sfc: Add option to use a separate channel for TX completions
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
1ab00629
SH
42/* Reset workqueue. If any NIC has a hardware failure then a reset will be
43 * queued onto this work queue. This is not a per-nic work queue, because
44 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
45 */
46static struct workqueue_struct *reset_workqueue;
47
8ceee660
BH
48/**************************************************************************
49 *
50 * Configurable values
51 *
52 *************************************************************************/
53
54/*
55 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
56 *
57 * This sets the default for new devices. It can be controlled later
58 * using ethtool.
59 */
dc8cfa55 60static int lro = true;
8ceee660
BH
61module_param(lro, int, 0644);
62MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63
64/*
65 * Use separate channels for TX and RX events
66 *
28b581ab
NT
67 * Set this to 1 to use separate channels for TX and RX. It allows us
68 * to control interrupt affinity separately for TX and RX.
8ceee660 69 *
28b581ab 70 * This is only used in MSI-X interrupt mode
8ceee660 71 */
28b581ab
NT
72static unsigned int separate_tx_channels;
73module_param(separate_tx_channels, uint, 0644);
74MODULE_PARM_DESC(separate_tx_channels,
75 "Use separate channels for TX and RX");
8ceee660
BH
76
77/* This is the weight assigned to each of the (per-channel) virtual
78 * NAPI devices.
79 */
80static int napi_weight = 64;
81
82/* This is the time (in jiffies) between invocations of the hardware
83 * monitor, which checks for known hardware bugs and resets the
84 * hardware and driver as necessary.
85 */
86unsigned int efx_monitor_interval = 1 * HZ;
87
8ceee660
BH
88/* This controls whether or not the driver will initialise devices
89 * with invalid MAC addresses stored in the EEPROM or flash. If true,
90 * such devices will be initialised with a random locally-generated
91 * MAC address. This allows for loading the sfc_mtd driver to
92 * reprogram the flash, even if the flash contents (including the MAC
93 * address) have previously been erased.
94 */
95static unsigned int allow_bad_hwaddr;
96
97/* Initial interrupt moderation settings. They can be modified after
98 * module load with ethtool.
99 *
100 * The default for RX should strike a balance between increasing the
101 * round-trip latency and reducing overhead.
102 */
103static unsigned int rx_irq_mod_usec = 60;
104
105/* Initial interrupt moderation settings. They can be modified after
106 * module load with ethtool.
107 *
108 * This default is chosen to ensure that a 10G link does not go idle
109 * while a TX queue is stopped after it has become full. A queue is
110 * restarted when it drops below half full. The time this takes (assuming
111 * worst case 3 descriptors per packet and 1024 descriptors) is
112 * 512 / 3 * 1.2 = 205 usec.
113 */
114static unsigned int tx_irq_mod_usec = 150;
115
116/* This is the first interrupt mode to try out of:
117 * 0 => MSI-X
118 * 1 => MSI
119 * 2 => legacy
120 */
121static unsigned int interrupt_mode;
122
123/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
124 * i.e. the number of CPUs among which we may distribute simultaneous
125 * interrupt handling.
126 *
127 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
128 * The default (0) means to assign an interrupt to each package (level II cache)
129 */
130static unsigned int rss_cpus;
131module_param(rss_cpus, uint, 0444);
132MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
133
84ae48fe
BH
134static int phy_flash_cfg;
135module_param(phy_flash_cfg, int, 0644);
136MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
137
8ceee660
BH
138/**************************************************************************
139 *
140 * Utility functions and prototypes
141 *
142 *************************************************************************/
143static void efx_remove_channel(struct efx_channel *channel);
144static void efx_remove_port(struct efx_nic *efx);
145static void efx_fini_napi(struct efx_nic *efx);
146static void efx_fini_channels(struct efx_nic *efx);
147
148#define EFX_ASSERT_RESET_SERIALISED(efx) \
149 do { \
3c78708f 150 if (efx->state == STATE_RUNNING) \
8ceee660
BH
151 ASSERT_RTNL(); \
152 } while (0)
153
154/**************************************************************************
155 *
156 * Event queue processing
157 *
158 *************************************************************************/
159
160/* Process channel's event queue
161 *
162 * This function is responsible for processing the event queue of a
163 * single channel. The caller must guarantee that this function will
164 * never be concurrently called more than once on the same channel,
165 * though different channels may be being processed concurrently.
166 */
4d566063 167static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 168{
42cbe2d7
BH
169 struct efx_nic *efx = channel->efx;
170 int rx_packets;
8ceee660 171
42cbe2d7 172 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 173 !channel->enabled))
42cbe2d7 174 return 0;
8ceee660 175
42cbe2d7
BH
176 rx_packets = falcon_process_eventq(channel, rx_quota);
177 if (rx_packets == 0)
178 return 0;
8ceee660
BH
179
180 /* Deliver last RX packet. */
181 if (channel->rx_pkt) {
182 __efx_rx_packet(channel, channel->rx_pkt,
183 channel->rx_pkt_csummed);
184 channel->rx_pkt = NULL;
185 }
186
187 efx_flush_lro(channel);
188 efx_rx_strategy(channel);
189
42cbe2d7 190 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 191
42cbe2d7 192 return rx_packets;
8ceee660
BH
193}
194
195/* Mark channel as finished processing
196 *
197 * Note that since we will not receive further interrupts for this
198 * channel before we finish processing and call the eventq_read_ack()
199 * method, there is no need to use the interrupt hold-off timers.
200 */
201static inline void efx_channel_processed(struct efx_channel *channel)
202{
5b9e207c
BH
203 /* The interrupt handler for this channel may set work_pending
204 * as soon as we acknowledge the events we've seen. Make sure
205 * it's cleared before then. */
dc8cfa55 206 channel->work_pending = false;
5b9e207c
BH
207 smp_wmb();
208
8ceee660
BH
209 falcon_eventq_read_ack(channel);
210}
211
212/* NAPI poll handler
213 *
214 * NAPI guarantees serialisation of polls of the same device, which
215 * provides the guarantee required by efx_process_channel().
216 */
217static int efx_poll(struct napi_struct *napi, int budget)
218{
219 struct efx_channel *channel =
220 container_of(napi, struct efx_channel, napi_str);
221 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
222 int rx_packets;
223
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
226
42cbe2d7 227 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
228
229 if (rx_packets < budget) {
230 /* There is no race here; although napi_disable() will
231 * only wait for netif_rx_complete(), this isn't a problem
232 * since efx_channel_processed() will have no effect if
233 * interrupts have already been disabled.
234 */
235 netif_rx_complete(napi_dev, napi);
236 efx_channel_processed(channel);
237 }
238
239 return rx_packets;
240}
241
242/* Process the eventq of the specified channel immediately on this CPU
243 *
244 * Disable hardware generated interrupts, wait for any existing
245 * processing to finish, then directly poll (and ack ) the eventq.
246 * Finally reenable NAPI and interrupts.
247 *
248 * Since we are touching interrupts the caller should hold the suspend lock
249 */
250void efx_process_channel_now(struct efx_channel *channel)
251{
252 struct efx_nic *efx = channel->efx;
253
254 BUG_ON(!channel->used_flags);
255 BUG_ON(!channel->enabled);
256
257 /* Disable interrupts and wait for ISRs to complete */
258 falcon_disable_interrupts(efx);
259 if (efx->legacy_irq)
260 synchronize_irq(efx->legacy_irq);
64ee3120 261 if (channel->irq)
8ceee660
BH
262 synchronize_irq(channel->irq);
263
264 /* Wait for any NAPI processing to complete */
265 napi_disable(&channel->napi_str);
266
267 /* Poll the channel */
91ad757c 268 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
269
270 /* Ack the eventq. This may cause an interrupt to be generated
271 * when they are reenabled */
272 efx_channel_processed(channel);
273
274 napi_enable(&channel->napi_str);
275 falcon_enable_interrupts(efx);
276}
277
278/* Create event queue
279 * Event queue memory allocations are done only once. If the channel
280 * is reset, the memory buffer will be reused; this guards against
281 * errors during channel reset and also simplifies interrupt handling.
282 */
283static int efx_probe_eventq(struct efx_channel *channel)
284{
285 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
286
287 return falcon_probe_eventq(channel);
288}
289
290/* Prepare channel's event queue */
bc3c90a2 291static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
292{
293 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
294
295 channel->eventq_read_ptr = 0;
296
bc3c90a2 297 falcon_init_eventq(channel);
8ceee660
BH
298}
299
300static void efx_fini_eventq(struct efx_channel *channel)
301{
302 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
303
304 falcon_fini_eventq(channel);
305}
306
307static void efx_remove_eventq(struct efx_channel *channel)
308{
309 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
310
311 falcon_remove_eventq(channel);
312}
313
314/**************************************************************************
315 *
316 * Channel handling
317 *
318 *************************************************************************/
319
8ceee660
BH
320static int efx_probe_channel(struct efx_channel *channel)
321{
322 struct efx_tx_queue *tx_queue;
323 struct efx_rx_queue *rx_queue;
324 int rc;
325
326 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
327
328 rc = efx_probe_eventq(channel);
329 if (rc)
330 goto fail1;
331
332 efx_for_each_channel_tx_queue(tx_queue, channel) {
333 rc = efx_probe_tx_queue(tx_queue);
334 if (rc)
335 goto fail2;
336 }
337
338 efx_for_each_channel_rx_queue(rx_queue, channel) {
339 rc = efx_probe_rx_queue(rx_queue);
340 if (rc)
341 goto fail3;
342 }
343
344 channel->n_rx_frm_trunc = 0;
345
346 return 0;
347
348 fail3:
349 efx_for_each_channel_rx_queue(rx_queue, channel)
350 efx_remove_rx_queue(rx_queue);
351 fail2:
352 efx_for_each_channel_tx_queue(tx_queue, channel)
353 efx_remove_tx_queue(tx_queue);
354 fail1:
355 return rc;
356}
357
358
359/* Channels are shutdown and reinitialised whilst the NIC is running
360 * to propagate configuration changes (mtu, checksum offload), or
361 * to clear hardware error conditions
362 */
bc3c90a2 363static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
364{
365 struct efx_tx_queue *tx_queue;
366 struct efx_rx_queue *rx_queue;
367 struct efx_channel *channel;
8ceee660 368
f7f13b0b
BH
369 /* Calculate the rx buffer allocation parameters required to
370 * support the current MTU, including padding for header
371 * alignment and overruns.
372 */
373 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
374 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
375 efx->type->rx_buffer_padding);
376 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
377
378 /* Initialise the channels */
379 efx_for_each_channel(channel, efx) {
380 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
381
bc3c90a2 382 efx_init_eventq(channel);
8ceee660 383
bc3c90a2
BH
384 efx_for_each_channel_tx_queue(tx_queue, channel)
385 efx_init_tx_queue(tx_queue);
8ceee660
BH
386
387 /* The rx buffer allocation strategy is MTU dependent */
388 efx_rx_strategy(channel);
389
bc3c90a2
BH
390 efx_for_each_channel_rx_queue(rx_queue, channel)
391 efx_init_rx_queue(rx_queue);
8ceee660
BH
392
393 WARN_ON(channel->rx_pkt != NULL);
394 efx_rx_strategy(channel);
395 }
8ceee660
BH
396}
397
398/* This enables event queue processing and packet transmission.
399 *
400 * Note that this function is not allowed to fail, since that would
401 * introduce too much complexity into the suspend/resume path.
402 */
403static void efx_start_channel(struct efx_channel *channel)
404{
405 struct efx_rx_queue *rx_queue;
406
407 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
408
409 if (!(channel->efx->net_dev->flags & IFF_UP))
410 netif_napi_add(channel->napi_dev, &channel->napi_str,
411 efx_poll, napi_weight);
412
5b9e207c
BH
413 /* The interrupt handler for this channel may set work_pending
414 * as soon as we enable it. Make sure it's cleared before
415 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
416 channel->work_pending = false;
417 channel->enabled = true;
5b9e207c 418 smp_wmb();
8ceee660
BH
419
420 napi_enable(&channel->napi_str);
421
422 /* Load up RX descriptors */
423 efx_for_each_channel_rx_queue(rx_queue, channel)
424 efx_fast_push_rx_descriptors(rx_queue);
425}
426
427/* This disables event queue processing and packet transmission.
428 * This function does not guarantee that all queue processing
429 * (e.g. RX refill) is complete.
430 */
431static void efx_stop_channel(struct efx_channel *channel)
432{
433 struct efx_rx_queue *rx_queue;
434
435 if (!channel->enabled)
436 return;
437
438 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
439
dc8cfa55 440 channel->enabled = false;
8ceee660
BH
441 napi_disable(&channel->napi_str);
442
443 /* Ensure that any worker threads have exited or will be no-ops */
444 efx_for_each_channel_rx_queue(rx_queue, channel) {
445 spin_lock_bh(&rx_queue->add_lock);
446 spin_unlock_bh(&rx_queue->add_lock);
447 }
448}
449
450static void efx_fini_channels(struct efx_nic *efx)
451{
452 struct efx_channel *channel;
453 struct efx_tx_queue *tx_queue;
454 struct efx_rx_queue *rx_queue;
6bc5d3a9 455 int rc;
8ceee660
BH
456
457 EFX_ASSERT_RESET_SERIALISED(efx);
458 BUG_ON(efx->port_enabled);
459
6bc5d3a9
BH
460 rc = falcon_flush_queues(efx);
461 if (rc)
462 EFX_ERR(efx, "failed to flush queues\n");
463 else
464 EFX_LOG(efx, "successfully flushed all queues\n");
465
8ceee660
BH
466 efx_for_each_channel(channel, efx) {
467 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
468
469 efx_for_each_channel_rx_queue(rx_queue, channel)
470 efx_fini_rx_queue(rx_queue);
471 efx_for_each_channel_tx_queue(tx_queue, channel)
472 efx_fini_tx_queue(tx_queue);
8ceee660
BH
473 efx_fini_eventq(channel);
474 }
475}
476
477static void efx_remove_channel(struct efx_channel *channel)
478{
479 struct efx_tx_queue *tx_queue;
480 struct efx_rx_queue *rx_queue;
481
482 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
483
484 efx_for_each_channel_rx_queue(rx_queue, channel)
485 efx_remove_rx_queue(rx_queue);
486 efx_for_each_channel_tx_queue(tx_queue, channel)
487 efx_remove_tx_queue(tx_queue);
488 efx_remove_eventq(channel);
489
490 channel->used_flags = 0;
491}
492
493void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
494{
495 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
496}
497
498/**************************************************************************
499 *
500 * Port handling
501 *
502 **************************************************************************/
503
504/* This ensures that the kernel is kept informed (via
505 * netif_carrier_on/off) of the link status, and also maintains the
506 * link status's stop on the port's TX queue.
507 */
508static void efx_link_status_changed(struct efx_nic *efx)
509{
8ceee660
BH
510 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
511 * that no events are triggered between unregister_netdev() and the
512 * driver unloading. A more general condition is that NETDEV_CHANGE
513 * can only be generated between NETDEV_UP and NETDEV_DOWN */
514 if (!netif_running(efx->net_dev))
515 return;
516
8c8661e4
BH
517 if (efx->port_inhibited) {
518 netif_carrier_off(efx->net_dev);
519 return;
520 }
521
dc8cfa55 522 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
523 efx->n_link_state_changes++;
524
525 if (efx->link_up)
526 netif_carrier_on(efx->net_dev);
527 else
528 netif_carrier_off(efx->net_dev);
529 }
530
531 /* Status message for kernel log */
532 if (efx->link_up) {
533 struct mii_if_info *gmii = &efx->mii;
534 unsigned adv, lpa;
535 /* NONE here means direct XAUI from the controller, with no
536 * MDIO-attached device we can query. */
537 if (efx->phy_type != PHY_TYPE_NONE) {
538 adv = gmii_advertised(gmii);
539 lpa = gmii_lpa(gmii);
540 } else {
541 lpa = GM_LPA_10000 | LPA_DUPLEX;
542 adv = lpa;
543 }
544 EFX_INFO(efx, "link up at %dMbps %s-duplex "
545 "(adv %04x lpa %04x) (MTU %d)%s\n",
546 (efx->link_options & GM_LPA_10000 ? 10000 :
547 (efx->link_options & GM_LPA_1000 ? 1000 :
548 (efx->link_options & GM_LPA_100 ? 100 :
549 10))),
550 (efx->link_options & GM_LPA_DUPLEX ?
551 "full" : "half"),
552 adv, lpa,
553 efx->net_dev->mtu,
554 (efx->promiscuous ? " [PROMISC]" : ""));
555 } else {
556 EFX_INFO(efx, "link down\n");
557 }
558
559}
560
561/* This call reinitialises the MAC to pick up new PHY settings. The
562 * caller must hold the mac_lock */
8c8661e4 563void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
564{
565 WARN_ON(!mutex_is_locked(&efx->mac_lock));
566
567 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
568 raw_smp_processor_id());
569
a816f75a
BH
570 /* Serialise the promiscuous flag with efx_set_multicast_list. */
571 if (efx_dev_registered(efx)) {
572 netif_addr_lock_bh(efx->net_dev);
573 netif_addr_unlock_bh(efx->net_dev);
574 }
575
8ceee660
BH
576 falcon_reconfigure_xmac(efx);
577
578 /* Inform kernel of loss/gain of carrier */
579 efx_link_status_changed(efx);
580}
581
582/* Reinitialise the MAC to pick up new PHY settings, even if the port is
583 * disabled. */
584void efx_reconfigure_port(struct efx_nic *efx)
585{
586 EFX_ASSERT_RESET_SERIALISED(efx);
587
588 mutex_lock(&efx->mac_lock);
589 __efx_reconfigure_port(efx);
590 mutex_unlock(&efx->mac_lock);
591}
592
593/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
594 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
595 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
596static void efx_reconfigure_work(struct work_struct *data)
597{
598 struct efx_nic *efx = container_of(data, struct efx_nic,
599 reconfigure_work);
600
601 mutex_lock(&efx->mac_lock);
602 if (efx->port_enabled)
603 __efx_reconfigure_port(efx);
604 mutex_unlock(&efx->mac_lock);
605}
606
607static int efx_probe_port(struct efx_nic *efx)
608{
609 int rc;
610
611 EFX_LOG(efx, "create port\n");
612
613 /* Connect up MAC/PHY operations table and read MAC address */
614 rc = falcon_probe_port(efx);
615 if (rc)
616 goto err;
617
84ae48fe
BH
618 if (phy_flash_cfg)
619 efx->phy_mode = PHY_MODE_SPECIAL;
620
8ceee660
BH
621 /* Sanity check MAC address */
622 if (is_valid_ether_addr(efx->mac_address)) {
623 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
624 } else {
e174961c
JB
625 EFX_ERR(efx, "invalid MAC address %pM\n",
626 efx->mac_address);
8ceee660
BH
627 if (!allow_bad_hwaddr) {
628 rc = -EINVAL;
629 goto err;
630 }
631 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
632 EFX_INFO(efx, "using locally-generated MAC %pM\n",
633 efx->net_dev->dev_addr);
8ceee660
BH
634 }
635
636 return 0;
637
638 err:
639 efx_remove_port(efx);
640 return rc;
641}
642
643static int efx_init_port(struct efx_nic *efx)
644{
645 int rc;
646
647 EFX_LOG(efx, "init port\n");
648
649 /* Initialise the MAC and PHY */
650 rc = falcon_init_xmac(efx);
651 if (rc)
652 return rc;
653
dc8cfa55 654 efx->port_initialized = true;
8c8661e4 655 efx->stats_enabled = true;
8ceee660
BH
656
657 /* Reconfigure port to program MAC registers */
658 falcon_reconfigure_xmac(efx);
659
660 return 0;
661}
662
663/* Allow efx_reconfigure_port() to be scheduled, and close the window
664 * between efx_stop_port and efx_flush_all whereby a previously scheduled
665 * efx_reconfigure_port() may have been cancelled */
666static void efx_start_port(struct efx_nic *efx)
667{
668 EFX_LOG(efx, "start port\n");
669 BUG_ON(efx->port_enabled);
670
671 mutex_lock(&efx->mac_lock);
dc8cfa55 672 efx->port_enabled = true;
8ceee660
BH
673 __efx_reconfigure_port(efx);
674 mutex_unlock(&efx->mac_lock);
675}
676
677/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
678 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
679 * efx_reconfigure_work can still be scheduled via NAPI processing
680 * until efx_flush_all() is called */
681static void efx_stop_port(struct efx_nic *efx)
682{
683 EFX_LOG(efx, "stop port\n");
684
685 mutex_lock(&efx->mac_lock);
dc8cfa55 686 efx->port_enabled = false;
8ceee660
BH
687 mutex_unlock(&efx->mac_lock);
688
689 /* Serialise against efx_set_multicast_list() */
55668611 690 if (efx_dev_registered(efx)) {
b9e40857
DM
691 netif_addr_lock_bh(efx->net_dev);
692 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
693 }
694}
695
696static void efx_fini_port(struct efx_nic *efx)
697{
698 EFX_LOG(efx, "shut down port\n");
699
700 if (!efx->port_initialized)
701 return;
702
703 falcon_fini_xmac(efx);
dc8cfa55 704 efx->port_initialized = false;
8ceee660 705
dc8cfa55 706 efx->link_up = false;
8ceee660
BH
707 efx_link_status_changed(efx);
708}
709
710static void efx_remove_port(struct efx_nic *efx)
711{
712 EFX_LOG(efx, "destroying port\n");
713
714 falcon_remove_port(efx);
715}
716
717/**************************************************************************
718 *
719 * NIC handling
720 *
721 **************************************************************************/
722
723/* This configures the PCI device to enable I/O and DMA. */
724static int efx_init_io(struct efx_nic *efx)
725{
726 struct pci_dev *pci_dev = efx->pci_dev;
727 dma_addr_t dma_mask = efx->type->max_dma_mask;
728 int rc;
729
730 EFX_LOG(efx, "initialising I/O\n");
731
732 rc = pci_enable_device(pci_dev);
733 if (rc) {
734 EFX_ERR(efx, "failed to enable PCI device\n");
735 goto fail1;
736 }
737
738 pci_set_master(pci_dev);
739
740 /* Set the PCI DMA mask. Try all possibilities from our
741 * genuine mask down to 32 bits, because some architectures
742 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
743 * masks event though they reject 46 bit masks.
744 */
745 while (dma_mask > 0x7fffffffUL) {
746 if (pci_dma_supported(pci_dev, dma_mask) &&
747 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
748 break;
749 dma_mask >>= 1;
750 }
751 if (rc) {
752 EFX_ERR(efx, "could not find a suitable DMA mask\n");
753 goto fail2;
754 }
755 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
756 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
757 if (rc) {
758 /* pci_set_consistent_dma_mask() is not *allowed* to
759 * fail with a mask that pci_set_dma_mask() accepted,
760 * but just in case...
761 */
762 EFX_ERR(efx, "failed to set consistent DMA mask\n");
763 goto fail2;
764 }
765
766 efx->membase_phys = pci_resource_start(efx->pci_dev,
767 efx->type->mem_bar);
768 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
769 if (rc) {
770 EFX_ERR(efx, "request for memory BAR failed\n");
771 rc = -EIO;
772 goto fail3;
773 }
774 efx->membase = ioremap_nocache(efx->membase_phys,
775 efx->type->mem_map_size);
776 if (!efx->membase) {
086ea356
BH
777 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
778 efx->type->mem_bar,
779 (unsigned long long)efx->membase_phys,
8ceee660
BH
780 efx->type->mem_map_size);
781 rc = -ENOMEM;
782 goto fail4;
783 }
086ea356
BH
784 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
785 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
786 efx->type->mem_map_size, efx->membase);
8ceee660
BH
787
788 return 0;
789
790 fail4:
e1074a0d 791 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 792 fail3:
2c118e0f 793 efx->membase_phys = 0;
8ceee660
BH
794 fail2:
795 pci_disable_device(efx->pci_dev);
796 fail1:
797 return rc;
798}
799
800static void efx_fini_io(struct efx_nic *efx)
801{
802 EFX_LOG(efx, "shutting down I/O\n");
803
804 if (efx->membase) {
805 iounmap(efx->membase);
806 efx->membase = NULL;
807 }
808
809 if (efx->membase_phys) {
810 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 811 efx->membase_phys = 0;
8ceee660
BH
812 }
813
814 pci_disable_device(efx->pci_dev);
815}
816
46123d04
BH
817/* Get number of RX queues wanted. Return number of online CPU
818 * packages in the expectation that an IRQ balancer will spread
819 * interrupts across them. */
820static int efx_wanted_rx_queues(void)
821{
822 cpumask_t core_mask;
823 int count;
824 int cpu;
825
826 cpus_clear(core_mask);
827 count = 0;
828 for_each_online_cpu(cpu) {
829 if (!cpu_isset(cpu, core_mask)) {
830 ++count;
831 cpus_or(core_mask, core_mask,
832 topology_core_siblings(cpu));
833 }
834 }
835
836 return count;
837}
838
839/* Probe the number and type of interrupts we are able to obtain, and
840 * the resulting numbers of channels and RX queues.
841 */
8ceee660
BH
842static void efx_probe_interrupts(struct efx_nic *efx)
843{
46123d04
BH
844 int max_channels =
845 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
846 int rc, i;
847
848 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
849 struct msix_entry xentries[EFX_MAX_CHANNELS];
850 int wanted_ints;
28b581ab 851 int rx_queues;
aa6ef27e 852
46123d04
BH
853 /* We want one RX queue and interrupt per CPU package
854 * (or as specified by the rss_cpus module parameter).
855 * We will need one channel per interrupt.
856 */
28b581ab
NT
857 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
858 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
859 wanted_ints = min(wanted_ints, max_channels);
8ceee660 860
28b581ab 861 for (i = 0; i < wanted_ints; i++)
8ceee660 862 xentries[i].entry = i;
28b581ab 863 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 864 if (rc > 0) {
28b581ab
NT
865 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
866 " available (%d < %d).\n", rc, wanted_ints);
867 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
868 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
869 wanted_ints = rc;
8ceee660 870 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 871 wanted_ints);
8ceee660
BH
872 }
873
874 if (rc == 0) {
28b581ab
NT
875 efx->n_rx_queues = min(rx_queues, wanted_ints);
876 efx->n_channels = wanted_ints;
877 for (i = 0; i < wanted_ints; i++)
8ceee660 878 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
879 } else {
880 /* Fall back to single channel MSI */
881 efx->interrupt_mode = EFX_INT_MODE_MSI;
882 EFX_ERR(efx, "could not enable MSI-X\n");
883 }
884 }
885
886 /* Try single interrupt MSI */
887 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 888 efx->n_rx_queues = 1;
28b581ab 889 efx->n_channels = 1;
8ceee660
BH
890 rc = pci_enable_msi(efx->pci_dev);
891 if (rc == 0) {
892 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
893 } else {
894 EFX_ERR(efx, "could not enable MSI\n");
895 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
896 }
897 }
898
899 /* Assume legacy interrupts */
900 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 901 efx->n_rx_queues = 1;
28b581ab 902 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
903 efx->legacy_irq = efx->pci_dev->irq;
904 }
905}
906
907static void efx_remove_interrupts(struct efx_nic *efx)
908{
909 struct efx_channel *channel;
910
911 /* Remove MSI/MSI-X interrupts */
64ee3120 912 efx_for_each_channel(channel, efx)
8ceee660
BH
913 channel->irq = 0;
914 pci_disable_msi(efx->pci_dev);
915 pci_disable_msix(efx->pci_dev);
916
917 /* Remove legacy interrupt */
918 efx->legacy_irq = 0;
919}
920
8831da7b 921static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
922{
923 struct efx_tx_queue *tx_queue;
924 struct efx_rx_queue *rx_queue;
8ceee660 925
60ac1065 926 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
927 if (separate_tx_channels)
928 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
929 else
930 tx_queue->channel = &efx->channel[0];
931 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
932 }
8ceee660 933
8831da7b
BH
934 efx_for_each_rx_queue(rx_queue, efx) {
935 rx_queue->channel = &efx->channel[rx_queue->queue];
936 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
937 }
938}
939
940static int efx_probe_nic(struct efx_nic *efx)
941{
942 int rc;
943
944 EFX_LOG(efx, "creating NIC\n");
945
946 /* Carry out hardware-type specific initialisation */
947 rc = falcon_probe_nic(efx);
948 if (rc)
949 return rc;
950
951 /* Determine the number of channels and RX queues by trying to hook
952 * in MSI-X interrupts. */
953 efx_probe_interrupts(efx);
954
8831da7b 955 efx_set_channels(efx);
8ceee660
BH
956
957 /* Initialise the interrupt moderation settings */
958 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
959
960 return 0;
961}
962
963static void efx_remove_nic(struct efx_nic *efx)
964{
965 EFX_LOG(efx, "destroying NIC\n");
966
967 efx_remove_interrupts(efx);
968 falcon_remove_nic(efx);
969}
970
971/**************************************************************************
972 *
973 * NIC startup/shutdown
974 *
975 *************************************************************************/
976
977static int efx_probe_all(struct efx_nic *efx)
978{
979 struct efx_channel *channel;
980 int rc;
981
982 /* Create NIC */
983 rc = efx_probe_nic(efx);
984 if (rc) {
985 EFX_ERR(efx, "failed to create NIC\n");
986 goto fail1;
987 }
988
989 /* Create port */
990 rc = efx_probe_port(efx);
991 if (rc) {
992 EFX_ERR(efx, "failed to create port\n");
993 goto fail2;
994 }
995
996 /* Create channels */
997 efx_for_each_channel(channel, efx) {
998 rc = efx_probe_channel(channel);
999 if (rc) {
1000 EFX_ERR(efx, "failed to create channel %d\n",
1001 channel->channel);
1002 goto fail3;
1003 }
1004 }
1005
1006 return 0;
1007
1008 fail3:
1009 efx_for_each_channel(channel, efx)
1010 efx_remove_channel(channel);
1011 efx_remove_port(efx);
1012 fail2:
1013 efx_remove_nic(efx);
1014 fail1:
1015 return rc;
1016}
1017
1018/* Called after previous invocation(s) of efx_stop_all, restarts the
1019 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1020 * and ensures that the port is scheduled to be reconfigured.
1021 * This function is safe to call multiple times when the NIC is in any
1022 * state. */
1023static void efx_start_all(struct efx_nic *efx)
1024{
1025 struct efx_channel *channel;
1026
1027 EFX_ASSERT_RESET_SERIALISED(efx);
1028
1029 /* Check that it is appropriate to restart the interface. All
1030 * of these flags are safe to read under just the rtnl lock */
1031 if (efx->port_enabled)
1032 return;
1033 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1034 return;
55668611 1035 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1036 return;
1037
1038 /* Mark the port as enabled so port reconfigurations can start, then
1039 * restart the transmit interface early so the watchdog timer stops */
1040 efx_start_port(efx);
dacccc74
SH
1041 if (efx_dev_registered(efx))
1042 efx_wake_queue(efx);
8ceee660
BH
1043
1044 efx_for_each_channel(channel, efx)
1045 efx_start_channel(channel);
1046
1047 falcon_enable_interrupts(efx);
1048
1049 /* Start hardware monitor if we're in RUNNING */
1050 if (efx->state == STATE_RUNNING)
1051 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1052 efx_monitor_interval);
1053}
1054
1055/* Flush all delayed work. Should only be called when no more delayed work
1056 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1057 * since we're holding the rtnl_lock at this point. */
1058static void efx_flush_all(struct efx_nic *efx)
1059{
1060 struct efx_rx_queue *rx_queue;
1061
1062 /* Make sure the hardware monitor is stopped */
1063 cancel_delayed_work_sync(&efx->monitor_work);
1064
1065 /* Ensure that all RX slow refills are complete. */
b3475645 1066 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1067 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1068
1069 /* Stop scheduled port reconfigurations */
1070 cancel_work_sync(&efx->reconfigure_work);
1071
1072}
1073
1074/* Quiesce hardware and software without bringing the link down.
1075 * Safe to call multiple times, when the nic and interface is in any
1076 * state. The caller is guaranteed to subsequently be in a position
1077 * to modify any hardware and software state they see fit without
1078 * taking locks. */
1079static void efx_stop_all(struct efx_nic *efx)
1080{
1081 struct efx_channel *channel;
1082
1083 EFX_ASSERT_RESET_SERIALISED(efx);
1084
1085 /* port_enabled can be read safely under the rtnl lock */
1086 if (!efx->port_enabled)
1087 return;
1088
1089 /* Disable interrupts and wait for ISR to complete */
1090 falcon_disable_interrupts(efx);
1091 if (efx->legacy_irq)
1092 synchronize_irq(efx->legacy_irq);
64ee3120 1093 efx_for_each_channel(channel, efx) {
8ceee660
BH
1094 if (channel->irq)
1095 synchronize_irq(channel->irq);
b3475645 1096 }
8ceee660
BH
1097
1098 /* Stop all NAPI processing and synchronous rx refills */
1099 efx_for_each_channel(channel, efx)
1100 efx_stop_channel(channel);
1101
1102 /* Stop all asynchronous port reconfigurations. Since all
1103 * event processing has already been stopped, there is no
1104 * window to loose phy events */
1105 efx_stop_port(efx);
1106
1107 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1108 efx_flush_all(efx);
1109
1110 /* Isolate the MAC from the TX and RX engines, so that queue
1111 * flushes will complete in a timely fashion. */
8ceee660
BH
1112 falcon_drain_tx_fifo(efx);
1113
1114 /* Stop the kernel transmit interface late, so the watchdog
1115 * timer isn't ticking over the flush */
55668611 1116 if (efx_dev_registered(efx)) {
dacccc74 1117 efx_stop_queue(efx);
8ceee660
BH
1118 netif_tx_lock_bh(efx->net_dev);
1119 netif_tx_unlock_bh(efx->net_dev);
1120 }
1121}
1122
1123static void efx_remove_all(struct efx_nic *efx)
1124{
1125 struct efx_channel *channel;
1126
1127 efx_for_each_channel(channel, efx)
1128 efx_remove_channel(channel);
1129 efx_remove_port(efx);
1130 efx_remove_nic(efx);
1131}
1132
1133/* A convinience function to safely flush all the queues */
bc3c90a2 1134void efx_flush_queues(struct efx_nic *efx)
8ceee660 1135{
8ceee660
BH
1136 EFX_ASSERT_RESET_SERIALISED(efx);
1137
1138 efx_stop_all(efx);
1139
1140 efx_fini_channels(efx);
bc3c90a2 1141 efx_init_channels(efx);
8ceee660
BH
1142
1143 efx_start_all(efx);
8ceee660
BH
1144}
1145
1146/**************************************************************************
1147 *
1148 * Interrupt moderation
1149 *
1150 **************************************************************************/
1151
1152/* Set interrupt moderation parameters */
1153void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1154{
1155 struct efx_tx_queue *tx_queue;
1156 struct efx_rx_queue *rx_queue;
1157
1158 EFX_ASSERT_RESET_SERIALISED(efx);
1159
1160 efx_for_each_tx_queue(tx_queue, efx)
1161 tx_queue->channel->irq_moderation = tx_usecs;
1162
1163 efx_for_each_rx_queue(rx_queue, efx)
1164 rx_queue->channel->irq_moderation = rx_usecs;
1165}
1166
1167/**************************************************************************
1168 *
1169 * Hardware monitor
1170 *
1171 **************************************************************************/
1172
1173/* Run periodically off the general workqueue. Serialised against
1174 * efx_reconfigure_port via the mac_lock */
1175static void efx_monitor(struct work_struct *data)
1176{
1177 struct efx_nic *efx = container_of(data, struct efx_nic,
1178 monitor_work.work);
1179 int rc = 0;
1180
1181 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1182 raw_smp_processor_id());
1183
1184
1185 /* If the mac_lock is already held then it is likely a port
1186 * reconfiguration is already in place, which will likely do
1187 * most of the work of check_hw() anyway. */
1188 if (!mutex_trylock(&efx->mac_lock)) {
1189 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1190 efx_monitor_interval);
1191 return;
1192 }
1193
1194 if (efx->port_enabled)
1195 rc = falcon_check_xmac(efx);
1196 mutex_unlock(&efx->mac_lock);
1197
8ceee660
BH
1198 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1199 efx_monitor_interval);
1200}
1201
1202/**************************************************************************
1203 *
1204 * ioctls
1205 *
1206 *************************************************************************/
1207
1208/* Net device ioctl
1209 * Context: process, rtnl_lock() held.
1210 */
1211static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1212{
767e468c 1213 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1214
1215 EFX_ASSERT_RESET_SERIALISED(efx);
1216
1217 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1218}
1219
1220/**************************************************************************
1221 *
1222 * NAPI interface
1223 *
1224 **************************************************************************/
1225
1226static int efx_init_napi(struct efx_nic *efx)
1227{
1228 struct efx_channel *channel;
1229 int rc;
1230
1231 efx_for_each_channel(channel, efx) {
1232 channel->napi_dev = efx->net_dev;
1233 rc = efx_lro_init(&channel->lro_mgr, efx);
1234 if (rc)
1235 goto err;
1236 }
1237 return 0;
1238 err:
1239 efx_fini_napi(efx);
1240 return rc;
1241}
1242
1243static void efx_fini_napi(struct efx_nic *efx)
1244{
1245 struct efx_channel *channel;
1246
1247 efx_for_each_channel(channel, efx) {
1248 efx_lro_fini(&channel->lro_mgr);
1249 channel->napi_dev = NULL;
1250 }
1251}
1252
1253/**************************************************************************
1254 *
1255 * Kernel netpoll interface
1256 *
1257 *************************************************************************/
1258
1259#ifdef CONFIG_NET_POLL_CONTROLLER
1260
1261/* Although in the common case interrupts will be disabled, this is not
1262 * guaranteed. However, all our work happens inside the NAPI callback,
1263 * so no locking is required.
1264 */
1265static void efx_netpoll(struct net_device *net_dev)
1266{
767e468c 1267 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1268 struct efx_channel *channel;
1269
64ee3120 1270 efx_for_each_channel(channel, efx)
8ceee660
BH
1271 efx_schedule_channel(channel);
1272}
1273
1274#endif
1275
1276/**************************************************************************
1277 *
1278 * Kernel net device interface
1279 *
1280 *************************************************************************/
1281
1282/* Context: process, rtnl_lock() held. */
1283static int efx_net_open(struct net_device *net_dev)
1284{
767e468c 1285 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1286 EFX_ASSERT_RESET_SERIALISED(efx);
1287
1288 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1289 raw_smp_processor_id());
1290
f8b87c17
BH
1291 if (efx->phy_mode & PHY_MODE_SPECIAL)
1292 return -EBUSY;
1293
8ceee660
BH
1294 efx_start_all(efx);
1295 return 0;
1296}
1297
1298/* Context: process, rtnl_lock() held.
1299 * Note that the kernel will ignore our return code; this method
1300 * should really be a void.
1301 */
1302static int efx_net_stop(struct net_device *net_dev)
1303{
767e468c 1304 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1305
1306 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1307 raw_smp_processor_id());
1308
1309 /* Stop the device and flush all the channels */
1310 efx_stop_all(efx);
1311 efx_fini_channels(efx);
bc3c90a2 1312 efx_init_channels(efx);
8ceee660
BH
1313
1314 return 0;
1315}
1316
5b9e207c 1317/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1318static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1319{
767e468c 1320 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1321 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1322 struct net_device_stats *stats = &net_dev->stats;
1323
5b9e207c
BH
1324 /* Update stats if possible, but do not wait if another thread
1325 * is updating them (or resetting the NIC); slightly stale
1326 * stats are acceptable.
1327 */
8ceee660
BH
1328 if (!spin_trylock(&efx->stats_lock))
1329 return stats;
8c8661e4 1330 if (efx->stats_enabled) {
8ceee660
BH
1331 falcon_update_stats_xmac(efx);
1332 falcon_update_nic_stats(efx);
1333 }
1334 spin_unlock(&efx->stats_lock);
1335
1336 stats->rx_packets = mac_stats->rx_packets;
1337 stats->tx_packets = mac_stats->tx_packets;
1338 stats->rx_bytes = mac_stats->rx_bytes;
1339 stats->tx_bytes = mac_stats->tx_bytes;
1340 stats->multicast = mac_stats->rx_multicast;
1341 stats->collisions = mac_stats->tx_collision;
1342 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1343 mac_stats->rx_length_error);
1344 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1345 stats->rx_crc_errors = mac_stats->rx_bad;
1346 stats->rx_frame_errors = mac_stats->rx_align_error;
1347 stats->rx_fifo_errors = mac_stats->rx_overflow;
1348 stats->rx_missed_errors = mac_stats->rx_missed;
1349 stats->tx_window_errors = mac_stats->tx_late_collision;
1350
1351 stats->rx_errors = (stats->rx_length_errors +
1352 stats->rx_over_errors +
1353 stats->rx_crc_errors +
1354 stats->rx_frame_errors +
1355 stats->rx_fifo_errors +
1356 stats->rx_missed_errors +
1357 mac_stats->rx_symbol_error);
1358 stats->tx_errors = (stats->tx_window_errors +
1359 mac_stats->tx_bad);
1360
1361 return stats;
1362}
1363
1364/* Context: netif_tx_lock held, BHs disabled. */
1365static void efx_watchdog(struct net_device *net_dev)
1366{
767e468c 1367 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1368
739bb23d
BH
1369 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1370 " resetting channels\n",
1371 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1372
739bb23d 1373 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1374}
1375
1376
1377/* Context: process, rtnl_lock() held. */
1378static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1379{
767e468c 1380 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1381 int rc = 0;
1382
1383 EFX_ASSERT_RESET_SERIALISED(efx);
1384
1385 if (new_mtu > EFX_MAX_MTU)
1386 return -EINVAL;
1387
1388 efx_stop_all(efx);
1389
1390 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1391
1392 efx_fini_channels(efx);
1393 net_dev->mtu = new_mtu;
bc3c90a2 1394 efx_init_channels(efx);
8ceee660
BH
1395
1396 efx_start_all(efx);
1397 return rc;
8ceee660
BH
1398}
1399
1400static int efx_set_mac_address(struct net_device *net_dev, void *data)
1401{
767e468c 1402 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1403 struct sockaddr *addr = data;
1404 char *new_addr = addr->sa_data;
1405
1406 EFX_ASSERT_RESET_SERIALISED(efx);
1407
1408 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1409 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1410 new_addr);
8ceee660
BH
1411 return -EINVAL;
1412 }
1413
1414 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1415
1416 /* Reconfigure the MAC */
1417 efx_reconfigure_port(efx);
1418
1419 return 0;
1420}
1421
a816f75a 1422/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1423static void efx_set_multicast_list(struct net_device *net_dev)
1424{
767e468c 1425 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1426 struct dev_mc_list *mc_list = net_dev->mc_list;
1427 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1428 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1429 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1430 u32 crc;
1431 int bit;
1432 int i;
1433
a816f75a 1434 efx->promiscuous = promiscuous;
8ceee660
BH
1435
1436 /* Build multicast hash table */
1437 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1438 memset(mc_hash, 0xff, sizeof(*mc_hash));
1439 } else {
1440 memset(mc_hash, 0x00, sizeof(*mc_hash));
1441 for (i = 0; i < net_dev->mc_count; i++) {
1442 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1443 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1444 set_bit_le(bit, mc_hash->byte);
1445 mc_list = mc_list->next;
1446 }
1447 }
1448
a816f75a
BH
1449 if (!efx->port_enabled)
1450 /* Delay pushing settings until efx_start_port() */
1451 return;
1452
1453 if (changed)
1454 queue_work(efx->workqueue, &efx->reconfigure_work);
1455
8ceee660
BH
1456 /* Create and activate new global multicast hash table */
1457 falcon_set_multicast_hash(efx);
1458}
1459
c3ecb9f3
SH
1460static const struct net_device_ops efx_netdev_ops = {
1461 .ndo_open = efx_net_open,
1462 .ndo_stop = efx_net_stop,
1463 .ndo_get_stats = efx_net_stats,
1464 .ndo_tx_timeout = efx_watchdog,
1465 .ndo_start_xmit = efx_hard_start_xmit,
1466 .ndo_validate_addr = eth_validate_addr,
1467 .ndo_do_ioctl = efx_ioctl,
1468 .ndo_change_mtu = efx_change_mtu,
1469 .ndo_set_mac_address = efx_set_mac_address,
1470 .ndo_set_multicast_list = efx_set_multicast_list,
1471#ifdef CONFIG_NET_POLL_CONTROLLER
1472 .ndo_poll_controller = efx_netpoll,
1473#endif
1474};
1475
8ceee660
BH
1476static int efx_netdev_event(struct notifier_block *this,
1477 unsigned long event, void *ptr)
1478{
d3208b5e 1479 struct net_device *net_dev = ptr;
8ceee660 1480
c3ecb9f3 1481 if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) {
767e468c 1482 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1483
1484 strcpy(efx->name, net_dev->name);
f4150724 1485 efx_mtd_rename(efx);
8ceee660
BH
1486 }
1487
1488 return NOTIFY_DONE;
1489}
1490
1491static struct notifier_block efx_netdev_notifier = {
1492 .notifier_call = efx_netdev_event,
1493};
1494
1495static int efx_register_netdev(struct efx_nic *efx)
1496{
1497 struct net_device *net_dev = efx->net_dev;
1498 int rc;
1499
1500 net_dev->watchdog_timeo = 5 * HZ;
1501 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1502 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1503 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1504 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1505
1506 /* Always start with carrier off; PHY events will detect the link */
1507 netif_carrier_off(efx->net_dev);
1508
1509 /* Clear MAC statistics */
1510 falcon_update_stats_xmac(efx);
1511 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1512
1513 rc = register_netdev(net_dev);
1514 if (rc) {
1515 EFX_ERR(efx, "could not register net dev\n");
1516 return rc;
1517 }
1518 strcpy(efx->name, net_dev->name);
1519
1520 return 0;
1521}
1522
1523static void efx_unregister_netdev(struct efx_nic *efx)
1524{
1525 struct efx_tx_queue *tx_queue;
1526
1527 if (!efx->net_dev)
1528 return;
1529
767e468c 1530 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1531
1532 /* Free up any skbs still remaining. This has to happen before
1533 * we try to unregister the netdev as running their destructors
1534 * may be needed to get the device ref. count to 0. */
1535 efx_for_each_tx_queue(tx_queue, efx)
1536 efx_release_tx_buffers(tx_queue);
1537
55668611 1538 if (efx_dev_registered(efx)) {
8ceee660
BH
1539 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1540 unregister_netdev(efx->net_dev);
1541 }
1542}
1543
1544/**************************************************************************
1545 *
1546 * Device reset and suspend
1547 *
1548 **************************************************************************/
1549
2467ca46
BH
1550/* Tears down the entire software state and most of the hardware state
1551 * before reset. */
8c8661e4 1552void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660
BH
1553{
1554 int rc;
1555
1556 EFX_ASSERT_RESET_SERIALISED(efx);
1557
2467ca46
BH
1558 /* The net_dev->get_stats handler is quite slow, and will fail
1559 * if a fetch is pending over reset. Serialise against it. */
1560 spin_lock(&efx->stats_lock);
8c8661e4 1561 efx->stats_enabled = false;
2467ca46
BH
1562 spin_unlock(&efx->stats_lock);
1563
1564 efx_stop_all(efx);
1565 mutex_lock(&efx->mac_lock);
f4150724 1566 mutex_lock(&efx->spi_lock);
2467ca46 1567
8ceee660 1568 rc = falcon_xmac_get_settings(efx, ecmd);
2467ca46 1569 if (rc)
8ceee660 1570 EFX_ERR(efx, "could not back up PHY settings\n");
8ceee660
BH
1571
1572 efx_fini_channels(efx);
8ceee660
BH
1573}
1574
2467ca46
BH
1575/* This function will always ensure that the locks acquired in
1576 * efx_reset_down() are released. A failure return code indicates
1577 * that we were unable to reinitialise the hardware, and the
1578 * driver should be disabled. If ok is false, then the rx and tx
1579 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1580int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1581{
1582 int rc;
1583
2467ca46 1584 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1585
2467ca46 1586 rc = falcon_init_nic(efx);
8ceee660 1587 if (rc) {
2467ca46
BH
1588 EFX_ERR(efx, "failed to initialise NIC\n");
1589 ok = false;
8ceee660
BH
1590 }
1591
2467ca46
BH
1592 if (ok) {
1593 efx_init_channels(efx);
8ceee660 1594
2467ca46
BH
1595 if (falcon_xmac_set_settings(efx, ecmd))
1596 EFX_ERR(efx, "could not restore PHY settings\n");
1597 }
1598
f4150724 1599 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1600 mutex_unlock(&efx->mac_lock);
1601
8c8661e4 1602 if (ok) {
2467ca46 1603 efx_start_all(efx);
8c8661e4
BH
1604 efx->stats_enabled = true;
1605 }
8ceee660
BH
1606 return rc;
1607}
1608
1609/* Reset the NIC as transparently as possible. Do not reset the PHY
1610 * Note that the reset may fail, in which case the card will be left
1611 * in a most-probably-unusable state.
1612 *
1613 * This function will sleep. You cannot reset from within an atomic
1614 * state; use efx_schedule_reset() instead.
1615 *
1616 * Grabs the rtnl_lock.
1617 */
1618static int efx_reset(struct efx_nic *efx)
1619{
1620 struct ethtool_cmd ecmd;
1621 enum reset_type method = efx->reset_pending;
1622 int rc;
1623
1624 /* Serialise with kernel interfaces */
1625 rtnl_lock();
1626
1627 /* If we're not RUNNING then don't reset. Leave the reset_pending
1628 * flag set so that efx_pci_probe_main will be retried */
1629 if (efx->state != STATE_RUNNING) {
1630 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1631 goto unlock_rtnl;
1632 }
1633
8ceee660
BH
1634 EFX_INFO(efx, "resetting (%d)\n", method);
1635
2467ca46 1636 efx_reset_down(efx, &ecmd);
8ceee660
BH
1637
1638 rc = falcon_reset_hw(efx, method);
1639 if (rc) {
1640 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1641 goto fail;
8ceee660
BH
1642 }
1643
1644 /* Allow resets to be rescheduled. */
1645 efx->reset_pending = RESET_TYPE_NONE;
1646
1647 /* Reinitialise bus-mastering, which may have been turned off before
1648 * the reset was scheduled. This is still appropriate, even in the
1649 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1650 * can respond to requests. */
1651 pci_set_master(efx->pci_dev);
1652
8ceee660
BH
1653 /* Leave device stopped if necessary */
1654 if (method == RESET_TYPE_DISABLE) {
8ceee660 1655 rc = -EIO;
2467ca46 1656 goto fail;
8ceee660
BH
1657 }
1658
2467ca46 1659 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1660 if (rc)
2467ca46 1661 goto disable;
8ceee660 1662
8ceee660 1663 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1664 unlock_rtnl:
1665 rtnl_unlock();
1666 return 0;
1667
2467ca46
BH
1668 fail:
1669 efx_reset_up(efx, &ecmd, false);
1670 disable:
8ceee660
BH
1671 EFX_ERR(efx, "has been disabled\n");
1672 efx->state = STATE_DISABLED;
1673
8ceee660
BH
1674 rtnl_unlock();
1675 efx_unregister_netdev(efx);
1676 efx_fini_port(efx);
1677 return rc;
1678}
1679
1680/* The worker thread exists so that code that cannot sleep can
1681 * schedule a reset for later.
1682 */
1683static void efx_reset_work(struct work_struct *data)
1684{
1685 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1686
1687 efx_reset(nic);
1688}
1689
1690void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1691{
1692 enum reset_type method;
1693
1694 if (efx->reset_pending != RESET_TYPE_NONE) {
1695 EFX_INFO(efx, "quenching already scheduled reset\n");
1696 return;
1697 }
1698
1699 switch (type) {
1700 case RESET_TYPE_INVISIBLE:
1701 case RESET_TYPE_ALL:
1702 case RESET_TYPE_WORLD:
1703 case RESET_TYPE_DISABLE:
1704 method = type;
1705 break;
1706 case RESET_TYPE_RX_RECOVERY:
1707 case RESET_TYPE_RX_DESC_FETCH:
1708 case RESET_TYPE_TX_DESC_FETCH:
1709 case RESET_TYPE_TX_SKIP:
1710 method = RESET_TYPE_INVISIBLE;
1711 break;
1712 default:
1713 method = RESET_TYPE_ALL;
1714 break;
1715 }
1716
1717 if (method != type)
1718 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1719 else
1720 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1721
1722 efx->reset_pending = method;
1723
1ab00629 1724 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1725}
1726
1727/**************************************************************************
1728 *
1729 * List of NICs we support
1730 *
1731 **************************************************************************/
1732
1733/* PCI device ID table */
1734static struct pci_device_id efx_pci_table[] __devinitdata = {
1735 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1736 .driver_data = (unsigned long) &falcon_a_nic_type},
1737 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1738 .driver_data = (unsigned long) &falcon_b_nic_type},
1739 {0} /* end of list */
1740};
1741
1742/**************************************************************************
1743 *
1744 * Dummy PHY/MAC/Board operations
1745 *
01aad7b6 1746 * Can be used for some unimplemented operations
8ceee660
BH
1747 * Needed so all function pointers are valid and do not have to be tested
1748 * before use
1749 *
1750 **************************************************************************/
1751int efx_port_dummy_op_int(struct efx_nic *efx)
1752{
1753 return 0;
1754}
1755void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1756void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1757
1758static struct efx_phy_operations efx_dummy_phy_operations = {
1759 .init = efx_port_dummy_op_int,
1760 .reconfigure = efx_port_dummy_op_void,
1761 .check_hw = efx_port_dummy_op_int,
1762 .fini = efx_port_dummy_op_void,
1763 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1764};
1765
8ceee660 1766static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1767 .init = efx_port_dummy_op_int,
1768 .init_leds = efx_port_dummy_op_int,
1769 .set_fault_led = efx_port_dummy_op_blink,
a17102b1 1770 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1771 .blink = efx_port_dummy_op_blink,
1772 .fini = efx_port_dummy_op_void,
8ceee660
BH
1773};
1774
1775/**************************************************************************
1776 *
1777 * Data housekeeping
1778 *
1779 **************************************************************************/
1780
1781/* This zeroes out and then fills in the invariants in a struct
1782 * efx_nic (including all sub-structures).
1783 */
1784static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1785 struct pci_dev *pci_dev, struct net_device *net_dev)
1786{
1787 struct efx_channel *channel;
1788 struct efx_tx_queue *tx_queue;
1789 struct efx_rx_queue *rx_queue;
1ab00629 1790 int i;
8ceee660
BH
1791
1792 /* Initialise common structures */
1793 memset(efx, 0, sizeof(*efx));
1794 spin_lock_init(&efx->biu_lock);
1795 spin_lock_init(&efx->phy_lock);
f4150724 1796 mutex_init(&efx->spi_lock);
8ceee660
BH
1797 INIT_WORK(&efx->reset_work, efx_reset_work);
1798 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1799 efx->pci_dev = pci_dev;
1800 efx->state = STATE_INIT;
1801 efx->reset_pending = RESET_TYPE_NONE;
1802 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1803 efx->board_info = efx_dummy_board_info;
1804
1805 efx->net_dev = net_dev;
dc8cfa55 1806 efx->rx_checksum_enabled = true;
8ceee660
BH
1807 spin_lock_init(&efx->netif_stop_lock);
1808 spin_lock_init(&efx->stats_lock);
1809 mutex_init(&efx->mac_lock);
1810 efx->phy_op = &efx_dummy_phy_operations;
1811 efx->mii.dev = net_dev;
1812 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1813 atomic_set(&efx->netif_stop_count, 1);
1814
1815 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1816 channel = &efx->channel[i];
1817 channel->efx = efx;
1818 channel->channel = i;
dc8cfa55 1819 channel->work_pending = false;
8ceee660 1820 }
60ac1065 1821 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1822 tx_queue = &efx->tx_queue[i];
1823 tx_queue->efx = efx;
1824 tx_queue->queue = i;
1825 tx_queue->buffer = NULL;
1826 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1827 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1828 }
1829 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1830 rx_queue = &efx->rx_queue[i];
1831 rx_queue->efx = efx;
1832 rx_queue->queue = i;
1833 rx_queue->channel = &efx->channel[0]; /* for safety */
1834 rx_queue->buffer = NULL;
1835 spin_lock_init(&rx_queue->add_lock);
1836 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1837 }
1838
1839 efx->type = type;
1840
1841 /* Sanity-check NIC type */
1842 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1843 (efx->type->txd_ring_mask + 1));
1844 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1845 (efx->type->rxd_ring_mask + 1));
1846 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1847 (efx->type->evq_size - 1));
1848 /* As close as we can get to guaranteeing that we don't overflow */
1849 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1850 (efx->type->txd_ring_mask + 1 +
1851 efx->type->rxd_ring_mask + 1));
1852 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1853
1854 /* Higher numbered interrupt modes are less capable! */
1855 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1856 interrupt_mode);
1857
1858 efx->workqueue = create_singlethread_workqueue("sfc_work");
1ab00629
SH
1859 if (!efx->workqueue)
1860 return -ENOMEM;
8d9853d9 1861
8ceee660 1862 return 0;
8ceee660
BH
1863}
1864
1865static void efx_fini_struct(struct efx_nic *efx)
1866{
1867 if (efx->workqueue) {
1868 destroy_workqueue(efx->workqueue);
1869 efx->workqueue = NULL;
1870 }
1871}
1872
1873/**************************************************************************
1874 *
1875 * PCI interface
1876 *
1877 **************************************************************************/
1878
1879/* Main body of final NIC shutdown code
1880 * This is called only at module unload (or hotplug removal).
1881 */
1882static void efx_pci_remove_main(struct efx_nic *efx)
1883{
1884 EFX_ASSERT_RESET_SERIALISED(efx);
1885
1886 /* Skip everything if we never obtained a valid membase */
1887 if (!efx->membase)
1888 return;
1889
1890 efx_fini_channels(efx);
1891 efx_fini_port(efx);
1892
1893 /* Shutdown the board, then the NIC and board state */
37b5a603 1894 efx->board_info.fini(efx);
8ceee660
BH
1895 falcon_fini_interrupt(efx);
1896
1897 efx_fini_napi(efx);
1898 efx_remove_all(efx);
1899}
1900
1901/* Final NIC shutdown
1902 * This is called only at module unload (or hotplug removal).
1903 */
1904static void efx_pci_remove(struct pci_dev *pci_dev)
1905{
1906 struct efx_nic *efx;
1907
1908 efx = pci_get_drvdata(pci_dev);
1909 if (!efx)
1910 return;
1911
f4150724
BH
1912 efx_mtd_remove(efx);
1913
8ceee660
BH
1914 /* Mark the NIC as fini, then stop the interface */
1915 rtnl_lock();
1916 efx->state = STATE_FINI;
1917 dev_close(efx->net_dev);
1918
1919 /* Allow any queued efx_resets() to complete */
1920 rtnl_unlock();
1921
1922 if (efx->membase == NULL)
1923 goto out;
1924
1925 efx_unregister_netdev(efx);
1926
1927 /* Wait for any scheduled resets to complete. No more will be
1928 * scheduled from this point because efx_stop_all() has been
1929 * called, we are no longer registered with driverlink, and
1930 * the net_device's have been removed. */
1ab00629 1931 cancel_work_sync(&efx->reset_work);
8ceee660
BH
1932
1933 efx_pci_remove_main(efx);
1934
1935out:
1936 efx_fini_io(efx);
1937 EFX_LOG(efx, "shutdown successful\n");
1938
1939 pci_set_drvdata(pci_dev, NULL);
1940 efx_fini_struct(efx);
1941 free_netdev(efx->net_dev);
1942};
1943
1944/* Main body of NIC initialisation
1945 * This is called at module load (or hotplug insertion, theoretically).
1946 */
1947static int efx_pci_probe_main(struct efx_nic *efx)
1948{
1949 int rc;
1950
1951 /* Do start-of-day initialisation */
1952 rc = efx_probe_all(efx);
1953 if (rc)
1954 goto fail1;
1955
1956 rc = efx_init_napi(efx);
1957 if (rc)
1958 goto fail2;
1959
1960 /* Initialise the board */
1961 rc = efx->board_info.init(efx);
1962 if (rc) {
1963 EFX_ERR(efx, "failed to initialise board\n");
1964 goto fail3;
1965 }
1966
1967 rc = falcon_init_nic(efx);
1968 if (rc) {
1969 EFX_ERR(efx, "failed to initialise NIC\n");
1970 goto fail4;
1971 }
1972
1973 rc = efx_init_port(efx);
1974 if (rc) {
1975 EFX_ERR(efx, "failed to initialise port\n");
1976 goto fail5;
1977 }
1978
bc3c90a2 1979 efx_init_channels(efx);
8ceee660
BH
1980
1981 rc = falcon_init_interrupt(efx);
1982 if (rc)
bc3c90a2 1983 goto fail6;
8ceee660
BH
1984
1985 return 0;
1986
8ceee660 1987 fail6:
bc3c90a2 1988 efx_fini_channels(efx);
8ceee660
BH
1989 efx_fini_port(efx);
1990 fail5:
1991 fail4:
a17102b1 1992 efx->board_info.fini(efx);
8ceee660
BH
1993 fail3:
1994 efx_fini_napi(efx);
1995 fail2:
1996 efx_remove_all(efx);
1997 fail1:
1998 return rc;
1999}
2000
2001/* NIC initialisation
2002 *
2003 * This is called at module load (or hotplug insertion,
2004 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2005 * sets up and registers the network devices with the kernel and hooks
2006 * the interrupt service routine. It does not prepare the device for
2007 * transmission; this is left to the first time one of the network
2008 * interfaces is brought up (i.e. efx_net_open).
2009 */
2010static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2011 const struct pci_device_id *entry)
2012{
2013 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2014 struct net_device *net_dev;
2015 struct efx_nic *efx;
2016 int i, rc;
2017
2018 /* Allocate and initialise a struct net_device and struct efx_nic */
2019 net_dev = alloc_etherdev(sizeof(*efx));
2020 if (!net_dev)
2021 return -ENOMEM;
b9b39b62
BH
2022 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2023 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2024 if (lro)
2025 net_dev->features |= NETIF_F_LRO;
28506563
BH
2026 /* Mask for features that also apply to VLAN devices */
2027 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2028 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2029 efx = netdev_priv(net_dev);
8ceee660
BH
2030 pci_set_drvdata(pci_dev, efx);
2031 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2032 if (rc)
2033 goto fail1;
2034
2035 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2036
2037 /* Set up basic I/O (BAR mappings etc) */
2038 rc = efx_init_io(efx);
2039 if (rc)
2040 goto fail2;
2041
2042 /* No serialisation is required with the reset path because
2043 * we're in STATE_INIT. */
2044 for (i = 0; i < 5; i++) {
2045 rc = efx_pci_probe_main(efx);
2046 if (rc == 0)
2047 break;
2048
2049 /* Serialise against efx_reset(). No more resets will be
2050 * scheduled since efx_stop_all() has been called, and we
2051 * have not and never have been registered with either
2052 * the rtnetlink or driverlink layers. */
1ab00629 2053 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2054
2055 /* Retry if a recoverably reset event has been scheduled */
2056 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2057 (efx->reset_pending != RESET_TYPE_ALL))
2058 goto fail3;
2059
2060 efx->reset_pending = RESET_TYPE_NONE;
2061 }
2062
2063 if (rc) {
2064 EFX_ERR(efx, "Could not reset NIC\n");
2065 goto fail4;
2066 }
2067
2068 /* Switch to the running state before we expose the device to
2069 * the OS. This is to ensure that the initial gathering of
2070 * MAC stats succeeds. */
2071 rtnl_lock();
2072 efx->state = STATE_RUNNING;
2073 rtnl_unlock();
2074
2075 rc = efx_register_netdev(efx);
2076 if (rc)
2077 goto fail5;
2078
2079 EFX_LOG(efx, "initialisation successful\n");
2080
f4150724 2081 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2082 return 0;
2083
2084 fail5:
2085 efx_pci_remove_main(efx);
2086 fail4:
2087 fail3:
2088 efx_fini_io(efx);
2089 fail2:
2090 efx_fini_struct(efx);
2091 fail1:
2092 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2093 free_netdev(net_dev);
2094 return rc;
2095}
2096
2097static struct pci_driver efx_pci_driver = {
2098 .name = EFX_DRIVER_NAME,
2099 .id_table = efx_pci_table,
2100 .probe = efx_pci_probe,
2101 .remove = efx_pci_remove,
2102};
2103
2104/**************************************************************************
2105 *
2106 * Kernel module interface
2107 *
2108 *************************************************************************/
2109
2110module_param(interrupt_mode, uint, 0444);
2111MODULE_PARM_DESC(interrupt_mode,
2112 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2113
2114static int __init efx_init_module(void)
2115{
2116 int rc;
2117
2118 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2119
2120 rc = register_netdevice_notifier(&efx_netdev_notifier);
2121 if (rc)
2122 goto err_notifier;
2123
2124 refill_workqueue = create_workqueue("sfc_refill");
2125 if (!refill_workqueue) {
2126 rc = -ENOMEM;
2127 goto err_refill;
2128 }
1ab00629
SH
2129 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2130 if (!reset_workqueue) {
2131 rc = -ENOMEM;
2132 goto err_reset;
2133 }
8ceee660
BH
2134
2135 rc = pci_register_driver(&efx_pci_driver);
2136 if (rc < 0)
2137 goto err_pci;
2138
2139 return 0;
2140
2141 err_pci:
1ab00629
SH
2142 destroy_workqueue(reset_workqueue);
2143 err_reset:
8ceee660
BH
2144 destroy_workqueue(refill_workqueue);
2145 err_refill:
2146 unregister_netdevice_notifier(&efx_netdev_notifier);
2147 err_notifier:
2148 return rc;
2149}
2150
2151static void __exit efx_exit_module(void)
2152{
2153 printk(KERN_INFO "Solarflare NET driver unloading\n");
2154
2155 pci_unregister_driver(&efx_pci_driver);
1ab00629 2156 destroy_workqueue(reset_workqueue);
8ceee660
BH
2157 destroy_workqueue(refill_workqueue);
2158 unregister_netdevice_notifier(&efx_netdev_notifier);
2159
2160}
2161
2162module_init(efx_init_module);
2163module_exit(efx_exit_module);
2164
2165MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2166 "Solarflare Communications");
2167MODULE_DESCRIPTION("Solarflare Communications network driver");
2168MODULE_LICENSE("GPL");
2169MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.204699 seconds and 5 git commands to generate.