sit: stateless autoconf for isatap
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52/*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
dc8cfa55 58static int lro = true;
8ceee660
BH
59module_param(lro, int, 0644);
60MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62/*
63 * Use separate channels for TX and RX events
64 *
28b581ab
NT
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
8ceee660 67 *
28b581ab 68 * This is only used in MSI-X interrupt mode
8ceee660 69 */
28b581ab
NT
70static unsigned int separate_tx_channels;
71module_param(separate_tx_channels, uint, 0644);
72MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
6fb70fd1
BH
136static unsigned irq_adapt_low_thresh = 10000;
137module_param(irq_adapt_low_thresh, uint, 0644);
138MODULE_PARM_DESC(irq_adapt_low_thresh,
139 "Threshold score for reducing IRQ moderation");
140
141static unsigned irq_adapt_high_thresh = 20000;
142module_param(irq_adapt_high_thresh, uint, 0644);
143MODULE_PARM_DESC(irq_adapt_high_thresh,
144 "Threshold score for increasing IRQ moderation");
145
8ceee660
BH
146/**************************************************************************
147 *
148 * Utility functions and prototypes
149 *
150 *************************************************************************/
151static void efx_remove_channel(struct efx_channel *channel);
152static void efx_remove_port(struct efx_nic *efx);
153static void efx_fini_napi(struct efx_nic *efx);
154static void efx_fini_channels(struct efx_nic *efx);
155
156#define EFX_ASSERT_RESET_SERIALISED(efx) \
157 do { \
3c78708f 158 if (efx->state == STATE_RUNNING) \
8ceee660
BH
159 ASSERT_RTNL(); \
160 } while (0)
161
162/**************************************************************************
163 *
164 * Event queue processing
165 *
166 *************************************************************************/
167
168/* Process channel's event queue
169 *
170 * This function is responsible for processing the event queue of a
171 * single channel. The caller must guarantee that this function will
172 * never be concurrently called more than once on the same channel,
173 * though different channels may be being processed concurrently.
174 */
4d566063 175static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 176{
42cbe2d7
BH
177 struct efx_nic *efx = channel->efx;
178 int rx_packets;
8ceee660 179
42cbe2d7 180 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 181 !channel->enabled))
42cbe2d7 182 return 0;
8ceee660 183
42cbe2d7
BH
184 rx_packets = falcon_process_eventq(channel, rx_quota);
185 if (rx_packets == 0)
186 return 0;
8ceee660
BH
187
188 /* Deliver last RX packet. */
189 if (channel->rx_pkt) {
190 __efx_rx_packet(channel, channel->rx_pkt,
191 channel->rx_pkt_csummed);
192 channel->rx_pkt = NULL;
193 }
194
8ceee660
BH
195 efx_rx_strategy(channel);
196
42cbe2d7 197 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 198
42cbe2d7 199 return rx_packets;
8ceee660
BH
200}
201
202/* Mark channel as finished processing
203 *
204 * Note that since we will not receive further interrupts for this
205 * channel before we finish processing and call the eventq_read_ack()
206 * method, there is no need to use the interrupt hold-off timers.
207 */
208static inline void efx_channel_processed(struct efx_channel *channel)
209{
5b9e207c
BH
210 /* The interrupt handler for this channel may set work_pending
211 * as soon as we acknowledge the events we've seen. Make sure
212 * it's cleared before then. */
dc8cfa55 213 channel->work_pending = false;
5b9e207c
BH
214 smp_wmb();
215
8ceee660
BH
216 falcon_eventq_read_ack(channel);
217}
218
219/* NAPI poll handler
220 *
221 * NAPI guarantees serialisation of polls of the same device, which
222 * provides the guarantee required by efx_process_channel().
223 */
224static int efx_poll(struct napi_struct *napi, int budget)
225{
226 struct efx_channel *channel =
227 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
228 int rx_packets;
229
230 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
231 channel->channel, raw_smp_processor_id());
232
42cbe2d7 233 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
234
235 if (rx_packets < budget) {
6fb70fd1
BH
236 struct efx_nic *efx = channel->efx;
237
238 if (channel->used_flags & EFX_USED_BY_RX &&
239 efx->irq_rx_adaptive &&
240 unlikely(++channel->irq_count == 1000)) {
241 unsigned old_irq_moderation = channel->irq_moderation;
242
243 if (unlikely(channel->irq_mod_score <
244 irq_adapt_low_thresh)) {
245 channel->irq_moderation =
246 max_t(int,
247 channel->irq_moderation -
248 FALCON_IRQ_MOD_RESOLUTION,
249 FALCON_IRQ_MOD_RESOLUTION);
250 } else if (unlikely(channel->irq_mod_score >
251 irq_adapt_high_thresh)) {
252 channel->irq_moderation =
253 min(channel->irq_moderation +
254 FALCON_IRQ_MOD_RESOLUTION,
255 efx->irq_rx_moderation);
256 }
257
258 if (channel->irq_moderation != old_irq_moderation)
259 falcon_set_int_moderation(channel);
260
261 channel->irq_count = 0;
262 channel->irq_mod_score = 0;
263 }
264
8ceee660 265 /* There is no race here; although napi_disable() will
288379f0 266 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
267 * since efx_channel_processed() will have no effect if
268 * interrupts have already been disabled.
269 */
288379f0 270 napi_complete(napi);
8ceee660
BH
271 efx_channel_processed(channel);
272 }
273
274 return rx_packets;
275}
276
277/* Process the eventq of the specified channel immediately on this CPU
278 *
279 * Disable hardware generated interrupts, wait for any existing
280 * processing to finish, then directly poll (and ack ) the eventq.
281 * Finally reenable NAPI and interrupts.
282 *
283 * Since we are touching interrupts the caller should hold the suspend lock
284 */
285void efx_process_channel_now(struct efx_channel *channel)
286{
287 struct efx_nic *efx = channel->efx;
288
289 BUG_ON(!channel->used_flags);
290 BUG_ON(!channel->enabled);
291
292 /* Disable interrupts and wait for ISRs to complete */
293 falcon_disable_interrupts(efx);
294 if (efx->legacy_irq)
295 synchronize_irq(efx->legacy_irq);
64ee3120 296 if (channel->irq)
8ceee660
BH
297 synchronize_irq(channel->irq);
298
299 /* Wait for any NAPI processing to complete */
300 napi_disable(&channel->napi_str);
301
302 /* Poll the channel */
91ad757c 303 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
304
305 /* Ack the eventq. This may cause an interrupt to be generated
306 * when they are reenabled */
307 efx_channel_processed(channel);
308
309 napi_enable(&channel->napi_str);
310 falcon_enable_interrupts(efx);
311}
312
313/* Create event queue
314 * Event queue memory allocations are done only once. If the channel
315 * is reset, the memory buffer will be reused; this guards against
316 * errors during channel reset and also simplifies interrupt handling.
317 */
318static int efx_probe_eventq(struct efx_channel *channel)
319{
320 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
321
322 return falcon_probe_eventq(channel);
323}
324
325/* Prepare channel's event queue */
bc3c90a2 326static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
327{
328 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
329
330 channel->eventq_read_ptr = 0;
331
bc3c90a2 332 falcon_init_eventq(channel);
8ceee660
BH
333}
334
335static void efx_fini_eventq(struct efx_channel *channel)
336{
337 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
338
339 falcon_fini_eventq(channel);
340}
341
342static void efx_remove_eventq(struct efx_channel *channel)
343{
344 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
345
346 falcon_remove_eventq(channel);
347}
348
349/**************************************************************************
350 *
351 * Channel handling
352 *
353 *************************************************************************/
354
8ceee660
BH
355static int efx_probe_channel(struct efx_channel *channel)
356{
357 struct efx_tx_queue *tx_queue;
358 struct efx_rx_queue *rx_queue;
359 int rc;
360
361 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
362
363 rc = efx_probe_eventq(channel);
364 if (rc)
365 goto fail1;
366
367 efx_for_each_channel_tx_queue(tx_queue, channel) {
368 rc = efx_probe_tx_queue(tx_queue);
369 if (rc)
370 goto fail2;
371 }
372
373 efx_for_each_channel_rx_queue(rx_queue, channel) {
374 rc = efx_probe_rx_queue(rx_queue);
375 if (rc)
376 goto fail3;
377 }
378
379 channel->n_rx_frm_trunc = 0;
380
381 return 0;
382
383 fail3:
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_remove_rx_queue(rx_queue);
386 fail2:
387 efx_for_each_channel_tx_queue(tx_queue, channel)
388 efx_remove_tx_queue(tx_queue);
389 fail1:
390 return rc;
391}
392
393
56536e9c
BH
394static void efx_set_channel_names(struct efx_nic *efx)
395{
396 struct efx_channel *channel;
397 const char *type = "";
398 int number;
399
400 efx_for_each_channel(channel, efx) {
401 number = channel->channel;
402 if (efx->n_channels > efx->n_rx_queues) {
403 if (channel->channel < efx->n_rx_queues) {
404 type = "-rx";
405 } else {
406 type = "-tx";
407 number -= efx->n_rx_queues;
408 }
409 }
410 snprintf(channel->name, sizeof(channel->name),
411 "%s%s-%d", efx->name, type, number);
412 }
413}
414
8ceee660
BH
415/* Channels are shutdown and reinitialised whilst the NIC is running
416 * to propagate configuration changes (mtu, checksum offload), or
417 * to clear hardware error conditions
418 */
bc3c90a2 419static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
420{
421 struct efx_tx_queue *tx_queue;
422 struct efx_rx_queue *rx_queue;
423 struct efx_channel *channel;
8ceee660 424
f7f13b0b
BH
425 /* Calculate the rx buffer allocation parameters required to
426 * support the current MTU, including padding for header
427 * alignment and overruns.
428 */
429 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
430 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
431 efx->type->rx_buffer_padding);
432 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
433
434 /* Initialise the channels */
435 efx_for_each_channel(channel, efx) {
436 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
437
bc3c90a2 438 efx_init_eventq(channel);
8ceee660 439
bc3c90a2
BH
440 efx_for_each_channel_tx_queue(tx_queue, channel)
441 efx_init_tx_queue(tx_queue);
8ceee660
BH
442
443 /* The rx buffer allocation strategy is MTU dependent */
444 efx_rx_strategy(channel);
445
bc3c90a2
BH
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_init_rx_queue(rx_queue);
8ceee660
BH
448
449 WARN_ON(channel->rx_pkt != NULL);
450 efx_rx_strategy(channel);
451 }
8ceee660
BH
452}
453
454/* This enables event queue processing and packet transmission.
455 *
456 * Note that this function is not allowed to fail, since that would
457 * introduce too much complexity into the suspend/resume path.
458 */
459static void efx_start_channel(struct efx_channel *channel)
460{
461 struct efx_rx_queue *rx_queue;
462
463 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
464
5b9e207c
BH
465 /* The interrupt handler for this channel may set work_pending
466 * as soon as we enable it. Make sure it's cleared before
467 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
468 channel->work_pending = false;
469 channel->enabled = true;
5b9e207c 470 smp_wmb();
8ceee660
BH
471
472 napi_enable(&channel->napi_str);
473
474 /* Load up RX descriptors */
475 efx_for_each_channel_rx_queue(rx_queue, channel)
476 efx_fast_push_rx_descriptors(rx_queue);
477}
478
479/* This disables event queue processing and packet transmission.
480 * This function does not guarantee that all queue processing
481 * (e.g. RX refill) is complete.
482 */
483static void efx_stop_channel(struct efx_channel *channel)
484{
485 struct efx_rx_queue *rx_queue;
486
487 if (!channel->enabled)
488 return;
489
490 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
491
dc8cfa55 492 channel->enabled = false;
8ceee660
BH
493 napi_disable(&channel->napi_str);
494
495 /* Ensure that any worker threads have exited or will be no-ops */
496 efx_for_each_channel_rx_queue(rx_queue, channel) {
497 spin_lock_bh(&rx_queue->add_lock);
498 spin_unlock_bh(&rx_queue->add_lock);
499 }
500}
501
502static void efx_fini_channels(struct efx_nic *efx)
503{
504 struct efx_channel *channel;
505 struct efx_tx_queue *tx_queue;
506 struct efx_rx_queue *rx_queue;
6bc5d3a9 507 int rc;
8ceee660
BH
508
509 EFX_ASSERT_RESET_SERIALISED(efx);
510 BUG_ON(efx->port_enabled);
511
6bc5d3a9
BH
512 rc = falcon_flush_queues(efx);
513 if (rc)
514 EFX_ERR(efx, "failed to flush queues\n");
515 else
516 EFX_LOG(efx, "successfully flushed all queues\n");
517
8ceee660
BH
518 efx_for_each_channel(channel, efx) {
519 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
520
521 efx_for_each_channel_rx_queue(rx_queue, channel)
522 efx_fini_rx_queue(rx_queue);
523 efx_for_each_channel_tx_queue(tx_queue, channel)
524 efx_fini_tx_queue(tx_queue);
8ceee660
BH
525 efx_fini_eventq(channel);
526 }
527}
528
529static void efx_remove_channel(struct efx_channel *channel)
530{
531 struct efx_tx_queue *tx_queue;
532 struct efx_rx_queue *rx_queue;
533
534 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
535
536 efx_for_each_channel_rx_queue(rx_queue, channel)
537 efx_remove_rx_queue(rx_queue);
538 efx_for_each_channel_tx_queue(tx_queue, channel)
539 efx_remove_tx_queue(tx_queue);
540 efx_remove_eventq(channel);
541
542 channel->used_flags = 0;
543}
544
545void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
546{
547 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
548}
549
550/**************************************************************************
551 *
552 * Port handling
553 *
554 **************************************************************************/
555
556/* This ensures that the kernel is kept informed (via
557 * netif_carrier_on/off) of the link status, and also maintains the
558 * link status's stop on the port's TX queue.
559 */
560static void efx_link_status_changed(struct efx_nic *efx)
561{
8ceee660
BH
562 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
563 * that no events are triggered between unregister_netdev() and the
564 * driver unloading. A more general condition is that NETDEV_CHANGE
565 * can only be generated between NETDEV_UP and NETDEV_DOWN */
566 if (!netif_running(efx->net_dev))
567 return;
568
8c8661e4
BH
569 if (efx->port_inhibited) {
570 netif_carrier_off(efx->net_dev);
571 return;
572 }
573
dc8cfa55 574 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
575 efx->n_link_state_changes++;
576
577 if (efx->link_up)
578 netif_carrier_on(efx->net_dev);
579 else
580 netif_carrier_off(efx->net_dev);
581 }
582
583 /* Status message for kernel log */
584 if (efx->link_up) {
f31a45d2
BH
585 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
586 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
587 efx->net_dev->mtu,
588 (efx->promiscuous ? " [PROMISC]" : ""));
589 } else {
590 EFX_INFO(efx, "link down\n");
591 }
592
593}
594
115122af
BH
595static void efx_fini_port(struct efx_nic *efx);
596
8ceee660
BH
597/* This call reinitialises the MAC to pick up new PHY settings. The
598 * caller must hold the mac_lock */
8c8661e4 599void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
600{
601 WARN_ON(!mutex_is_locked(&efx->mac_lock));
602
603 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
604 raw_smp_processor_id());
605
a816f75a
BH
606 /* Serialise the promiscuous flag with efx_set_multicast_list. */
607 if (efx_dev_registered(efx)) {
608 netif_addr_lock_bh(efx->net_dev);
609 netif_addr_unlock_bh(efx->net_dev);
610 }
611
177dfcd8
BH
612 falcon_deconfigure_mac_wrapper(efx);
613
614 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
615 if (LOOPBACK_INTERNAL(efx))
616 efx->phy_mode |= PHY_MODE_TX_DISABLED;
617 else
618 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
619 efx->phy_op->reconfigure(efx);
620
621 if (falcon_switch_mac(efx))
622 goto fail;
623
624 efx->mac_op->reconfigure(efx);
8ceee660
BH
625
626 /* Inform kernel of loss/gain of carrier */
627 efx_link_status_changed(efx);
177dfcd8
BH
628 return;
629
630fail:
631 EFX_ERR(efx, "failed to reconfigure MAC\n");
115122af
BH
632 efx->port_enabled = false;
633 efx_fini_port(efx);
8ceee660
BH
634}
635
636/* Reinitialise the MAC to pick up new PHY settings, even if the port is
637 * disabled. */
638void efx_reconfigure_port(struct efx_nic *efx)
639{
640 EFX_ASSERT_RESET_SERIALISED(efx);
641
642 mutex_lock(&efx->mac_lock);
643 __efx_reconfigure_port(efx);
644 mutex_unlock(&efx->mac_lock);
645}
646
647/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
648 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
649 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 650static void efx_phy_work(struct work_struct *data)
8ceee660 651{
766ca0fa 652 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
653
654 mutex_lock(&efx->mac_lock);
655 if (efx->port_enabled)
656 __efx_reconfigure_port(efx);
657 mutex_unlock(&efx->mac_lock);
658}
659
766ca0fa
BH
660static void efx_mac_work(struct work_struct *data)
661{
662 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
663
664 mutex_lock(&efx->mac_lock);
665 if (efx->port_enabled)
666 efx->mac_op->irq(efx);
667 mutex_unlock(&efx->mac_lock);
668}
669
8ceee660
BH
670static int efx_probe_port(struct efx_nic *efx)
671{
672 int rc;
673
674 EFX_LOG(efx, "create port\n");
675
676 /* Connect up MAC/PHY operations table and read MAC address */
677 rc = falcon_probe_port(efx);
678 if (rc)
679 goto err;
680
84ae48fe
BH
681 if (phy_flash_cfg)
682 efx->phy_mode = PHY_MODE_SPECIAL;
683
8ceee660
BH
684 /* Sanity check MAC address */
685 if (is_valid_ether_addr(efx->mac_address)) {
686 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
687 } else {
e174961c
JB
688 EFX_ERR(efx, "invalid MAC address %pM\n",
689 efx->mac_address);
8ceee660
BH
690 if (!allow_bad_hwaddr) {
691 rc = -EINVAL;
692 goto err;
693 }
694 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
695 EFX_INFO(efx, "using locally-generated MAC %pM\n",
696 efx->net_dev->dev_addr);
8ceee660
BH
697 }
698
699 return 0;
700
701 err:
702 efx_remove_port(efx);
703 return rc;
704}
705
706static int efx_init_port(struct efx_nic *efx)
707{
708 int rc;
709
710 EFX_LOG(efx, "init port\n");
711
177dfcd8 712 rc = efx->phy_op->init(efx);
8ceee660
BH
713 if (rc)
714 return rc;
177dfcd8 715 mutex_lock(&efx->mac_lock);
4b988280 716 efx->phy_op->reconfigure(efx);
177dfcd8
BH
717 rc = falcon_switch_mac(efx);
718 mutex_unlock(&efx->mac_lock);
719 if (rc)
720 goto fail;
721 efx->mac_op->reconfigure(efx);
8ceee660 722
dc8cfa55 723 efx->port_initialized = true;
1974cc20 724 efx_stats_enable(efx);
8ceee660 725 return 0;
177dfcd8
BH
726
727fail:
728 efx->phy_op->fini(efx);
729 return rc;
8ceee660
BH
730}
731
732/* Allow efx_reconfigure_port() to be scheduled, and close the window
733 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 734 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
735static void efx_start_port(struct efx_nic *efx)
736{
737 EFX_LOG(efx, "start port\n");
738 BUG_ON(efx->port_enabled);
739
740 mutex_lock(&efx->mac_lock);
dc8cfa55 741 efx->port_enabled = true;
8ceee660 742 __efx_reconfigure_port(efx);
766ca0fa 743 efx->mac_op->irq(efx);
8ceee660
BH
744 mutex_unlock(&efx->mac_lock);
745}
746
766ca0fa
BH
747/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
748 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
749 * and efx_mac_work may still be scheduled via NAPI processing until
750 * efx_flush_all() is called */
8ceee660
BH
751static void efx_stop_port(struct efx_nic *efx)
752{
753 EFX_LOG(efx, "stop port\n");
754
755 mutex_lock(&efx->mac_lock);
dc8cfa55 756 efx->port_enabled = false;
8ceee660
BH
757 mutex_unlock(&efx->mac_lock);
758
759 /* Serialise against efx_set_multicast_list() */
55668611 760 if (efx_dev_registered(efx)) {
b9e40857
DM
761 netif_addr_lock_bh(efx->net_dev);
762 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
763 }
764}
765
766static void efx_fini_port(struct efx_nic *efx)
767{
768 EFX_LOG(efx, "shut down port\n");
769
770 if (!efx->port_initialized)
771 return;
772
1974cc20 773 efx_stats_disable(efx);
177dfcd8 774 efx->phy_op->fini(efx);
dc8cfa55 775 efx->port_initialized = false;
8ceee660 776
dc8cfa55 777 efx->link_up = false;
8ceee660
BH
778 efx_link_status_changed(efx);
779}
780
781static void efx_remove_port(struct efx_nic *efx)
782{
783 EFX_LOG(efx, "destroying port\n");
784
785 falcon_remove_port(efx);
786}
787
788/**************************************************************************
789 *
790 * NIC handling
791 *
792 **************************************************************************/
793
794/* This configures the PCI device to enable I/O and DMA. */
795static int efx_init_io(struct efx_nic *efx)
796{
797 struct pci_dev *pci_dev = efx->pci_dev;
798 dma_addr_t dma_mask = efx->type->max_dma_mask;
799 int rc;
800
801 EFX_LOG(efx, "initialising I/O\n");
802
803 rc = pci_enable_device(pci_dev);
804 if (rc) {
805 EFX_ERR(efx, "failed to enable PCI device\n");
806 goto fail1;
807 }
808
809 pci_set_master(pci_dev);
810
811 /* Set the PCI DMA mask. Try all possibilities from our
812 * genuine mask down to 32 bits, because some architectures
813 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
814 * masks event though they reject 46 bit masks.
815 */
816 while (dma_mask > 0x7fffffffUL) {
817 if (pci_dma_supported(pci_dev, dma_mask) &&
818 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
819 break;
820 dma_mask >>= 1;
821 }
822 if (rc) {
823 EFX_ERR(efx, "could not find a suitable DMA mask\n");
824 goto fail2;
825 }
826 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
827 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
828 if (rc) {
829 /* pci_set_consistent_dma_mask() is not *allowed* to
830 * fail with a mask that pci_set_dma_mask() accepted,
831 * but just in case...
832 */
833 EFX_ERR(efx, "failed to set consistent DMA mask\n");
834 goto fail2;
835 }
836
837 efx->membase_phys = pci_resource_start(efx->pci_dev,
838 efx->type->mem_bar);
839 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
840 if (rc) {
841 EFX_ERR(efx, "request for memory BAR failed\n");
842 rc = -EIO;
843 goto fail3;
844 }
845 efx->membase = ioremap_nocache(efx->membase_phys,
846 efx->type->mem_map_size);
847 if (!efx->membase) {
086ea356
BH
848 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
849 efx->type->mem_bar,
850 (unsigned long long)efx->membase_phys,
8ceee660
BH
851 efx->type->mem_map_size);
852 rc = -ENOMEM;
853 goto fail4;
854 }
086ea356
BH
855 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
856 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
857 efx->type->mem_map_size, efx->membase);
8ceee660
BH
858
859 return 0;
860
861 fail4:
e1074a0d 862 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 863 fail3:
2c118e0f 864 efx->membase_phys = 0;
8ceee660
BH
865 fail2:
866 pci_disable_device(efx->pci_dev);
867 fail1:
868 return rc;
869}
870
871static void efx_fini_io(struct efx_nic *efx)
872{
873 EFX_LOG(efx, "shutting down I/O\n");
874
875 if (efx->membase) {
876 iounmap(efx->membase);
877 efx->membase = NULL;
878 }
879
880 if (efx->membase_phys) {
881 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 882 efx->membase_phys = 0;
8ceee660
BH
883 }
884
885 pci_disable_device(efx->pci_dev);
886}
887
46123d04
BH
888/* Get number of RX queues wanted. Return number of online CPU
889 * packages in the expectation that an IRQ balancer will spread
890 * interrupts across them. */
891static int efx_wanted_rx_queues(void)
892{
2f8975fb 893 cpumask_var_t core_mask;
46123d04
BH
894 int count;
895 int cpu;
896
3977d033 897 if (unlikely(!alloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 898 printk(KERN_WARNING
3977d033 899 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
900 return 1;
901 }
902
903 cpumask_clear(core_mask);
46123d04
BH
904 count = 0;
905 for_each_online_cpu(cpu) {
2f8975fb 906 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 907 ++count;
2f8975fb 908 cpumask_or(core_mask, core_mask,
fbd59a8d 909 topology_core_cpumask(cpu));
46123d04
BH
910 }
911 }
912
2f8975fb 913 free_cpumask_var(core_mask);
46123d04
BH
914 return count;
915}
916
917/* Probe the number and type of interrupts we are able to obtain, and
918 * the resulting numbers of channels and RX queues.
919 */
8ceee660
BH
920static void efx_probe_interrupts(struct efx_nic *efx)
921{
46123d04
BH
922 int max_channels =
923 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
924 int rc, i;
925
926 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
927 struct msix_entry xentries[EFX_MAX_CHANNELS];
928 int wanted_ints;
28b581ab 929 int rx_queues;
aa6ef27e 930
46123d04
BH
931 /* We want one RX queue and interrupt per CPU package
932 * (or as specified by the rss_cpus module parameter).
933 * We will need one channel per interrupt.
934 */
28b581ab
NT
935 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
936 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
937 wanted_ints = min(wanted_ints, max_channels);
8ceee660 938
28b581ab 939 for (i = 0; i < wanted_ints; i++)
8ceee660 940 xentries[i].entry = i;
28b581ab 941 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 942 if (rc > 0) {
28b581ab
NT
943 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
944 " available (%d < %d).\n", rc, wanted_ints);
945 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
946 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
947 wanted_ints = rc;
8ceee660 948 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 949 wanted_ints);
8ceee660
BH
950 }
951
952 if (rc == 0) {
28b581ab
NT
953 efx->n_rx_queues = min(rx_queues, wanted_ints);
954 efx->n_channels = wanted_ints;
955 for (i = 0; i < wanted_ints; i++)
8ceee660 956 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
957 } else {
958 /* Fall back to single channel MSI */
959 efx->interrupt_mode = EFX_INT_MODE_MSI;
960 EFX_ERR(efx, "could not enable MSI-X\n");
961 }
962 }
963
964 /* Try single interrupt MSI */
965 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 966 efx->n_rx_queues = 1;
28b581ab 967 efx->n_channels = 1;
8ceee660
BH
968 rc = pci_enable_msi(efx->pci_dev);
969 if (rc == 0) {
970 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
971 } else {
972 EFX_ERR(efx, "could not enable MSI\n");
973 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
974 }
975 }
976
977 /* Assume legacy interrupts */
978 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 979 efx->n_rx_queues = 1;
28b581ab 980 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
981 efx->legacy_irq = efx->pci_dev->irq;
982 }
983}
984
985static void efx_remove_interrupts(struct efx_nic *efx)
986{
987 struct efx_channel *channel;
988
989 /* Remove MSI/MSI-X interrupts */
64ee3120 990 efx_for_each_channel(channel, efx)
8ceee660
BH
991 channel->irq = 0;
992 pci_disable_msi(efx->pci_dev);
993 pci_disable_msix(efx->pci_dev);
994
995 /* Remove legacy interrupt */
996 efx->legacy_irq = 0;
997}
998
8831da7b 999static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
1000{
1001 struct efx_tx_queue *tx_queue;
1002 struct efx_rx_queue *rx_queue;
8ceee660 1003
60ac1065 1004 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
1005 if (separate_tx_channels)
1006 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
1007 else
1008 tx_queue->channel = &efx->channel[0];
1009 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1010 }
8ceee660 1011
8831da7b
BH
1012 efx_for_each_rx_queue(rx_queue, efx) {
1013 rx_queue->channel = &efx->channel[rx_queue->queue];
1014 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
1015 }
1016}
1017
1018static int efx_probe_nic(struct efx_nic *efx)
1019{
1020 int rc;
1021
1022 EFX_LOG(efx, "creating NIC\n");
1023
1024 /* Carry out hardware-type specific initialisation */
1025 rc = falcon_probe_nic(efx);
1026 if (rc)
1027 return rc;
1028
1029 /* Determine the number of channels and RX queues by trying to hook
1030 * in MSI-X interrupts. */
1031 efx_probe_interrupts(efx);
1032
8831da7b 1033 efx_set_channels(efx);
8ceee660
BH
1034
1035 /* Initialise the interrupt moderation settings */
6fb70fd1 1036 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1037
1038 return 0;
1039}
1040
1041static void efx_remove_nic(struct efx_nic *efx)
1042{
1043 EFX_LOG(efx, "destroying NIC\n");
1044
1045 efx_remove_interrupts(efx);
1046 falcon_remove_nic(efx);
1047}
1048
1049/**************************************************************************
1050 *
1051 * NIC startup/shutdown
1052 *
1053 *************************************************************************/
1054
1055static int efx_probe_all(struct efx_nic *efx)
1056{
1057 struct efx_channel *channel;
1058 int rc;
1059
1060 /* Create NIC */
1061 rc = efx_probe_nic(efx);
1062 if (rc) {
1063 EFX_ERR(efx, "failed to create NIC\n");
1064 goto fail1;
1065 }
1066
1067 /* Create port */
1068 rc = efx_probe_port(efx);
1069 if (rc) {
1070 EFX_ERR(efx, "failed to create port\n");
1071 goto fail2;
1072 }
1073
1074 /* Create channels */
1075 efx_for_each_channel(channel, efx) {
1076 rc = efx_probe_channel(channel);
1077 if (rc) {
1078 EFX_ERR(efx, "failed to create channel %d\n",
1079 channel->channel);
1080 goto fail3;
1081 }
1082 }
56536e9c 1083 efx_set_channel_names(efx);
8ceee660
BH
1084
1085 return 0;
1086
1087 fail3:
1088 efx_for_each_channel(channel, efx)
1089 efx_remove_channel(channel);
1090 efx_remove_port(efx);
1091 fail2:
1092 efx_remove_nic(efx);
1093 fail1:
1094 return rc;
1095}
1096
1097/* Called after previous invocation(s) of efx_stop_all, restarts the
1098 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1099 * and ensures that the port is scheduled to be reconfigured.
1100 * This function is safe to call multiple times when the NIC is in any
1101 * state. */
1102static void efx_start_all(struct efx_nic *efx)
1103{
1104 struct efx_channel *channel;
1105
1106 EFX_ASSERT_RESET_SERIALISED(efx);
1107
1108 /* Check that it is appropriate to restart the interface. All
1109 * of these flags are safe to read under just the rtnl lock */
1110 if (efx->port_enabled)
1111 return;
1112 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1113 return;
55668611 1114 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1115 return;
1116
1117 /* Mark the port as enabled so port reconfigurations can start, then
1118 * restart the transmit interface early so the watchdog timer stops */
1119 efx_start_port(efx);
dacccc74
SH
1120 if (efx_dev_registered(efx))
1121 efx_wake_queue(efx);
8ceee660
BH
1122
1123 efx_for_each_channel(channel, efx)
1124 efx_start_channel(channel);
1125
1126 falcon_enable_interrupts(efx);
1127
1128 /* Start hardware monitor if we're in RUNNING */
1129 if (efx->state == STATE_RUNNING)
1130 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1131 efx_monitor_interval);
1132}
1133
1134/* Flush all delayed work. Should only be called when no more delayed work
1135 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1136 * since we're holding the rtnl_lock at this point. */
1137static void efx_flush_all(struct efx_nic *efx)
1138{
1139 struct efx_rx_queue *rx_queue;
1140
1141 /* Make sure the hardware monitor is stopped */
1142 cancel_delayed_work_sync(&efx->monitor_work);
1143
1144 /* Ensure that all RX slow refills are complete. */
b3475645 1145 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1146 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1147
1148 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1149 cancel_work_sync(&efx->mac_work);
1150 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1151
1152}
1153
1154/* Quiesce hardware and software without bringing the link down.
1155 * Safe to call multiple times, when the nic and interface is in any
1156 * state. The caller is guaranteed to subsequently be in a position
1157 * to modify any hardware and software state they see fit without
1158 * taking locks. */
1159static void efx_stop_all(struct efx_nic *efx)
1160{
1161 struct efx_channel *channel;
1162
1163 EFX_ASSERT_RESET_SERIALISED(efx);
1164
1165 /* port_enabled can be read safely under the rtnl lock */
1166 if (!efx->port_enabled)
1167 return;
1168
1169 /* Disable interrupts and wait for ISR to complete */
1170 falcon_disable_interrupts(efx);
1171 if (efx->legacy_irq)
1172 synchronize_irq(efx->legacy_irq);
64ee3120 1173 efx_for_each_channel(channel, efx) {
8ceee660
BH
1174 if (channel->irq)
1175 synchronize_irq(channel->irq);
b3475645 1176 }
8ceee660
BH
1177
1178 /* Stop all NAPI processing and synchronous rx refills */
1179 efx_for_each_channel(channel, efx)
1180 efx_stop_channel(channel);
1181
1182 /* Stop all asynchronous port reconfigurations. Since all
1183 * event processing has already been stopped, there is no
1184 * window to loose phy events */
1185 efx_stop_port(efx);
1186
766ca0fa 1187 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1188 efx_flush_all(efx);
1189
1190 /* Isolate the MAC from the TX and RX engines, so that queue
1191 * flushes will complete in a timely fashion. */
8ceee660
BH
1192 falcon_drain_tx_fifo(efx);
1193
1194 /* Stop the kernel transmit interface late, so the watchdog
1195 * timer isn't ticking over the flush */
55668611 1196 if (efx_dev_registered(efx)) {
dacccc74 1197 efx_stop_queue(efx);
8ceee660
BH
1198 netif_tx_lock_bh(efx->net_dev);
1199 netif_tx_unlock_bh(efx->net_dev);
1200 }
1201}
1202
1203static void efx_remove_all(struct efx_nic *efx)
1204{
1205 struct efx_channel *channel;
1206
1207 efx_for_each_channel(channel, efx)
1208 efx_remove_channel(channel);
1209 efx_remove_port(efx);
1210 efx_remove_nic(efx);
1211}
1212
1213/* A convinience function to safely flush all the queues */
bc3c90a2 1214void efx_flush_queues(struct efx_nic *efx)
8ceee660 1215{
8ceee660
BH
1216 EFX_ASSERT_RESET_SERIALISED(efx);
1217
1218 efx_stop_all(efx);
1219
1220 efx_fini_channels(efx);
bc3c90a2 1221 efx_init_channels(efx);
8ceee660
BH
1222
1223 efx_start_all(efx);
8ceee660
BH
1224}
1225
1226/**************************************************************************
1227 *
1228 * Interrupt moderation
1229 *
1230 **************************************************************************/
1231
1232/* Set interrupt moderation parameters */
6fb70fd1
BH
1233void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1234 bool rx_adaptive)
8ceee660
BH
1235{
1236 struct efx_tx_queue *tx_queue;
1237 struct efx_rx_queue *rx_queue;
1238
1239 EFX_ASSERT_RESET_SERIALISED(efx);
1240
1241 efx_for_each_tx_queue(tx_queue, efx)
1242 tx_queue->channel->irq_moderation = tx_usecs;
1243
6fb70fd1
BH
1244 efx->irq_rx_adaptive = rx_adaptive;
1245 efx->irq_rx_moderation = rx_usecs;
8ceee660
BH
1246 efx_for_each_rx_queue(rx_queue, efx)
1247 rx_queue->channel->irq_moderation = rx_usecs;
1248}
1249
1250/**************************************************************************
1251 *
1252 * Hardware monitor
1253 *
1254 **************************************************************************/
1255
1256/* Run periodically off the general workqueue. Serialised against
1257 * efx_reconfigure_port via the mac_lock */
1258static void efx_monitor(struct work_struct *data)
1259{
1260 struct efx_nic *efx = container_of(data, struct efx_nic,
1261 monitor_work.work);
766ca0fa 1262 int rc;
8ceee660
BH
1263
1264 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1265 raw_smp_processor_id());
1266
8ceee660
BH
1267 /* If the mac_lock is already held then it is likely a port
1268 * reconfiguration is already in place, which will likely do
1269 * most of the work of check_hw() anyway. */
766ca0fa
BH
1270 if (!mutex_trylock(&efx->mac_lock))
1271 goto out_requeue;
1272 if (!efx->port_enabled)
1273 goto out_unlock;
1274 rc = efx->board_info.monitor(efx);
1275 if (rc) {
1276 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1277 (rc == -ERANGE) ? "reported fault" : "failed");
1278 efx->phy_mode |= PHY_MODE_LOW_POWER;
1279 falcon_sim_phy_event(efx);
8ceee660 1280 }
766ca0fa
BH
1281 efx->phy_op->poll(efx);
1282 efx->mac_op->poll(efx);
8ceee660 1283
766ca0fa 1284out_unlock:
8ceee660 1285 mutex_unlock(&efx->mac_lock);
766ca0fa 1286out_requeue:
8ceee660
BH
1287 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1288 efx_monitor_interval);
1289}
1290
1291/**************************************************************************
1292 *
1293 * ioctls
1294 *
1295 *************************************************************************/
1296
1297/* Net device ioctl
1298 * Context: process, rtnl_lock() held.
1299 */
1300static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1301{
767e468c 1302 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1303 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1304
1305 EFX_ASSERT_RESET_SERIALISED(efx);
1306
68e7f45e
BH
1307 /* Convert phy_id from older PRTAD/DEVAD format */
1308 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1309 (data->phy_id & 0xfc00) == 0x0400)
1310 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1311
1312 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1313}
1314
1315/**************************************************************************
1316 *
1317 * NAPI interface
1318 *
1319 **************************************************************************/
1320
1321static int efx_init_napi(struct efx_nic *efx)
1322{
1323 struct efx_channel *channel;
8ceee660
BH
1324
1325 efx_for_each_channel(channel, efx) {
1326 channel->napi_dev = efx->net_dev;
718cff1e
BH
1327 netif_napi_add(channel->napi_dev, &channel->napi_str,
1328 efx_poll, napi_weight);
8ceee660
BH
1329 }
1330 return 0;
8ceee660
BH
1331}
1332
1333static void efx_fini_napi(struct efx_nic *efx)
1334{
1335 struct efx_channel *channel;
1336
1337 efx_for_each_channel(channel, efx) {
718cff1e
BH
1338 if (channel->napi_dev)
1339 netif_napi_del(&channel->napi_str);
8ceee660
BH
1340 channel->napi_dev = NULL;
1341 }
1342}
1343
1344/**************************************************************************
1345 *
1346 * Kernel netpoll interface
1347 *
1348 *************************************************************************/
1349
1350#ifdef CONFIG_NET_POLL_CONTROLLER
1351
1352/* Although in the common case interrupts will be disabled, this is not
1353 * guaranteed. However, all our work happens inside the NAPI callback,
1354 * so no locking is required.
1355 */
1356static void efx_netpoll(struct net_device *net_dev)
1357{
767e468c 1358 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1359 struct efx_channel *channel;
1360
64ee3120 1361 efx_for_each_channel(channel, efx)
8ceee660
BH
1362 efx_schedule_channel(channel);
1363}
1364
1365#endif
1366
1367/**************************************************************************
1368 *
1369 * Kernel net device interface
1370 *
1371 *************************************************************************/
1372
1373/* Context: process, rtnl_lock() held. */
1374static int efx_net_open(struct net_device *net_dev)
1375{
767e468c 1376 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1377 EFX_ASSERT_RESET_SERIALISED(efx);
1378
1379 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1380 raw_smp_processor_id());
1381
f4bd954e
BH
1382 if (efx->state == STATE_DISABLED)
1383 return -EIO;
f8b87c17
BH
1384 if (efx->phy_mode & PHY_MODE_SPECIAL)
1385 return -EBUSY;
1386
8ceee660
BH
1387 efx_start_all(efx);
1388 return 0;
1389}
1390
1391/* Context: process, rtnl_lock() held.
1392 * Note that the kernel will ignore our return code; this method
1393 * should really be a void.
1394 */
1395static int efx_net_stop(struct net_device *net_dev)
1396{
767e468c 1397 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1398
1399 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1400 raw_smp_processor_id());
1401
f4bd954e
BH
1402 if (efx->state != STATE_DISABLED) {
1403 /* Stop the device and flush all the channels */
1404 efx_stop_all(efx);
1405 efx_fini_channels(efx);
1406 efx_init_channels(efx);
1407 }
8ceee660
BH
1408
1409 return 0;
1410}
1411
1974cc20
BH
1412void efx_stats_disable(struct efx_nic *efx)
1413{
1414 spin_lock(&efx->stats_lock);
1415 ++efx->stats_disable_count;
1416 spin_unlock(&efx->stats_lock);
1417}
1418
1419void efx_stats_enable(struct efx_nic *efx)
1420{
1421 spin_lock(&efx->stats_lock);
1422 --efx->stats_disable_count;
1423 spin_unlock(&efx->stats_lock);
1424}
1425
5b9e207c 1426/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1427static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1428{
767e468c 1429 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1430 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1431 struct net_device_stats *stats = &net_dev->stats;
1432
5b9e207c 1433 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1434 * is updating them or if MAC stats fetches are temporarily
1435 * disabled; slightly stale stats are acceptable.
5b9e207c 1436 */
8ceee660
BH
1437 if (!spin_trylock(&efx->stats_lock))
1438 return stats;
1974cc20 1439 if (!efx->stats_disable_count) {
177dfcd8 1440 efx->mac_op->update_stats(efx);
8ceee660
BH
1441 falcon_update_nic_stats(efx);
1442 }
1443 spin_unlock(&efx->stats_lock);
1444
1445 stats->rx_packets = mac_stats->rx_packets;
1446 stats->tx_packets = mac_stats->tx_packets;
1447 stats->rx_bytes = mac_stats->rx_bytes;
1448 stats->tx_bytes = mac_stats->tx_bytes;
1449 stats->multicast = mac_stats->rx_multicast;
1450 stats->collisions = mac_stats->tx_collision;
1451 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1452 mac_stats->rx_length_error);
1453 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1454 stats->rx_crc_errors = mac_stats->rx_bad;
1455 stats->rx_frame_errors = mac_stats->rx_align_error;
1456 stats->rx_fifo_errors = mac_stats->rx_overflow;
1457 stats->rx_missed_errors = mac_stats->rx_missed;
1458 stats->tx_window_errors = mac_stats->tx_late_collision;
1459
1460 stats->rx_errors = (stats->rx_length_errors +
1461 stats->rx_over_errors +
1462 stats->rx_crc_errors +
1463 stats->rx_frame_errors +
1464 stats->rx_fifo_errors +
1465 stats->rx_missed_errors +
1466 mac_stats->rx_symbol_error);
1467 stats->tx_errors = (stats->tx_window_errors +
1468 mac_stats->tx_bad);
1469
1470 return stats;
1471}
1472
1473/* Context: netif_tx_lock held, BHs disabled. */
1474static void efx_watchdog(struct net_device *net_dev)
1475{
767e468c 1476 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1477
739bb23d
BH
1478 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1479 " resetting channels\n",
1480 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1481
739bb23d 1482 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1483}
1484
1485
1486/* Context: process, rtnl_lock() held. */
1487static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1488{
767e468c 1489 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1490 int rc = 0;
1491
1492 EFX_ASSERT_RESET_SERIALISED(efx);
1493
1494 if (new_mtu > EFX_MAX_MTU)
1495 return -EINVAL;
1496
1497 efx_stop_all(efx);
1498
1499 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1500
1501 efx_fini_channels(efx);
1502 net_dev->mtu = new_mtu;
bc3c90a2 1503 efx_init_channels(efx);
8ceee660
BH
1504
1505 efx_start_all(efx);
1506 return rc;
8ceee660
BH
1507}
1508
1509static int efx_set_mac_address(struct net_device *net_dev, void *data)
1510{
767e468c 1511 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1512 struct sockaddr *addr = data;
1513 char *new_addr = addr->sa_data;
1514
1515 EFX_ASSERT_RESET_SERIALISED(efx);
1516
1517 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1518 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1519 new_addr);
8ceee660
BH
1520 return -EINVAL;
1521 }
1522
1523 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1524
1525 /* Reconfigure the MAC */
1526 efx_reconfigure_port(efx);
1527
1528 return 0;
1529}
1530
a816f75a 1531/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1532static void efx_set_multicast_list(struct net_device *net_dev)
1533{
767e468c 1534 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1535 struct dev_mc_list *mc_list = net_dev->mc_list;
1536 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1537 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1538 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1539 u32 crc;
1540 int bit;
1541 int i;
1542
a816f75a 1543 efx->promiscuous = promiscuous;
8ceee660
BH
1544
1545 /* Build multicast hash table */
1546 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1547 memset(mc_hash, 0xff, sizeof(*mc_hash));
1548 } else {
1549 memset(mc_hash, 0x00, sizeof(*mc_hash));
1550 for (i = 0; i < net_dev->mc_count; i++) {
1551 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1552 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1553 set_bit_le(bit, mc_hash->byte);
1554 mc_list = mc_list->next;
1555 }
1556 }
1557
a816f75a
BH
1558 if (!efx->port_enabled)
1559 /* Delay pushing settings until efx_start_port() */
1560 return;
1561
1562 if (changed)
766ca0fa 1563 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1564
8ceee660
BH
1565 /* Create and activate new global multicast hash table */
1566 falcon_set_multicast_hash(efx);
1567}
1568
c3ecb9f3
SH
1569static const struct net_device_ops efx_netdev_ops = {
1570 .ndo_open = efx_net_open,
1571 .ndo_stop = efx_net_stop,
1572 .ndo_get_stats = efx_net_stats,
1573 .ndo_tx_timeout = efx_watchdog,
1574 .ndo_start_xmit = efx_hard_start_xmit,
1575 .ndo_validate_addr = eth_validate_addr,
1576 .ndo_do_ioctl = efx_ioctl,
1577 .ndo_change_mtu = efx_change_mtu,
1578 .ndo_set_mac_address = efx_set_mac_address,
1579 .ndo_set_multicast_list = efx_set_multicast_list,
1580#ifdef CONFIG_NET_POLL_CONTROLLER
1581 .ndo_poll_controller = efx_netpoll,
1582#endif
1583};
1584
7dde596e
BH
1585static void efx_update_name(struct efx_nic *efx)
1586{
1587 strcpy(efx->name, efx->net_dev->name);
1588 efx_mtd_rename(efx);
1589 efx_set_channel_names(efx);
1590}
1591
8ceee660
BH
1592static int efx_netdev_event(struct notifier_block *this,
1593 unsigned long event, void *ptr)
1594{
d3208b5e 1595 struct net_device *net_dev = ptr;
8ceee660 1596
7dde596e
BH
1597 if (net_dev->netdev_ops == &efx_netdev_ops &&
1598 event == NETDEV_CHANGENAME)
1599 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1600
1601 return NOTIFY_DONE;
1602}
1603
1604static struct notifier_block efx_netdev_notifier = {
1605 .notifier_call = efx_netdev_event,
1606};
1607
06d5e193
BH
1608static ssize_t
1609show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1610{
1611 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1612 return sprintf(buf, "%d\n", efx->phy_type);
1613}
1614static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1615
8ceee660
BH
1616static int efx_register_netdev(struct efx_nic *efx)
1617{
1618 struct net_device *net_dev = efx->net_dev;
1619 int rc;
1620
1621 net_dev->watchdog_timeo = 5 * HZ;
1622 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1623 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1624 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1625 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1626
1627 /* Always start with carrier off; PHY events will detect the link */
1628 netif_carrier_off(efx->net_dev);
1629
1630 /* Clear MAC statistics */
177dfcd8 1631 efx->mac_op->update_stats(efx);
8ceee660
BH
1632 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1633
1634 rc = register_netdev(net_dev);
1635 if (rc) {
1636 EFX_ERR(efx, "could not register net dev\n");
1637 return rc;
1638 }
7dde596e
BH
1639
1640 rtnl_lock();
1641 efx_update_name(efx);
1642 rtnl_unlock();
8ceee660 1643
06d5e193
BH
1644 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1645 if (rc) {
1646 EFX_ERR(efx, "failed to init net dev attributes\n");
1647 goto fail_registered;
1648 }
1649
8ceee660 1650 return 0;
06d5e193
BH
1651
1652fail_registered:
1653 unregister_netdev(net_dev);
1654 return rc;
8ceee660
BH
1655}
1656
1657static void efx_unregister_netdev(struct efx_nic *efx)
1658{
1659 struct efx_tx_queue *tx_queue;
1660
1661 if (!efx->net_dev)
1662 return;
1663
767e468c 1664 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1665
1666 /* Free up any skbs still remaining. This has to happen before
1667 * we try to unregister the netdev as running their destructors
1668 * may be needed to get the device ref. count to 0. */
1669 efx_for_each_tx_queue(tx_queue, efx)
1670 efx_release_tx_buffers(tx_queue);
1671
55668611 1672 if (efx_dev_registered(efx)) {
8ceee660 1673 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1674 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1675 unregister_netdev(efx->net_dev);
1676 }
1677}
1678
1679/**************************************************************************
1680 *
1681 * Device reset and suspend
1682 *
1683 **************************************************************************/
1684
2467ca46
BH
1685/* Tears down the entire software state and most of the hardware state
1686 * before reset. */
4b988280
SH
1687void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1688 struct ethtool_cmd *ecmd)
8ceee660 1689{
8ceee660
BH
1690 EFX_ASSERT_RESET_SERIALISED(efx);
1691
1974cc20 1692 efx_stats_disable(efx);
2467ca46
BH
1693 efx_stop_all(efx);
1694 mutex_lock(&efx->mac_lock);
f4150724 1695 mutex_lock(&efx->spi_lock);
2467ca46 1696
177dfcd8 1697 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1698
1699 efx_fini_channels(efx);
4b988280
SH
1700 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1701 efx->phy_op->fini(efx);
8ceee660
BH
1702}
1703
2467ca46
BH
1704/* This function will always ensure that the locks acquired in
1705 * efx_reset_down() are released. A failure return code indicates
1706 * that we were unable to reinitialise the hardware, and the
1707 * driver should be disabled. If ok is false, then the rx and tx
1708 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1709int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1710 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1711{
1712 int rc;
1713
2467ca46 1714 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1715
2467ca46 1716 rc = falcon_init_nic(efx);
8ceee660 1717 if (rc) {
2467ca46
BH
1718 EFX_ERR(efx, "failed to initialise NIC\n");
1719 ok = false;
8ceee660
BH
1720 }
1721
4b988280
SH
1722 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1723 if (ok) {
1724 rc = efx->phy_op->init(efx);
1725 if (rc)
1726 ok = false;
115122af
BH
1727 }
1728 if (!ok)
4b988280
SH
1729 efx->port_initialized = false;
1730 }
1731
2467ca46
BH
1732 if (ok) {
1733 efx_init_channels(efx);
8ceee660 1734
177dfcd8 1735 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1736 EFX_ERR(efx, "could not restore PHY settings\n");
1737 }
1738
f4150724 1739 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1740 mutex_unlock(&efx->mac_lock);
1741
8c8661e4 1742 if (ok) {
2467ca46 1743 efx_start_all(efx);
1974cc20 1744 efx_stats_enable(efx);
8c8661e4 1745 }
8ceee660
BH
1746 return rc;
1747}
1748
1749/* Reset the NIC as transparently as possible. Do not reset the PHY
1750 * Note that the reset may fail, in which case the card will be left
1751 * in a most-probably-unusable state.
1752 *
1753 * This function will sleep. You cannot reset from within an atomic
1754 * state; use efx_schedule_reset() instead.
1755 *
1756 * Grabs the rtnl_lock.
1757 */
1758static int efx_reset(struct efx_nic *efx)
1759{
1760 struct ethtool_cmd ecmd;
1761 enum reset_type method = efx->reset_pending;
f4bd954e 1762 int rc = 0;
8ceee660
BH
1763
1764 /* Serialise with kernel interfaces */
1765 rtnl_lock();
1766
1767 /* If we're not RUNNING then don't reset. Leave the reset_pending
1768 * flag set so that efx_pci_probe_main will be retried */
1769 if (efx->state != STATE_RUNNING) {
1770 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1771 goto out_unlock;
8ceee660
BH
1772 }
1773
8ceee660
BH
1774 EFX_INFO(efx, "resetting (%d)\n", method);
1775
4b988280 1776 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1777
1778 rc = falcon_reset_hw(efx, method);
1779 if (rc) {
1780 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1781 goto out_disable;
8ceee660
BH
1782 }
1783
1784 /* Allow resets to be rescheduled. */
1785 efx->reset_pending = RESET_TYPE_NONE;
1786
1787 /* Reinitialise bus-mastering, which may have been turned off before
1788 * the reset was scheduled. This is still appropriate, even in the
1789 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1790 * can respond to requests. */
1791 pci_set_master(efx->pci_dev);
1792
8ceee660
BH
1793 /* Leave device stopped if necessary */
1794 if (method == RESET_TYPE_DISABLE) {
4b988280 1795 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1796 rc = -EIO;
f4bd954e 1797 } else {
4b988280 1798 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1799 }
1800
f4bd954e
BH
1801out_disable:
1802 if (rc) {
1803 EFX_ERR(efx, "has been disabled\n");
1804 efx->state = STATE_DISABLED;
1805 dev_close(efx->net_dev);
1806 } else {
1807 EFX_LOG(efx, "reset complete\n");
1808 }
8ceee660 1809
f4bd954e 1810out_unlock:
8ceee660 1811 rtnl_unlock();
8ceee660
BH
1812 return rc;
1813}
1814
1815/* The worker thread exists so that code that cannot sleep can
1816 * schedule a reset for later.
1817 */
1818static void efx_reset_work(struct work_struct *data)
1819{
1820 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1821
1822 efx_reset(nic);
1823}
1824
1825void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1826{
1827 enum reset_type method;
1828
1829 if (efx->reset_pending != RESET_TYPE_NONE) {
1830 EFX_INFO(efx, "quenching already scheduled reset\n");
1831 return;
1832 }
1833
1834 switch (type) {
1835 case RESET_TYPE_INVISIBLE:
1836 case RESET_TYPE_ALL:
1837 case RESET_TYPE_WORLD:
1838 case RESET_TYPE_DISABLE:
1839 method = type;
1840 break;
1841 case RESET_TYPE_RX_RECOVERY:
1842 case RESET_TYPE_RX_DESC_FETCH:
1843 case RESET_TYPE_TX_DESC_FETCH:
1844 case RESET_TYPE_TX_SKIP:
1845 method = RESET_TYPE_INVISIBLE;
1846 break;
1847 default:
1848 method = RESET_TYPE_ALL;
1849 break;
1850 }
1851
1852 if (method != type)
1853 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1854 else
1855 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1856
1857 efx->reset_pending = method;
1858
1ab00629 1859 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1860}
1861
1862/**************************************************************************
1863 *
1864 * List of NICs we support
1865 *
1866 **************************************************************************/
1867
1868/* PCI device ID table */
1869static struct pci_device_id efx_pci_table[] __devinitdata = {
1870 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1871 .driver_data = (unsigned long) &falcon_a_nic_type},
1872 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1873 .driver_data = (unsigned long) &falcon_b_nic_type},
1874 {0} /* end of list */
1875};
1876
1877/**************************************************************************
1878 *
1879 * Dummy PHY/MAC/Board operations
1880 *
01aad7b6 1881 * Can be used for some unimplemented operations
8ceee660
BH
1882 * Needed so all function pointers are valid and do not have to be tested
1883 * before use
1884 *
1885 **************************************************************************/
1886int efx_port_dummy_op_int(struct efx_nic *efx)
1887{
1888 return 0;
1889}
1890void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1891void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660 1892
177dfcd8
BH
1893static struct efx_mac_operations efx_dummy_mac_operations = {
1894 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1895 .poll = efx_port_dummy_op_void,
1896 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1897};
1898
8ceee660
BH
1899static struct efx_phy_operations efx_dummy_phy_operations = {
1900 .init = efx_port_dummy_op_int,
1901 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1902 .poll = efx_port_dummy_op_void,
8ceee660
BH
1903 .fini = efx_port_dummy_op_void,
1904 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1905};
1906
8ceee660 1907static struct efx_board efx_dummy_board_info = {
01aad7b6 1908 .init = efx_port_dummy_op_int,
8129d217
BH
1909 .init_leds = efx_port_dummy_op_void,
1910 .set_id_led = efx_port_dummy_op_blink,
a17102b1 1911 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1912 .blink = efx_port_dummy_op_blink,
1913 .fini = efx_port_dummy_op_void,
8ceee660
BH
1914};
1915
1916/**************************************************************************
1917 *
1918 * Data housekeeping
1919 *
1920 **************************************************************************/
1921
1922/* This zeroes out and then fills in the invariants in a struct
1923 * efx_nic (including all sub-structures).
1924 */
1925static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1926 struct pci_dev *pci_dev, struct net_device *net_dev)
1927{
1928 struct efx_channel *channel;
1929 struct efx_tx_queue *tx_queue;
1930 struct efx_rx_queue *rx_queue;
1ab00629 1931 int i;
8ceee660
BH
1932
1933 /* Initialise common structures */
1934 memset(efx, 0, sizeof(*efx));
1935 spin_lock_init(&efx->biu_lock);
1936 spin_lock_init(&efx->phy_lock);
f4150724 1937 mutex_init(&efx->spi_lock);
8ceee660
BH
1938 INIT_WORK(&efx->reset_work, efx_reset_work);
1939 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1940 efx->pci_dev = pci_dev;
1941 efx->state = STATE_INIT;
1942 efx->reset_pending = RESET_TYPE_NONE;
1943 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1944 efx->board_info = efx_dummy_board_info;
1945
1946 efx->net_dev = net_dev;
dc8cfa55 1947 efx->rx_checksum_enabled = true;
8ceee660
BH
1948 spin_lock_init(&efx->netif_stop_lock);
1949 spin_lock_init(&efx->stats_lock);
1974cc20 1950 efx->stats_disable_count = 1;
8ceee660 1951 mutex_init(&efx->mac_lock);
177dfcd8 1952 efx->mac_op = &efx_dummy_mac_operations;
8ceee660 1953 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 1954 efx->mdio.dev = net_dev;
766ca0fa
BH
1955 INIT_WORK(&efx->phy_work, efx_phy_work);
1956 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1957 atomic_set(&efx->netif_stop_count, 1);
1958
1959 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1960 channel = &efx->channel[i];
1961 channel->efx = efx;
1962 channel->channel = i;
dc8cfa55 1963 channel->work_pending = false;
8ceee660 1964 }
60ac1065 1965 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1966 tx_queue = &efx->tx_queue[i];
1967 tx_queue->efx = efx;
1968 tx_queue->queue = i;
1969 tx_queue->buffer = NULL;
1970 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1971 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1972 }
1973 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1974 rx_queue = &efx->rx_queue[i];
1975 rx_queue->efx = efx;
1976 rx_queue->queue = i;
1977 rx_queue->channel = &efx->channel[0]; /* for safety */
1978 rx_queue->buffer = NULL;
1979 spin_lock_init(&rx_queue->add_lock);
1980 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1981 }
1982
1983 efx->type = type;
1984
1985 /* Sanity-check NIC type */
1986 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1987 (efx->type->txd_ring_mask + 1));
1988 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1989 (efx->type->rxd_ring_mask + 1));
1990 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1991 (efx->type->evq_size - 1));
1992 /* As close as we can get to guaranteeing that we don't overflow */
1993 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1994 (efx->type->txd_ring_mask + 1 +
1995 efx->type->rxd_ring_mask + 1));
1996 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1997
1998 /* Higher numbered interrupt modes are less capable! */
1999 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2000 interrupt_mode);
2001
6977dc63
BH
2002 /* Would be good to use the net_dev name, but we're too early */
2003 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2004 pci_name(pci_dev));
2005 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2006 if (!efx->workqueue)
2007 return -ENOMEM;
8d9853d9 2008
8ceee660 2009 return 0;
8ceee660
BH
2010}
2011
2012static void efx_fini_struct(struct efx_nic *efx)
2013{
2014 if (efx->workqueue) {
2015 destroy_workqueue(efx->workqueue);
2016 efx->workqueue = NULL;
2017 }
2018}
2019
2020/**************************************************************************
2021 *
2022 * PCI interface
2023 *
2024 **************************************************************************/
2025
2026/* Main body of final NIC shutdown code
2027 * This is called only at module unload (or hotplug removal).
2028 */
2029static void efx_pci_remove_main(struct efx_nic *efx)
2030{
2031 EFX_ASSERT_RESET_SERIALISED(efx);
2032
2033 /* Skip everything if we never obtained a valid membase */
2034 if (!efx->membase)
2035 return;
2036
2037 efx_fini_channels(efx);
2038 efx_fini_port(efx);
2039
2040 /* Shutdown the board, then the NIC and board state */
37b5a603 2041 efx->board_info.fini(efx);
8ceee660
BH
2042 falcon_fini_interrupt(efx);
2043
2044 efx_fini_napi(efx);
2045 efx_remove_all(efx);
2046}
2047
2048/* Final NIC shutdown
2049 * This is called only at module unload (or hotplug removal).
2050 */
2051static void efx_pci_remove(struct pci_dev *pci_dev)
2052{
2053 struct efx_nic *efx;
2054
2055 efx = pci_get_drvdata(pci_dev);
2056 if (!efx)
2057 return;
2058
2059 /* Mark the NIC as fini, then stop the interface */
2060 rtnl_lock();
2061 efx->state = STATE_FINI;
2062 dev_close(efx->net_dev);
2063
2064 /* Allow any queued efx_resets() to complete */
2065 rtnl_unlock();
2066
2067 if (efx->membase == NULL)
2068 goto out;
2069
2070 efx_unregister_netdev(efx);
2071
7dde596e
BH
2072 efx_mtd_remove(efx);
2073
8ceee660
BH
2074 /* Wait for any scheduled resets to complete. No more will be
2075 * scheduled from this point because efx_stop_all() has been
2076 * called, we are no longer registered with driverlink, and
2077 * the net_device's have been removed. */
1ab00629 2078 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2079
2080 efx_pci_remove_main(efx);
2081
2082out:
2083 efx_fini_io(efx);
2084 EFX_LOG(efx, "shutdown successful\n");
2085
2086 pci_set_drvdata(pci_dev, NULL);
2087 efx_fini_struct(efx);
2088 free_netdev(efx->net_dev);
2089};
2090
2091/* Main body of NIC initialisation
2092 * This is called at module load (or hotplug insertion, theoretically).
2093 */
2094static int efx_pci_probe_main(struct efx_nic *efx)
2095{
2096 int rc;
2097
2098 /* Do start-of-day initialisation */
2099 rc = efx_probe_all(efx);
2100 if (rc)
2101 goto fail1;
2102
2103 rc = efx_init_napi(efx);
2104 if (rc)
2105 goto fail2;
2106
2107 /* Initialise the board */
2108 rc = efx->board_info.init(efx);
2109 if (rc) {
2110 EFX_ERR(efx, "failed to initialise board\n");
2111 goto fail3;
2112 }
2113
2114 rc = falcon_init_nic(efx);
2115 if (rc) {
2116 EFX_ERR(efx, "failed to initialise NIC\n");
2117 goto fail4;
2118 }
2119
2120 rc = efx_init_port(efx);
2121 if (rc) {
2122 EFX_ERR(efx, "failed to initialise port\n");
2123 goto fail5;
2124 }
2125
bc3c90a2 2126 efx_init_channels(efx);
8ceee660
BH
2127
2128 rc = falcon_init_interrupt(efx);
2129 if (rc)
bc3c90a2 2130 goto fail6;
8ceee660
BH
2131
2132 return 0;
2133
8ceee660 2134 fail6:
bc3c90a2 2135 efx_fini_channels(efx);
8ceee660
BH
2136 efx_fini_port(efx);
2137 fail5:
2138 fail4:
a17102b1 2139 efx->board_info.fini(efx);
8ceee660
BH
2140 fail3:
2141 efx_fini_napi(efx);
2142 fail2:
2143 efx_remove_all(efx);
2144 fail1:
2145 return rc;
2146}
2147
2148/* NIC initialisation
2149 *
2150 * This is called at module load (or hotplug insertion,
2151 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2152 * sets up and registers the network devices with the kernel and hooks
2153 * the interrupt service routine. It does not prepare the device for
2154 * transmission; this is left to the first time one of the network
2155 * interfaces is brought up (i.e. efx_net_open).
2156 */
2157static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2158 const struct pci_device_id *entry)
2159{
2160 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2161 struct net_device *net_dev;
2162 struct efx_nic *efx;
2163 int i, rc;
2164
2165 /* Allocate and initialise a struct net_device and struct efx_nic */
2166 net_dev = alloc_etherdev(sizeof(*efx));
2167 if (!net_dev)
2168 return -ENOMEM;
b9b39b62
BH
2169 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2170 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660 2171 if (lro)
da3bc071 2172 net_dev->features |= NETIF_F_GRO;
28506563
BH
2173 /* Mask for features that also apply to VLAN devices */
2174 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2175 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2176 efx = netdev_priv(net_dev);
8ceee660
BH
2177 pci_set_drvdata(pci_dev, efx);
2178 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2179 if (rc)
2180 goto fail1;
2181
2182 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2183
2184 /* Set up basic I/O (BAR mappings etc) */
2185 rc = efx_init_io(efx);
2186 if (rc)
2187 goto fail2;
2188
2189 /* No serialisation is required with the reset path because
2190 * we're in STATE_INIT. */
2191 for (i = 0; i < 5; i++) {
2192 rc = efx_pci_probe_main(efx);
8ceee660
BH
2193
2194 /* Serialise against efx_reset(). No more resets will be
2195 * scheduled since efx_stop_all() has been called, and we
2196 * have not and never have been registered with either
2197 * the rtnetlink or driverlink layers. */
1ab00629 2198 cancel_work_sync(&efx->reset_work);
8ceee660 2199
fa402b2e
SH
2200 if (rc == 0) {
2201 if (efx->reset_pending != RESET_TYPE_NONE) {
2202 /* If there was a scheduled reset during
2203 * probe, the NIC is probably hosed anyway */
2204 efx_pci_remove_main(efx);
2205 rc = -EIO;
2206 } else {
2207 break;
2208 }
2209 }
2210
8ceee660
BH
2211 /* Retry if a recoverably reset event has been scheduled */
2212 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2213 (efx->reset_pending != RESET_TYPE_ALL))
2214 goto fail3;
2215
2216 efx->reset_pending = RESET_TYPE_NONE;
2217 }
2218
2219 if (rc) {
2220 EFX_ERR(efx, "Could not reset NIC\n");
2221 goto fail4;
2222 }
2223
2224 /* Switch to the running state before we expose the device to
2225 * the OS. This is to ensure that the initial gathering of
2226 * MAC stats succeeds. */
8ceee660 2227 efx->state = STATE_RUNNING;
7dde596e
BH
2228
2229 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2230
2231 rc = efx_register_netdev(efx);
2232 if (rc)
2233 goto fail5;
2234
2235 EFX_LOG(efx, "initialisation successful\n");
8ceee660
BH
2236 return 0;
2237
2238 fail5:
2239 efx_pci_remove_main(efx);
2240 fail4:
2241 fail3:
2242 efx_fini_io(efx);
2243 fail2:
2244 efx_fini_struct(efx);
2245 fail1:
2246 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2247 free_netdev(net_dev);
2248 return rc;
2249}
2250
2251static struct pci_driver efx_pci_driver = {
2252 .name = EFX_DRIVER_NAME,
2253 .id_table = efx_pci_table,
2254 .probe = efx_pci_probe,
2255 .remove = efx_pci_remove,
2256};
2257
2258/**************************************************************************
2259 *
2260 * Kernel module interface
2261 *
2262 *************************************************************************/
2263
2264module_param(interrupt_mode, uint, 0444);
2265MODULE_PARM_DESC(interrupt_mode,
2266 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2267
2268static int __init efx_init_module(void)
2269{
2270 int rc;
2271
2272 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2273
2274 rc = register_netdevice_notifier(&efx_netdev_notifier);
2275 if (rc)
2276 goto err_notifier;
2277
2278 refill_workqueue = create_workqueue("sfc_refill");
2279 if (!refill_workqueue) {
2280 rc = -ENOMEM;
2281 goto err_refill;
2282 }
1ab00629
SH
2283 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2284 if (!reset_workqueue) {
2285 rc = -ENOMEM;
2286 goto err_reset;
2287 }
8ceee660
BH
2288
2289 rc = pci_register_driver(&efx_pci_driver);
2290 if (rc < 0)
2291 goto err_pci;
2292
2293 return 0;
2294
2295 err_pci:
1ab00629
SH
2296 destroy_workqueue(reset_workqueue);
2297 err_reset:
8ceee660
BH
2298 destroy_workqueue(refill_workqueue);
2299 err_refill:
2300 unregister_netdevice_notifier(&efx_netdev_notifier);
2301 err_notifier:
2302 return rc;
2303}
2304
2305static void __exit efx_exit_module(void)
2306{
2307 printk(KERN_INFO "Solarflare NET driver unloading\n");
2308
2309 pci_unregister_driver(&efx_pci_driver);
1ab00629 2310 destroy_workqueue(reset_workqueue);
8ceee660
BH
2311 destroy_workqueue(refill_workqueue);
2312 unregister_netdevice_notifier(&efx_netdev_notifier);
2313
2314}
2315
2316module_init(efx_init_module);
2317module_exit(efx_exit_module);
2318
2319MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2320 "Solarflare Communications");
2321MODULE_DESCRIPTION("Solarflare Communications network driver");
2322MODULE_LICENSE("GPL");
2323MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.49515 seconds and 5 git commands to generate.