceee660
BH
513 efx_for_each_channel_rx_queue(rx_queue, channel)
514 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
515
516 napi_enable(&channel->napi_str);
8ceee660
BH
517}
518
519/* This disables event queue processing and packet transmission.
520 * This function does not guarantee that all queue processing
521 * (e.g. RX refill) is complete.
522 */
523static void efx_stop_channel(struct efx_channel *channel)
524{
8ceee660
BH
525 if (!channel->enabled)
526 return;
527
528 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
529
dc8cfa55 530 channel->enabled = false;
8ceee660 531 napi_disable(&channel->napi_str);
8ceee660
BH
532}
533
534static void efx_fini_channels(struct efx_nic *efx)
535{
536 struct efx_channel *channel;
537 struct efx_tx_queue *tx_queue;
538 struct efx_rx_queue *rx_queue;
6bc5d3a9 539 int rc;
8ceee660
BH
540
541 EFX_ASSERT_RESET_SERIALISED(efx);
542 BUG_ON(efx->port_enabled);
543
152b6a62 544 rc = efx_nic_flush_queues(efx);
fd371e32
SH
545 if (rc && EFX_WORKAROUND_7803(efx)) {
546 /* Schedule a reset to recover from the flush failure. The
547 * descriptor caches reference memory we're about to free,
548 * but falcon_reconfigure_mac_wrapper() won't reconnect
549 * the MACs because of the pending reset. */
550 EFX_ERR(efx, "Resetting to recover from flush failure\n");
551 efx_schedule_reset(efx, RESET_TYPE_ALL);
552 } else if (rc) {
6bc5d3a9 553 EFX_ERR(efx, "failed to flush queues\n");
fd371e32 554 } else {
6bc5d3a9 555 EFX_LOG(efx, "successfully flushed all queues\n");
fd371e32 556 }
6bc5d3a9 557
8ceee660
BH
558 efx_for_each_channel(channel, efx) {
559 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
560
561 efx_for_each_channel_rx_queue(rx_queue, channel)
562 efx_fini_rx_queue(rx_queue);
563 efx_for_each_channel_tx_queue(tx_queue, channel)
564 efx_fini_tx_queue(tx_queue);
8ceee660
BH
565 efx_fini_eventq(channel);
566 }
567}
568
569static void efx_remove_channel(struct efx_channel *channel)
570{
571 struct efx_tx_queue *tx_queue;
572 struct efx_rx_queue *rx_queue;
573
574 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
575
576 efx_for_each_channel_rx_queue(rx_queue, channel)
577 efx_remove_rx_queue(rx_queue);
578 efx_for_each_channel_tx_queue(tx_queue, channel)
579 efx_remove_tx_queue(tx_queue);
580 efx_remove_eventq(channel);
8ceee660
BH
581}
582
90d683af 583void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 584{
90d683af 585 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
586}
587
588/**************************************************************************
589 *
590 * Port handling
591 *
592 **************************************************************************/
593
594/* This ensures that the kernel is kept informed (via
595 * netif_carrier_on/off) of the link status, and also maintains the
596 * link status's stop on the port's TX queue.
597 */
fdaa9aed 598void efx_link_status_changed(struct efx_nic *efx)
8ceee660 599{
eb50c0d6
BH
600 struct efx_link_state *link_state = &efx->link_state;
601
8ceee660
BH
602 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
603 * that no events are triggered between unregister_netdev() and the
604 * driver unloading. A more general condition is that NETDEV_CHANGE
605 * can only be generated between NETDEV_UP and NETDEV_DOWN */
606 if (!netif_running(efx->net_dev))
607 return;
608
8c8661e4
BH
609 if (efx->port_inhibited) {
610 netif_carrier_off(efx->net_dev);
611 return;
612 }
613
eb50c0d6 614 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
615 efx->n_link_state_changes++;
616
eb50c0d6 617 if (link_state->up)
8ceee660
BH
618 netif_carrier_on(efx->net_dev);
619 else
620 netif_carrier_off(efx->net_dev);
621 }
622
623 /* Status message for kernel log */
eb50c0d6 624 if (link_state->up) {
f31a45d2 625 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 626 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
627 efx->net_dev->mtu,
628 (efx->promiscuous ? " [PROMISC]" : ""));
629 } else {
630 EFX_INFO(efx, "link down\n");
631 }
632
633}
634
d3245b28
BH
635void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
636{
637 efx->link_advertising = advertising;
638 if (advertising) {
639 if (advertising & ADVERTISED_Pause)
640 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
641 else
642 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
643 if (advertising & ADVERTISED_Asym_Pause)
644 efx->wanted_fc ^= EFX_FC_TX;
645 }
646}
647
648void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
649{
650 efx->wanted_fc = wanted_fc;
651 if (efx->link_advertising) {
652 if (wanted_fc & EFX_FC_RX)
653 efx->link_advertising |= (ADVERTISED_Pause |
654 ADVERTISED_Asym_Pause);
655 else
656 efx->link_advertising &= ~(ADVERTISED_Pause |
657 ADVERTISED_Asym_Pause);
658 if (wanted_fc & EFX_FC_TX)
659 efx->link_advertising ^= ADVERTISED_Asym_Pause;
660 }
661}
662
115122af
BH
663static void efx_fini_port(struct efx_nic *efx);
664
d3245b28
BH
665/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
666 * the MAC appropriately. All other PHY configuration changes are pushed
667 * through phy_op->set_settings(), and pushed asynchronously to the MAC
668 * through efx_monitor().
669 *
670 * Callers must hold the mac_lock
671 */
672int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 673{
d3245b28
BH
674 enum efx_phy_mode phy_mode;
675 int rc;
8ceee660 676
d3245b28 677 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 678
a816f75a
BH
679 /* Serialise the promiscuous flag with efx_set_multicast_list. */
680 if (efx_dev_registered(efx)) {
681 netif_addr_lock_bh(efx->net_dev);
682 netif_addr_unlock_bh(efx->net_dev);
683 }
684
d3245b28
BH
685 /* Disable PHY transmit in mac level loopbacks */
686 phy_mode = efx->phy_mode;
177dfcd8
BH
687 if (LOOPBACK_INTERNAL(efx))
688 efx->phy_mode |= PHY_MODE_TX_DISABLED;
689 else
690 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 691
d3245b28 692 rc = efx->type->reconfigure_port(efx);
8ceee660 693
d3245b28
BH
694 if (rc)
695 efx->phy_mode = phy_mode;
177dfcd8 696
d3245b28 697 return rc;
8ceee660
BH
698}
699
700/* Reinitialise the MAC to pick up new PHY settings, even if the port is
701 * disabled. */
d3245b28 702int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 703{
d3245b28
BH
704 int rc;
705
8ceee660
BH
706 EFX_ASSERT_RESET_SERIALISED(efx);
707
708 mutex_lock(&efx->mac_lock);
d3245b28 709 rc = __efx_reconfigure_port(efx);
8ceee660 710 mutex_unlock(&efx->mac_lock);
d3245b28
BH
711
712 return rc;
8ceee660
BH
713}
714
8be4f3e6
BH
715/* Asynchronous work item for changing MAC promiscuity and multicast
716 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
717 * MAC directly. */
766ca0fa
BH
718static void efx_mac_work(struct work_struct *data)
719{
720 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
721
722 mutex_lock(&efx->mac_lock);
8be4f3e6 723 if (efx->port_enabled) {
ef2b90ee 724 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
725 efx->mac_op->reconfigure(efx);
726 }
766ca0fa
BH
727 mutex_unlock(&efx->mac_lock);
728}
729
8ceee660
BH
730static int efx_probe_port(struct efx_nic *efx)
731{
732 int rc;
733
734 EFX_LOG(efx, "create port\n");
735
ff3b00a0
SH
736 if (phy_flash_cfg)
737 efx->phy_mode = PHY_MODE_SPECIAL;
738
ef2b90ee
BH
739 /* Connect up MAC/PHY operations table */
740 rc = efx->type->probe_port(efx);
8ceee660
BH
741 if (rc)
742 goto err;
743
744 /* Sanity check MAC address */
745 if (is_valid_ether_addr(efx->mac_address)) {
746 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
747 } else {
e174961c
JB
748 EFX_ERR(efx, "invalid MAC address %pM\n",
749 efx->mac_address);
8ceee660
BH
750 if (!allow_bad_hwaddr) {
751 rc = -EINVAL;
752 goto err;
753 }
754 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
755 EFX_INFO(efx, "using locally-generated MAC %pM\n",
756 efx->net_dev->dev_addr);
8ceee660
BH
757 }
758
759 return 0;
760
761 err:
762 efx_remove_port(efx);
763 return rc;
764}
765
766static int efx_init_port(struct efx_nic *efx)
767{
768 int rc;
769
770 EFX_LOG(efx, "init port\n");
771
1dfc5cea
BH
772 mutex_lock(&efx->mac_lock);
773
177dfcd8 774 rc = efx->phy_op->init(efx);
8ceee660 775 if (rc)
1dfc5cea 776 goto fail1;
8ceee660 777
dc8cfa55 778 efx->port_initialized = true;
1dfc5cea 779
d3245b28
BH
780 /* Reconfigure the MAC before creating dma queues (required for
781 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
782 efx->mac_op->reconfigure(efx);
783
784 /* Ensure the PHY advertises the correct flow control settings */
785 rc = efx->phy_op->reconfigure(efx);
786 if (rc)
787 goto fail2;
788
1dfc5cea 789 mutex_unlock(&efx->mac_lock);
8ceee660 790 return 0;
177dfcd8 791
1dfc5cea 792fail2:
177dfcd8 793 efx->phy_op->fini(efx);
1dfc5cea
BH
794fail1:
795 mutex_unlock(&efx->mac_lock);
177dfcd8 796 return rc;
8ceee660
BH
797}
798
8ceee660
BH
799static void efx_start_port(struct efx_nic *efx)
800{
801 EFX_LOG(efx, "start port\n");
802 BUG_ON(efx->port_enabled);
803
804 mutex_lock(&efx->mac_lock);
dc8cfa55 805 efx->port_enabled = true;
8be4f3e6
BH
806
807 /* efx_mac_work() might have been scheduled after efx_stop_port(),
808 * and then cancelled by efx_flush_all() */
ef2b90ee 809 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
810 efx->mac_op->reconfigure(efx);
811
8ceee660
BH
812 mutex_unlock(&efx->mac_lock);
813}
814
fdaa9aed 815/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
816static void efx_stop_port(struct efx_nic *efx)
817{
818 EFX_LOG(efx, "stop port\n");
819
820 mutex_lock(&efx->mac_lock);
dc8cfa55 821 efx->port_enabled = false;
8ceee660
BH
822 mutex_unlock(&efx->mac_lock);
823
824 /* Serialise against efx_set_multicast_list() */
55668611 825 if (efx_dev_registered(efx)) {
b9e40857
DM
826 netif_addr_lock_bh(efx->net_dev);
827 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
828 }
829}
830
831static void efx_fini_port(struct efx_nic *efx)
832{
833 EFX_LOG(efx, "shut down port\n");
834
835 if (!efx->port_initialized)
836 return;
837
177dfcd8 838 efx->phy_op->fini(efx);
dc8cfa55 839 efx->port_initialized = false;
8ceee660 840
eb50c0d6 841 efx->link_state.up = false;
8ceee660
BH
842 efx_link_status_changed(efx);
843}
844
845static void efx_remove_port(struct efx_nic *efx)
846{
847 EFX_LOG(efx, "destroying port\n");
848
ef2b90ee 849 efx->type->remove_port(efx);
8ceee660
BH
850}
851
852/**************************************************************************
853 *
854 * NIC handling
855 *
856 **************************************************************************/
857
858/* This configures the PCI device to enable I/O and DMA. */
859static int efx_init_io(struct efx_nic *efx)
860{
861 struct pci_dev *pci_dev = efx->pci_dev;
862 dma_addr_t dma_mask = efx->type->max_dma_mask;
863 int rc;
864
865 EFX_LOG(efx, "initialising I/O\n");
866
867 rc = pci_enable_device(pci_dev);
868 if (rc) {
869 EFX_ERR(efx, "failed to enable PCI device\n");
870 goto fail1;
871 }
872
873 pci_set_master(pci_dev);
874
875 /* Set the PCI DMA mask. Try all possibilities from our
876 * genuine mask down to 32 bits, because some architectures
877 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
878 * masks event though they reject 46 bit masks.
879 */
880 while (dma_mask > 0x7fffffffUL) {
881 if (pci_dma_supported(pci_dev, dma_mask) &&
882 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
883 break;
884 dma_mask >>= 1;
885 }
886 if (rc) {
887 EFX_ERR(efx, "could not find a suitable DMA mask\n");
888 goto fail2;
889 }
890 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
891 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
892 if (rc) {
893 /* pci_set_consistent_dma_mask() is not *allowed* to
894 * fail with a mask that pci_set_dma_mask() accepted,
895 * but just in case...
896 */
897 EFX_ERR(efx, "failed to set consistent DMA mask\n");
898 goto fail2;
899 }
900
dc803df8
BH
901 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
902 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
903 if (rc) {
904 EFX_ERR(efx, "request for memory BAR failed\n");
905 rc = -EIO;
906 goto fail3;
907 }
908 efx->membase = ioremap_nocache(efx->membase_phys,
909 efx->type->mem_map_size);
910 if (!efx->membase) {
dc803df8 911 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 912 (unsigned long long)efx->membase_phys,
8ceee660
BH
913 efx->type->mem_map_size);
914 rc = -ENOMEM;
915 goto fail4;
916 }
dc803df8
BH
917 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
918 (unsigned long long)efx->membase_phys,
086ea356 919 efx->type->mem_map_size, efx->membase);
8ceee660
BH
920
921 return 0;
922
923 fail4:
dc803df8 924 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 925 fail3:
2c118e0f 926 efx->membase_phys = 0;
8ceee660
BH
927 fail2:
928 pci_disable_device(efx->pci_dev);
929 fail1:
930 return rc;
931}
932
933static void efx_fini_io(struct efx_nic *efx)
934{
935 EFX_LOG(efx, "shutting down I/O\n");
936
937 if (efx->membase) {
938 iounmap(efx->membase);
939 efx->membase = NULL;
940 }
941
942 if (efx->membase_phys) {
dc803df8 943 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 944 efx->membase_phys = 0;
8ceee660
BH
945 }
946
947 pci_disable_device(efx->pci_dev);
948}
949
a4900ac9
BH
950/* Get number of channels wanted. Each channel will have its own IRQ,
951 * 1 RX queue and/or 2 TX queues. */
952static int efx_wanted_channels(void)
46123d04 953{
2f8975fb 954 cpumask_var_t core_mask;
46123d04
BH
955 int count;
956 int cpu;
957
79f55997 958 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 959 printk(KERN_WARNING
3977d033 960 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
961 return 1;
962 }
963
46123d04
BH
964 count = 0;
965 for_each_online_cpu(cpu) {
2f8975fb 966 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 967 ++count;
2f8975fb 968 cpumask_or(core_mask, core_mask,
fbd59a8d 969 topology_core_cpumask(cpu));
46123d04
BH
970 }
971 }
972
2f8975fb 973 free_cpumask_var(core_mask);
46123d04
BH
974 return count;
975}
976
977/* Probe the number and type of interrupts we are able to obtain, and
978 * the resulting numbers of channels and RX queues.
979 */
8ceee660
BH
980static void efx_probe_interrupts(struct efx_nic *efx)
981{
46123d04
BH
982 int max_channels =
983 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
984 int rc, i;
985
986 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 987 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 988 int n_channels;
aa6ef27e 989
a4900ac9
BH
990 n_channels = efx_wanted_channels();
991 if (separate_tx_channels)
992 n_channels *= 2;
993 n_channels = min(n_channels, max_channels);
8ceee660 994
a4900ac9 995 for (i = 0; i < n_channels; i++)
8ceee660 996 xentries[i].entry = i;
a4900ac9 997 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 998 if (rc > 0) {
28b581ab 999 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
a4900ac9 1000 " available (%d < %d).\n", rc, n_channels);
28b581ab 1001 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1002 EFX_BUG_ON_PARANOID(rc >= n_channels);
1003 n_channels = rc;
8ceee660 1004 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1005 n_channels);
8ceee660
BH
1006 }
1007
1008 if (rc == 0) {
a4900ac9
BH
1009 efx->n_channels = n_channels;
1010 if (separate_tx_channels) {
1011 efx->n_tx_channels =
1012 max(efx->n_channels / 2, 1U);
1013 efx->n_rx_channels =
1014 max(efx->n_channels -
1015 efx->n_tx_channels, 1U);
1016 } else {
1017 efx->n_tx_channels = efx->n_channels;
1018 efx->n_rx_channels = efx->n_channels;
1019 }
1020 for (i = 0; i < n_channels; i++)
8ceee660 1021 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1022 } else {
1023 /* Fall back to single channel MSI */
1024 efx->interrupt_mode = EFX_INT_MODE_MSI;
1025 EFX_ERR(efx, "could not enable MSI-X\n");
1026 }
1027 }
1028
1029 /* Try single interrupt MSI */
1030 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1031 efx->n_channels = 1;
a4900ac9
BH
1032 efx->n_rx_channels = 1;
1033 efx->n_tx_channels = 1;
8ceee660
BH
1034 rc = pci_enable_msi(efx->pci_dev);
1035 if (rc == 0) {
1036 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1037 } else {
1038 EFX_ERR(efx, "could not enable MSI\n");
1039 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1040 }
1041 }
1042
1043 /* Assume legacy interrupts */
1044 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1045 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1046 efx->n_rx_channels = 1;
1047 efx->n_tx_channels = 1;
8ceee660
BH
1048 efx->legacy_irq = efx->pci_dev->irq;
1049 }
1050}
1051
1052static void efx_remove_interrupts(struct efx_nic *efx)
1053{
1054 struct efx_channel *channel;
1055
1056 /* Remove MSI/MSI-X interrupts */
64ee3120 1057 efx_for_each_channel(channel, efx)
8ceee660
BH
1058 channel->irq = 0;
1059 pci_disable_msi(efx->pci_dev);
1060 pci_disable_msix(efx->pci_dev);
1061
1062 /* Remove legacy interrupt */
1063 efx->legacy_irq = 0;
1064}
1065
8831da7b 1066static void efx_set_channels(struct efx_nic *efx)
8ceee660 1067{
a4900ac9 1068 struct efx_channel *channel;
8ceee660
BH
1069 struct efx_tx_queue *tx_queue;
1070 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1071 unsigned tx_channel_offset =
1072 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1073
a4900ac9
BH
1074 efx_for_each_channel(channel, efx) {
1075 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1076 channel->tx_queue = &efx->tx_queue[
1077 (channel->channel - tx_channel_offset) *
1078 EFX_TXQ_TYPES];
1079 efx_for_each_channel_tx_queue(tx_queue, channel)
1080 tx_queue->channel = channel;
1081 }
60ac1065 1082 }
8ceee660 1083
a4900ac9 1084 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1085 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1086}
1087
1088static int efx_probe_nic(struct efx_nic *efx)
1089{
1090 int rc;
1091
1092 EFX_LOG(efx, "creating NIC\n");
1093
1094 /* Carry out hardware-type specific initialisation */
ef2b90ee 1095 rc = efx->type->probe(efx);
8ceee660
BH
1096 if (rc)
1097 return rc;
1098
a4900ac9 1099 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1100 * in MSI-X interrupts. */
1101 efx_probe_interrupts(efx);
1102
8831da7b 1103 efx_set_channels(efx);
a4900ac9 1104 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1105
1106 /* Initialise the interrupt moderation settings */
6fb70fd1 1107 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1108
1109 return 0;
1110}
1111
1112static void efx_remove_nic(struct efx_nic *efx)
1113{
1114 EFX_LOG(efx, "destroying NIC\n");
1115
1116 efx_remove_interrupts(efx);
ef2b90ee 1117 efx->type->remove(efx);
8ceee660
BH
1118}
1119
1120/**************************************************************************
1121 *
1122 * NIC startup/shutdown
1123 *
1124 *************************************************************************/
1125
1126static int efx_probe_all(struct efx_nic *efx)
1127{
1128 struct efx_channel *channel;
1129 int rc;
1130
1131 /* Create NIC */
1132 rc = efx_probe_nic(efx);
1133 if (rc) {
1134 EFX_ERR(efx, "failed to create NIC\n");
1135 goto fail1;
1136 }
1137
1138 /* Create port */
1139 rc = efx_probe_port(efx);
1140 if (rc) {
1141 EFX_ERR(efx, "failed to create port\n");
1142 goto fail2;
1143 }
1144
1145 /* Create channels */
1146 efx_for_each_channel(channel, efx) {
1147 rc = efx_probe_channel(channel);
1148 if (rc) {
1149 EFX_ERR(efx, "failed to create channel %d\n",
1150 channel->channel);
1151 goto fail3;
1152 }
1153 }
56536e9c 1154 efx_set_channel_names(efx);
8ceee660
BH
1155
1156 return 0;
1157
1158 fail3:
1159 efx_for_each_channel(channel, efx)
1160 efx_remove_channel(channel);
1161 efx_remove_port(efx);
1162 fail2:
1163 efx_remove_nic(efx);
1164 fail1:
1165 return rc;
1166}
1167
1168/* Called after previous invocation(s) of efx_stop_all, restarts the
1169 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1170 * and ensures that the port is scheduled to be reconfigured.
1171 * This function is safe to call multiple times when the NIC is in any
1172 * state. */
1173static void efx_start_all(struct efx_nic *efx)
1174{
1175 struct efx_channel *channel;
1176
1177 EFX_ASSERT_RESET_SERIALISED(efx);
1178
1179 /* Check that it is appropriate to restart the interface. All
1180 * of these flags are safe to read under just the rtnl lock */
1181 if (efx->port_enabled)
1182 return;
1183 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1184 return;
55668611 1185 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1186 return;
1187
1188 /* Mark the port as enabled so port reconfigurations can start, then
1189 * restart the transmit interface early so the watchdog timer stops */
1190 efx_start_port(efx);
8ceee660 1191
a4900ac9
BH
1192 efx_for_each_channel(channel, efx) {
1193 if (efx_dev_registered(efx))
1194 efx_wake_queue(channel);
8ceee660 1195 efx_start_channel(channel);
a4900ac9 1196 }
8ceee660 1197
152b6a62 1198 efx_nic_enable_interrupts(efx);
8ceee660 1199
8880f4ec
BH
1200 /* Switch to event based MCDI completions after enabling interrupts.
1201 * If a reset has been scheduled, then we need to stay in polled mode.
1202 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1203 * reset_pending [modified from an atomic context], we instead guarantee
1204 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1205 efx_mcdi_mode_event(efx);
1206 if (efx->reset_pending != RESET_TYPE_NONE)
1207 efx_mcdi_mode_poll(efx);
1208
78c1f0a0
SH
1209 /* Start the hardware monitor if there is one. Otherwise (we're link
1210 * event driven), we have to poll the PHY because after an event queue
1211 * flush, we could have a missed a link state change */
1212 if (efx->type->monitor != NULL) {
8ceee660
BH
1213 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1214 efx_monitor_interval);
78c1f0a0
SH
1215 } else {
1216 mutex_lock(&efx->mac_lock);
1217 if (efx->phy_op->poll(efx))
1218 efx_link_status_changed(efx);
1219 mutex_unlock(&efx->mac_lock);
1220 }
55edc6e6 1221
ef2b90ee 1222 efx->type->start_stats(efx);
8ceee660
BH
1223}
1224
1225/* Flush all delayed work. Should only be called when no more delayed work
1226 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1227 * since we're holding the rtnl_lock at this point. */
1228static void efx_flush_all(struct efx_nic *efx)
1229{
8ceee660
BH
1230 /* Make sure the hardware monitor is stopped */
1231 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1232 /* Stop scheduled port reconfigurations */
766ca0fa 1233 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1234}
1235
1236/* Quiesce hardware and software without bringing the link down.
1237 * Safe to call multiple times, when the nic and interface is in any
1238 * state. The caller is guaranteed to subsequently be in a position
1239 * to modify any hardware and software state they see fit without
1240 * taking locks. */
1241static void efx_stop_all(struct efx_nic *efx)
1242{
1243 struct efx_channel *channel;
1244
1245 EFX_ASSERT_RESET_SERIALISED(efx);
1246
1247 /* port_enabled can be read safely under the rtnl lock */
1248 if (!efx->port_enabled)
1249 return;
1250
ef2b90ee 1251 efx->type->stop_stats(efx);
55edc6e6 1252
8880f4ec
BH
1253 /* Switch to MCDI polling on Siena before disabling interrupts */
1254 efx_mcdi_mode_poll(efx);
1255
8ceee660 1256 /* Disable interrupts and wait for ISR to complete */
152b6a62 1257 efx_nic_disable_interrupts(efx);
8ceee660
BH
1258 if (efx->legacy_irq)
1259 synchronize_irq(efx->legacy_irq);
64ee3120 1260 efx_for_each_channel(channel, efx) {
8ceee660
BH
1261 if (channel->irq)
1262 synchronize_irq(channel->irq);
b3475645 1263 }
8ceee660
BH
1264
1265 /* Stop all NAPI processing and synchronous rx refills */
1266 efx_for_each_channel(channel, efx)
1267 efx_stop_channel(channel);
1268
1269 /* Stop all asynchronous port reconfigurations. Since all
1270 * event processing has already been stopped, there is no
1271 * window to loose phy events */
1272 efx_stop_port(efx);
1273
fdaa9aed 1274 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1275 efx_flush_all(efx);
1276
8ceee660
BH
1277 /* Stop the kernel transmit interface late, so the watchdog
1278 * timer isn't ticking over the flush */
55668611 1279 if (efx_dev_registered(efx)) {
a4900ac9
BH
1280 struct efx_channel *channel;
1281 efx_for_each_channel(channel, efx)
1282 efx_stop_queue(channel);
8ceee660
BH
1283 netif_tx_lock_bh(efx->net_dev);
1284 netif_tx_unlock_bh(efx->net_dev);
1285 }
1286}
1287
1288static void efx_remove_all(struct efx_nic *efx)
1289{
1290 struct efx_channel *channel;
1291
1292 efx_for_each_channel(channel, efx)
1293 efx_remove_channel(channel);
1294 efx_remove_port(efx);
1295 efx_remove_nic(efx);
1296}
1297
8ceee660
BH
1298/**************************************************************************
1299 *
1300 * Interrupt moderation
1301 *
1302 **************************************************************************/
1303
0d86ebd8
BH
1304static unsigned irq_mod_ticks(int usecs, int resolution)
1305{
1306 if (usecs <= 0)
1307 return 0; /* cannot receive interrupts ahead of time :-) */
1308 if (usecs < resolution)
1309 return 1; /* never round down to 0 */
1310 return usecs / resolution;
1311}
1312
8ceee660 1313/* Set interrupt moderation parameters */
6fb70fd1
BH
1314void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1315 bool rx_adaptive)
8ceee660
BH
1316{
1317 struct efx_tx_queue *tx_queue;
1318 struct efx_rx_queue *rx_queue;
152b6a62
BH
1319 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1320 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1321
1322 EFX_ASSERT_RESET_SERIALISED(efx);
1323
1324 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1325 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1326
6fb70fd1 1327 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1328 efx->irq_rx_moderation = rx_ticks;
8ceee660 1329 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1330 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1331}
1332
1333/**************************************************************************
1334 *
1335 * Hardware monitor
1336 *
1337 **************************************************************************/
1338
1339/* Run periodically off the general workqueue. Serialised against
1340 * efx_reconfigure_port via the mac_lock */
1341static void efx_monitor(struct work_struct *data)
1342{
1343 struct efx_nic *efx = container_of(data, struct efx_nic,
1344 monitor_work.work);
8ceee660
BH
1345
1346 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1347 raw_smp_processor_id());
ef2b90ee 1348 BUG_ON(efx->type->monitor == NULL);
8ceee660 1349
8ceee660
BH
1350 /* If the mac_lock is already held then it is likely a port
1351 * reconfiguration is already in place, which will likely do
1352 * most of the work of check_hw() anyway. */
766ca0fa
BH
1353 if (!mutex_trylock(&efx->mac_lock))
1354 goto out_requeue;
1355 if (!efx->port_enabled)
1356 goto out_unlock;
ef2b90ee 1357 efx->type->monitor(efx);
8ceee660 1358
766ca0fa 1359out_unlock:
8ceee660 1360 mutex_unlock(&efx->mac_lock);
766ca0fa 1361out_requeue:
8ceee660
BH
1362 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1363 efx_monitor_interval);
1364}
1365
1366/**************************************************************************
1367 *
1368 * ioctls
1369 *
1370 *************************************************************************/
1371
1372/* Net device ioctl
1373 * Context: process, rtnl_lock() held.
1374 */
1375static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1376{
767e468c 1377 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1378 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1379
1380 EFX_ASSERT_RESET_SERIALISED(efx);
1381
68e7f45e
BH
1382 /* Convert phy_id from older PRTAD/DEVAD format */
1383 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1384 (data->phy_id & 0xfc00) == 0x0400)
1385 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1386
1387 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1388}
1389
1390/**************************************************************************
1391 *
1392 * NAPI interface
1393 *
1394 **************************************************************************/
1395
1396static int efx_init_napi(struct efx_nic *efx)
1397{
1398 struct efx_channel *channel;
8ceee660
BH
1399
1400 efx_for_each_channel(channel, efx) {
1401 channel->napi_dev = efx->net_dev;
718cff1e
BH
1402 netif_napi_add(channel->napi_dev, &channel->napi_str,
1403 efx_poll, napi_weight);
8ceee660
BH
1404 }
1405 return 0;
8ceee660
BH
1406}
1407
1408static void efx_fini_napi(struct efx_nic *efx)
1409{
1410 struct efx_channel *channel;
1411
1412 efx_for_each_channel(channel, efx) {
718cff1e
BH
1413 if (channel->napi_dev)
1414 netif_napi_del(&channel->napi_str);
8ceee660
BH
1415 channel->napi_dev = NULL;
1416 }
1417}
1418
1419/**************************************************************************
1420 *
1421 * Kernel netpoll interface
1422 *
1423 *************************************************************************/
1424
1425#ifdef CONFIG_NET_POLL_CONTROLLER
1426
1427/* Although in the common case interrupts will be disabled, this is not
1428 * guaranteed. However, all our work happens inside the NAPI callback,
1429 * so no locking is required.
1430 */
1431static void efx_netpoll(struct net_device *net_dev)
1432{
767e468c 1433 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1434 struct efx_channel *channel;
1435
64ee3120 1436 efx_for_each_channel(channel, efx)
8ceee660
BH
1437 efx_schedule_channel(channel);
1438}
1439
1440#endif
1441
1442/**************************************************************************
1443 *
1444 * Kernel net device interface
1445 *
1446 *************************************************************************/
1447
1448/* Context: process, rtnl_lock() held. */
1449static int efx_net_open(struct net_device *net_dev)
1450{
767e468c 1451 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1452 EFX_ASSERT_RESET_SERIALISED(efx);
1453
1454 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1455 raw_smp_processor_id());
1456
f4bd954e
BH
1457 if (efx->state == STATE_DISABLED)
1458 return -EIO;
f8b87c17
BH
1459 if (efx->phy_mode & PHY_MODE_SPECIAL)
1460 return -EBUSY;
8880f4ec
BH
1461 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1462 return -EIO;
f8b87c17 1463
78c1f0a0
SH
1464 /* Notify the kernel of the link state polled during driver load,
1465 * before the monitor starts running */
1466 efx_link_status_changed(efx);
1467
8ceee660
BH
1468 efx_start_all(efx);
1469 return 0;
1470}
1471
1472/* Context: process, rtnl_lock() held.
1473 * Note that the kernel will ignore our return code; this method
1474 * should really be a void.
1475 */
1476static int efx_net_stop(struct net_device *net_dev)
1477{
767e468c 1478 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1479
1480 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1481 raw_smp_processor_id());
1482
f4bd954e
BH
1483 if (efx->state != STATE_DISABLED) {
1484 /* Stop the device and flush all the channels */
1485 efx_stop_all(efx);
1486 efx_fini_channels(efx);
1487 efx_init_channels(efx);
1488 }
8ceee660
BH
1489
1490 return 0;
1491}
1492
5b9e207c 1493/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1494static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1495{
767e468c 1496 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1497 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1498 struct net_device_stats *stats = &net_dev->stats;
1499
55edc6e6 1500 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1501 efx->type->update_stats(efx);
55edc6e6 1502 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1503
1504 stats->rx_packets = mac_stats->rx_packets;
1505 stats->tx_packets = mac_stats->tx_packets;
1506 stats->rx_bytes = mac_stats->rx_bytes;
1507 stats->tx_bytes = mac_stats->tx_bytes;
1508 stats->multicast = mac_stats->rx_multicast;
1509 stats->collisions = mac_stats->tx_collision;
1510 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1511 mac_stats->rx_length_error);
1512 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1513 stats->rx_crc_errors = mac_stats->rx_bad;
1514 stats->rx_frame_errors = mac_stats->rx_align_error;
1515 stats->rx_fifo_errors = mac_stats->rx_overflow;
1516 stats->rx_missed_errors = mac_stats->rx_missed;
1517 stats->tx_window_errors = mac_stats->tx_late_collision;
1518
1519 stats->rx_errors = (stats->rx_length_errors +
1520 stats->rx_over_errors +
1521 stats->rx_crc_errors +
1522 stats->rx_frame_errors +
1523 stats->rx_fifo_errors +
1524 stats->rx_missed_errors +
1525 mac_stats->rx_symbol_error);
1526 stats->tx_errors = (stats->tx_window_errors +
1527 mac_stats->tx_bad);
1528
1529 return stats;
1530}
1531
1532/* Context: netif_tx_lock held, BHs disabled. */
1533static void efx_watchdog(struct net_device *net_dev)
1534{
767e468c 1535 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1536
a4900ac9
BH
1537 EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n",
1538 efx->port_enabled);
8ceee660 1539
739bb23d 1540 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1541}
1542
1543
1544/* Context: process, rtnl_lock() held. */
1545static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1546{
767e468c 1547 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1548 int rc = 0;
1549
1550 EFX_ASSERT_RESET_SERIALISED(efx);
1551
1552 if (new_mtu > EFX_MAX_MTU)
1553 return -EINVAL;
1554
1555 efx_stop_all(efx);
1556
1557 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1558
1559 efx_fini_channels(efx);
d3245b28
BH
1560
1561 mutex_lock(&efx->mac_lock);
1562 /* Reconfigure the MAC before enabling the dma queues so that
1563 * the RX buffers don't overflow */
8ceee660 1564 net_dev->mtu = new_mtu;
d3245b28
BH
1565 efx->mac_op->reconfigure(efx);
1566 mutex_unlock(&efx->mac_lock);
1567
bc3c90a2 1568 efx_init_channels(efx);
8ceee660
BH
1569
1570 efx_start_all(efx);
1571 return rc;
8ceee660
BH
1572}
1573
1574static int efx_set_mac_address(struct net_device *net_dev, void *data)
1575{
767e468c 1576 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1577 struct sockaddr *addr = data;
1578 char *new_addr = addr->sa_data;
1579
1580 EFX_ASSERT_RESET_SERIALISED(efx);
1581
1582 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1583 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1584 new_addr);
8ceee660
BH
1585 return -EINVAL;
1586 }
1587
1588 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1589
1590 /* Reconfigure the MAC */
d3245b28
BH
1591 mutex_lock(&efx->mac_lock);
1592 efx->mac_op->reconfigure(efx);
1593 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1594
1595 return 0;
1596}
1597
a816f75a 1598/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1599static void efx_set_multicast_list(struct net_device *net_dev)
1600{
767e468c 1601 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1602 struct netdev_hw_addr *ha;
8ceee660 1603 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1604 u32 crc;
1605 int bit;
8ceee660 1606
8be4f3e6 1607 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1608
1609 /* Build multicast hash table */
8be4f3e6 1610 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1611 memset(mc_hash, 0xff, sizeof(*mc_hash));
1612 } else {
1613 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1614 netdev_for_each_mc_addr(ha, net_dev) {
1615 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1616 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1617 set_bit_le(bit, mc_hash->byte);
8ceee660 1618 }
8ceee660 1619
8be4f3e6
BH
1620 /* Broadcast packets go through the multicast hash filter.
1621 * ether_crc_le() of the broadcast address is 0xbe2612ff
1622 * so we always add bit 0xff to the mask.
1623 */
1624 set_bit_le(0xff, mc_hash->byte);
1625 }
a816f75a 1626
8be4f3e6
BH
1627 if (efx->port_enabled)
1628 queue_work(efx->workqueue, &efx->mac_work);
1629 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1630}
1631
c3ecb9f3
SH
1632static const struct net_device_ops efx_netdev_ops = {
1633 .ndo_open = efx_net_open,
1634 .ndo_stop = efx_net_stop,
1635 .ndo_get_stats = efx_net_stats,
1636 .ndo_tx_timeout = efx_watchdog,
1637 .ndo_start_xmit = efx_hard_start_xmit,
1638 .ndo_validate_addr = eth_validate_addr,
1639 .ndo_do_ioctl = efx_ioctl,
1640 .ndo_change_mtu = efx_change_mtu,
1641 .ndo_set_mac_address = efx_set_mac_address,
1642 .ndo_set_multicast_list = efx_set_multicast_list,
1643#ifdef CONFIG_NET_POLL_CONTROLLER
1644 .ndo_poll_controller = efx_netpoll,
1645#endif
1646};
1647
7dde596e
BH
1648static void efx_update_name(struct efx_nic *efx)
1649{
1650 strcpy(efx->name, efx->net_dev->name);
1651 efx_mtd_rename(efx);
1652 efx_set_channel_names(efx);
1653}
1654
8ceee660
BH
1655static int efx_netdev_event(struct notifier_block *this,
1656 unsigned long event, void *ptr)
1657{
d3208b5e 1658 struct net_device *net_dev = ptr;
8ceee660 1659
7dde596e
BH
1660 if (net_dev->netdev_ops == &efx_netdev_ops &&
1661 event == NETDEV_CHANGENAME)
1662 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1663
1664 return NOTIFY_DONE;
1665}
1666
1667static struct notifier_block efx_netdev_notifier = {
1668 .notifier_call = efx_netdev_event,
1669};
1670
06d5e193
BH
1671static ssize_t
1672show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1673{
1674 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1675 return sprintf(buf, "%d\n", efx->phy_type);
1676}
1677static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1678
8ceee660
BH
1679static int efx_register_netdev(struct efx_nic *efx)
1680{
1681 struct net_device *net_dev = efx->net_dev;
1682 int rc;
1683
1684 net_dev->watchdog_timeo = 5 * HZ;
1685 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1686 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1687 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1688 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1689
8ceee660 1690 /* Clear MAC statistics */
177dfcd8 1691 efx->mac_op->update_stats(efx);
8ceee660
BH
1692 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1693
7dde596e 1694 rtnl_lock();
aed0628d
BH
1695
1696 rc = dev_alloc_name(net_dev, net_dev->name);
1697 if (rc < 0)
1698 goto fail_locked;
7dde596e 1699 efx_update_name(efx);
aed0628d
BH
1700
1701 rc = register_netdevice(net_dev);
1702 if (rc)
1703 goto fail_locked;
1704
1705 /* Always start with carrier off; PHY events will detect the link */
1706 netif_carrier_off(efx->net_dev);
1707
7dde596e 1708 rtnl_unlock();
8ceee660 1709
06d5e193
BH
1710 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1711 if (rc) {
1712 EFX_ERR(efx, "failed to init net dev attributes\n");
1713 goto fail_registered;
1714 }
1715
8ceee660 1716 return 0;
06d5e193 1717
aed0628d
BH
1718fail_locked:
1719 rtnl_unlock();
1720 EFX_ERR(efx, "could not register net dev\n");
1721 return rc;
1722
06d5e193
BH
1723fail_registered:
1724 unregister_netdev(net_dev);
1725 return rc;
8ceee660
BH
1726}
1727
1728static void efx_unregister_netdev(struct efx_nic *efx)
1729{
1730 struct efx_tx_queue *tx_queue;
1731
1732 if (!efx->net_dev)
1733 return;
1734
767e468c 1735 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1736
1737 /* Free up any skbs still remaining. This has to happen before
1738 * we try to unregister the netdev as running their destructors
1739 * may be needed to get the device ref. count to 0. */
1740 efx_for_each_tx_queue(tx_queue, efx)
1741 efx_release_tx_buffers(tx_queue);
1742
55668611 1743 if (efx_dev_registered(efx)) {
8ceee660 1744 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1745 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1746 unregister_netdev(efx->net_dev);
1747 }
1748}
1749
1750/**************************************************************************
1751 *
1752 * Device reset and suspend
1753 *
1754 **************************************************************************/
1755
2467ca46
BH
1756/* Tears down the entire software state and most of the hardware state
1757 * before reset. */
d3245b28 1758void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1759{
8ceee660
BH
1760 EFX_ASSERT_RESET_SERIALISED(efx);
1761
2467ca46
BH
1762 efx_stop_all(efx);
1763 mutex_lock(&efx->mac_lock);
f4150724 1764 mutex_lock(&efx->spi_lock);
2467ca46 1765
8ceee660 1766 efx_fini_channels(efx);
4b988280
SH
1767 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1768 efx->phy_op->fini(efx);
ef2b90ee 1769 efx->type->fini(efx);
8ceee660
BH
1770}
1771
2467ca46
BH
1772/* This function will always ensure that the locks acquired in
1773 * efx_reset_down() are released. A failure return code indicates
1774 * that we were unable to reinitialise the hardware, and the
1775 * driver should be disabled. If ok is false, then the rx and tx
1776 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1777int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1778{
1779 int rc;
1780
2467ca46 1781 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1782
ef2b90ee 1783 rc = efx->type->init(efx);
8ceee660 1784 if (rc) {
2467ca46 1785 EFX_ERR(efx, "failed to initialise NIC\n");
eb9f6744 1786 goto fail;
8ceee660
BH
1787 }
1788
eb9f6744
BH
1789 if (!ok)
1790 goto fail;
1791
4b988280 1792 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1793 rc = efx->phy_op->init(efx);
1794 if (rc)
1795 goto fail;
1796 if (efx->phy_op->reconfigure(efx))
1797 EFX_ERR(efx, "could not restore PHY settings\n");
4b988280
SH
1798 }
1799
eb9f6744 1800 efx->mac_op->reconfigure(efx);
8ceee660 1801
eb9f6744
BH
1802 efx_init_channels(efx);
1803
1804 mutex_unlock(&efx->spi_lock);
1805 mutex_unlock(&efx->mac_lock);
1806
1807 efx_start_all(efx);
1808
1809 return 0;
1810
1811fail:
1812 efx->port_initialized = false;
2467ca46 1813
f4150724 1814 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1815 mutex_unlock(&efx->mac_lock);
1816
8ceee660
BH
1817 return rc;
1818}
1819
eb9f6744
BH
1820/* Reset the NIC using the specified method. Note that the reset may
1821 * fail, in which case the card will be left in an unusable state.
8ceee660 1822 *
eb9f6744 1823 * Caller must hold the rtnl_lock.
8ceee660 1824 */
eb9f6744 1825int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1826{
eb9f6744
BH
1827 int rc, rc2;
1828 bool disabled;
8ceee660 1829
c459302d 1830 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1831
d3245b28 1832 efx_reset_down(efx, method);
8ceee660 1833
ef2b90ee 1834 rc = efx->type->reset(efx, method);
8ceee660
BH
1835 if (rc) {
1836 EFX_ERR(efx, "failed to reset hardware\n");
eb9f6744 1837 goto out;
8ceee660
BH
1838 }
1839
1840 /* Allow resets to be rescheduled. */
1841 efx->reset_pending = RESET_TYPE_NONE;
1842
1843 /* Reinitialise bus-mastering, which may have been turned off before
1844 * the reset was scheduled. This is still appropriate, even in the
1845 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1846 * can respond to requests. */
1847 pci_set_master(efx->pci_dev);
1848
eb9f6744 1849out:
8ceee660 1850 /* Leave device stopped if necessary */
eb9f6744
BH
1851 disabled = rc || method == RESET_TYPE_DISABLE;
1852 rc2 = efx_reset_up(efx, method, !disabled);
1853 if (rc2) {
1854 disabled = true;
1855 if (!rc)
1856 rc = rc2;
8ceee660
BH
1857 }
1858
eb9f6744 1859 if (disabled) {
f49a4589 1860 dev_close(efx->net_dev);
f4bd954e
BH
1861 EFX_ERR(efx, "has been disabled\n");
1862 efx->state = STATE_DISABLED;
f4bd954e
BH
1863 } else {
1864 EFX_LOG(efx, "reset complete\n");
1865 }
8ceee660
BH
1866 return rc;
1867}
1868
1869/* The worker thread exists so that code that cannot sleep can
1870 * schedule a reset for later.
1871 */
1872static void efx_reset_work(struct work_struct *data)
1873{
eb9f6744 1874 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1875
319ba649
SH
1876 if (efx->reset_pending == RESET_TYPE_NONE)
1877 return;
1878
eb9f6744
BH
1879 /* If we're not RUNNING then don't reset. Leave the reset_pending
1880 * flag set so that efx_pci_probe_main will be retried */
1881 if (efx->state != STATE_RUNNING) {
1882 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1883 return;
1884 }
1885
1886 rtnl_lock();
f49a4589 1887 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1888 rtnl_unlock();
8ceee660
BH
1889}
1890
1891void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1892{
1893 enum reset_type method;
1894
1895 if (efx->reset_pending != RESET_TYPE_NONE) {
1896 EFX_INFO(efx, "quenching already scheduled reset\n");
1897 return;
1898 }
1899
1900 switch (type) {
1901 case RESET_TYPE_INVISIBLE:
1902 case RESET_TYPE_ALL:
1903 case RESET_TYPE_WORLD:
1904 case RESET_TYPE_DISABLE:
1905 method = type;
1906 break;
1907 case RESET_TYPE_RX_RECOVERY:
1908 case RESET_TYPE_RX_DESC_FETCH:
1909 case RESET_TYPE_TX_DESC_FETCH:
1910 case RESET_TYPE_TX_SKIP:
1911 method = RESET_TYPE_INVISIBLE;
1912 break;
8880f4ec 1913 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1914 default:
1915 method = RESET_TYPE_ALL;
1916 break;
1917 }
1918
1919 if (method != type)
c459302d
BH
1920 EFX_LOG(efx, "scheduling %s reset for %s\n",
1921 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1922 else
c459302d 1923 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1924
1925 efx->reset_pending = method;
1926
8880f4ec
BH
1927 /* efx_process_channel() will no longer read events once a
1928 * reset is scheduled. So switch back to poll'd MCDI completions. */
1929 efx_mcdi_mode_poll(efx);
1930
1ab00629 1931 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1932}
1933
1934/**************************************************************************
1935 *
1936 * List of NICs we support
1937 *
1938 **************************************************************************/
1939
1940/* PCI device ID table */
a3aa1884 1941static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1942 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1943 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1944 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1945 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1946 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1947 .driver_data = (unsigned long) &siena_a0_nic_type},
1948 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1949 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1950 {0} /* end of list */
1951};
1952
1953/**************************************************************************
1954 *
3759433d 1955 * Dummy PHY/MAC operations
8ceee660 1956 *
01aad7b6 1957 * Can be used for some unimplemented operations
8ceee660
BH
1958 * Needed so all function pointers are valid and do not have to be tested
1959 * before use
1960 *
1961 **************************************************************************/
1962int efx_port_dummy_op_int(struct efx_nic *efx)
1963{
1964 return 0;
1965}
1966void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1967void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1968{
1969}
fdaa9aed
SH
1970bool efx_port_dummy_op_poll(struct efx_nic *efx)
1971{
1972 return false;
1973}
8ceee660
BH
1974
1975static struct efx_phy_operations efx_dummy_phy_operations = {
1976 .init = efx_port_dummy_op_int,
d3245b28 1977 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 1978 .poll = efx_port_dummy_op_poll,
8ceee660 1979 .fini = efx_port_dummy_op_void,
8ceee660
BH
1980};
1981
8ceee660
BH
1982/**************************************************************************
1983 *
1984 * Data housekeeping
1985 *
1986 **************************************************************************/
1987
1988/* This zeroes out and then fills in the invariants in a struct
1989 * efx_nic (including all sub-structures).
1990 */
1991static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1992 struct pci_dev *pci_dev, struct net_device *net_dev)
1993{
1994 struct efx_channel *channel;
1995 struct efx_tx_queue *tx_queue;
1996 struct efx_rx_queue *rx_queue;
1ab00629 1997 int i;
8ceee660
BH
1998
1999 /* Initialise common structures */
2000 memset(efx, 0, sizeof(*efx));
2001 spin_lock_init(&efx->biu_lock);
ab867461 2002 mutex_init(&efx->mdio_lock);
f4150724 2003 mutex_init(&efx->spi_lock);
76884835
BH
2004#ifdef CONFIG_SFC_MTD
2005 INIT_LIST_HEAD(&efx->mtd_list);
2006#endif
8ceee660
BH
2007 INIT_WORK(&efx->reset_work, efx_reset_work);
2008 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2009 efx->pci_dev = pci_dev;
2010 efx->state = STATE_INIT;
2011 efx->reset_pending = RESET_TYPE_NONE;
2012 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2013
2014 efx->net_dev = net_dev;
dc8cfa55 2015 efx->rx_checksum_enabled = true;
8ceee660
BH
2016 spin_lock_init(&efx->stats_lock);
2017 mutex_init(&efx->mac_lock);
b895d73e 2018 efx->mac_op = type->default_mac_ops;
8ceee660 2019 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2020 efx->mdio.dev = net_dev;
766ca0fa 2021 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2022
2023 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2024 channel = &efx->channel[i];
2025 channel->efx = efx;
2026 channel->channel = i;
dc8cfa55 2027 channel->work_pending = false;
a4900ac9
BH
2028 spin_lock_init(&channel->tx_stop_lock);
2029 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2030 }
a4900ac9 2031 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2032 tx_queue = &efx->tx_queue[i];
2033 tx_queue->efx = efx;
2034 tx_queue->queue = i;
2035 tx_queue->buffer = NULL;
2036 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2037 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2038 }
2039 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2040 rx_queue = &efx->rx_queue[i];
2041 rx_queue->efx = efx;
2042 rx_queue->queue = i;
2043 rx_queue->channel = &efx->channel[0]; /* for safety */
2044 rx_queue->buffer = NULL;
90d683af
SH
2045 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2046 (unsigned long)rx_queue);
8ceee660
BH
2047 }
2048
2049 efx->type = type;
2050
8ceee660 2051 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2052 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2053
8ceee660
BH
2054 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2055
2056 /* Higher numbered interrupt modes are less capable! */
2057 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2058 interrupt_mode);
2059
6977dc63
BH
2060 /* Would be good to use the net_dev name, but we're too early */
2061 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2062 pci_name(pci_dev));
2063 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2064 if (!efx->workqueue)
2065 return -ENOMEM;
8d9853d9 2066
8ceee660 2067 return 0;
8ceee660
BH
2068}
2069
2070static void efx_fini_struct(struct efx_nic *efx)
2071{
2072 if (efx->workqueue) {
2073 destroy_workqueue(efx->workqueue);
2074 efx->workqueue = NULL;
2075 }
2076}
2077
2078/**************************************************************************
2079 *
2080 * PCI interface
2081 *
2082 **************************************************************************/
2083
2084/* Main body of final NIC shutdown code
2085 * This is called only at module unload (or hotplug removal).
2086 */
2087static void efx_pci_remove_main(struct efx_nic *efx)
2088{
152b6a62 2089 efx_nic_fini_interrupt(efx);
8ceee660
BH
2090 efx_fini_channels(efx);
2091 efx_fini_port(efx);
ef2b90ee 2092 efx->type->fini(efx);
8ceee660
BH
2093 efx_fini_napi(efx);
2094 efx_remove_all(efx);
2095}
2096
2097/* Final NIC shutdown
2098 * This is called only at module unload (or hotplug removal).
2099 */
2100static void efx_pci_remove(struct pci_dev *pci_dev)
2101{
2102 struct efx_nic *efx;
2103
2104 efx = pci_get_drvdata(pci_dev);
2105 if (!efx)
2106 return;
2107
2108 /* Mark the NIC as fini, then stop the interface */
2109 rtnl_lock();
2110 efx->state = STATE_FINI;
2111 dev_close(efx->net_dev);
2112
2113 /* Allow any queued efx_resets() to complete */
2114 rtnl_unlock();
2115
8ceee660
BH
2116 efx_unregister_netdev(efx);
2117
7dde596e
BH
2118 efx_mtd_remove(efx);
2119
8ceee660
BH
2120 /* Wait for any scheduled resets to complete. No more will be
2121 * scheduled from this point because efx_stop_all() has been
2122 * called, we are no longer registered with driverlink, and
2123 * the net_device's have been removed. */
1ab00629 2124 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2125
2126 efx_pci_remove_main(efx);
2127
8ceee660
BH
2128 efx_fini_io(efx);
2129 EFX_LOG(efx, "shutdown successful\n");
2130
2131 pci_set_drvdata(pci_dev, NULL);
2132 efx_fini_struct(efx);
2133 free_netdev(efx->net_dev);
2134};
2135
2136/* Main body of NIC initialisation
2137 * This is called at module load (or hotplug insertion, theoretically).
2138 */
2139static int efx_pci_probe_main(struct efx_nic *efx)
2140{
2141 int rc;
2142
2143 /* Do start-of-day initialisation */
2144 rc = efx_probe_all(efx);
2145 if (rc)
2146 goto fail1;
2147
2148 rc = efx_init_napi(efx);
2149 if (rc)
2150 goto fail2;
2151
ef2b90ee 2152 rc = efx->type->init(efx);
8ceee660
BH
2153 if (rc) {
2154 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2155 goto fail3;
8ceee660
BH
2156 }
2157
2158 rc = efx_init_port(efx);
2159 if (rc) {
2160 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2161 goto fail4;
8ceee660
BH
2162 }
2163
bc3c90a2 2164 efx_init_channels(efx);
8ceee660 2165
152b6a62 2166 rc = efx_nic_init_interrupt(efx);
8ceee660 2167 if (rc)
278c0621 2168 goto fail5;
8ceee660
BH
2169
2170 return 0;
2171
278c0621 2172 fail5:
bc3c90a2 2173 efx_fini_channels(efx);
8ceee660 2174 efx_fini_port(efx);
8ceee660 2175 fail4:
ef2b90ee 2176 efx->type->fini(efx);
8ceee660
BH
2177 fail3:
2178 efx_fini_napi(efx);
2179 fail2:
2180 efx_remove_all(efx);
2181 fail1:
2182 return rc;
2183}
2184
2185/* NIC initialisation
2186 *
2187 * This is called at module load (or hotplug insertion,
2188 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2189 * sets up and registers the network devices with the kernel and hooks
2190 * the interrupt service routine. It does not prepare the device for
2191 * transmission; this is left to the first time one of the network
2192 * interfaces is brought up (i.e. efx_net_open).
2193 */
2194static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2195 const struct pci_device_id *entry)
2196{
2197 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2198 struct net_device *net_dev;
2199 struct efx_nic *efx;
2200 int i, rc;
2201
2202 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2203 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2204 if (!net_dev)
2205 return -ENOMEM;
c383b537 2206 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2207 NETIF_F_HIGHDMA | NETIF_F_TSO |
2208 NETIF_F_GRO);
738a8f4b
BH
2209 if (type->offload_features & NETIF_F_V6_CSUM)
2210 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2211 /* Mask for features that also apply to VLAN devices */
2212 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2213 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2214 efx = netdev_priv(net_dev);
8ceee660
BH
2215 pci_set_drvdata(pci_dev, efx);
2216 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2217 if (rc)
2218 goto fail1;
2219
2220 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2221
2222 /* Set up basic I/O (BAR mappings etc) */
2223 rc = efx_init_io(efx);
2224 if (rc)
2225 goto fail2;
2226
2227 /* No serialisation is required with the reset path because
2228 * we're in STATE_INIT. */
2229 for (i = 0; i < 5; i++) {
2230 rc = efx_pci_probe_main(efx);
8ceee660
BH
2231
2232 /* Serialise against efx_reset(). No more resets will be
2233 * scheduled since efx_stop_all() has been called, and we
2234 * have not and never have been registered with either
2235 * the rtnetlink or driverlink layers. */
1ab00629 2236 cancel_work_sync(&efx->reset_work);
8ceee660 2237
fa402b2e
SH
2238 if (rc == 0) {
2239 if (efx->reset_pending != RESET_TYPE_NONE) {
2240 /* If there was a scheduled reset during
2241 * probe, the NIC is probably hosed anyway */
2242 efx_pci_remove_main(efx);
2243 rc = -EIO;
2244 } else {
2245 break;
2246 }
2247 }
2248
8ceee660
BH
2249 /* Retry if a recoverably reset event has been scheduled */
2250 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2251 (efx->reset_pending != RESET_TYPE_ALL))
2252 goto fail3;
2253
2254 efx->reset_pending = RESET_TYPE_NONE;
2255 }
2256
2257 if (rc) {
2258 EFX_ERR(efx, "Could not reset NIC\n");
2259 goto fail4;
2260 }
2261
55edc6e6
BH
2262 /* Switch to the running state before we expose the device to the OS,
2263 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2264 efx->state = STATE_RUNNING;
7dde596e 2265
8ceee660
BH
2266 rc = efx_register_netdev(efx);
2267 if (rc)
2268 goto fail5;
2269
2270 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2271
2272 rtnl_lock();
2273 efx_mtd_probe(efx); /* allowed to fail */
2274 rtnl_unlock();
8ceee660
BH
2275 return 0;
2276
2277 fail5:
2278 efx_pci_remove_main(efx);
2279 fail4:
2280 fail3:
2281 efx_fini_io(efx);
2282 fail2:
2283 efx_fini_struct(efx);
2284 fail1:
5e2a911c 2285 WARN_ON(rc > 0);
8ceee660
BH
2286 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2287 free_netdev(net_dev);
2288 return rc;
2289}
2290
89c758fa
BH
2291static int efx_pm_freeze(struct device *dev)
2292{
2293 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2294
2295 efx->state = STATE_FINI;
2296
2297 netif_device_detach(efx->net_dev);
2298
2299 efx_stop_all(efx);
2300 efx_fini_channels(efx);
2301
2302 return 0;
2303}
2304
2305static int efx_pm_thaw(struct device *dev)
2306{
2307 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2308
2309 efx->state = STATE_INIT;
2310
2311 efx_init_channels(efx);
2312
2313 mutex_lock(&efx->mac_lock);
2314 efx->phy_op->reconfigure(efx);
2315 mutex_unlock(&efx->mac_lock);
2316
2317 efx_start_all(efx);
2318
2319 netif_device_attach(efx->net_dev);
2320
2321 efx->state = STATE_RUNNING;
2322
2323 efx->type->resume_wol(efx);
2324
319ba649
SH
2325 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2326 queue_work(reset_workqueue, &efx->reset_work);
2327
89c758fa
BH
2328 return 0;
2329}
2330
2331static int efx_pm_poweroff(struct device *dev)
2332{
2333 struct pci_dev *pci_dev = to_pci_dev(dev);
2334 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2335
2336 efx->type->fini(efx);
2337
2338 efx->reset_pending = RESET_TYPE_NONE;
2339
2340 pci_save_state(pci_dev);
2341 return pci_set_power_state(pci_dev, PCI_D3hot);
2342}
2343
2344/* Used for both resume and restore */
2345static int efx_pm_resume(struct device *dev)
2346{
2347 struct pci_dev *pci_dev = to_pci_dev(dev);
2348 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2349 int rc;
2350
2351 rc = pci_set_power_state(pci_dev, PCI_D0);
2352 if (rc)
2353 return rc;
2354 pci_restore_state(pci_dev);
2355 rc = pci_enable_device(pci_dev);
2356 if (rc)
2357 return rc;
2358 pci_set_master(efx->pci_dev);
2359 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2360 if (rc)
2361 return rc;
2362 rc = efx->type->init(efx);
2363 if (rc)
2364 return rc;
2365 efx_pm_thaw(dev);
2366 return 0;
2367}
2368
2369static int efx_pm_suspend(struct device *dev)
2370{
2371 int rc;
2372
2373 efx_pm_freeze(dev);
2374 rc = efx_pm_poweroff(dev);
2375 if (rc)
2376 efx_pm_resume(dev);
2377 return rc;
2378}
2379
2380static struct dev_pm_ops efx_pm_ops = {
2381 .suspend = efx_pm_suspend,
2382 .resume = efx_pm_resume,
2383 .freeze = efx_pm_freeze,
2384 .thaw = efx_pm_thaw,
2385 .poweroff = efx_pm_poweroff,
2386 .restore = efx_pm_resume,
2387};
2388
8ceee660
BH
2389static struct pci_driver efx_pci_driver = {
2390 .name = EFX_DRIVER_NAME,
2391 .id_table = efx_pci_table,
2392 .probe = efx_pci_probe,
2393 .remove = efx_pci_remove,
89c758fa 2394 .driver.pm = &efx_pm_ops,
8ceee660
BH
2395};
2396
2397/**************************************************************************
2398 *
2399 * Kernel module interface
2400 *
2401 *************************************************************************/
2402
2403module_param(interrupt_mode, uint, 0444);
2404MODULE_PARM_DESC(interrupt_mode,
2405 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2406
2407static int __init efx_init_module(void)
2408{
2409 int rc;
2410
2411 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2412
2413 rc = register_netdevice_notifier(&efx_netdev_notifier);
2414 if (rc)
2415 goto err_notifier;
2416
1ab00629
SH
2417 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2418 if (!reset_workqueue) {
2419 rc = -ENOMEM;
2420 goto err_reset;
2421 }
8ceee660
BH
2422
2423 rc = pci_register_driver(&efx_pci_driver);
2424 if (rc < 0)
2425 goto err_pci;
2426
2427 return 0;
2428
2429 err_pci:
1ab00629
SH
2430 destroy_workqueue(reset_workqueue);
2431 err_reset:
8ceee660
BH
2432 unregister_netdevice_notifier(&efx_netdev_notifier);
2433 err_notifier:
2434 return rc;
2435}
2436
2437static void __exit efx_exit_module(void)
2438{
2439 printk(KERN_INFO "Solarflare NET driver unloading\n");
2440
2441 pci_unregister_driver(&efx_pci_driver);
1ab00629 2442 destroy_workqueue(reset_workqueue);
8ceee660
BH
2443 unregister_netdevice_notifier(&efx_netdev_notifier);
2444
2445}
2446
2447module_init(efx_init_module);
2448module_exit(efx_exit_module);
2449
906bb26c
BH
2450MODULE_AUTHOR("Solarflare Communications and "
2451 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2452MODULE_DESCRIPTION("Solarflare Communications network driver");
2453MODULE_LICENSE("GPL");
2454MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.645414 seconds and 5 git commands to generate.