sfc: Remove the STATE_RESETTING flag
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
dc8cfa55 54static int lro = true;
8ceee660
BH
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
dc8cfa55 67static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
dc8cfa55 83static unsigned int monitor_reset = true;
8ceee660
BH
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
3c78708f 143 if (efx->state == STATE_RUNNING) \
8ceee660
BH
144 ASSERT_RTNL(); \
145 } while (0)
146
147/**************************************************************************
148 *
149 * Event queue processing
150 *
151 *************************************************************************/
152
153/* Process channel's event queue
154 *
155 * This function is responsible for processing the event queue of a
156 * single channel. The caller must guarantee that this function will
157 * never be concurrently called more than once on the same channel,
158 * though different channels may be being processed concurrently.
159 */
4d566063 160static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 161{
42cbe2d7
BH
162 struct efx_nic *efx = channel->efx;
163 int rx_packets;
8ceee660 164
42cbe2d7 165 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 166 !channel->enabled))
42cbe2d7 167 return 0;
8ceee660 168
42cbe2d7
BH
169 rx_packets = falcon_process_eventq(channel, rx_quota);
170 if (rx_packets == 0)
171 return 0;
8ceee660
BH
172
173 /* Deliver last RX packet. */
174 if (channel->rx_pkt) {
175 __efx_rx_packet(channel, channel->rx_pkt,
176 channel->rx_pkt_csummed);
177 channel->rx_pkt = NULL;
178 }
179
180 efx_flush_lro(channel);
181 efx_rx_strategy(channel);
182
42cbe2d7 183 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 184
42cbe2d7 185 return rx_packets;
8ceee660
BH
186}
187
188/* Mark channel as finished processing
189 *
190 * Note that since we will not receive further interrupts for this
191 * channel before we finish processing and call the eventq_read_ack()
192 * method, there is no need to use the interrupt hold-off timers.
193 */
194static inline void efx_channel_processed(struct efx_channel *channel)
195{
5b9e207c
BH
196 /* The interrupt handler for this channel may set work_pending
197 * as soon as we acknowledge the events we've seen. Make sure
198 * it's cleared before then. */
dc8cfa55 199 channel->work_pending = false;
5b9e207c
BH
200 smp_wmb();
201
8ceee660
BH
202 falcon_eventq_read_ack(channel);
203}
204
205/* NAPI poll handler
206 *
207 * NAPI guarantees serialisation of polls of the same device, which
208 * provides the guarantee required by efx_process_channel().
209 */
210static int efx_poll(struct napi_struct *napi, int budget)
211{
212 struct efx_channel *channel =
213 container_of(napi, struct efx_channel, napi_str);
214 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
215 int rx_packets;
216
217 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
218 channel->channel, raw_smp_processor_id());
219
42cbe2d7 220 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
221
222 if (rx_packets < budget) {
223 /* There is no race here; although napi_disable() will
224 * only wait for netif_rx_complete(), this isn't a problem
225 * since efx_channel_processed() will have no effect if
226 * interrupts have already been disabled.
227 */
228 netif_rx_complete(napi_dev, napi);
229 efx_channel_processed(channel);
230 }
231
232 return rx_packets;
233}
234
235/* Process the eventq of the specified channel immediately on this CPU
236 *
237 * Disable hardware generated interrupts, wait for any existing
238 * processing to finish, then directly poll (and ack ) the eventq.
239 * Finally reenable NAPI and interrupts.
240 *
241 * Since we are touching interrupts the caller should hold the suspend lock
242 */
243void efx_process_channel_now(struct efx_channel *channel)
244{
245 struct efx_nic *efx = channel->efx;
246
247 BUG_ON(!channel->used_flags);
248 BUG_ON(!channel->enabled);
249
250 /* Disable interrupts and wait for ISRs to complete */
251 falcon_disable_interrupts(efx);
252 if (efx->legacy_irq)
253 synchronize_irq(efx->legacy_irq);
64ee3120 254 if (channel->irq)
8ceee660
BH
255 synchronize_irq(channel->irq);
256
257 /* Wait for any NAPI processing to complete */
258 napi_disable(&channel->napi_str);
259
260 /* Poll the channel */
91ad757c 261 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
262
263 /* Ack the eventq. This may cause an interrupt to be generated
264 * when they are reenabled */
265 efx_channel_processed(channel);
266
267 napi_enable(&channel->napi_str);
268 falcon_enable_interrupts(efx);
269}
270
271/* Create event queue
272 * Event queue memory allocations are done only once. If the channel
273 * is reset, the memory buffer will be reused; this guards against
274 * errors during channel reset and also simplifies interrupt handling.
275 */
276static int efx_probe_eventq(struct efx_channel *channel)
277{
278 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
279
280 return falcon_probe_eventq(channel);
281}
282
283/* Prepare channel's event queue */
bc3c90a2 284static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
285{
286 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
287
288 channel->eventq_read_ptr = 0;
289
bc3c90a2 290 falcon_init_eventq(channel);
8ceee660
BH
291}
292
293static void efx_fini_eventq(struct efx_channel *channel)
294{
295 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
296
297 falcon_fini_eventq(channel);
298}
299
300static void efx_remove_eventq(struct efx_channel *channel)
301{
302 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
303
304 falcon_remove_eventq(channel);
305}
306
307/**************************************************************************
308 *
309 * Channel handling
310 *
311 *************************************************************************/
312
8ceee660
BH
313static int efx_probe_channel(struct efx_channel *channel)
314{
315 struct efx_tx_queue *tx_queue;
316 struct efx_rx_queue *rx_queue;
317 int rc;
318
319 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
320
321 rc = efx_probe_eventq(channel);
322 if (rc)
323 goto fail1;
324
325 efx_for_each_channel_tx_queue(tx_queue, channel) {
326 rc = efx_probe_tx_queue(tx_queue);
327 if (rc)
328 goto fail2;
329 }
330
331 efx_for_each_channel_rx_queue(rx_queue, channel) {
332 rc = efx_probe_rx_queue(rx_queue);
333 if (rc)
334 goto fail3;
335 }
336
337 channel->n_rx_frm_trunc = 0;
338
339 return 0;
340
341 fail3:
342 efx_for_each_channel_rx_queue(rx_queue, channel)
343 efx_remove_rx_queue(rx_queue);
344 fail2:
345 efx_for_each_channel_tx_queue(tx_queue, channel)
346 efx_remove_tx_queue(tx_queue);
347 fail1:
348 return rc;
349}
350
351
352/* Channels are shutdown and reinitialised whilst the NIC is running
353 * to propagate configuration changes (mtu, checksum offload), or
354 * to clear hardware error conditions
355 */
bc3c90a2 356static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
357{
358 struct efx_tx_queue *tx_queue;
359 struct efx_rx_queue *rx_queue;
360 struct efx_channel *channel;
8ceee660 361
f7f13b0b
BH
362 /* Calculate the rx buffer allocation parameters required to
363 * support the current MTU, including padding for header
364 * alignment and overruns.
365 */
366 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
367 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
368 efx->type->rx_buffer_padding);
369 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
370
371 /* Initialise the channels */
372 efx_for_each_channel(channel, efx) {
373 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
374
bc3c90a2 375 efx_init_eventq(channel);
8ceee660 376
bc3c90a2
BH
377 efx_for_each_channel_tx_queue(tx_queue, channel)
378 efx_init_tx_queue(tx_queue);
8ceee660
BH
379
380 /* The rx buffer allocation strategy is MTU dependent */
381 efx_rx_strategy(channel);
382
bc3c90a2
BH
383 efx_for_each_channel_rx_queue(rx_queue, channel)
384 efx_init_rx_queue(rx_queue);
8ceee660
BH
385
386 WARN_ON(channel->rx_pkt != NULL);
387 efx_rx_strategy(channel);
388 }
8ceee660
BH
389}
390
391/* This enables event queue processing and packet transmission.
392 *
393 * Note that this function is not allowed to fail, since that would
394 * introduce too much complexity into the suspend/resume path.
395 */
396static void efx_start_channel(struct efx_channel *channel)
397{
398 struct efx_rx_queue *rx_queue;
399
400 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
401
402 if (!(channel->efx->net_dev->flags & IFF_UP))
403 netif_napi_add(channel->napi_dev, &channel->napi_str,
404 efx_poll, napi_weight);
405
5b9e207c
BH
406 /* The interrupt handler for this channel may set work_pending
407 * as soon as we enable it. Make sure it's cleared before
408 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
409 channel->work_pending = false;
410 channel->enabled = true;
5b9e207c 411 smp_wmb();
8ceee660
BH
412
413 napi_enable(&channel->napi_str);
414
415 /* Load up RX descriptors */
416 efx_for_each_channel_rx_queue(rx_queue, channel)
417 efx_fast_push_rx_descriptors(rx_queue);
418}
419
420/* This disables event queue processing and packet transmission.
421 * This function does not guarantee that all queue processing
422 * (e.g. RX refill) is complete.
423 */
424static void efx_stop_channel(struct efx_channel *channel)
425{
426 struct efx_rx_queue *rx_queue;
427
428 if (!channel->enabled)
429 return;
430
431 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
432
dc8cfa55 433 channel->enabled = false;
8ceee660
BH
434 napi_disable(&channel->napi_str);
435
436 /* Ensure that any worker threads have exited or will be no-ops */
437 efx_for_each_channel_rx_queue(rx_queue, channel) {
438 spin_lock_bh(&rx_queue->add_lock);
439 spin_unlock_bh(&rx_queue->add_lock);
440 }
441}
442
443static void efx_fini_channels(struct efx_nic *efx)
444{
445 struct efx_channel *channel;
446 struct efx_tx_queue *tx_queue;
447 struct efx_rx_queue *rx_queue;
448
449 EFX_ASSERT_RESET_SERIALISED(efx);
450 BUG_ON(efx->port_enabled);
451
452 efx_for_each_channel(channel, efx) {
453 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
454
455 efx_for_each_channel_rx_queue(rx_queue, channel)
456 efx_fini_rx_queue(rx_queue);
457 efx_for_each_channel_tx_queue(tx_queue, channel)
458 efx_fini_tx_queue(tx_queue);
459 }
460
461 /* Do the event queues last so that we can handle flush events
462 * for all DMA queues. */
463 efx_for_each_channel(channel, efx) {
464 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
465
466 efx_fini_eventq(channel);
467 }
468}
469
470static void efx_remove_channel(struct efx_channel *channel)
471{
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
474
475 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
476
477 efx_for_each_channel_rx_queue(rx_queue, channel)
478 efx_remove_rx_queue(rx_queue);
479 efx_for_each_channel_tx_queue(tx_queue, channel)
480 efx_remove_tx_queue(tx_queue);
481 efx_remove_eventq(channel);
482
483 channel->used_flags = 0;
484}
485
486void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
487{
488 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
489}
490
491/**************************************************************************
492 *
493 * Port handling
494 *
495 **************************************************************************/
496
497/* This ensures that the kernel is kept informed (via
498 * netif_carrier_on/off) of the link status, and also maintains the
499 * link status's stop on the port's TX queue.
500 */
501static void efx_link_status_changed(struct efx_nic *efx)
502{
8ceee660
BH
503 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
504 * that no events are triggered between unregister_netdev() and the
505 * driver unloading. A more general condition is that NETDEV_CHANGE
506 * can only be generated between NETDEV_UP and NETDEV_DOWN */
507 if (!netif_running(efx->net_dev))
508 return;
509
8c8661e4
BH
510 if (efx->port_inhibited) {
511 netif_carrier_off(efx->net_dev);
512 return;
513 }
514
dc8cfa55 515 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
516 efx->n_link_state_changes++;
517
518 if (efx->link_up)
519 netif_carrier_on(efx->net_dev);
520 else
521 netif_carrier_off(efx->net_dev);
522 }
523
524 /* Status message for kernel log */
525 if (efx->link_up) {
526 struct mii_if_info *gmii = &efx->mii;
527 unsigned adv, lpa;
528 /* NONE here means direct XAUI from the controller, with no
529 * MDIO-attached device we can query. */
530 if (efx->phy_type != PHY_TYPE_NONE) {
531 adv = gmii_advertised(gmii);
532 lpa = gmii_lpa(gmii);
533 } else {
534 lpa = GM_LPA_10000 | LPA_DUPLEX;
535 adv = lpa;
536 }
537 EFX_INFO(efx, "link up at %dMbps %s-duplex "
538 "(adv %04x lpa %04x) (MTU %d)%s\n",
539 (efx->link_options & GM_LPA_10000 ? 10000 :
540 (efx->link_options & GM_LPA_1000 ? 1000 :
541 (efx->link_options & GM_LPA_100 ? 100 :
542 10))),
543 (efx->link_options & GM_LPA_DUPLEX ?
544 "full" : "half"),
545 adv, lpa,
546 efx->net_dev->mtu,
547 (efx->promiscuous ? " [PROMISC]" : ""));
548 } else {
549 EFX_INFO(efx, "link down\n");
550 }
551
552}
553
554/* This call reinitialises the MAC to pick up new PHY settings. The
555 * caller must hold the mac_lock */
8c8661e4 556void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
557{
558 WARN_ON(!mutex_is_locked(&efx->mac_lock));
559
560 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
561 raw_smp_processor_id());
562
563 falcon_reconfigure_xmac(efx);
564
565 /* Inform kernel of loss/gain of carrier */
566 efx_link_status_changed(efx);
567}
568
569/* Reinitialise the MAC to pick up new PHY settings, even if the port is
570 * disabled. */
571void efx_reconfigure_port(struct efx_nic *efx)
572{
573 EFX_ASSERT_RESET_SERIALISED(efx);
574
575 mutex_lock(&efx->mac_lock);
576 __efx_reconfigure_port(efx);
577 mutex_unlock(&efx->mac_lock);
578}
579
580/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
581 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
582 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
583static void efx_reconfigure_work(struct work_struct *data)
584{
585 struct efx_nic *efx = container_of(data, struct efx_nic,
586 reconfigure_work);
587
588 mutex_lock(&efx->mac_lock);
589 if (efx->port_enabled)
590 __efx_reconfigure_port(efx);
591 mutex_unlock(&efx->mac_lock);
592}
593
594static int efx_probe_port(struct efx_nic *efx)
595{
596 int rc;
597
598 EFX_LOG(efx, "create port\n");
599
600 /* Connect up MAC/PHY operations table and read MAC address */
601 rc = falcon_probe_port(efx);
602 if (rc)
603 goto err;
604
605 /* Sanity check MAC address */
606 if (is_valid_ether_addr(efx->mac_address)) {
607 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
608 } else {
609 DECLARE_MAC_BUF(mac);
610
611 EFX_ERR(efx, "invalid MAC address %s\n",
612 print_mac(mac, efx->mac_address));
613 if (!allow_bad_hwaddr) {
614 rc = -EINVAL;
615 goto err;
616 }
617 random_ether_addr(efx->net_dev->dev_addr);
618 EFX_INFO(efx, "using locally-generated MAC %s\n",
619 print_mac(mac, efx->net_dev->dev_addr));
620 }
621
622 return 0;
623
624 err:
625 efx_remove_port(efx);
626 return rc;
627}
628
629static int efx_init_port(struct efx_nic *efx)
630{
631 int rc;
632
633 EFX_LOG(efx, "init port\n");
634
635 /* Initialise the MAC and PHY */
636 rc = falcon_init_xmac(efx);
637 if (rc)
638 return rc;
639
dc8cfa55 640 efx->port_initialized = true;
8c8661e4 641 efx->stats_enabled = true;
8ceee660
BH
642
643 /* Reconfigure port to program MAC registers */
644 falcon_reconfigure_xmac(efx);
645
646 return 0;
647}
648
649/* Allow efx_reconfigure_port() to be scheduled, and close the window
650 * between efx_stop_port and efx_flush_all whereby a previously scheduled
651 * efx_reconfigure_port() may have been cancelled */
652static void efx_start_port(struct efx_nic *efx)
653{
654 EFX_LOG(efx, "start port\n");
655 BUG_ON(efx->port_enabled);
656
657 mutex_lock(&efx->mac_lock);
dc8cfa55 658 efx->port_enabled = true;
8ceee660
BH
659 __efx_reconfigure_port(efx);
660 mutex_unlock(&efx->mac_lock);
661}
662
663/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
664 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
665 * efx_reconfigure_work can still be scheduled via NAPI processing
666 * until efx_flush_all() is called */
667static void efx_stop_port(struct efx_nic *efx)
668{
669 EFX_LOG(efx, "stop port\n");
670
671 mutex_lock(&efx->mac_lock);
dc8cfa55 672 efx->port_enabled = false;
8ceee660
BH
673 mutex_unlock(&efx->mac_lock);
674
675 /* Serialise against efx_set_multicast_list() */
55668611 676 if (efx_dev_registered(efx)) {
b9e40857
DM
677 netif_addr_lock_bh(efx->net_dev);
678 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
679 }
680}
681
682static void efx_fini_port(struct efx_nic *efx)
683{
684 EFX_LOG(efx, "shut down port\n");
685
686 if (!efx->port_initialized)
687 return;
688
689 falcon_fini_xmac(efx);
dc8cfa55 690 efx->port_initialized = false;
8ceee660 691
dc8cfa55 692 efx->link_up = false;
8ceee660
BH
693 efx_link_status_changed(efx);
694}
695
696static void efx_remove_port(struct efx_nic *efx)
697{
698 EFX_LOG(efx, "destroying port\n");
699
700 falcon_remove_port(efx);
701}
702
703/**************************************************************************
704 *
705 * NIC handling
706 *
707 **************************************************************************/
708
709/* This configures the PCI device to enable I/O and DMA. */
710static int efx_init_io(struct efx_nic *efx)
711{
712 struct pci_dev *pci_dev = efx->pci_dev;
713 dma_addr_t dma_mask = efx->type->max_dma_mask;
714 int rc;
715
716 EFX_LOG(efx, "initialising I/O\n");
717
718 rc = pci_enable_device(pci_dev);
719 if (rc) {
720 EFX_ERR(efx, "failed to enable PCI device\n");
721 goto fail1;
722 }
723
724 pci_set_master(pci_dev);
725
726 /* Set the PCI DMA mask. Try all possibilities from our
727 * genuine mask down to 32 bits, because some architectures
728 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
729 * masks event though they reject 46 bit masks.
730 */
731 while (dma_mask > 0x7fffffffUL) {
732 if (pci_dma_supported(pci_dev, dma_mask) &&
733 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
734 break;
735 dma_mask >>= 1;
736 }
737 if (rc) {
738 EFX_ERR(efx, "could not find a suitable DMA mask\n");
739 goto fail2;
740 }
741 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
742 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
743 if (rc) {
744 /* pci_set_consistent_dma_mask() is not *allowed* to
745 * fail with a mask that pci_set_dma_mask() accepted,
746 * but just in case...
747 */
748 EFX_ERR(efx, "failed to set consistent DMA mask\n");
749 goto fail2;
750 }
751
752 efx->membase_phys = pci_resource_start(efx->pci_dev,
753 efx->type->mem_bar);
754 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
755 if (rc) {
756 EFX_ERR(efx, "request for memory BAR failed\n");
757 rc = -EIO;
758 goto fail3;
759 }
760 efx->membase = ioremap_nocache(efx->membase_phys,
761 efx->type->mem_map_size);
762 if (!efx->membase) {
086ea356
BH
763 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
764 efx->type->mem_bar,
765 (unsigned long long)efx->membase_phys,
8ceee660
BH
766 efx->type->mem_map_size);
767 rc = -ENOMEM;
768 goto fail4;
769 }
086ea356
BH
770 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
771 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
772 efx->type->mem_map_size, efx->membase);
8ceee660
BH
773
774 return 0;
775
776 fail4:
777 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
778 fail3:
2c118e0f 779 efx->membase_phys = 0;
8ceee660
BH
780 fail2:
781 pci_disable_device(efx->pci_dev);
782 fail1:
783 return rc;
784}
785
786static void efx_fini_io(struct efx_nic *efx)
787{
788 EFX_LOG(efx, "shutting down I/O\n");
789
790 if (efx->membase) {
791 iounmap(efx->membase);
792 efx->membase = NULL;
793 }
794
795 if (efx->membase_phys) {
796 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 797 efx->membase_phys = 0;
8ceee660
BH
798 }
799
800 pci_disable_device(efx->pci_dev);
801}
802
46123d04
BH
803/* Get number of RX queues wanted. Return number of online CPU
804 * packages in the expectation that an IRQ balancer will spread
805 * interrupts across them. */
806static int efx_wanted_rx_queues(void)
807{
808 cpumask_t core_mask;
809 int count;
810 int cpu;
811
812 cpus_clear(core_mask);
813 count = 0;
814 for_each_online_cpu(cpu) {
815 if (!cpu_isset(cpu, core_mask)) {
816 ++count;
817 cpus_or(core_mask, core_mask,
818 topology_core_siblings(cpu));
819 }
820 }
821
822 return count;
823}
824
825/* Probe the number and type of interrupts we are able to obtain, and
826 * the resulting numbers of channels and RX queues.
827 */
8ceee660
BH
828static void efx_probe_interrupts(struct efx_nic *efx)
829{
46123d04
BH
830 int max_channels =
831 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
832 int rc, i;
833
834 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
835 struct msix_entry xentries[EFX_MAX_CHANNELS];
836 int wanted_ints;
aa6ef27e 837
46123d04
BH
838 /* We want one RX queue and interrupt per CPU package
839 * (or as specified by the rss_cpus module parameter).
840 * We will need one channel per interrupt.
841 */
842 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
8831da7b 843 efx->n_rx_queues = min(wanted_ints, max_channels);
8ceee660 844
8831da7b 845 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 846 xentries[i].entry = i;
8831da7b 847 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
8ceee660 848 if (rc > 0) {
8831da7b
BH
849 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
850 efx->n_rx_queues = rc;
8ceee660 851 rc = pci_enable_msix(efx->pci_dev, xentries,
8831da7b 852 efx->n_rx_queues);
8ceee660
BH
853 }
854
855 if (rc == 0) {
8831da7b 856 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 857 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
858 } else {
859 /* Fall back to single channel MSI */
860 efx->interrupt_mode = EFX_INT_MODE_MSI;
861 EFX_ERR(efx, "could not enable MSI-X\n");
862 }
863 }
864
865 /* Try single interrupt MSI */
866 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 867 efx->n_rx_queues = 1;
8ceee660
BH
868 rc = pci_enable_msi(efx->pci_dev);
869 if (rc == 0) {
870 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
871 } else {
872 EFX_ERR(efx, "could not enable MSI\n");
873 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
874 }
875 }
876
877 /* Assume legacy interrupts */
878 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 879 efx->n_rx_queues = 1;
8ceee660
BH
880 efx->legacy_irq = efx->pci_dev->irq;
881 }
882}
883
884static void efx_remove_interrupts(struct efx_nic *efx)
885{
886 struct efx_channel *channel;
887
888 /* Remove MSI/MSI-X interrupts */
64ee3120 889 efx_for_each_channel(channel, efx)
8ceee660
BH
890 channel->irq = 0;
891 pci_disable_msi(efx->pci_dev);
892 pci_disable_msix(efx->pci_dev);
893
894 /* Remove legacy interrupt */
895 efx->legacy_irq = 0;
896}
897
8831da7b 898static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
899{
900 struct efx_tx_queue *tx_queue;
901 struct efx_rx_queue *rx_queue;
8ceee660 902
60ac1065
BH
903 efx_for_each_tx_queue(tx_queue, efx) {
904 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
905 tx_queue->channel = &efx->channel[1];
906 else
907 tx_queue->channel = &efx->channel[0];
908 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
909 }
8ceee660 910
8831da7b
BH
911 efx_for_each_rx_queue(rx_queue, efx) {
912 rx_queue->channel = &efx->channel[rx_queue->queue];
913 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
914 }
915}
916
917static int efx_probe_nic(struct efx_nic *efx)
918{
919 int rc;
920
921 EFX_LOG(efx, "creating NIC\n");
922
923 /* Carry out hardware-type specific initialisation */
924 rc = falcon_probe_nic(efx);
925 if (rc)
926 return rc;
927
928 /* Determine the number of channels and RX queues by trying to hook
929 * in MSI-X interrupts. */
930 efx_probe_interrupts(efx);
931
8831da7b 932 efx_set_channels(efx);
8ceee660
BH
933
934 /* Initialise the interrupt moderation settings */
935 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
936
937 return 0;
938}
939
940static void efx_remove_nic(struct efx_nic *efx)
941{
942 EFX_LOG(efx, "destroying NIC\n");
943
944 efx_remove_interrupts(efx);
945 falcon_remove_nic(efx);
946}
947
948/**************************************************************************
949 *
950 * NIC startup/shutdown
951 *
952 *************************************************************************/
953
954static int efx_probe_all(struct efx_nic *efx)
955{
956 struct efx_channel *channel;
957 int rc;
958
959 /* Create NIC */
960 rc = efx_probe_nic(efx);
961 if (rc) {
962 EFX_ERR(efx, "failed to create NIC\n");
963 goto fail1;
964 }
965
966 /* Create port */
967 rc = efx_probe_port(efx);
968 if (rc) {
969 EFX_ERR(efx, "failed to create port\n");
970 goto fail2;
971 }
972
973 /* Create channels */
974 efx_for_each_channel(channel, efx) {
975 rc = efx_probe_channel(channel);
976 if (rc) {
977 EFX_ERR(efx, "failed to create channel %d\n",
978 channel->channel);
979 goto fail3;
980 }
981 }
982
983 return 0;
984
985 fail3:
986 efx_for_each_channel(channel, efx)
987 efx_remove_channel(channel);
988 efx_remove_port(efx);
989 fail2:
990 efx_remove_nic(efx);
991 fail1:
992 return rc;
993}
994
995/* Called after previous invocation(s) of efx_stop_all, restarts the
996 * port, kernel transmit queue, NAPI processing and hardware interrupts,
997 * and ensures that the port is scheduled to be reconfigured.
998 * This function is safe to call multiple times when the NIC is in any
999 * state. */
1000static void efx_start_all(struct efx_nic *efx)
1001{
1002 struct efx_channel *channel;
1003
1004 EFX_ASSERT_RESET_SERIALISED(efx);
1005
1006 /* Check that it is appropriate to restart the interface. All
1007 * of these flags are safe to read under just the rtnl lock */
1008 if (efx->port_enabled)
1009 return;
1010 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1011 return;
55668611 1012 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1013 return;
1014
1015 /* Mark the port as enabled so port reconfigurations can start, then
1016 * restart the transmit interface early so the watchdog timer stops */
1017 efx_start_port(efx);
dacccc74
SH
1018 if (efx_dev_registered(efx))
1019 efx_wake_queue(efx);
8ceee660
BH
1020
1021 efx_for_each_channel(channel, efx)
1022 efx_start_channel(channel);
1023
1024 falcon_enable_interrupts(efx);
1025
1026 /* Start hardware monitor if we're in RUNNING */
1027 if (efx->state == STATE_RUNNING)
1028 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1029 efx_monitor_interval);
1030}
1031
1032/* Flush all delayed work. Should only be called when no more delayed work
1033 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1034 * since we're holding the rtnl_lock at this point. */
1035static void efx_flush_all(struct efx_nic *efx)
1036{
1037 struct efx_rx_queue *rx_queue;
1038
1039 /* Make sure the hardware monitor is stopped */
1040 cancel_delayed_work_sync(&efx->monitor_work);
1041
1042 /* Ensure that all RX slow refills are complete. */
b3475645 1043 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1044 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1045
1046 /* Stop scheduled port reconfigurations */
1047 cancel_work_sync(&efx->reconfigure_work);
1048
1049}
1050
1051/* Quiesce hardware and software without bringing the link down.
1052 * Safe to call multiple times, when the nic and interface is in any
1053 * state. The caller is guaranteed to subsequently be in a position
1054 * to modify any hardware and software state they see fit without
1055 * taking locks. */
1056static void efx_stop_all(struct efx_nic *efx)
1057{
1058 struct efx_channel *channel;
1059
1060 EFX_ASSERT_RESET_SERIALISED(efx);
1061
1062 /* port_enabled can be read safely under the rtnl lock */
1063 if (!efx->port_enabled)
1064 return;
1065
1066 /* Disable interrupts and wait for ISR to complete */
1067 falcon_disable_interrupts(efx);
1068 if (efx->legacy_irq)
1069 synchronize_irq(efx->legacy_irq);
64ee3120 1070 efx_for_each_channel(channel, efx) {
8ceee660
BH
1071 if (channel->irq)
1072 synchronize_irq(channel->irq);
b3475645 1073 }
8ceee660
BH
1074
1075 /* Stop all NAPI processing and synchronous rx refills */
1076 efx_for_each_channel(channel, efx)
1077 efx_stop_channel(channel);
1078
1079 /* Stop all asynchronous port reconfigurations. Since all
1080 * event processing has already been stopped, there is no
1081 * window to loose phy events */
1082 efx_stop_port(efx);
1083
1084 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1085 efx_flush_all(efx);
1086
1087 /* Isolate the MAC from the TX and RX engines, so that queue
1088 * flushes will complete in a timely fashion. */
1089 falcon_deconfigure_mac_wrapper(efx);
1090 falcon_drain_tx_fifo(efx);
1091
1092 /* Stop the kernel transmit interface late, so the watchdog
1093 * timer isn't ticking over the flush */
55668611 1094 if (efx_dev_registered(efx)) {
dacccc74 1095 efx_stop_queue(efx);
8ceee660
BH
1096 netif_tx_lock_bh(efx->net_dev);
1097 netif_tx_unlock_bh(efx->net_dev);
1098 }
1099}
1100
1101static void efx_remove_all(struct efx_nic *efx)
1102{
1103 struct efx_channel *channel;
1104
1105 efx_for_each_channel(channel, efx)
1106 efx_remove_channel(channel);
1107 efx_remove_port(efx);
1108 efx_remove_nic(efx);
1109}
1110
1111/* A convinience function to safely flush all the queues */
bc3c90a2 1112void efx_flush_queues(struct efx_nic *efx)
8ceee660 1113{
8ceee660
BH
1114 EFX_ASSERT_RESET_SERIALISED(efx);
1115
1116 efx_stop_all(efx);
1117
1118 efx_fini_channels(efx);
bc3c90a2 1119 efx_init_channels(efx);
8ceee660
BH
1120
1121 efx_start_all(efx);
8ceee660
BH
1122}
1123
1124/**************************************************************************
1125 *
1126 * Interrupt moderation
1127 *
1128 **************************************************************************/
1129
1130/* Set interrupt moderation parameters */
1131void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1132{
1133 struct efx_tx_queue *tx_queue;
1134 struct efx_rx_queue *rx_queue;
1135
1136 EFX_ASSERT_RESET_SERIALISED(efx);
1137
1138 efx_for_each_tx_queue(tx_queue, efx)
1139 tx_queue->channel->irq_moderation = tx_usecs;
1140
1141 efx_for_each_rx_queue(rx_queue, efx)
1142 rx_queue->channel->irq_moderation = rx_usecs;
1143}
1144
1145/**************************************************************************
1146 *
1147 * Hardware monitor
1148 *
1149 **************************************************************************/
1150
1151/* Run periodically off the general workqueue. Serialised against
1152 * efx_reconfigure_port via the mac_lock */
1153static void efx_monitor(struct work_struct *data)
1154{
1155 struct efx_nic *efx = container_of(data, struct efx_nic,
1156 monitor_work.work);
1157 int rc = 0;
1158
1159 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1160 raw_smp_processor_id());
1161
1162
1163 /* If the mac_lock is already held then it is likely a port
1164 * reconfiguration is already in place, which will likely do
1165 * most of the work of check_hw() anyway. */
1166 if (!mutex_trylock(&efx->mac_lock)) {
1167 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1168 efx_monitor_interval);
1169 return;
1170 }
1171
1172 if (efx->port_enabled)
1173 rc = falcon_check_xmac(efx);
1174 mutex_unlock(&efx->mac_lock);
1175
1176 if (rc) {
1177 if (monitor_reset) {
1178 EFX_ERR(efx, "hardware monitor detected a fault: "
1179 "triggering reset\n");
1180 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1181 } else {
1182 EFX_ERR(efx, "hardware monitor detected a fault, "
1183 "skipping reset\n");
1184 }
1185 }
1186
1187 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1188 efx_monitor_interval);
1189}
1190
1191/**************************************************************************
1192 *
1193 * ioctls
1194 *
1195 *************************************************************************/
1196
1197/* Net device ioctl
1198 * Context: process, rtnl_lock() held.
1199 */
1200static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1201{
767e468c 1202 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1203
1204 EFX_ASSERT_RESET_SERIALISED(efx);
1205
1206 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1207}
1208
1209/**************************************************************************
1210 *
1211 * NAPI interface
1212 *
1213 **************************************************************************/
1214
1215static int efx_init_napi(struct efx_nic *efx)
1216{
1217 struct efx_channel *channel;
1218 int rc;
1219
1220 efx_for_each_channel(channel, efx) {
1221 channel->napi_dev = efx->net_dev;
1222 rc = efx_lro_init(&channel->lro_mgr, efx);
1223 if (rc)
1224 goto err;
1225 }
1226 return 0;
1227 err:
1228 efx_fini_napi(efx);
1229 return rc;
1230}
1231
1232static void efx_fini_napi(struct efx_nic *efx)
1233{
1234 struct efx_channel *channel;
1235
1236 efx_for_each_channel(channel, efx) {
1237 efx_lro_fini(&channel->lro_mgr);
1238 channel->napi_dev = NULL;
1239 }
1240}
1241
1242/**************************************************************************
1243 *
1244 * Kernel netpoll interface
1245 *
1246 *************************************************************************/
1247
1248#ifdef CONFIG_NET_POLL_CONTROLLER
1249
1250/* Although in the common case interrupts will be disabled, this is not
1251 * guaranteed. However, all our work happens inside the NAPI callback,
1252 * so no locking is required.
1253 */
1254static void efx_netpoll(struct net_device *net_dev)
1255{
767e468c 1256 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1257 struct efx_channel *channel;
1258
64ee3120 1259 efx_for_each_channel(channel, efx)
8ceee660
BH
1260 efx_schedule_channel(channel);
1261}
1262
1263#endif
1264
1265/**************************************************************************
1266 *
1267 * Kernel net device interface
1268 *
1269 *************************************************************************/
1270
1271/* Context: process, rtnl_lock() held. */
1272static int efx_net_open(struct net_device *net_dev)
1273{
767e468c 1274 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1275 EFX_ASSERT_RESET_SERIALISED(efx);
1276
1277 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1278 raw_smp_processor_id());
1279
f8b87c17
BH
1280 if (efx->phy_mode & PHY_MODE_SPECIAL)
1281 return -EBUSY;
1282
8ceee660
BH
1283 efx_start_all(efx);
1284 return 0;
1285}
1286
1287/* Context: process, rtnl_lock() held.
1288 * Note that the kernel will ignore our return code; this method
1289 * should really be a void.
1290 */
1291static int efx_net_stop(struct net_device *net_dev)
1292{
767e468c 1293 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1294
1295 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1296 raw_smp_processor_id());
1297
1298 /* Stop the device and flush all the channels */
1299 efx_stop_all(efx);
1300 efx_fini_channels(efx);
bc3c90a2 1301 efx_init_channels(efx);
8ceee660
BH
1302
1303 return 0;
1304}
1305
5b9e207c 1306/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1307static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1308{
767e468c 1309 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1310 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1311 struct net_device_stats *stats = &net_dev->stats;
1312
5b9e207c
BH
1313 /* Update stats if possible, but do not wait if another thread
1314 * is updating them (or resetting the NIC); slightly stale
1315 * stats are acceptable.
1316 */
8ceee660
BH
1317 if (!spin_trylock(&efx->stats_lock))
1318 return stats;
8c8661e4 1319 if (efx->stats_enabled) {
8ceee660
BH
1320 falcon_update_stats_xmac(efx);
1321 falcon_update_nic_stats(efx);
1322 }
1323 spin_unlock(&efx->stats_lock);
1324
1325 stats->rx_packets = mac_stats->rx_packets;
1326 stats->tx_packets = mac_stats->tx_packets;
1327 stats->rx_bytes = mac_stats->rx_bytes;
1328 stats->tx_bytes = mac_stats->tx_bytes;
1329 stats->multicast = mac_stats->rx_multicast;
1330 stats->collisions = mac_stats->tx_collision;
1331 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1332 mac_stats->rx_length_error);
1333 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1334 stats->rx_crc_errors = mac_stats->rx_bad;
1335 stats->rx_frame_errors = mac_stats->rx_align_error;
1336 stats->rx_fifo_errors = mac_stats->rx_overflow;
1337 stats->rx_missed_errors = mac_stats->rx_missed;
1338 stats->tx_window_errors = mac_stats->tx_late_collision;
1339
1340 stats->rx_errors = (stats->rx_length_errors +
1341 stats->rx_over_errors +
1342 stats->rx_crc_errors +
1343 stats->rx_frame_errors +
1344 stats->rx_fifo_errors +
1345 stats->rx_missed_errors +
1346 mac_stats->rx_symbol_error);
1347 stats->tx_errors = (stats->tx_window_errors +
1348 mac_stats->tx_bad);
1349
1350 return stats;
1351}
1352
1353/* Context: netif_tx_lock held, BHs disabled. */
1354static void efx_watchdog(struct net_device *net_dev)
1355{
767e468c 1356 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1357
1358 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1359 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1360 monitor_reset ? "resetting channels" : "skipping reset");
1361
1362 if (monitor_reset)
1363 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1364}
1365
1366
1367/* Context: process, rtnl_lock() held. */
1368static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1369{
767e468c 1370 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1371 int rc = 0;
1372
1373 EFX_ASSERT_RESET_SERIALISED(efx);
1374
1375 if (new_mtu > EFX_MAX_MTU)
1376 return -EINVAL;
1377
1378 efx_stop_all(efx);
1379
1380 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1381
1382 efx_fini_channels(efx);
1383 net_dev->mtu = new_mtu;
bc3c90a2 1384 efx_init_channels(efx);
8ceee660
BH
1385
1386 efx_start_all(efx);
1387 return rc;
8ceee660
BH
1388}
1389
1390static int efx_set_mac_address(struct net_device *net_dev, void *data)
1391{
767e468c 1392 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1393 struct sockaddr *addr = data;
1394 char *new_addr = addr->sa_data;
1395
1396 EFX_ASSERT_RESET_SERIALISED(efx);
1397
1398 if (!is_valid_ether_addr(new_addr)) {
1399 DECLARE_MAC_BUF(mac);
1400 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1401 print_mac(mac, new_addr));
1402 return -EINVAL;
1403 }
1404
1405 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1406
1407 /* Reconfigure the MAC */
1408 efx_reconfigure_port(efx);
1409
1410 return 0;
1411}
1412
1413/* Context: netif_tx_lock held, BHs disabled. */
1414static void efx_set_multicast_list(struct net_device *net_dev)
1415{
767e468c 1416 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1417 struct dev_mc_list *mc_list = net_dev->mc_list;
1418 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
dc8cfa55 1419 bool promiscuous;
8ceee660
BH
1420 u32 crc;
1421 int bit;
1422 int i;
1423
1424 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
dc8cfa55 1425 promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1426 if (efx->promiscuous != promiscuous) {
1427 efx->promiscuous = promiscuous;
1428 /* Close the window between efx_stop_port() and efx_flush_all()
1429 * by only queuing work when the port is enabled. */
1430 if (efx->port_enabled)
1431 queue_work(efx->workqueue, &efx->reconfigure_work);
1432 }
1433
1434 /* Build multicast hash table */
1435 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1436 memset(mc_hash, 0xff, sizeof(*mc_hash));
1437 } else {
1438 memset(mc_hash, 0x00, sizeof(*mc_hash));
1439 for (i = 0; i < net_dev->mc_count; i++) {
1440 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1441 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1442 set_bit_le(bit, mc_hash->byte);
1443 mc_list = mc_list->next;
1444 }
1445 }
1446
1447 /* Create and activate new global multicast hash table */
1448 falcon_set_multicast_hash(efx);
1449}
1450
1451static int efx_netdev_event(struct notifier_block *this,
1452 unsigned long event, void *ptr)
1453{
d3208b5e 1454 struct net_device *net_dev = ptr;
8ceee660
BH
1455
1456 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1457 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1458
1459 strcpy(efx->name, net_dev->name);
1460 }
1461
1462 return NOTIFY_DONE;
1463}
1464
1465static struct notifier_block efx_netdev_notifier = {
1466 .notifier_call = efx_netdev_event,
1467};
1468
1469static int efx_register_netdev(struct efx_nic *efx)
1470{
1471 struct net_device *net_dev = efx->net_dev;
1472 int rc;
1473
1474 net_dev->watchdog_timeo = 5 * HZ;
1475 net_dev->irq = efx->pci_dev->irq;
1476 net_dev->open = efx_net_open;
1477 net_dev->stop = efx_net_stop;
1478 net_dev->get_stats = efx_net_stats;
1479 net_dev->tx_timeout = &efx_watchdog;
1480 net_dev->hard_start_xmit = efx_hard_start_xmit;
1481 net_dev->do_ioctl = efx_ioctl;
1482 net_dev->change_mtu = efx_change_mtu;
1483 net_dev->set_mac_address = efx_set_mac_address;
1484 net_dev->set_multicast_list = efx_set_multicast_list;
1485#ifdef CONFIG_NET_POLL_CONTROLLER
1486 net_dev->poll_controller = efx_netpoll;
1487#endif
1488 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1489 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1490
1491 /* Always start with carrier off; PHY events will detect the link */
1492 netif_carrier_off(efx->net_dev);
1493
1494 /* Clear MAC statistics */
1495 falcon_update_stats_xmac(efx);
1496 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1497
1498 rc = register_netdev(net_dev);
1499 if (rc) {
1500 EFX_ERR(efx, "could not register net dev\n");
1501 return rc;
1502 }
1503 strcpy(efx->name, net_dev->name);
1504
1505 return 0;
1506}
1507
1508static void efx_unregister_netdev(struct efx_nic *efx)
1509{
1510 struct efx_tx_queue *tx_queue;
1511
1512 if (!efx->net_dev)
1513 return;
1514
767e468c 1515 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1516
1517 /* Free up any skbs still remaining. This has to happen before
1518 * we try to unregister the netdev as running their destructors
1519 * may be needed to get the device ref. count to 0. */
1520 efx_for_each_tx_queue(tx_queue, efx)
1521 efx_release_tx_buffers(tx_queue);
1522
55668611 1523 if (efx_dev_registered(efx)) {
8ceee660
BH
1524 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1525 unregister_netdev(efx->net_dev);
1526 }
1527}
1528
1529/**************************************************************************
1530 *
1531 * Device reset and suspend
1532 *
1533 **************************************************************************/
1534
2467ca46
BH
1535/* Tears down the entire software state and most of the hardware state
1536 * before reset. */
8c8661e4 1537void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660
BH
1538{
1539 int rc;
1540
1541 EFX_ASSERT_RESET_SERIALISED(efx);
1542
2467ca46
BH
1543 /* The net_dev->get_stats handler is quite slow, and will fail
1544 * if a fetch is pending over reset. Serialise against it. */
1545 spin_lock(&efx->stats_lock);
8c8661e4 1546 efx->stats_enabled = false;
2467ca46
BH
1547 spin_unlock(&efx->stats_lock);
1548
1549 efx_stop_all(efx);
1550 mutex_lock(&efx->mac_lock);
1551
8ceee660 1552 rc = falcon_xmac_get_settings(efx, ecmd);
2467ca46 1553 if (rc)
8ceee660 1554 EFX_ERR(efx, "could not back up PHY settings\n");
8ceee660
BH
1555
1556 efx_fini_channels(efx);
8ceee660
BH
1557}
1558
2467ca46
BH
1559/* This function will always ensure that the locks acquired in
1560 * efx_reset_down() are released. A failure return code indicates
1561 * that we were unable to reinitialise the hardware, and the
1562 * driver should be disabled. If ok is false, then the rx and tx
1563 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1564int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1565{
1566 int rc;
1567
2467ca46 1568 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1569
2467ca46 1570 rc = falcon_init_nic(efx);
8ceee660 1571 if (rc) {
2467ca46
BH
1572 EFX_ERR(efx, "failed to initialise NIC\n");
1573 ok = false;
8ceee660
BH
1574 }
1575
2467ca46
BH
1576 if (ok) {
1577 efx_init_channels(efx);
8ceee660 1578
2467ca46
BH
1579 if (falcon_xmac_set_settings(efx, ecmd))
1580 EFX_ERR(efx, "could not restore PHY settings\n");
1581 }
1582
1583 mutex_unlock(&efx->mac_lock);
1584
8c8661e4 1585 if (ok) {
2467ca46 1586 efx_start_all(efx);
8c8661e4
BH
1587 efx->stats_enabled = true;
1588 }
8ceee660
BH
1589 return rc;
1590}
1591
1592/* Reset the NIC as transparently as possible. Do not reset the PHY
1593 * Note that the reset may fail, in which case the card will be left
1594 * in a most-probably-unusable state.
1595 *
1596 * This function will sleep. You cannot reset from within an atomic
1597 * state; use efx_schedule_reset() instead.
1598 *
1599 * Grabs the rtnl_lock.
1600 */
1601static int efx_reset(struct efx_nic *efx)
1602{
1603 struct ethtool_cmd ecmd;
1604 enum reset_type method = efx->reset_pending;
1605 int rc;
1606
1607 /* Serialise with kernel interfaces */
1608 rtnl_lock();
1609
1610 /* If we're not RUNNING then don't reset. Leave the reset_pending
1611 * flag set so that efx_pci_probe_main will be retried */
1612 if (efx->state != STATE_RUNNING) {
1613 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1614 goto unlock_rtnl;
1615 }
1616
8ceee660
BH
1617 EFX_INFO(efx, "resetting (%d)\n", method);
1618
2467ca46 1619 efx_reset_down(efx, &ecmd);
8ceee660
BH
1620
1621 rc = falcon_reset_hw(efx, method);
1622 if (rc) {
1623 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1624 goto fail;
8ceee660
BH
1625 }
1626
1627 /* Allow resets to be rescheduled. */
1628 efx->reset_pending = RESET_TYPE_NONE;
1629
1630 /* Reinitialise bus-mastering, which may have been turned off before
1631 * the reset was scheduled. This is still appropriate, even in the
1632 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1633 * can respond to requests. */
1634 pci_set_master(efx->pci_dev);
1635
8ceee660
BH
1636 /* Leave device stopped if necessary */
1637 if (method == RESET_TYPE_DISABLE) {
8ceee660 1638 rc = -EIO;
2467ca46 1639 goto fail;
8ceee660
BH
1640 }
1641
2467ca46 1642 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1643 if (rc)
2467ca46 1644 goto disable;
8ceee660 1645
8ceee660 1646 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1647 unlock_rtnl:
1648 rtnl_unlock();
1649 return 0;
1650
2467ca46
BH
1651 fail:
1652 efx_reset_up(efx, &ecmd, false);
1653 disable:
8ceee660
BH
1654 EFX_ERR(efx, "has been disabled\n");
1655 efx->state = STATE_DISABLED;
1656
8ceee660
BH
1657 rtnl_unlock();
1658 efx_unregister_netdev(efx);
1659 efx_fini_port(efx);
1660 return rc;
1661}
1662
1663/* The worker thread exists so that code that cannot sleep can
1664 * schedule a reset for later.
1665 */
1666static void efx_reset_work(struct work_struct *data)
1667{
1668 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1669
1670 efx_reset(nic);
1671}
1672
1673void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1674{
1675 enum reset_type method;
1676
1677 if (efx->reset_pending != RESET_TYPE_NONE) {
1678 EFX_INFO(efx, "quenching already scheduled reset\n");
1679 return;
1680 }
1681
1682 switch (type) {
1683 case RESET_TYPE_INVISIBLE:
1684 case RESET_TYPE_ALL:
1685 case RESET_TYPE_WORLD:
1686 case RESET_TYPE_DISABLE:
1687 method = type;
1688 break;
1689 case RESET_TYPE_RX_RECOVERY:
1690 case RESET_TYPE_RX_DESC_FETCH:
1691 case RESET_TYPE_TX_DESC_FETCH:
1692 case RESET_TYPE_TX_SKIP:
1693 method = RESET_TYPE_INVISIBLE;
1694 break;
1695 default:
1696 method = RESET_TYPE_ALL;
1697 break;
1698 }
1699
1700 if (method != type)
1701 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1702 else
1703 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1704
1705 efx->reset_pending = method;
1706
8d9853d9 1707 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1708}
1709
1710/**************************************************************************
1711 *
1712 * List of NICs we support
1713 *
1714 **************************************************************************/
1715
1716/* PCI device ID table */
1717static struct pci_device_id efx_pci_table[] __devinitdata = {
1718 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1719 .driver_data = (unsigned long) &falcon_a_nic_type},
1720 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1721 .driver_data = (unsigned long) &falcon_b_nic_type},
1722 {0} /* end of list */
1723};
1724
1725/**************************************************************************
1726 *
1727 * Dummy PHY/MAC/Board operations
1728 *
01aad7b6 1729 * Can be used for some unimplemented operations
8ceee660
BH
1730 * Needed so all function pointers are valid and do not have to be tested
1731 * before use
1732 *
1733 **************************************************************************/
1734int efx_port_dummy_op_int(struct efx_nic *efx)
1735{
1736 return 0;
1737}
1738void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1739void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1740
1741static struct efx_phy_operations efx_dummy_phy_operations = {
1742 .init = efx_port_dummy_op_int,
1743 .reconfigure = efx_port_dummy_op_void,
1744 .check_hw = efx_port_dummy_op_int,
1745 .fini = efx_port_dummy_op_void,
1746 .clear_interrupt = efx_port_dummy_op_void,
1747 .reset_xaui = efx_port_dummy_op_void,
1748};
1749
8ceee660 1750static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1751 .init = efx_port_dummy_op_int,
1752 .init_leds = efx_port_dummy_op_int,
1753 .set_fault_led = efx_port_dummy_op_blink,
1754 .blink = efx_port_dummy_op_blink,
1755 .fini = efx_port_dummy_op_void,
8ceee660
BH
1756};
1757
1758/**************************************************************************
1759 *
1760 * Data housekeeping
1761 *
1762 **************************************************************************/
1763
1764/* This zeroes out and then fills in the invariants in a struct
1765 * efx_nic (including all sub-structures).
1766 */
1767static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1768 struct pci_dev *pci_dev, struct net_device *net_dev)
1769{
1770 struct efx_channel *channel;
1771 struct efx_tx_queue *tx_queue;
1772 struct efx_rx_queue *rx_queue;
1773 int i, rc;
1774
1775 /* Initialise common structures */
1776 memset(efx, 0, sizeof(*efx));
1777 spin_lock_init(&efx->biu_lock);
1778 spin_lock_init(&efx->phy_lock);
1779 INIT_WORK(&efx->reset_work, efx_reset_work);
1780 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1781 efx->pci_dev = pci_dev;
1782 efx->state = STATE_INIT;
1783 efx->reset_pending = RESET_TYPE_NONE;
1784 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1785 efx->board_info = efx_dummy_board_info;
1786
1787 efx->net_dev = net_dev;
dc8cfa55 1788 efx->rx_checksum_enabled = true;
8ceee660
BH
1789 spin_lock_init(&efx->netif_stop_lock);
1790 spin_lock_init(&efx->stats_lock);
1791 mutex_init(&efx->mac_lock);
1792 efx->phy_op = &efx_dummy_phy_operations;
1793 efx->mii.dev = net_dev;
1794 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1795 atomic_set(&efx->netif_stop_count, 1);
1796
1797 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1798 channel = &efx->channel[i];
1799 channel->efx = efx;
1800 channel->channel = i;
dc8cfa55 1801 channel->work_pending = false;
8ceee660 1802 }
60ac1065 1803 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1804 tx_queue = &efx->tx_queue[i];
1805 tx_queue->efx = efx;
1806 tx_queue->queue = i;
1807 tx_queue->buffer = NULL;
1808 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1809 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1810 }
1811 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1812 rx_queue = &efx->rx_queue[i];
1813 rx_queue->efx = efx;
1814 rx_queue->queue = i;
1815 rx_queue->channel = &efx->channel[0]; /* for safety */
1816 rx_queue->buffer = NULL;
1817 spin_lock_init(&rx_queue->add_lock);
1818 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1819 }
1820
1821 efx->type = type;
1822
1823 /* Sanity-check NIC type */
1824 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1825 (efx->type->txd_ring_mask + 1));
1826 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1827 (efx->type->rxd_ring_mask + 1));
1828 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1829 (efx->type->evq_size - 1));
1830 /* As close as we can get to guaranteeing that we don't overflow */
1831 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1832 (efx->type->txd_ring_mask + 1 +
1833 efx->type->rxd_ring_mask + 1));
1834 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1835
1836 /* Higher numbered interrupt modes are less capable! */
1837 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1838 interrupt_mode);
1839
1840 efx->workqueue = create_singlethread_workqueue("sfc_work");
1841 if (!efx->workqueue) {
1842 rc = -ENOMEM;
1843 goto fail1;
1844 }
1845
8d9853d9
BH
1846 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1847 if (!efx->reset_workqueue) {
1848 rc = -ENOMEM;
1849 goto fail2;
1850 }
1851
8ceee660
BH
1852 return 0;
1853
8d9853d9
BH
1854 fail2:
1855 destroy_workqueue(efx->workqueue);
1856 efx->workqueue = NULL;
1857
8ceee660
BH
1858 fail1:
1859 return rc;
1860}
1861
1862static void efx_fini_struct(struct efx_nic *efx)
1863{
8d9853d9
BH
1864 if (efx->reset_workqueue) {
1865 destroy_workqueue(efx->reset_workqueue);
1866 efx->reset_workqueue = NULL;
1867 }
8ceee660
BH
1868 if (efx->workqueue) {
1869 destroy_workqueue(efx->workqueue);
1870 efx->workqueue = NULL;
1871 }
1872}
1873
1874/**************************************************************************
1875 *
1876 * PCI interface
1877 *
1878 **************************************************************************/
1879
1880/* Main body of final NIC shutdown code
1881 * This is called only at module unload (or hotplug removal).
1882 */
1883static void efx_pci_remove_main(struct efx_nic *efx)
1884{
1885 EFX_ASSERT_RESET_SERIALISED(efx);
1886
1887 /* Skip everything if we never obtained a valid membase */
1888 if (!efx->membase)
1889 return;
1890
1891 efx_fini_channels(efx);
1892 efx_fini_port(efx);
1893
1894 /* Shutdown the board, then the NIC and board state */
37b5a603 1895 efx->board_info.fini(efx);
8ceee660
BH
1896 falcon_fini_interrupt(efx);
1897
1898 efx_fini_napi(efx);
1899 efx_remove_all(efx);
1900}
1901
1902/* Final NIC shutdown
1903 * This is called only at module unload (or hotplug removal).
1904 */
1905static void efx_pci_remove(struct pci_dev *pci_dev)
1906{
1907 struct efx_nic *efx;
1908
1909 efx = pci_get_drvdata(pci_dev);
1910 if (!efx)
1911 return;
1912
1913 /* Mark the NIC as fini, then stop the interface */
1914 rtnl_lock();
1915 efx->state = STATE_FINI;
1916 dev_close(efx->net_dev);
1917
1918 /* Allow any queued efx_resets() to complete */
1919 rtnl_unlock();
1920
1921 if (efx->membase == NULL)
1922 goto out;
1923
1924 efx_unregister_netdev(efx);
1925
1926 /* Wait for any scheduled resets to complete. No more will be
1927 * scheduled from this point because efx_stop_all() has been
1928 * called, we are no longer registered with driverlink, and
1929 * the net_device's have been removed. */
8d9853d9 1930 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
1931
1932 efx_pci_remove_main(efx);
1933
1934out:
1935 efx_fini_io(efx);
1936 EFX_LOG(efx, "shutdown successful\n");
1937
1938 pci_set_drvdata(pci_dev, NULL);
1939 efx_fini_struct(efx);
1940 free_netdev(efx->net_dev);
1941};
1942
1943/* Main body of NIC initialisation
1944 * This is called at module load (or hotplug insertion, theoretically).
1945 */
1946static int efx_pci_probe_main(struct efx_nic *efx)
1947{
1948 int rc;
1949
1950 /* Do start-of-day initialisation */
1951 rc = efx_probe_all(efx);
1952 if (rc)
1953 goto fail1;
1954
1955 rc = efx_init_napi(efx);
1956 if (rc)
1957 goto fail2;
1958
1959 /* Initialise the board */
1960 rc = efx->board_info.init(efx);
1961 if (rc) {
1962 EFX_ERR(efx, "failed to initialise board\n");
1963 goto fail3;
1964 }
1965
1966 rc = falcon_init_nic(efx);
1967 if (rc) {
1968 EFX_ERR(efx, "failed to initialise NIC\n");
1969 goto fail4;
1970 }
1971
1972 rc = efx_init_port(efx);
1973 if (rc) {
1974 EFX_ERR(efx, "failed to initialise port\n");
1975 goto fail5;
1976 }
1977
bc3c90a2 1978 efx_init_channels(efx);
8ceee660
BH
1979
1980 rc = falcon_init_interrupt(efx);
1981 if (rc)
bc3c90a2 1982 goto fail6;
8ceee660
BH
1983
1984 return 0;
1985
8ceee660 1986 fail6:
bc3c90a2 1987 efx_fini_channels(efx);
8ceee660
BH
1988 efx_fini_port(efx);
1989 fail5:
1990 fail4:
1991 fail3:
1992 efx_fini_napi(efx);
1993 fail2:
1994 efx_remove_all(efx);
1995 fail1:
1996 return rc;
1997}
1998
1999/* NIC initialisation
2000 *
2001 * This is called at module load (or hotplug insertion,
2002 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2003 * sets up and registers the network devices with the kernel and hooks
2004 * the interrupt service routine. It does not prepare the device for
2005 * transmission; this is left to the first time one of the network
2006 * interfaces is brought up (i.e. efx_net_open).
2007 */
2008static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2009 const struct pci_device_id *entry)
2010{
2011 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2012 struct net_device *net_dev;
2013 struct efx_nic *efx;
2014 int i, rc;
2015
2016 /* Allocate and initialise a struct net_device and struct efx_nic */
2017 net_dev = alloc_etherdev(sizeof(*efx));
2018 if (!net_dev)
2019 return -ENOMEM;
b9b39b62
BH
2020 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2021 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2022 if (lro)
2023 net_dev->features |= NETIF_F_LRO;
28506563
BH
2024 /* Mask for features that also apply to VLAN devices */
2025 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2026 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2027 efx = netdev_priv(net_dev);
8ceee660
BH
2028 pci_set_drvdata(pci_dev, efx);
2029 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2030 if (rc)
2031 goto fail1;
2032
2033 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2034
2035 /* Set up basic I/O (BAR mappings etc) */
2036 rc = efx_init_io(efx);
2037 if (rc)
2038 goto fail2;
2039
2040 /* No serialisation is required with the reset path because
2041 * we're in STATE_INIT. */
2042 for (i = 0; i < 5; i++) {
2043 rc = efx_pci_probe_main(efx);
2044 if (rc == 0)
2045 break;
2046
2047 /* Serialise against efx_reset(). No more resets will be
2048 * scheduled since efx_stop_all() has been called, and we
2049 * have not and never have been registered with either
2050 * the rtnetlink or driverlink layers. */
8d9853d9 2051 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2052
2053 /* Retry if a recoverably reset event has been scheduled */
2054 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2055 (efx->reset_pending != RESET_TYPE_ALL))
2056 goto fail3;
2057
2058 efx->reset_pending = RESET_TYPE_NONE;
2059 }
2060
2061 if (rc) {
2062 EFX_ERR(efx, "Could not reset NIC\n");
2063 goto fail4;
2064 }
2065
2066 /* Switch to the running state before we expose the device to
2067 * the OS. This is to ensure that the initial gathering of
2068 * MAC stats succeeds. */
2069 rtnl_lock();
2070 efx->state = STATE_RUNNING;
2071 rtnl_unlock();
2072
2073 rc = efx_register_netdev(efx);
2074 if (rc)
2075 goto fail5;
2076
2077 EFX_LOG(efx, "initialisation successful\n");
2078
2079 return 0;
2080
2081 fail5:
2082 efx_pci_remove_main(efx);
2083 fail4:
2084 fail3:
2085 efx_fini_io(efx);
2086 fail2:
2087 efx_fini_struct(efx);
2088 fail1:
2089 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2090 free_netdev(net_dev);
2091 return rc;
2092}
2093
2094static struct pci_driver efx_pci_driver = {
2095 .name = EFX_DRIVER_NAME,
2096 .id_table = efx_pci_table,
2097 .probe = efx_pci_probe,
2098 .remove = efx_pci_remove,
2099};
2100
2101/**************************************************************************
2102 *
2103 * Kernel module interface
2104 *
2105 *************************************************************************/
2106
2107module_param(interrupt_mode, uint, 0444);
2108MODULE_PARM_DESC(interrupt_mode,
2109 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2110
2111static int __init efx_init_module(void)
2112{
2113 int rc;
2114
2115 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2116
2117 rc = register_netdevice_notifier(&efx_netdev_notifier);
2118 if (rc)
2119 goto err_notifier;
2120
2121 refill_workqueue = create_workqueue("sfc_refill");
2122 if (!refill_workqueue) {
2123 rc = -ENOMEM;
2124 goto err_refill;
2125 }
2126
2127 rc = pci_register_driver(&efx_pci_driver);
2128 if (rc < 0)
2129 goto err_pci;
2130
2131 return 0;
2132
2133 err_pci:
2134 destroy_workqueue(refill_workqueue);
2135 err_refill:
2136 unregister_netdevice_notifier(&efx_netdev_notifier);
2137 err_notifier:
2138 return rc;
2139}
2140
2141static void __exit efx_exit_module(void)
2142{
2143 printk(KERN_INFO "Solarflare NET driver unloading\n");
2144
2145 pci_unregister_driver(&efx_pci_driver);
2146 destroy_workqueue(refill_workqueue);
2147 unregister_netdevice_notifier(&efx_netdev_notifier);
2148
2149}
2150
2151module_init(efx_init_module);
2152module_exit(efx_exit_module);
2153
2154MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2155 "Solarflare Communications");
2156MODULE_DESCRIPTION("Solarflare Communications network driver");
2157MODULE_LICENSE("GPL");
2158MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.176217 seconds and 5 git commands to generate.