sfc: Clean up MDIO flag setting
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30#include "mac.h"
31
32#define EFX_MAX_MTU (9 * 1024)
33
34/* RX slow fill workqueue. If memory allocation fails in the fast path,
35 * a work item is pushed onto this work queue to retry the allocation later,
36 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
37 * workqueue, there is nothing to be gained in making it per NIC
38 */
39static struct workqueue_struct *refill_workqueue;
40
1ab00629
SH
41/* Reset workqueue. If any NIC has a hardware failure then a reset will be
42 * queued onto this work queue. This is not a per-nic work queue, because
43 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 */
45static struct workqueue_struct *reset_workqueue;
46
8ceee660
BH
47/**************************************************************************
48 *
49 * Configurable values
50 *
51 *************************************************************************/
52
53/*
54 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
55 *
56 * This sets the default for new devices. It can be controlled later
57 * using ethtool.
58 */
dc8cfa55 59static int lro = true;
8ceee660
BH
60module_param(lro, int, 0644);
61MODULE_PARM_DESC(lro, "Large receive offload acceleration");
62
63/*
64 * Use separate channels for TX and RX events
65 *
28b581ab
NT
66 * Set this to 1 to use separate channels for TX and RX. It allows us
67 * to control interrupt affinity separately for TX and RX.
8ceee660 68 *
28b581ab 69 * This is only used in MSI-X interrupt mode
8ceee660 70 */
28b581ab
NT
71static unsigned int separate_tx_channels;
72module_param(separate_tx_channels, uint, 0644);
73MODULE_PARM_DESC(separate_tx_channels,
74 "Use separate channels for TX and RX");
8ceee660
BH
75
76/* This is the weight assigned to each of the (per-channel) virtual
77 * NAPI devices.
78 */
79static int napi_weight = 64;
80
81/* This is the time (in jiffies) between invocations of the hardware
82 * monitor, which checks for known hardware bugs and resets the
83 * hardware and driver as necessary.
84 */
85unsigned int efx_monitor_interval = 1 * HZ;
86
8ceee660
BH
87/* This controls whether or not the driver will initialise devices
88 * with invalid MAC addresses stored in the EEPROM or flash. If true,
89 * such devices will be initialised with a random locally-generated
90 * MAC address. This allows for loading the sfc_mtd driver to
91 * reprogram the flash, even if the flash contents (including the MAC
92 * address) have previously been erased.
93 */
94static unsigned int allow_bad_hwaddr;
95
96/* Initial interrupt moderation settings. They can be modified after
97 * module load with ethtool.
98 *
99 * The default for RX should strike a balance between increasing the
100 * round-trip latency and reducing overhead.
101 */
102static unsigned int rx_irq_mod_usec = 60;
103
104/* Initial interrupt moderation settings. They can be modified after
105 * module load with ethtool.
106 *
107 * This default is chosen to ensure that a 10G link does not go idle
108 * while a TX queue is stopped after it has become full. A queue is
109 * restarted when it drops below half full. The time this takes (assuming
110 * worst case 3 descriptors per packet and 1024 descriptors) is
111 * 512 / 3 * 1.2 = 205 usec.
112 */
113static unsigned int tx_irq_mod_usec = 150;
114
115/* This is the first interrupt mode to try out of:
116 * 0 => MSI-X
117 * 1 => MSI
118 * 2 => legacy
119 */
120static unsigned int interrupt_mode;
121
122/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
123 * i.e. the number of CPUs among which we may distribute simultaneous
124 * interrupt handling.
125 *
126 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
127 * The default (0) means to assign an interrupt to each package (level II cache)
128 */
129static unsigned int rss_cpus;
130module_param(rss_cpus, uint, 0444);
131MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132
84ae48fe
BH
133static int phy_flash_cfg;
134module_param(phy_flash_cfg, int, 0644);
135MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
136
8ceee660
BH
137/**************************************************************************
138 *
139 * Utility functions and prototypes
140 *
141 *************************************************************************/
142static void efx_remove_channel(struct efx_channel *channel);
143static void efx_remove_port(struct efx_nic *efx);
144static void efx_fini_napi(struct efx_nic *efx);
145static void efx_fini_channels(struct efx_nic *efx);
146
147#define EFX_ASSERT_RESET_SERIALISED(efx) \
148 do { \
3c78708f 149 if (efx->state == STATE_RUNNING) \
8ceee660
BH
150 ASSERT_RTNL(); \
151 } while (0)
152
153/**************************************************************************
154 *
155 * Event queue processing
156 *
157 *************************************************************************/
158
159/* Process channel's event queue
160 *
161 * This function is responsible for processing the event queue of a
162 * single channel. The caller must guarantee that this function will
163 * never be concurrently called more than once on the same channel,
164 * though different channels may be being processed concurrently.
165 */
4d566063 166static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 167{
42cbe2d7
BH
168 struct efx_nic *efx = channel->efx;
169 int rx_packets;
8ceee660 170
42cbe2d7 171 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 172 !channel->enabled))
42cbe2d7 173 return 0;
8ceee660 174
42cbe2d7
BH
175 rx_packets = falcon_process_eventq(channel, rx_quota);
176 if (rx_packets == 0)
177 return 0;
8ceee660
BH
178
179 /* Deliver last RX packet. */
180 if (channel->rx_pkt) {
181 __efx_rx_packet(channel, channel->rx_pkt,
182 channel->rx_pkt_csummed);
183 channel->rx_pkt = NULL;
184 }
185
186 efx_flush_lro(channel);
187 efx_rx_strategy(channel);
188
42cbe2d7 189 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 190
42cbe2d7 191 return rx_packets;
8ceee660
BH
192}
193
194/* Mark channel as finished processing
195 *
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
199 */
200static inline void efx_channel_processed(struct efx_channel *channel)
201{
5b9e207c
BH
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
dc8cfa55 205 channel->work_pending = false;
5b9e207c
BH
206 smp_wmb();
207
8ceee660
BH
208 falcon_eventq_read_ack(channel);
209}
210
211/* NAPI poll handler
212 *
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
215 */
216static int efx_poll(struct napi_struct *napi, int budget)
217{
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
221 int rx_packets;
222
223 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
224 channel->channel, raw_smp_processor_id());
225
42cbe2d7 226 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
227
228 if (rx_packets < budget) {
229 /* There is no race here; although napi_disable() will
230 * only wait for netif_rx_complete(), this isn't a problem
231 * since efx_channel_processed() will have no effect if
232 * interrupts have already been disabled.
233 */
234 netif_rx_complete(napi_dev, napi);
235 efx_channel_processed(channel);
236 }
237
238 return rx_packets;
239}
240
241/* Process the eventq of the specified channel immediately on this CPU
242 *
243 * Disable hardware generated interrupts, wait for any existing
244 * processing to finish, then directly poll (and ack ) the eventq.
245 * Finally reenable NAPI and interrupts.
246 *
247 * Since we are touching interrupts the caller should hold the suspend lock
248 */
249void efx_process_channel_now(struct efx_channel *channel)
250{
251 struct efx_nic *efx = channel->efx;
252
253 BUG_ON(!channel->used_flags);
254 BUG_ON(!channel->enabled);
255
256 /* Disable interrupts and wait for ISRs to complete */
257 falcon_disable_interrupts(efx);
258 if (efx->legacy_irq)
259 synchronize_irq(efx->legacy_irq);
64ee3120 260 if (channel->irq)
8ceee660
BH
261 synchronize_irq(channel->irq);
262
263 /* Wait for any NAPI processing to complete */
264 napi_disable(&channel->napi_str);
265
266 /* Poll the channel */
91ad757c 267 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
268
269 /* Ack the eventq. This may cause an interrupt to be generated
270 * when they are reenabled */
271 efx_channel_processed(channel);
272
273 napi_enable(&channel->napi_str);
274 falcon_enable_interrupts(efx);
275}
276
277/* Create event queue
278 * Event queue memory allocations are done only once. If the channel
279 * is reset, the memory buffer will be reused; this guards against
280 * errors during channel reset and also simplifies interrupt handling.
281 */
282static int efx_probe_eventq(struct efx_channel *channel)
283{
284 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
285
286 return falcon_probe_eventq(channel);
287}
288
289/* Prepare channel's event queue */
bc3c90a2 290static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
291{
292 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
293
294 channel->eventq_read_ptr = 0;
295
bc3c90a2 296 falcon_init_eventq(channel);
8ceee660
BH
297}
298
299static void efx_fini_eventq(struct efx_channel *channel)
300{
301 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
302
303 falcon_fini_eventq(channel);
304}
305
306static void efx_remove_eventq(struct efx_channel *channel)
307{
308 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
309
310 falcon_remove_eventq(channel);
311}
312
313/**************************************************************************
314 *
315 * Channel handling
316 *
317 *************************************************************************/
318
8ceee660
BH
319static int efx_probe_channel(struct efx_channel *channel)
320{
321 struct efx_tx_queue *tx_queue;
322 struct efx_rx_queue *rx_queue;
323 int rc;
324
325 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
326
327 rc = efx_probe_eventq(channel);
328 if (rc)
329 goto fail1;
330
331 efx_for_each_channel_tx_queue(tx_queue, channel) {
332 rc = efx_probe_tx_queue(tx_queue);
333 if (rc)
334 goto fail2;
335 }
336
337 efx_for_each_channel_rx_queue(rx_queue, channel) {
338 rc = efx_probe_rx_queue(rx_queue);
339 if (rc)
340 goto fail3;
341 }
342
343 channel->n_rx_frm_trunc = 0;
344
345 return 0;
346
347 fail3:
348 efx_for_each_channel_rx_queue(rx_queue, channel)
349 efx_remove_rx_queue(rx_queue);
350 fail2:
351 efx_for_each_channel_tx_queue(tx_queue, channel)
352 efx_remove_tx_queue(tx_queue);
353 fail1:
354 return rc;
355}
356
357
56536e9c
BH
358static void efx_set_channel_names(struct efx_nic *efx)
359{
360 struct efx_channel *channel;
361 const char *type = "";
362 int number;
363
364 efx_for_each_channel(channel, efx) {
365 number = channel->channel;
366 if (efx->n_channels > efx->n_rx_queues) {
367 if (channel->channel < efx->n_rx_queues) {
368 type = "-rx";
369 } else {
370 type = "-tx";
371 number -= efx->n_rx_queues;
372 }
373 }
374 snprintf(channel->name, sizeof(channel->name),
375 "%s%s-%d", efx->name, type, number);
376 }
377}
378
8ceee660
BH
379/* Channels are shutdown and reinitialised whilst the NIC is running
380 * to propagate configuration changes (mtu, checksum offload), or
381 * to clear hardware error conditions
382 */
bc3c90a2 383static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
384{
385 struct efx_tx_queue *tx_queue;
386 struct efx_rx_queue *rx_queue;
387 struct efx_channel *channel;
8ceee660 388
f7f13b0b
BH
389 /* Calculate the rx buffer allocation parameters required to
390 * support the current MTU, including padding for header
391 * alignment and overruns.
392 */
393 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
394 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
395 efx->type->rx_buffer_padding);
396 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
397
398 /* Initialise the channels */
399 efx_for_each_channel(channel, efx) {
400 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
401
bc3c90a2 402 efx_init_eventq(channel);
8ceee660 403
bc3c90a2
BH
404 efx_for_each_channel_tx_queue(tx_queue, channel)
405 efx_init_tx_queue(tx_queue);
8ceee660
BH
406
407 /* The rx buffer allocation strategy is MTU dependent */
408 efx_rx_strategy(channel);
409
bc3c90a2
BH
410 efx_for_each_channel_rx_queue(rx_queue, channel)
411 efx_init_rx_queue(rx_queue);
8ceee660
BH
412
413 WARN_ON(channel->rx_pkt != NULL);
414 efx_rx_strategy(channel);
415 }
8ceee660
BH
416}
417
418/* This enables event queue processing and packet transmission.
419 *
420 * Note that this function is not allowed to fail, since that would
421 * introduce too much complexity into the suspend/resume path.
422 */
423static void efx_start_channel(struct efx_channel *channel)
424{
425 struct efx_rx_queue *rx_queue;
426
427 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
428
429 if (!(channel->efx->net_dev->flags & IFF_UP))
430 netif_napi_add(channel->napi_dev, &channel->napi_str,
431 efx_poll, napi_weight);
432
5b9e207c
BH
433 /* The interrupt handler for this channel may set work_pending
434 * as soon as we enable it. Make sure it's cleared before
435 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
436 channel->work_pending = false;
437 channel->enabled = true;
5b9e207c 438 smp_wmb();
8ceee660
BH
439
440 napi_enable(&channel->napi_str);
441
442 /* Load up RX descriptors */
443 efx_for_each_channel_rx_queue(rx_queue, channel)
444 efx_fast_push_rx_descriptors(rx_queue);
445}
446
447/* This disables event queue processing and packet transmission.
448 * This function does not guarantee that all queue processing
449 * (e.g. RX refill) is complete.
450 */
451static void efx_stop_channel(struct efx_channel *channel)
452{
453 struct efx_rx_queue *rx_queue;
454
455 if (!channel->enabled)
456 return;
457
458 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
459
dc8cfa55 460 channel->enabled = false;
8ceee660
BH
461 napi_disable(&channel->napi_str);
462
463 /* Ensure that any worker threads have exited or will be no-ops */
464 efx_for_each_channel_rx_queue(rx_queue, channel) {
465 spin_lock_bh(&rx_queue->add_lock);
466 spin_unlock_bh(&rx_queue->add_lock);
467 }
468}
469
470static void efx_fini_channels(struct efx_nic *efx)
471{
472 struct efx_channel *channel;
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
6bc5d3a9 475 int rc;
8ceee660
BH
476
477 EFX_ASSERT_RESET_SERIALISED(efx);
478 BUG_ON(efx->port_enabled);
479
6bc5d3a9
BH
480 rc = falcon_flush_queues(efx);
481 if (rc)
482 EFX_ERR(efx, "failed to flush queues\n");
483 else
484 EFX_LOG(efx, "successfully flushed all queues\n");
485
8ceee660
BH
486 efx_for_each_channel(channel, efx) {
487 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
488
489 efx_for_each_channel_rx_queue(rx_queue, channel)
490 efx_fini_rx_queue(rx_queue);
491 efx_for_each_channel_tx_queue(tx_queue, channel)
492 efx_fini_tx_queue(tx_queue);
8ceee660
BH
493 efx_fini_eventq(channel);
494 }
495}
496
497static void efx_remove_channel(struct efx_channel *channel)
498{
499 struct efx_tx_queue *tx_queue;
500 struct efx_rx_queue *rx_queue;
501
502 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
503
504 efx_for_each_channel_rx_queue(rx_queue, channel)
505 efx_remove_rx_queue(rx_queue);
506 efx_for_each_channel_tx_queue(tx_queue, channel)
507 efx_remove_tx_queue(tx_queue);
508 efx_remove_eventq(channel);
509
510 channel->used_flags = 0;
511}
512
513void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
514{
515 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
516}
517
518/**************************************************************************
519 *
520 * Port handling
521 *
522 **************************************************************************/
523
524/* This ensures that the kernel is kept informed (via
525 * netif_carrier_on/off) of the link status, and also maintains the
526 * link status's stop on the port's TX queue.
527 */
528static void efx_link_status_changed(struct efx_nic *efx)
529{
8ceee660
BH
530 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
531 * that no events are triggered between unregister_netdev() and the
532 * driver unloading. A more general condition is that NETDEV_CHANGE
533 * can only be generated between NETDEV_UP and NETDEV_DOWN */
534 if (!netif_running(efx->net_dev))
535 return;
536
8c8661e4
BH
537 if (efx->port_inhibited) {
538 netif_carrier_off(efx->net_dev);
539 return;
540 }
541
dc8cfa55 542 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
543 efx->n_link_state_changes++;
544
545 if (efx->link_up)
546 netif_carrier_on(efx->net_dev);
547 else
548 netif_carrier_off(efx->net_dev);
549 }
550
551 /* Status message for kernel log */
552 if (efx->link_up) {
f31a45d2
BH
553 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
554 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
555 efx->net_dev->mtu,
556 (efx->promiscuous ? " [PROMISC]" : ""));
557 } else {
558 EFX_INFO(efx, "link down\n");
559 }
560
561}
562
563/* This call reinitialises the MAC to pick up new PHY settings. The
564 * caller must hold the mac_lock */
8c8661e4 565void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
566{
567 WARN_ON(!mutex_is_locked(&efx->mac_lock));
568
569 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
570 raw_smp_processor_id());
571
a816f75a
BH
572 /* Serialise the promiscuous flag with efx_set_multicast_list. */
573 if (efx_dev_registered(efx)) {
574 netif_addr_lock_bh(efx->net_dev);
575 netif_addr_unlock_bh(efx->net_dev);
576 }
577
8ceee660
BH
578 falcon_reconfigure_xmac(efx);
579
580 /* Inform kernel of loss/gain of carrier */
581 efx_link_status_changed(efx);
582}
583
584/* Reinitialise the MAC to pick up new PHY settings, even if the port is
585 * disabled. */
586void efx_reconfigure_port(struct efx_nic *efx)
587{
588 EFX_ASSERT_RESET_SERIALISED(efx);
589
590 mutex_lock(&efx->mac_lock);
591 __efx_reconfigure_port(efx);
592 mutex_unlock(&efx->mac_lock);
593}
594
595/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
596 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
597 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
598static void efx_reconfigure_work(struct work_struct *data)
599{
600 struct efx_nic *efx = container_of(data, struct efx_nic,
601 reconfigure_work);
602
603 mutex_lock(&efx->mac_lock);
604 if (efx->port_enabled)
605 __efx_reconfigure_port(efx);
606 mutex_unlock(&efx->mac_lock);
607}
608
609static int efx_probe_port(struct efx_nic *efx)
610{
611 int rc;
612
613 EFX_LOG(efx, "create port\n");
614
615 /* Connect up MAC/PHY operations table and read MAC address */
616 rc = falcon_probe_port(efx);
617 if (rc)
618 goto err;
619
84ae48fe
BH
620 if (phy_flash_cfg)
621 efx->phy_mode = PHY_MODE_SPECIAL;
622
8ceee660
BH
623 /* Sanity check MAC address */
624 if (is_valid_ether_addr(efx->mac_address)) {
625 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
626 } else {
e174961c
JB
627 EFX_ERR(efx, "invalid MAC address %pM\n",
628 efx->mac_address);
8ceee660
BH
629 if (!allow_bad_hwaddr) {
630 rc = -EINVAL;
631 goto err;
632 }
633 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
634 EFX_INFO(efx, "using locally-generated MAC %pM\n",
635 efx->net_dev->dev_addr);
8ceee660
BH
636 }
637
638 return 0;
639
640 err:
641 efx_remove_port(efx);
642 return rc;
643}
644
645static int efx_init_port(struct efx_nic *efx)
646{
647 int rc;
648
649 EFX_LOG(efx, "init port\n");
650
651 /* Initialise the MAC and PHY */
652 rc = falcon_init_xmac(efx);
653 if (rc)
654 return rc;
655
dc8cfa55 656 efx->port_initialized = true;
8c8661e4 657 efx->stats_enabled = true;
8ceee660
BH
658
659 /* Reconfigure port to program MAC registers */
660 falcon_reconfigure_xmac(efx);
661
662 return 0;
663}
664
665/* Allow efx_reconfigure_port() to be scheduled, and close the window
666 * between efx_stop_port and efx_flush_all whereby a previously scheduled
667 * efx_reconfigure_port() may have been cancelled */
668static void efx_start_port(struct efx_nic *efx)
669{
670 EFX_LOG(efx, "start port\n");
671 BUG_ON(efx->port_enabled);
672
673 mutex_lock(&efx->mac_lock);
dc8cfa55 674 efx->port_enabled = true;
8ceee660
BH
675 __efx_reconfigure_port(efx);
676 mutex_unlock(&efx->mac_lock);
677}
678
679/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
680 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
681 * efx_reconfigure_work can still be scheduled via NAPI processing
682 * until efx_flush_all() is called */
683static void efx_stop_port(struct efx_nic *efx)
684{
685 EFX_LOG(efx, "stop port\n");
686
687 mutex_lock(&efx->mac_lock);
dc8cfa55 688 efx->port_enabled = false;
8ceee660
BH
689 mutex_unlock(&efx->mac_lock);
690
691 /* Serialise against efx_set_multicast_list() */
55668611 692 if (efx_dev_registered(efx)) {
b9e40857
DM
693 netif_addr_lock_bh(efx->net_dev);
694 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
695 }
696}
697
698static void efx_fini_port(struct efx_nic *efx)
699{
700 EFX_LOG(efx, "shut down port\n");
701
702 if (!efx->port_initialized)
703 return;
704
705 falcon_fini_xmac(efx);
dc8cfa55 706 efx->port_initialized = false;
8ceee660 707
dc8cfa55 708 efx->link_up = false;
8ceee660
BH
709 efx_link_status_changed(efx);
710}
711
712static void efx_remove_port(struct efx_nic *efx)
713{
714 EFX_LOG(efx, "destroying port\n");
715
716 falcon_remove_port(efx);
717}
718
719/**************************************************************************
720 *
721 * NIC handling
722 *
723 **************************************************************************/
724
725/* This configures the PCI device to enable I/O and DMA. */
726static int efx_init_io(struct efx_nic *efx)
727{
728 struct pci_dev *pci_dev = efx->pci_dev;
729 dma_addr_t dma_mask = efx->type->max_dma_mask;
730 int rc;
731
732 EFX_LOG(efx, "initialising I/O\n");
733
734 rc = pci_enable_device(pci_dev);
735 if (rc) {
736 EFX_ERR(efx, "failed to enable PCI device\n");
737 goto fail1;
738 }
739
740 pci_set_master(pci_dev);
741
742 /* Set the PCI DMA mask. Try all possibilities from our
743 * genuine mask down to 32 bits, because some architectures
744 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
745 * masks event though they reject 46 bit masks.
746 */
747 while (dma_mask > 0x7fffffffUL) {
748 if (pci_dma_supported(pci_dev, dma_mask) &&
749 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
750 break;
751 dma_mask >>= 1;
752 }
753 if (rc) {
754 EFX_ERR(efx, "could not find a suitable DMA mask\n");
755 goto fail2;
756 }
757 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
758 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
759 if (rc) {
760 /* pci_set_consistent_dma_mask() is not *allowed* to
761 * fail with a mask that pci_set_dma_mask() accepted,
762 * but just in case...
763 */
764 EFX_ERR(efx, "failed to set consistent DMA mask\n");
765 goto fail2;
766 }
767
768 efx->membase_phys = pci_resource_start(efx->pci_dev,
769 efx->type->mem_bar);
770 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
771 if (rc) {
772 EFX_ERR(efx, "request for memory BAR failed\n");
773 rc = -EIO;
774 goto fail3;
775 }
776 efx->membase = ioremap_nocache(efx->membase_phys,
777 efx->type->mem_map_size);
778 if (!efx->membase) {
086ea356
BH
779 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
780 efx->type->mem_bar,
781 (unsigned long long)efx->membase_phys,
8ceee660
BH
782 efx->type->mem_map_size);
783 rc = -ENOMEM;
784 goto fail4;
785 }
086ea356
BH
786 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
787 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
788 efx->type->mem_map_size, efx->membase);
8ceee660
BH
789
790 return 0;
791
792 fail4:
e1074a0d 793 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 794 fail3:
2c118e0f 795 efx->membase_phys = 0;
8ceee660
BH
796 fail2:
797 pci_disable_device(efx->pci_dev);
798 fail1:
799 return rc;
800}
801
802static void efx_fini_io(struct efx_nic *efx)
803{
804 EFX_LOG(efx, "shutting down I/O\n");
805
806 if (efx->membase) {
807 iounmap(efx->membase);
808 efx->membase = NULL;
809 }
810
811 if (efx->membase_phys) {
812 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 813 efx->membase_phys = 0;
8ceee660
BH
814 }
815
816 pci_disable_device(efx->pci_dev);
817}
818
46123d04
BH
819/* Get number of RX queues wanted. Return number of online CPU
820 * packages in the expectation that an IRQ balancer will spread
821 * interrupts across them. */
822static int efx_wanted_rx_queues(void)
823{
824 cpumask_t core_mask;
825 int count;
826 int cpu;
827
828 cpus_clear(core_mask);
829 count = 0;
830 for_each_online_cpu(cpu) {
831 if (!cpu_isset(cpu, core_mask)) {
832 ++count;
833 cpus_or(core_mask, core_mask,
834 topology_core_siblings(cpu));
835 }
836 }
837
838 return count;
839}
840
841/* Probe the number and type of interrupts we are able to obtain, and
842 * the resulting numbers of channels and RX queues.
843 */
8ceee660
BH
844static void efx_probe_interrupts(struct efx_nic *efx)
845{
46123d04
BH
846 int max_channels =
847 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
848 int rc, i;
849
850 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
851 struct msix_entry xentries[EFX_MAX_CHANNELS];
852 int wanted_ints;
28b581ab 853 int rx_queues;
aa6ef27e 854
46123d04
BH
855 /* We want one RX queue and interrupt per CPU package
856 * (or as specified by the rss_cpus module parameter).
857 * We will need one channel per interrupt.
858 */
28b581ab
NT
859 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
860 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
861 wanted_ints = min(wanted_ints, max_channels);
8ceee660 862
28b581ab 863 for (i = 0; i < wanted_ints; i++)
8ceee660 864 xentries[i].entry = i;
28b581ab 865 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 866 if (rc > 0) {
28b581ab
NT
867 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
868 " available (%d < %d).\n", rc, wanted_ints);
869 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
870 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
871 wanted_ints = rc;
8ceee660 872 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 873 wanted_ints);
8ceee660
BH
874 }
875
876 if (rc == 0) {
28b581ab
NT
877 efx->n_rx_queues = min(rx_queues, wanted_ints);
878 efx->n_channels = wanted_ints;
879 for (i = 0; i < wanted_ints; i++)
8ceee660 880 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
881 } else {
882 /* Fall back to single channel MSI */
883 efx->interrupt_mode = EFX_INT_MODE_MSI;
884 EFX_ERR(efx, "could not enable MSI-X\n");
885 }
886 }
887
888 /* Try single interrupt MSI */
889 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 890 efx->n_rx_queues = 1;
28b581ab 891 efx->n_channels = 1;
8ceee660
BH
892 rc = pci_enable_msi(efx->pci_dev);
893 if (rc == 0) {
894 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
895 } else {
896 EFX_ERR(efx, "could not enable MSI\n");
897 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
898 }
899 }
900
901 /* Assume legacy interrupts */
902 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 903 efx->n_rx_queues = 1;
28b581ab 904 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
905 efx->legacy_irq = efx->pci_dev->irq;
906 }
907}
908
909static void efx_remove_interrupts(struct efx_nic *efx)
910{
911 struct efx_channel *channel;
912
913 /* Remove MSI/MSI-X interrupts */
64ee3120 914 efx_for_each_channel(channel, efx)
8ceee660
BH
915 channel->irq = 0;
916 pci_disable_msi(efx->pci_dev);
917 pci_disable_msix(efx->pci_dev);
918
919 /* Remove legacy interrupt */
920 efx->legacy_irq = 0;
921}
922
8831da7b 923static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
924{
925 struct efx_tx_queue *tx_queue;
926 struct efx_rx_queue *rx_queue;
8ceee660 927
60ac1065 928 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
929 if (separate_tx_channels)
930 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
931 else
932 tx_queue->channel = &efx->channel[0];
933 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
934 }
8ceee660 935
8831da7b
BH
936 efx_for_each_rx_queue(rx_queue, efx) {
937 rx_queue->channel = &efx->channel[rx_queue->queue];
938 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
939 }
940}
941
942static int efx_probe_nic(struct efx_nic *efx)
943{
944 int rc;
945
946 EFX_LOG(efx, "creating NIC\n");
947
948 /* Carry out hardware-type specific initialisation */
949 rc = falcon_probe_nic(efx);
950 if (rc)
951 return rc;
952
953 /* Determine the number of channels and RX queues by trying to hook
954 * in MSI-X interrupts. */
955 efx_probe_interrupts(efx);
956
8831da7b 957 efx_set_channels(efx);
8ceee660
BH
958
959 /* Initialise the interrupt moderation settings */
960 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
961
962 return 0;
963}
964
965static void efx_remove_nic(struct efx_nic *efx)
966{
967 EFX_LOG(efx, "destroying NIC\n");
968
969 efx_remove_interrupts(efx);
970 falcon_remove_nic(efx);
971}
972
973/**************************************************************************
974 *
975 * NIC startup/shutdown
976 *
977 *************************************************************************/
978
979static int efx_probe_all(struct efx_nic *efx)
980{
981 struct efx_channel *channel;
982 int rc;
983
984 /* Create NIC */
985 rc = efx_probe_nic(efx);
986 if (rc) {
987 EFX_ERR(efx, "failed to create NIC\n");
988 goto fail1;
989 }
990
991 /* Create port */
992 rc = efx_probe_port(efx);
993 if (rc) {
994 EFX_ERR(efx, "failed to create port\n");
995 goto fail2;
996 }
997
998 /* Create channels */
999 efx_for_each_channel(channel, efx) {
1000 rc = efx_probe_channel(channel);
1001 if (rc) {
1002 EFX_ERR(efx, "failed to create channel %d\n",
1003 channel->channel);
1004 goto fail3;
1005 }
1006 }
56536e9c 1007 efx_set_channel_names(efx);
8ceee660
BH
1008
1009 return 0;
1010
1011 fail3:
1012 efx_for_each_channel(channel, efx)
1013 efx_remove_channel(channel);
1014 efx_remove_port(efx);
1015 fail2:
1016 efx_remove_nic(efx);
1017 fail1:
1018 return rc;
1019}
1020
1021/* Called after previous invocation(s) of efx_stop_all, restarts the
1022 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1023 * and ensures that the port is scheduled to be reconfigured.
1024 * This function is safe to call multiple times when the NIC is in any
1025 * state. */
1026static void efx_start_all(struct efx_nic *efx)
1027{
1028 struct efx_channel *channel;
1029
1030 EFX_ASSERT_RESET_SERIALISED(efx);
1031
1032 /* Check that it is appropriate to restart the interface. All
1033 * of these flags are safe to read under just the rtnl lock */
1034 if (efx->port_enabled)
1035 return;
1036 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1037 return;
55668611 1038 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1039 return;
1040
1041 /* Mark the port as enabled so port reconfigurations can start, then
1042 * restart the transmit interface early so the watchdog timer stops */
1043 efx_start_port(efx);
dacccc74
SH
1044 if (efx_dev_registered(efx))
1045 efx_wake_queue(efx);
8ceee660
BH
1046
1047 efx_for_each_channel(channel, efx)
1048 efx_start_channel(channel);
1049
1050 falcon_enable_interrupts(efx);
1051
1052 /* Start hardware monitor if we're in RUNNING */
1053 if (efx->state == STATE_RUNNING)
1054 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1055 efx_monitor_interval);
1056}
1057
1058/* Flush all delayed work. Should only be called when no more delayed work
1059 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1060 * since we're holding the rtnl_lock at this point. */
1061static void efx_flush_all(struct efx_nic *efx)
1062{
1063 struct efx_rx_queue *rx_queue;
1064
1065 /* Make sure the hardware monitor is stopped */
1066 cancel_delayed_work_sync(&efx->monitor_work);
1067
1068 /* Ensure that all RX slow refills are complete. */
b3475645 1069 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1070 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1071
1072 /* Stop scheduled port reconfigurations */
1073 cancel_work_sync(&efx->reconfigure_work);
1074
1075}
1076
1077/* Quiesce hardware and software without bringing the link down.
1078 * Safe to call multiple times, when the nic and interface is in any
1079 * state. The caller is guaranteed to subsequently be in a position
1080 * to modify any hardware and software state they see fit without
1081 * taking locks. */
1082static void efx_stop_all(struct efx_nic *efx)
1083{
1084 struct efx_channel *channel;
1085
1086 EFX_ASSERT_RESET_SERIALISED(efx);
1087
1088 /* port_enabled can be read safely under the rtnl lock */
1089 if (!efx->port_enabled)
1090 return;
1091
1092 /* Disable interrupts and wait for ISR to complete */
1093 falcon_disable_interrupts(efx);
1094 if (efx->legacy_irq)
1095 synchronize_irq(efx->legacy_irq);
64ee3120 1096 efx_for_each_channel(channel, efx) {
8ceee660
BH
1097 if (channel->irq)
1098 synchronize_irq(channel->irq);
b3475645 1099 }
8ceee660
BH
1100
1101 /* Stop all NAPI processing and synchronous rx refills */
1102 efx_for_each_channel(channel, efx)
1103 efx_stop_channel(channel);
1104
1105 /* Stop all asynchronous port reconfigurations. Since all
1106 * event processing has already been stopped, there is no
1107 * window to loose phy events */
1108 efx_stop_port(efx);
1109
1110 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1111 efx_flush_all(efx);
1112
1113 /* Isolate the MAC from the TX and RX engines, so that queue
1114 * flushes will complete in a timely fashion. */
8ceee660
BH
1115 falcon_drain_tx_fifo(efx);
1116
1117 /* Stop the kernel transmit interface late, so the watchdog
1118 * timer isn't ticking over the flush */
55668611 1119 if (efx_dev_registered(efx)) {
dacccc74 1120 efx_stop_queue(efx);
8ceee660
BH
1121 netif_tx_lock_bh(efx->net_dev);
1122 netif_tx_unlock_bh(efx->net_dev);
1123 }
1124}
1125
1126static void efx_remove_all(struct efx_nic *efx)
1127{
1128 struct efx_channel *channel;
1129
1130 efx_for_each_channel(channel, efx)
1131 efx_remove_channel(channel);
1132 efx_remove_port(efx);
1133 efx_remove_nic(efx);
1134}
1135
1136/* A convinience function to safely flush all the queues */
bc3c90a2 1137void efx_flush_queues(struct efx_nic *efx)
8ceee660 1138{
8ceee660
BH
1139 EFX_ASSERT_RESET_SERIALISED(efx);
1140
1141 efx_stop_all(efx);
1142
1143 efx_fini_channels(efx);
bc3c90a2 1144 efx_init_channels(efx);
8ceee660
BH
1145
1146 efx_start_all(efx);
8ceee660
BH
1147}
1148
1149/**************************************************************************
1150 *
1151 * Interrupt moderation
1152 *
1153 **************************************************************************/
1154
1155/* Set interrupt moderation parameters */
1156void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1157{
1158 struct efx_tx_queue *tx_queue;
1159 struct efx_rx_queue *rx_queue;
1160
1161 EFX_ASSERT_RESET_SERIALISED(efx);
1162
1163 efx_for_each_tx_queue(tx_queue, efx)
1164 tx_queue->channel->irq_moderation = tx_usecs;
1165
1166 efx_for_each_rx_queue(rx_queue, efx)
1167 rx_queue->channel->irq_moderation = rx_usecs;
1168}
1169
1170/**************************************************************************
1171 *
1172 * Hardware monitor
1173 *
1174 **************************************************************************/
1175
1176/* Run periodically off the general workqueue. Serialised against
1177 * efx_reconfigure_port via the mac_lock */
1178static void efx_monitor(struct work_struct *data)
1179{
1180 struct efx_nic *efx = container_of(data, struct efx_nic,
1181 monitor_work.work);
1182 int rc = 0;
1183
1184 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1185 raw_smp_processor_id());
1186
1187
1188 /* If the mac_lock is already held then it is likely a port
1189 * reconfiguration is already in place, which will likely do
1190 * most of the work of check_hw() anyway. */
1191 if (!mutex_trylock(&efx->mac_lock)) {
1192 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1193 efx_monitor_interval);
1194 return;
1195 }
1196
1197 if (efx->port_enabled)
1198 rc = falcon_check_xmac(efx);
1199 mutex_unlock(&efx->mac_lock);
1200
8ceee660
BH
1201 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1202 efx_monitor_interval);
1203}
1204
1205/**************************************************************************
1206 *
1207 * ioctls
1208 *
1209 *************************************************************************/
1210
1211/* Net device ioctl
1212 * Context: process, rtnl_lock() held.
1213 */
1214static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1215{
767e468c 1216 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1217
1218 EFX_ASSERT_RESET_SERIALISED(efx);
1219
1220 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1221}
1222
1223/**************************************************************************
1224 *
1225 * NAPI interface
1226 *
1227 **************************************************************************/
1228
1229static int efx_init_napi(struct efx_nic *efx)
1230{
1231 struct efx_channel *channel;
1232 int rc;
1233
1234 efx_for_each_channel(channel, efx) {
1235 channel->napi_dev = efx->net_dev;
1236 rc = efx_lro_init(&channel->lro_mgr, efx);
1237 if (rc)
1238 goto err;
1239 }
1240 return 0;
1241 err:
1242 efx_fini_napi(efx);
1243 return rc;
1244}
1245
1246static void efx_fini_napi(struct efx_nic *efx)
1247{
1248 struct efx_channel *channel;
1249
1250 efx_for_each_channel(channel, efx) {
1251 efx_lro_fini(&channel->lro_mgr);
1252 channel->napi_dev = NULL;
1253 }
1254}
1255
1256/**************************************************************************
1257 *
1258 * Kernel netpoll interface
1259 *
1260 *************************************************************************/
1261
1262#ifdef CONFIG_NET_POLL_CONTROLLER
1263
1264/* Although in the common case interrupts will be disabled, this is not
1265 * guaranteed. However, all our work happens inside the NAPI callback,
1266 * so no locking is required.
1267 */
1268static void efx_netpoll(struct net_device *net_dev)
1269{
767e468c 1270 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1271 struct efx_channel *channel;
1272
64ee3120 1273 efx_for_each_channel(channel, efx)
8ceee660
BH
1274 efx_schedule_channel(channel);
1275}
1276
1277#endif
1278
1279/**************************************************************************
1280 *
1281 * Kernel net device interface
1282 *
1283 *************************************************************************/
1284
1285/* Context: process, rtnl_lock() held. */
1286static int efx_net_open(struct net_device *net_dev)
1287{
767e468c 1288 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1289 EFX_ASSERT_RESET_SERIALISED(efx);
1290
1291 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1292 raw_smp_processor_id());
1293
f8b87c17
BH
1294 if (efx->phy_mode & PHY_MODE_SPECIAL)
1295 return -EBUSY;
1296
8ceee660
BH
1297 efx_start_all(efx);
1298 return 0;
1299}
1300
1301/* Context: process, rtnl_lock() held.
1302 * Note that the kernel will ignore our return code; this method
1303 * should really be a void.
1304 */
1305static int efx_net_stop(struct net_device *net_dev)
1306{
767e468c 1307 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1308
1309 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1310 raw_smp_processor_id());
1311
1312 /* Stop the device and flush all the channels */
1313 efx_stop_all(efx);
1314 efx_fini_channels(efx);
bc3c90a2 1315 efx_init_channels(efx);
8ceee660
BH
1316
1317 return 0;
1318}
1319
5b9e207c 1320/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1321static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1322{
767e468c 1323 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1324 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1325 struct net_device_stats *stats = &net_dev->stats;
1326
5b9e207c
BH
1327 /* Update stats if possible, but do not wait if another thread
1328 * is updating them (or resetting the NIC); slightly stale
1329 * stats are acceptable.
1330 */
8ceee660
BH
1331 if (!spin_trylock(&efx->stats_lock))
1332 return stats;
8c8661e4 1333 if (efx->stats_enabled) {
8ceee660
BH
1334 falcon_update_stats_xmac(efx);
1335 falcon_update_nic_stats(efx);
1336 }
1337 spin_unlock(&efx->stats_lock);
1338
1339 stats->rx_packets = mac_stats->rx_packets;
1340 stats->tx_packets = mac_stats->tx_packets;
1341 stats->rx_bytes = mac_stats->rx_bytes;
1342 stats->tx_bytes = mac_stats->tx_bytes;
1343 stats->multicast = mac_stats->rx_multicast;
1344 stats->collisions = mac_stats->tx_collision;
1345 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1346 mac_stats->rx_length_error);
1347 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1348 stats->rx_crc_errors = mac_stats->rx_bad;
1349 stats->rx_frame_errors = mac_stats->rx_align_error;
1350 stats->rx_fifo_errors = mac_stats->rx_overflow;
1351 stats->rx_missed_errors = mac_stats->rx_missed;
1352 stats->tx_window_errors = mac_stats->tx_late_collision;
1353
1354 stats->rx_errors = (stats->rx_length_errors +
1355 stats->rx_over_errors +
1356 stats->rx_crc_errors +
1357 stats->rx_frame_errors +
1358 stats->rx_fifo_errors +
1359 stats->rx_missed_errors +
1360 mac_stats->rx_symbol_error);
1361 stats->tx_errors = (stats->tx_window_errors +
1362 mac_stats->tx_bad);
1363
1364 return stats;
1365}
1366
1367/* Context: netif_tx_lock held, BHs disabled. */
1368static void efx_watchdog(struct net_device *net_dev)
1369{
767e468c 1370 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1371
739bb23d
BH
1372 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1373 " resetting channels\n",
1374 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1375
739bb23d 1376 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1377}
1378
1379
1380/* Context: process, rtnl_lock() held. */
1381static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1382{
767e468c 1383 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1384 int rc = 0;
1385
1386 EFX_ASSERT_RESET_SERIALISED(efx);
1387
1388 if (new_mtu > EFX_MAX_MTU)
1389 return -EINVAL;
1390
1391 efx_stop_all(efx);
1392
1393 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1394
1395 efx_fini_channels(efx);
1396 net_dev->mtu = new_mtu;
bc3c90a2 1397 efx_init_channels(efx);
8ceee660
BH
1398
1399 efx_start_all(efx);
1400 return rc;
8ceee660
BH
1401}
1402
1403static int efx_set_mac_address(struct net_device *net_dev, void *data)
1404{
767e468c 1405 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1406 struct sockaddr *addr = data;
1407 char *new_addr = addr->sa_data;
1408
1409 EFX_ASSERT_RESET_SERIALISED(efx);
1410
1411 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1412 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1413 new_addr);
8ceee660
BH
1414 return -EINVAL;
1415 }
1416
1417 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1418
1419 /* Reconfigure the MAC */
1420 efx_reconfigure_port(efx);
1421
1422 return 0;
1423}
1424
a816f75a 1425/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1426static void efx_set_multicast_list(struct net_device *net_dev)
1427{
767e468c 1428 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1429 struct dev_mc_list *mc_list = net_dev->mc_list;
1430 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1431 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1432 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1433 u32 crc;
1434 int bit;
1435 int i;
1436
a816f75a 1437 efx->promiscuous = promiscuous;
8ceee660
BH
1438
1439 /* Build multicast hash table */
1440 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1441 memset(mc_hash, 0xff, sizeof(*mc_hash));
1442 } else {
1443 memset(mc_hash, 0x00, sizeof(*mc_hash));
1444 for (i = 0; i < net_dev->mc_count; i++) {
1445 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1446 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1447 set_bit_le(bit, mc_hash->byte);
1448 mc_list = mc_list->next;
1449 }
1450 }
1451
a816f75a
BH
1452 if (!efx->port_enabled)
1453 /* Delay pushing settings until efx_start_port() */
1454 return;
1455
1456 if (changed)
1457 queue_work(efx->workqueue, &efx->reconfigure_work);
1458
8ceee660
BH
1459 /* Create and activate new global multicast hash table */
1460 falcon_set_multicast_hash(efx);
1461}
1462
c3ecb9f3
SH
1463static const struct net_device_ops efx_netdev_ops = {
1464 .ndo_open = efx_net_open,
1465 .ndo_stop = efx_net_stop,
1466 .ndo_get_stats = efx_net_stats,
1467 .ndo_tx_timeout = efx_watchdog,
1468 .ndo_start_xmit = efx_hard_start_xmit,
1469 .ndo_validate_addr = eth_validate_addr,
1470 .ndo_do_ioctl = efx_ioctl,
1471 .ndo_change_mtu = efx_change_mtu,
1472 .ndo_set_mac_address = efx_set_mac_address,
1473 .ndo_set_multicast_list = efx_set_multicast_list,
1474#ifdef CONFIG_NET_POLL_CONTROLLER
1475 .ndo_poll_controller = efx_netpoll,
1476#endif
1477};
1478
8ceee660
BH
1479static int efx_netdev_event(struct notifier_block *this,
1480 unsigned long event, void *ptr)
1481{
d3208b5e 1482 struct net_device *net_dev = ptr;
8ceee660 1483
c3ecb9f3 1484 if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) {
767e468c 1485 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1486
1487 strcpy(efx->name, net_dev->name);
f4150724 1488 efx_mtd_rename(efx);
56536e9c 1489 efx_set_channel_names(efx);
8ceee660
BH
1490 }
1491
1492 return NOTIFY_DONE;
1493}
1494
1495static struct notifier_block efx_netdev_notifier = {
1496 .notifier_call = efx_netdev_event,
1497};
1498
06d5e193
BH
1499static ssize_t
1500show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1501{
1502 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1503 return sprintf(buf, "%d\n", efx->phy_type);
1504}
1505static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1506
8ceee660
BH
1507static int efx_register_netdev(struct efx_nic *efx)
1508{
1509 struct net_device *net_dev = efx->net_dev;
1510 int rc;
1511
1512 net_dev->watchdog_timeo = 5 * HZ;
1513 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1514 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1515 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1516 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1517
1518 /* Always start with carrier off; PHY events will detect the link */
1519 netif_carrier_off(efx->net_dev);
1520
1521 /* Clear MAC statistics */
1522 falcon_update_stats_xmac(efx);
1523 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1524
1525 rc = register_netdev(net_dev);
1526 if (rc) {
1527 EFX_ERR(efx, "could not register net dev\n");
1528 return rc;
1529 }
1530 strcpy(efx->name, net_dev->name);
56536e9c 1531 efx_set_channel_names(efx);
8ceee660 1532
06d5e193
BH
1533 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1534 if (rc) {
1535 EFX_ERR(efx, "failed to init net dev attributes\n");
1536 goto fail_registered;
1537 }
1538
8ceee660 1539 return 0;
06d5e193
BH
1540
1541fail_registered:
1542 unregister_netdev(net_dev);
1543 return rc;
8ceee660
BH
1544}
1545
1546static void efx_unregister_netdev(struct efx_nic *efx)
1547{
1548 struct efx_tx_queue *tx_queue;
1549
1550 if (!efx->net_dev)
1551 return;
1552
767e468c 1553 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1554
1555 /* Free up any skbs still remaining. This has to happen before
1556 * we try to unregister the netdev as running their destructors
1557 * may be needed to get the device ref. count to 0. */
1558 efx_for_each_tx_queue(tx_queue, efx)
1559 efx_release_tx_buffers(tx_queue);
1560
55668611 1561 if (efx_dev_registered(efx)) {
8ceee660 1562 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1563 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1564 unregister_netdev(efx->net_dev);
1565 }
1566}
1567
1568/**************************************************************************
1569 *
1570 * Device reset and suspend
1571 *
1572 **************************************************************************/
1573
2467ca46
BH
1574/* Tears down the entire software state and most of the hardware state
1575 * before reset. */
8c8661e4 1576void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660
BH
1577{
1578 int rc;
1579
1580 EFX_ASSERT_RESET_SERIALISED(efx);
1581
2467ca46
BH
1582 /* The net_dev->get_stats handler is quite slow, and will fail
1583 * if a fetch is pending over reset. Serialise against it. */
1584 spin_lock(&efx->stats_lock);
8c8661e4 1585 efx->stats_enabled = false;
2467ca46
BH
1586 spin_unlock(&efx->stats_lock);
1587
1588 efx_stop_all(efx);
1589 mutex_lock(&efx->mac_lock);
f4150724 1590 mutex_lock(&efx->spi_lock);
2467ca46 1591
8ceee660 1592 rc = falcon_xmac_get_settings(efx, ecmd);
2467ca46 1593 if (rc)
8ceee660 1594 EFX_ERR(efx, "could not back up PHY settings\n");
8ceee660
BH
1595
1596 efx_fini_channels(efx);
8ceee660
BH
1597}
1598
2467ca46
BH
1599/* This function will always ensure that the locks acquired in
1600 * efx_reset_down() are released. A failure return code indicates
1601 * that we were unable to reinitialise the hardware, and the
1602 * driver should be disabled. If ok is false, then the rx and tx
1603 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1604int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1605{
1606 int rc;
1607
2467ca46 1608 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1609
2467ca46 1610 rc = falcon_init_nic(efx);
8ceee660 1611 if (rc) {
2467ca46
BH
1612 EFX_ERR(efx, "failed to initialise NIC\n");
1613 ok = false;
8ceee660
BH
1614 }
1615
2467ca46
BH
1616 if (ok) {
1617 efx_init_channels(efx);
8ceee660 1618
2467ca46
BH
1619 if (falcon_xmac_set_settings(efx, ecmd))
1620 EFX_ERR(efx, "could not restore PHY settings\n");
1621 }
1622
f4150724 1623 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1624 mutex_unlock(&efx->mac_lock);
1625
8c8661e4 1626 if (ok) {
2467ca46 1627 efx_start_all(efx);
8c8661e4
BH
1628 efx->stats_enabled = true;
1629 }
8ceee660
BH
1630 return rc;
1631}
1632
1633/* Reset the NIC as transparently as possible. Do not reset the PHY
1634 * Note that the reset may fail, in which case the card will be left
1635 * in a most-probably-unusable state.
1636 *
1637 * This function will sleep. You cannot reset from within an atomic
1638 * state; use efx_schedule_reset() instead.
1639 *
1640 * Grabs the rtnl_lock.
1641 */
1642static int efx_reset(struct efx_nic *efx)
1643{
1644 struct ethtool_cmd ecmd;
1645 enum reset_type method = efx->reset_pending;
1646 int rc;
1647
1648 /* Serialise with kernel interfaces */
1649 rtnl_lock();
1650
1651 /* If we're not RUNNING then don't reset. Leave the reset_pending
1652 * flag set so that efx_pci_probe_main will be retried */
1653 if (efx->state != STATE_RUNNING) {
1654 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1655 goto unlock_rtnl;
1656 }
1657
8ceee660
BH
1658 EFX_INFO(efx, "resetting (%d)\n", method);
1659
2467ca46 1660 efx_reset_down(efx, &ecmd);
8ceee660
BH
1661
1662 rc = falcon_reset_hw(efx, method);
1663 if (rc) {
1664 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1665 goto fail;
8ceee660
BH
1666 }
1667
1668 /* Allow resets to be rescheduled. */
1669 efx->reset_pending = RESET_TYPE_NONE;
1670
1671 /* Reinitialise bus-mastering, which may have been turned off before
1672 * the reset was scheduled. This is still appropriate, even in the
1673 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1674 * can respond to requests. */
1675 pci_set_master(efx->pci_dev);
1676
8ceee660
BH
1677 /* Leave device stopped if necessary */
1678 if (method == RESET_TYPE_DISABLE) {
8ceee660 1679 rc = -EIO;
2467ca46 1680 goto fail;
8ceee660
BH
1681 }
1682
2467ca46 1683 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1684 if (rc)
2467ca46 1685 goto disable;
8ceee660 1686
8ceee660 1687 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1688 unlock_rtnl:
1689 rtnl_unlock();
1690 return 0;
1691
2467ca46
BH
1692 fail:
1693 efx_reset_up(efx, &ecmd, false);
1694 disable:
8ceee660
BH
1695 EFX_ERR(efx, "has been disabled\n");
1696 efx->state = STATE_DISABLED;
1697
8ceee660
BH
1698 rtnl_unlock();
1699 efx_unregister_netdev(efx);
1700 efx_fini_port(efx);
1701 return rc;
1702}
1703
1704/* The worker thread exists so that code that cannot sleep can
1705 * schedule a reset for later.
1706 */
1707static void efx_reset_work(struct work_struct *data)
1708{
1709 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1710
1711 efx_reset(nic);
1712}
1713
1714void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1715{
1716 enum reset_type method;
1717
1718 if (efx->reset_pending != RESET_TYPE_NONE) {
1719 EFX_INFO(efx, "quenching already scheduled reset\n");
1720 return;
1721 }
1722
1723 switch (type) {
1724 case RESET_TYPE_INVISIBLE:
1725 case RESET_TYPE_ALL:
1726 case RESET_TYPE_WORLD:
1727 case RESET_TYPE_DISABLE:
1728 method = type;
1729 break;
1730 case RESET_TYPE_RX_RECOVERY:
1731 case RESET_TYPE_RX_DESC_FETCH:
1732 case RESET_TYPE_TX_DESC_FETCH:
1733 case RESET_TYPE_TX_SKIP:
1734 method = RESET_TYPE_INVISIBLE;
1735 break;
1736 default:
1737 method = RESET_TYPE_ALL;
1738 break;
1739 }
1740
1741 if (method != type)
1742 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1743 else
1744 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1745
1746 efx->reset_pending = method;
1747
1ab00629 1748 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1749}
1750
1751/**************************************************************************
1752 *
1753 * List of NICs we support
1754 *
1755 **************************************************************************/
1756
1757/* PCI device ID table */
1758static struct pci_device_id efx_pci_table[] __devinitdata = {
1759 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1760 .driver_data = (unsigned long) &falcon_a_nic_type},
1761 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1762 .driver_data = (unsigned long) &falcon_b_nic_type},
1763 {0} /* end of list */
1764};
1765
1766/**************************************************************************
1767 *
1768 * Dummy PHY/MAC/Board operations
1769 *
01aad7b6 1770 * Can be used for some unimplemented operations
8ceee660
BH
1771 * Needed so all function pointers are valid and do not have to be tested
1772 * before use
1773 *
1774 **************************************************************************/
1775int efx_port_dummy_op_int(struct efx_nic *efx)
1776{
1777 return 0;
1778}
1779void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1780void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1781
1782static struct efx_phy_operations efx_dummy_phy_operations = {
1783 .init = efx_port_dummy_op_int,
1784 .reconfigure = efx_port_dummy_op_void,
1785 .check_hw = efx_port_dummy_op_int,
1786 .fini = efx_port_dummy_op_void,
1787 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1788};
1789
8ceee660 1790static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1791 .init = efx_port_dummy_op_int,
1792 .init_leds = efx_port_dummy_op_int,
1793 .set_fault_led = efx_port_dummy_op_blink,
a17102b1 1794 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1795 .blink = efx_port_dummy_op_blink,
1796 .fini = efx_port_dummy_op_void,
8ceee660
BH
1797};
1798
1799/**************************************************************************
1800 *
1801 * Data housekeeping
1802 *
1803 **************************************************************************/
1804
1805/* This zeroes out and then fills in the invariants in a struct
1806 * efx_nic (including all sub-structures).
1807 */
1808static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1809 struct pci_dev *pci_dev, struct net_device *net_dev)
1810{
1811 struct efx_channel *channel;
1812 struct efx_tx_queue *tx_queue;
1813 struct efx_rx_queue *rx_queue;
1ab00629 1814 int i;
8ceee660
BH
1815
1816 /* Initialise common structures */
1817 memset(efx, 0, sizeof(*efx));
1818 spin_lock_init(&efx->biu_lock);
1819 spin_lock_init(&efx->phy_lock);
f4150724 1820 mutex_init(&efx->spi_lock);
8ceee660
BH
1821 INIT_WORK(&efx->reset_work, efx_reset_work);
1822 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1823 efx->pci_dev = pci_dev;
1824 efx->state = STATE_INIT;
1825 efx->reset_pending = RESET_TYPE_NONE;
1826 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1827 efx->board_info = efx_dummy_board_info;
1828
1829 efx->net_dev = net_dev;
dc8cfa55 1830 efx->rx_checksum_enabled = true;
8ceee660
BH
1831 spin_lock_init(&efx->netif_stop_lock);
1832 spin_lock_init(&efx->stats_lock);
1833 mutex_init(&efx->mac_lock);
1834 efx->phy_op = &efx_dummy_phy_operations;
1835 efx->mii.dev = net_dev;
1836 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1837 atomic_set(&efx->netif_stop_count, 1);
1838
1839 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1840 channel = &efx->channel[i];
1841 channel->efx = efx;
1842 channel->channel = i;
dc8cfa55 1843 channel->work_pending = false;
8ceee660 1844 }
60ac1065 1845 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1846 tx_queue = &efx->tx_queue[i];
1847 tx_queue->efx = efx;
1848 tx_queue->queue = i;
1849 tx_queue->buffer = NULL;
1850 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1851 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1852 }
1853 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1854 rx_queue = &efx->rx_queue[i];
1855 rx_queue->efx = efx;
1856 rx_queue->queue = i;
1857 rx_queue->channel = &efx->channel[0]; /* for safety */
1858 rx_queue->buffer = NULL;
1859 spin_lock_init(&rx_queue->add_lock);
1860 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1861 }
1862
1863 efx->type = type;
1864
1865 /* Sanity-check NIC type */
1866 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1867 (efx->type->txd_ring_mask + 1));
1868 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1869 (efx->type->rxd_ring_mask + 1));
1870 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1871 (efx->type->evq_size - 1));
1872 /* As close as we can get to guaranteeing that we don't overflow */
1873 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1874 (efx->type->txd_ring_mask + 1 +
1875 efx->type->rxd_ring_mask + 1));
1876 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1877
1878 /* Higher numbered interrupt modes are less capable! */
1879 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1880 interrupt_mode);
1881
1882 efx->workqueue = create_singlethread_workqueue("sfc_work");
1ab00629
SH
1883 if (!efx->workqueue)
1884 return -ENOMEM;
8d9853d9 1885
8ceee660 1886 return 0;
8ceee660
BH
1887}
1888
1889static void efx_fini_struct(struct efx_nic *efx)
1890{
1891 if (efx->workqueue) {
1892 destroy_workqueue(efx->workqueue);
1893 efx->workqueue = NULL;
1894 }
1895}
1896
1897/**************************************************************************
1898 *
1899 * PCI interface
1900 *
1901 **************************************************************************/
1902
1903/* Main body of final NIC shutdown code
1904 * This is called only at module unload (or hotplug removal).
1905 */
1906static void efx_pci_remove_main(struct efx_nic *efx)
1907{
1908 EFX_ASSERT_RESET_SERIALISED(efx);
1909
1910 /* Skip everything if we never obtained a valid membase */
1911 if (!efx->membase)
1912 return;
1913
1914 efx_fini_channels(efx);
1915 efx_fini_port(efx);
1916
1917 /* Shutdown the board, then the NIC and board state */
37b5a603 1918 efx->board_info.fini(efx);
8ceee660
BH
1919 falcon_fini_interrupt(efx);
1920
1921 efx_fini_napi(efx);
1922 efx_remove_all(efx);
1923}
1924
1925/* Final NIC shutdown
1926 * This is called only at module unload (or hotplug removal).
1927 */
1928static void efx_pci_remove(struct pci_dev *pci_dev)
1929{
1930 struct efx_nic *efx;
1931
1932 efx = pci_get_drvdata(pci_dev);
1933 if (!efx)
1934 return;
1935
f4150724
BH
1936 efx_mtd_remove(efx);
1937
8ceee660
BH
1938 /* Mark the NIC as fini, then stop the interface */
1939 rtnl_lock();
1940 efx->state = STATE_FINI;
1941 dev_close(efx->net_dev);
1942
1943 /* Allow any queued efx_resets() to complete */
1944 rtnl_unlock();
1945
1946 if (efx->membase == NULL)
1947 goto out;
1948
1949 efx_unregister_netdev(efx);
1950
1951 /* Wait for any scheduled resets to complete. No more will be
1952 * scheduled from this point because efx_stop_all() has been
1953 * called, we are no longer registered with driverlink, and
1954 * the net_device's have been removed. */
1ab00629 1955 cancel_work_sync(&efx->reset_work);
8ceee660
BH
1956
1957 efx_pci_remove_main(efx);
1958
1959out:
1960 efx_fini_io(efx);
1961 EFX_LOG(efx, "shutdown successful\n");
1962
1963 pci_set_drvdata(pci_dev, NULL);
1964 efx_fini_struct(efx);
1965 free_netdev(efx->net_dev);
1966};
1967
1968/* Main body of NIC initialisation
1969 * This is called at module load (or hotplug insertion, theoretically).
1970 */
1971static int efx_pci_probe_main(struct efx_nic *efx)
1972{
1973 int rc;
1974
1975 /* Do start-of-day initialisation */
1976 rc = efx_probe_all(efx);
1977 if (rc)
1978 goto fail1;
1979
1980 rc = efx_init_napi(efx);
1981 if (rc)
1982 goto fail2;
1983
1984 /* Initialise the board */
1985 rc = efx->board_info.init(efx);
1986 if (rc) {
1987 EFX_ERR(efx, "failed to initialise board\n");
1988 goto fail3;
1989 }
1990
1991 rc = falcon_init_nic(efx);
1992 if (rc) {
1993 EFX_ERR(efx, "failed to initialise NIC\n");
1994 goto fail4;
1995 }
1996
1997 rc = efx_init_port(efx);
1998 if (rc) {
1999 EFX_ERR(efx, "failed to initialise port\n");
2000 goto fail5;
2001 }
2002
bc3c90a2 2003 efx_init_channels(efx);
8ceee660
BH
2004
2005 rc = falcon_init_interrupt(efx);
2006 if (rc)
bc3c90a2 2007 goto fail6;
8ceee660
BH
2008
2009 return 0;
2010
8ceee660 2011 fail6:
bc3c90a2 2012 efx_fini_channels(efx);
8ceee660
BH
2013 efx_fini_port(efx);
2014 fail5:
2015 fail4:
a17102b1 2016 efx->board_info.fini(efx);
8ceee660
BH
2017 fail3:
2018 efx_fini_napi(efx);
2019 fail2:
2020 efx_remove_all(efx);
2021 fail1:
2022 return rc;
2023}
2024
2025/* NIC initialisation
2026 *
2027 * This is called at module load (or hotplug insertion,
2028 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2029 * sets up and registers the network devices with the kernel and hooks
2030 * the interrupt service routine. It does not prepare the device for
2031 * transmission; this is left to the first time one of the network
2032 * interfaces is brought up (i.e. efx_net_open).
2033 */
2034static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2035 const struct pci_device_id *entry)
2036{
2037 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2038 struct net_device *net_dev;
2039 struct efx_nic *efx;
2040 int i, rc;
2041
2042 /* Allocate and initialise a struct net_device and struct efx_nic */
2043 net_dev = alloc_etherdev(sizeof(*efx));
2044 if (!net_dev)
2045 return -ENOMEM;
b9b39b62
BH
2046 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2047 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2048 if (lro)
2049 net_dev->features |= NETIF_F_LRO;
28506563
BH
2050 /* Mask for features that also apply to VLAN devices */
2051 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2052 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2053 efx = netdev_priv(net_dev);
8ceee660
BH
2054 pci_set_drvdata(pci_dev, efx);
2055 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2056 if (rc)
2057 goto fail1;
2058
2059 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2060
2061 /* Set up basic I/O (BAR mappings etc) */
2062 rc = efx_init_io(efx);
2063 if (rc)
2064 goto fail2;
2065
2066 /* No serialisation is required with the reset path because
2067 * we're in STATE_INIT. */
2068 for (i = 0; i < 5; i++) {
2069 rc = efx_pci_probe_main(efx);
2070 if (rc == 0)
2071 break;
2072
2073 /* Serialise against efx_reset(). No more resets will be
2074 * scheduled since efx_stop_all() has been called, and we
2075 * have not and never have been registered with either
2076 * the rtnetlink or driverlink layers. */
1ab00629 2077 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2078
2079 /* Retry if a recoverably reset event has been scheduled */
2080 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2081 (efx->reset_pending != RESET_TYPE_ALL))
2082 goto fail3;
2083
2084 efx->reset_pending = RESET_TYPE_NONE;
2085 }
2086
2087 if (rc) {
2088 EFX_ERR(efx, "Could not reset NIC\n");
2089 goto fail4;
2090 }
2091
2092 /* Switch to the running state before we expose the device to
2093 * the OS. This is to ensure that the initial gathering of
2094 * MAC stats succeeds. */
2095 rtnl_lock();
2096 efx->state = STATE_RUNNING;
2097 rtnl_unlock();
2098
2099 rc = efx_register_netdev(efx);
2100 if (rc)
2101 goto fail5;
2102
2103 EFX_LOG(efx, "initialisation successful\n");
2104
f4150724 2105 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2106 return 0;
2107
2108 fail5:
2109 efx_pci_remove_main(efx);
2110 fail4:
2111 fail3:
2112 efx_fini_io(efx);
2113 fail2:
2114 efx_fini_struct(efx);
2115 fail1:
2116 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2117 free_netdev(net_dev);
2118 return rc;
2119}
2120
2121static struct pci_driver efx_pci_driver = {
2122 .name = EFX_DRIVER_NAME,
2123 .id_table = efx_pci_table,
2124 .probe = efx_pci_probe,
2125 .remove = efx_pci_remove,
2126};
2127
2128/**************************************************************************
2129 *
2130 * Kernel module interface
2131 *
2132 *************************************************************************/
2133
2134module_param(interrupt_mode, uint, 0444);
2135MODULE_PARM_DESC(interrupt_mode,
2136 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2137
2138static int __init efx_init_module(void)
2139{
2140 int rc;
2141
2142 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2143
2144 rc = register_netdevice_notifier(&efx_netdev_notifier);
2145 if (rc)
2146 goto err_notifier;
2147
2148 refill_workqueue = create_workqueue("sfc_refill");
2149 if (!refill_workqueue) {
2150 rc = -ENOMEM;
2151 goto err_refill;
2152 }
1ab00629
SH
2153 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2154 if (!reset_workqueue) {
2155 rc = -ENOMEM;
2156 goto err_reset;
2157 }
8ceee660
BH
2158
2159 rc = pci_register_driver(&efx_pci_driver);
2160 if (rc < 0)
2161 goto err_pci;
2162
2163 return 0;
2164
2165 err_pci:
1ab00629
SH
2166 destroy_workqueue(reset_workqueue);
2167 err_reset:
8ceee660
BH
2168 destroy_workqueue(refill_workqueue);
2169 err_refill:
2170 unregister_netdevice_notifier(&efx_netdev_notifier);
2171 err_notifier:
2172 return rc;
2173}
2174
2175static void __exit efx_exit_module(void)
2176{
2177 printk(KERN_INFO "Solarflare NET driver unloading\n");
2178
2179 pci_unregister_driver(&efx_pci_driver);
1ab00629 2180 destroy_workqueue(reset_workqueue);
8ceee660
BH
2181 destroy_workqueue(refill_workqueue);
2182 unregister_netdevice_notifier(&efx_netdev_notifier);
2183
2184}
2185
2186module_init(efx_init_module);
2187module_exit(efx_exit_module);
2188
2189MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2190 "Solarflare Communications");
2191MODULE_DESCRIPTION("Solarflare Communications network driver");
2192MODULE_LICENSE("GPL");
2193MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.202848 seconds and 5 git commands to generate.