ethtool: Add support for control of RX flow hash indirection
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab
NT
116static unsigned int separate_tx_channels;
117module_param(separate_tx_channels, uint, 0644);
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
62776d03
BH
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
332c1ce9
BH
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
8ceee660
BH
213 ASSERT_RTNL(); \
214 } while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
fa236e18 229static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 230{
42cbe2d7 231 struct efx_nic *efx = channel->efx;
fa236e18 232 int spent;
8ceee660 233
42cbe2d7 234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 235 !channel->enabled))
42cbe2d7 236 return 0;
8ceee660 237
fa236e18
BH
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
42cbe2d7 240 return 0;
8ceee660
BH
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
8ceee660
BH
249 efx_rx_strategy(channel);
250
42cbe2d7 251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 252
fa236e18 253 return spent;
8ceee660
BH
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
5b9e207c
BH
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
dc8cfa55 267 channel->work_pending = false;
5b9e207c
BH
268 smp_wmb();
269
152b6a62 270 efx_nic_eventq_read_ack(channel);
8ceee660
BH
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
62776d03 282 struct efx_nic *efx = channel->efx;
fa236e18 283 int spent;
8ceee660 284
62776d03
BH
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
8ceee660 288
fa236e18 289 spent = efx_process_channel(channel, budget);
8ceee660 290
fa236e18 291 if (spent < budget) {
a4900ac9 292 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1
BH
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
0d86ebd8
BH
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
ef2b90ee 306 efx->type->push_irq_moderation(channel);
0d86ebd8 307 }
6fb70fd1 308 }
6fb70fd1
BH
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8ceee660
BH
337 BUG_ON(!channel->enabled);
338
339 /* Disable interrupts and wait for ISRs to complete */
152b6a62 340 efx_nic_disable_interrupts(efx);
8ceee660
BH
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
3ffeabdd 350 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
152b6a62 357 efx_nic_enable_interrupts(efx);
8ceee660
BH
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
152b6a62 370 return efx_nic_probe_eventq(channel);
8ceee660
BH
371}
372
373/* Prepare channel's event queue */
bc3c90a2 374static void efx_init_eventq(struct efx_channel *channel)
8ceee660 375{
62776d03
BH
376 netif_dbg(channel->efx, drv, channel->efx->net_dev,
377 "chan %d init event queue\n", channel->channel);
8ceee660
BH
378
379 channel->eventq_read_ptr = 0;
380
152b6a62 381 efx_nic_init_eventq(channel);
8ceee660
BH
382}
383
384static void efx_fini_eventq(struct efx_channel *channel)
385{
62776d03
BH
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d fini event queue\n", channel->channel);
8ceee660 388
152b6a62 389 efx_nic_fini_eventq(channel);
8ceee660
BH
390}
391
392static void efx_remove_eventq(struct efx_channel *channel)
393{
62776d03
BH
394 netif_dbg(channel->efx, drv, channel->efx->net_dev,
395 "chan %d remove event queue\n", channel->channel);
8ceee660 396
152b6a62 397 efx_nic_remove_eventq(channel);
8ceee660
BH
398}
399
400/**************************************************************************
401 *
402 * Channel handling
403 *
404 *************************************************************************/
405
8ceee660
BH
406static int efx_probe_channel(struct efx_channel *channel)
407{
408 struct efx_tx_queue *tx_queue;
409 struct efx_rx_queue *rx_queue;
410 int rc;
411
62776d03
BH
412 netif_dbg(channel->efx, probe, channel->efx->net_dev,
413 "creating channel %d\n", channel->channel);
8ceee660
BH
414
415 rc = efx_probe_eventq(channel);
416 if (rc)
417 goto fail1;
418
419 efx_for_each_channel_tx_queue(tx_queue, channel) {
420 rc = efx_probe_tx_queue(tx_queue);
421 if (rc)
422 goto fail2;
423 }
424
425 efx_for_each_channel_rx_queue(rx_queue, channel) {
426 rc = efx_probe_rx_queue(rx_queue);
427 if (rc)
428 goto fail3;
429 }
430
431 channel->n_rx_frm_trunc = 0;
432
433 return 0;
434
435 fail3:
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_remove_rx_queue(rx_queue);
438 fail2:
439 efx_for_each_channel_tx_queue(tx_queue, channel)
440 efx_remove_tx_queue(tx_queue);
441 fail1:
442 return rc;
443}
444
445
56536e9c
BH
446static void efx_set_channel_names(struct efx_nic *efx)
447{
448 struct efx_channel *channel;
449 const char *type = "";
450 int number;
451
452 efx_for_each_channel(channel, efx) {
453 number = channel->channel;
a4900ac9
BH
454 if (efx->n_channels > efx->n_rx_channels) {
455 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
456 type = "-rx";
457 } else {
458 type = "-tx";
a4900ac9 459 number -= efx->n_rx_channels;
56536e9c
BH
460 }
461 }
462 snprintf(channel->name, sizeof(channel->name),
463 "%s%s-%d", efx->name, type, number);
464 }
465}
466
8ceee660
BH
467/* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
470 */
bc3c90a2 471static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
472{
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
475 struct efx_channel *channel;
8ceee660 476
f7f13b0b
BH
477 /* Calculate the rx buffer allocation parameters required to
478 * support the current MTU, including padding for header
479 * alignment and overruns.
480 */
481 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 483 efx->type->rx_buffer_hash_size +
f7f13b0b 484 efx->type->rx_buffer_padding);
62b330ba
SH
485 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
486 sizeof(struct efx_rx_page_state));
8ceee660
BH
487
488 /* Initialise the channels */
489 efx_for_each_channel(channel, efx) {
62776d03
BH
490 netif_dbg(channel->efx, drv, channel->efx->net_dev,
491 "init chan %d\n", channel->channel);
8ceee660 492
bc3c90a2 493 efx_init_eventq(channel);
8ceee660 494
bc3c90a2
BH
495 efx_for_each_channel_tx_queue(tx_queue, channel)
496 efx_init_tx_queue(tx_queue);
8ceee660
BH
497
498 /* The rx buffer allocation strategy is MTU dependent */
499 efx_rx_strategy(channel);
500
bc3c90a2
BH
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_init_rx_queue(rx_queue);
8ceee660
BH
503
504 WARN_ON(channel->rx_pkt != NULL);
505 efx_rx_strategy(channel);
506 }
8ceee660
BH
507}
508
509/* This enables event queue processing and packet transmission.
510 *
511 * Note that this function is not allowed to fail, since that would
512 * introduce too much complexity into the suspend/resume path.
513 */
514static void efx_start_channel(struct efx_channel *channel)
515{
516 struct efx_rx_queue *rx_queue;
517
62776d03
BH
518 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
519 "starting chan %d\n", channel->channel);
8ceee660 520
5b9e207c
BH
521 /* The interrupt handler for this channel may set work_pending
522 * as soon as we enable it. Make sure it's cleared before
523 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
524 channel->work_pending = false;
525 channel->enabled = true;
5b9e207c 526 smp_wmb();
8ceee660 527
90d683af 528 /* Fill the queues before enabling NAPI */
8ceee660
BH
529 efx_for_each_channel_rx_queue(rx_queue, channel)
530 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
531
532 napi_enable(&channel->napi_str);
8ceee660
BH
533}
534
535/* This disables event queue processing and packet transmission.
536 * This function does not guarantee that all queue processing
537 * (e.g. RX refill) is complete.
538 */
539static void efx_stop_channel(struct efx_channel *channel)
540{
8ceee660
BH
541 if (!channel->enabled)
542 return;
543
62776d03
BH
544 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
545 "stop chan %d\n", channel->channel);
8ceee660 546
dc8cfa55 547 channel->enabled = false;
8ceee660 548 napi_disable(&channel->napi_str);
8ceee660
BH
549}
550
551static void efx_fini_channels(struct efx_nic *efx)
552{
553 struct efx_channel *channel;
554 struct efx_tx_queue *tx_queue;
555 struct efx_rx_queue *rx_queue;
6bc5d3a9 556 int rc;
8ceee660
BH
557
558 EFX_ASSERT_RESET_SERIALISED(efx);
559 BUG_ON(efx->port_enabled);
560
152b6a62 561 rc = efx_nic_flush_queues(efx);
fd371e32
SH
562 if (rc && EFX_WORKAROUND_7803(efx)) {
563 /* Schedule a reset to recover from the flush failure. The
564 * descriptor caches reference memory we're about to free,
565 * but falcon_reconfigure_mac_wrapper() won't reconnect
566 * the MACs because of the pending reset. */
62776d03
BH
567 netif_err(efx, drv, efx->net_dev,
568 "Resetting to recover from flush failure\n");
fd371e32
SH
569 efx_schedule_reset(efx, RESET_TYPE_ALL);
570 } else if (rc) {
62776d03 571 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 572 } else {
62776d03
BH
573 netif_dbg(efx, drv, efx->net_dev,
574 "successfully flushed all queues\n");
fd371e32 575 }
6bc5d3a9 576
8ceee660 577 efx_for_each_channel(channel, efx) {
62776d03
BH
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "shut down chan %d\n", channel->channel);
8ceee660
BH
580
581 efx_for_each_channel_rx_queue(rx_queue, channel)
582 efx_fini_rx_queue(rx_queue);
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_fini_tx_queue(tx_queue);
8ceee660
BH
585 efx_fini_eventq(channel);
586 }
587}
588
589static void efx_remove_channel(struct efx_channel *channel)
590{
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
593
62776d03
BH
594 netif_dbg(channel->efx, drv, channel->efx->net_dev,
595 "destroy chan %d\n", channel->channel);
8ceee660
BH
596
597 efx_for_each_channel_rx_queue(rx_queue, channel)
598 efx_remove_rx_queue(rx_queue);
599 efx_for_each_channel_tx_queue(tx_queue, channel)
600 efx_remove_tx_queue(tx_queue);
601 efx_remove_eventq(channel);
8ceee660
BH
602}
603
90d683af 604void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 605{
90d683af 606 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
607}
608
609/**************************************************************************
610 *
611 * Port handling
612 *
613 **************************************************************************/
614
615/* This ensures that the kernel is kept informed (via
616 * netif_carrier_on/off) of the link status, and also maintains the
617 * link status's stop on the port's TX queue.
618 */
fdaa9aed 619void efx_link_status_changed(struct efx_nic *efx)
8ceee660 620{
eb50c0d6
BH
621 struct efx_link_state *link_state = &efx->link_state;
622
8ceee660
BH
623 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
624 * that no events are triggered between unregister_netdev() and the
625 * driver unloading. A more general condition is that NETDEV_CHANGE
626 * can only be generated between NETDEV_UP and NETDEV_DOWN */
627 if (!netif_running(efx->net_dev))
628 return;
629
8c8661e4
BH
630 if (efx->port_inhibited) {
631 netif_carrier_off(efx->net_dev);
632 return;
633 }
634
eb50c0d6 635 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
636 efx->n_link_state_changes++;
637
eb50c0d6 638 if (link_state->up)
8ceee660
BH
639 netif_carrier_on(efx->net_dev);
640 else
641 netif_carrier_off(efx->net_dev);
642 }
643
644 /* Status message for kernel log */
eb50c0d6 645 if (link_state->up) {
62776d03
BH
646 netif_info(efx, link, efx->net_dev,
647 "link up at %uMbps %s-duplex (MTU %d)%s\n",
648 link_state->speed, link_state->fd ? "full" : "half",
649 efx->net_dev->mtu,
650 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 651 } else {
62776d03 652 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
653 }
654
655}
656
d3245b28
BH
657void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
658{
659 efx->link_advertising = advertising;
660 if (advertising) {
661 if (advertising & ADVERTISED_Pause)
662 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
663 else
664 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
665 if (advertising & ADVERTISED_Asym_Pause)
666 efx->wanted_fc ^= EFX_FC_TX;
667 }
668}
669
670void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
671{
672 efx->wanted_fc = wanted_fc;
673 if (efx->link_advertising) {
674 if (wanted_fc & EFX_FC_RX)
675 efx->link_advertising |= (ADVERTISED_Pause |
676 ADVERTISED_Asym_Pause);
677 else
678 efx->link_advertising &= ~(ADVERTISED_Pause |
679 ADVERTISED_Asym_Pause);
680 if (wanted_fc & EFX_FC_TX)
681 efx->link_advertising ^= ADVERTISED_Asym_Pause;
682 }
683}
684
115122af
BH
685static void efx_fini_port(struct efx_nic *efx);
686
d3245b28
BH
687/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
688 * the MAC appropriately. All other PHY configuration changes are pushed
689 * through phy_op->set_settings(), and pushed asynchronously to the MAC
690 * through efx_monitor().
691 *
692 * Callers must hold the mac_lock
693 */
694int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 695{
d3245b28
BH
696 enum efx_phy_mode phy_mode;
697 int rc;
8ceee660 698
d3245b28 699 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 700
a816f75a
BH
701 /* Serialise the promiscuous flag with efx_set_multicast_list. */
702 if (efx_dev_registered(efx)) {
703 netif_addr_lock_bh(efx->net_dev);
704 netif_addr_unlock_bh(efx->net_dev);
705 }
706
d3245b28
BH
707 /* Disable PHY transmit in mac level loopbacks */
708 phy_mode = efx->phy_mode;
177dfcd8
BH
709 if (LOOPBACK_INTERNAL(efx))
710 efx->phy_mode |= PHY_MODE_TX_DISABLED;
711 else
712 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 713
d3245b28 714 rc = efx->type->reconfigure_port(efx);
8ceee660 715
d3245b28
BH
716 if (rc)
717 efx->phy_mode = phy_mode;
177dfcd8 718
d3245b28 719 return rc;
8ceee660
BH
720}
721
722/* Reinitialise the MAC to pick up new PHY settings, even if the port is
723 * disabled. */
d3245b28 724int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 725{
d3245b28
BH
726 int rc;
727
8ceee660
BH
728 EFX_ASSERT_RESET_SERIALISED(efx);
729
730 mutex_lock(&efx->mac_lock);
d3245b28 731 rc = __efx_reconfigure_port(efx);
8ceee660 732 mutex_unlock(&efx->mac_lock);
d3245b28
BH
733
734 return rc;
8ceee660
BH
735}
736
8be4f3e6
BH
737/* Asynchronous work item for changing MAC promiscuity and multicast
738 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
739 * MAC directly. */
766ca0fa
BH
740static void efx_mac_work(struct work_struct *data)
741{
742 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
743
744 mutex_lock(&efx->mac_lock);
8be4f3e6 745 if (efx->port_enabled) {
ef2b90ee 746 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
747 efx->mac_op->reconfigure(efx);
748 }
766ca0fa
BH
749 mutex_unlock(&efx->mac_lock);
750}
751
8ceee660
BH
752static int efx_probe_port(struct efx_nic *efx)
753{
754 int rc;
755
62776d03 756 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 757
ff3b00a0
SH
758 if (phy_flash_cfg)
759 efx->phy_mode = PHY_MODE_SPECIAL;
760
ef2b90ee
BH
761 /* Connect up MAC/PHY operations table */
762 rc = efx->type->probe_port(efx);
8ceee660
BH
763 if (rc)
764 goto err;
765
766 /* Sanity check MAC address */
767 if (is_valid_ether_addr(efx->mac_address)) {
768 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
769 } else {
62776d03
BH
770 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
771 efx->mac_address);
8ceee660
BH
772 if (!allow_bad_hwaddr) {
773 rc = -EINVAL;
774 goto err;
775 }
776 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
777 netif_info(efx, probe, efx->net_dev,
778 "using locally-generated MAC %pM\n",
779 efx->net_dev->dev_addr);
8ceee660
BH
780 }
781
782 return 0;
783
784 err:
785 efx_remove_port(efx);
786 return rc;
787}
788
789static int efx_init_port(struct efx_nic *efx)
790{
791 int rc;
792
62776d03 793 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 794
1dfc5cea
BH
795 mutex_lock(&efx->mac_lock);
796
177dfcd8 797 rc = efx->phy_op->init(efx);
8ceee660 798 if (rc)
1dfc5cea 799 goto fail1;
8ceee660 800
dc8cfa55 801 efx->port_initialized = true;
1dfc5cea 802
d3245b28
BH
803 /* Reconfigure the MAC before creating dma queues (required for
804 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
805 efx->mac_op->reconfigure(efx);
806
807 /* Ensure the PHY advertises the correct flow control settings */
808 rc = efx->phy_op->reconfigure(efx);
809 if (rc)
810 goto fail2;
811
1dfc5cea 812 mutex_unlock(&efx->mac_lock);
8ceee660 813 return 0;
177dfcd8 814
1dfc5cea 815fail2:
177dfcd8 816 efx->phy_op->fini(efx);
1dfc5cea
BH
817fail1:
818 mutex_unlock(&efx->mac_lock);
177dfcd8 819 return rc;
8ceee660
BH
820}
821
8ceee660
BH
822static void efx_start_port(struct efx_nic *efx)
823{
62776d03 824 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
825 BUG_ON(efx->port_enabled);
826
827 mutex_lock(&efx->mac_lock);
dc8cfa55 828 efx->port_enabled = true;
8be4f3e6
BH
829
830 /* efx_mac_work() might have been scheduled after efx_stop_port(),
831 * and then cancelled by efx_flush_all() */
ef2b90ee 832 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
833 efx->mac_op->reconfigure(efx);
834
8ceee660
BH
835 mutex_unlock(&efx->mac_lock);
836}
837
fdaa9aed 838/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
839static void efx_stop_port(struct efx_nic *efx)
840{
62776d03 841 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
842
843 mutex_lock(&efx->mac_lock);
dc8cfa55 844 efx->port_enabled = false;
8ceee660
BH
845 mutex_unlock(&efx->mac_lock);
846
847 /* Serialise against efx_set_multicast_list() */
55668611 848 if (efx_dev_registered(efx)) {
b9e40857
DM
849 netif_addr_lock_bh(efx->net_dev);
850 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
851 }
852}
853
854static void efx_fini_port(struct efx_nic *efx)
855{
62776d03 856 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
857
858 if (!efx->port_initialized)
859 return;
860
177dfcd8 861 efx->phy_op->fini(efx);
dc8cfa55 862 efx->port_initialized = false;
8ceee660 863
eb50c0d6 864 efx->link_state.up = false;
8ceee660
BH
865 efx_link_status_changed(efx);
866}
867
868static void efx_remove_port(struct efx_nic *efx)
869{
62776d03 870 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 871
ef2b90ee 872 efx->type->remove_port(efx);
8ceee660
BH
873}
874
875/**************************************************************************
876 *
877 * NIC handling
878 *
879 **************************************************************************/
880
881/* This configures the PCI device to enable I/O and DMA. */
882static int efx_init_io(struct efx_nic *efx)
883{
884 struct pci_dev *pci_dev = efx->pci_dev;
885 dma_addr_t dma_mask = efx->type->max_dma_mask;
886 int rc;
887
62776d03 888 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
889
890 rc = pci_enable_device(pci_dev);
891 if (rc) {
62776d03
BH
892 netif_err(efx, probe, efx->net_dev,
893 "failed to enable PCI device\n");
8ceee660
BH
894 goto fail1;
895 }
896
897 pci_set_master(pci_dev);
898
899 /* Set the PCI DMA mask. Try all possibilities from our
900 * genuine mask down to 32 bits, because some architectures
901 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
902 * masks event though they reject 46 bit masks.
903 */
904 while (dma_mask > 0x7fffffffUL) {
905 if (pci_dma_supported(pci_dev, dma_mask) &&
906 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
907 break;
908 dma_mask >>= 1;
909 }
910 if (rc) {
62776d03
BH
911 netif_err(efx, probe, efx->net_dev,
912 "could not find a suitable DMA mask\n");
8ceee660
BH
913 goto fail2;
914 }
62776d03
BH
915 netif_dbg(efx, probe, efx->net_dev,
916 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
917 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
918 if (rc) {
919 /* pci_set_consistent_dma_mask() is not *allowed* to
920 * fail with a mask that pci_set_dma_mask() accepted,
921 * but just in case...
922 */
62776d03
BH
923 netif_err(efx, probe, efx->net_dev,
924 "failed to set consistent DMA mask\n");
8ceee660
BH
925 goto fail2;
926 }
927
dc803df8
BH
928 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
929 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 930 if (rc) {
62776d03
BH
931 netif_err(efx, probe, efx->net_dev,
932 "request for memory BAR failed\n");
8ceee660
BH
933 rc = -EIO;
934 goto fail3;
935 }
936 efx->membase = ioremap_nocache(efx->membase_phys,
937 efx->type->mem_map_size);
938 if (!efx->membase) {
62776d03
BH
939 netif_err(efx, probe, efx->net_dev,
940 "could not map memory BAR at %llx+%x\n",
941 (unsigned long long)efx->membase_phys,
942 efx->type->mem_map_size);
8ceee660
BH
943 rc = -ENOMEM;
944 goto fail4;
945 }
62776d03
BH
946 netif_dbg(efx, probe, efx->net_dev,
947 "memory BAR at %llx+%x (virtual %p)\n",
948 (unsigned long long)efx->membase_phys,
949 efx->type->mem_map_size, efx->membase);
8ceee660
BH
950
951 return 0;
952
953 fail4:
dc803df8 954 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 955 fail3:
2c118e0f 956 efx->membase_phys = 0;
8ceee660
BH
957 fail2:
958 pci_disable_device(efx->pci_dev);
959 fail1:
960 return rc;
961}
962
963static void efx_fini_io(struct efx_nic *efx)
964{
62776d03 965 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
966
967 if (efx->membase) {
968 iounmap(efx->membase);
969 efx->membase = NULL;
970 }
971
972 if (efx->membase_phys) {
dc803df8 973 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 974 efx->membase_phys = 0;
8ceee660
BH
975 }
976
977 pci_disable_device(efx->pci_dev);
978}
979
a4900ac9
BH
980/* Get number of channels wanted. Each channel will have its own IRQ,
981 * 1 RX queue and/or 2 TX queues. */
982static int efx_wanted_channels(void)
46123d04 983{
2f8975fb 984 cpumask_var_t core_mask;
46123d04
BH
985 int count;
986 int cpu;
987
79f55997 988 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 989 printk(KERN_WARNING
3977d033 990 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
991 return 1;
992 }
993
46123d04
BH
994 count = 0;
995 for_each_online_cpu(cpu) {
2f8975fb 996 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 997 ++count;
2f8975fb 998 cpumask_or(core_mask, core_mask,
fbd59a8d 999 topology_core_cpumask(cpu));
46123d04
BH
1000 }
1001 }
1002
2f8975fb 1003 free_cpumask_var(core_mask);
46123d04
BH
1004 return count;
1005}
1006
1007/* Probe the number and type of interrupts we are able to obtain, and
1008 * the resulting numbers of channels and RX queues.
1009 */
8ceee660
BH
1010static void efx_probe_interrupts(struct efx_nic *efx)
1011{
46123d04
BH
1012 int max_channels =
1013 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1014 int rc, i;
1015
1016 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1017 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1018 int n_channels;
aa6ef27e 1019
a4900ac9
BH
1020 n_channels = efx_wanted_channels();
1021 if (separate_tx_channels)
1022 n_channels *= 2;
1023 n_channels = min(n_channels, max_channels);
8ceee660 1024
a4900ac9 1025 for (i = 0; i < n_channels; i++)
8ceee660 1026 xentries[i].entry = i;
a4900ac9 1027 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1028 if (rc > 0) {
62776d03
BH
1029 netif_err(efx, drv, efx->net_dev,
1030 "WARNING: Insufficient MSI-X vectors"
1031 " available (%d < %d).\n", rc, n_channels);
1032 netif_err(efx, drv, efx->net_dev,
1033 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1034 EFX_BUG_ON_PARANOID(rc >= n_channels);
1035 n_channels = rc;
8ceee660 1036 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1037 n_channels);
8ceee660
BH
1038 }
1039
1040 if (rc == 0) {
a4900ac9
BH
1041 efx->n_channels = n_channels;
1042 if (separate_tx_channels) {
1043 efx->n_tx_channels =
1044 max(efx->n_channels / 2, 1U);
1045 efx->n_rx_channels =
1046 max(efx->n_channels -
1047 efx->n_tx_channels, 1U);
1048 } else {
1049 efx->n_tx_channels = efx->n_channels;
1050 efx->n_rx_channels = efx->n_channels;
1051 }
1052 for (i = 0; i < n_channels; i++)
8ceee660 1053 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1054 } else {
1055 /* Fall back to single channel MSI */
1056 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1057 netif_err(efx, drv, efx->net_dev,
1058 "could not enable MSI-X\n");
8ceee660
BH
1059 }
1060 }
1061
1062 /* Try single interrupt MSI */
1063 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1064 efx->n_channels = 1;
a4900ac9
BH
1065 efx->n_rx_channels = 1;
1066 efx->n_tx_channels = 1;
8ceee660
BH
1067 rc = pci_enable_msi(efx->pci_dev);
1068 if (rc == 0) {
1069 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660 1070 } else {
62776d03
BH
1071 netif_err(efx, drv, efx->net_dev,
1072 "could not enable MSI\n");
8ceee660
BH
1073 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1074 }
1075 }
1076
1077 /* Assume legacy interrupts */
1078 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1079 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1080 efx->n_rx_channels = 1;
1081 efx->n_tx_channels = 1;
8ceee660
BH
1082 efx->legacy_irq = efx->pci_dev->irq;
1083 }
1084}
1085
1086static void efx_remove_interrupts(struct efx_nic *efx)
1087{
1088 struct efx_channel *channel;
1089
1090 /* Remove MSI/MSI-X interrupts */
64ee3120 1091 efx_for_each_channel(channel, efx)
8ceee660
BH
1092 channel->irq = 0;
1093 pci_disable_msi(efx->pci_dev);
1094 pci_disable_msix(efx->pci_dev);
1095
1096 /* Remove legacy interrupt */
1097 efx->legacy_irq = 0;
1098}
1099
8831da7b 1100static void efx_set_channels(struct efx_nic *efx)
8ceee660 1101{
a4900ac9 1102 struct efx_channel *channel;
8ceee660
BH
1103 struct efx_tx_queue *tx_queue;
1104 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1105 unsigned tx_channel_offset =
1106 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1107
a4900ac9
BH
1108 efx_for_each_channel(channel, efx) {
1109 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1110 channel->tx_queue = &efx->tx_queue[
1111 (channel->channel - tx_channel_offset) *
1112 EFX_TXQ_TYPES];
1113 efx_for_each_channel_tx_queue(tx_queue, channel)
1114 tx_queue->channel = channel;
1115 }
60ac1065 1116 }
8ceee660 1117
a4900ac9 1118 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1119 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1120}
1121
1122static int efx_probe_nic(struct efx_nic *efx)
1123{
1124 int rc;
1125
62776d03 1126 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1127
1128 /* Carry out hardware-type specific initialisation */
ef2b90ee 1129 rc = efx->type->probe(efx);
8ceee660
BH
1130 if (rc)
1131 return rc;
1132
a4900ac9 1133 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1134 * in MSI-X interrupts. */
1135 efx_probe_interrupts(efx);
1136
5d3a6fca
BH
1137 if (efx->n_channels > 1)
1138 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1139
8831da7b 1140 efx_set_channels(efx);
a4900ac9 1141 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1142
1143 /* Initialise the interrupt moderation settings */
6fb70fd1 1144 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1145
1146 return 0;
1147}
1148
1149static void efx_remove_nic(struct efx_nic *efx)
1150{
62776d03 1151 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1152
1153 efx_remove_interrupts(efx);
ef2b90ee 1154 efx->type->remove(efx);
8ceee660
BH
1155}
1156
1157/**************************************************************************
1158 *
1159 * NIC startup/shutdown
1160 *
1161 *************************************************************************/
1162
1163static int efx_probe_all(struct efx_nic *efx)
1164{
1165 struct efx_channel *channel;
1166 int rc;
1167
1168 /* Create NIC */
1169 rc = efx_probe_nic(efx);
1170 if (rc) {
62776d03 1171 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1172 goto fail1;
1173 }
1174
1175 /* Create port */
1176 rc = efx_probe_port(efx);
1177 if (rc) {
62776d03 1178 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1179 goto fail2;
1180 }
1181
1182 /* Create channels */
1183 efx_for_each_channel(channel, efx) {
1184 rc = efx_probe_channel(channel);
1185 if (rc) {
62776d03
BH
1186 netif_err(efx, probe, efx->net_dev,
1187 "failed to create channel %d\n",
1188 channel->channel);
8ceee660
BH
1189 goto fail3;
1190 }
1191 }
56536e9c 1192 efx_set_channel_names(efx);
8ceee660
BH
1193
1194 return 0;
1195
1196 fail3:
1197 efx_for_each_channel(channel, efx)
1198 efx_remove_channel(channel);
1199 efx_remove_port(efx);
1200 fail2:
1201 efx_remove_nic(efx);
1202 fail1:
1203 return rc;
1204}
1205
1206/* Called after previous invocation(s) of efx_stop_all, restarts the
1207 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1208 * and ensures that the port is scheduled to be reconfigured.
1209 * This function is safe to call multiple times when the NIC is in any
1210 * state. */
1211static void efx_start_all(struct efx_nic *efx)
1212{
1213 struct efx_channel *channel;
1214
1215 EFX_ASSERT_RESET_SERIALISED(efx);
1216
1217 /* Check that it is appropriate to restart the interface. All
1218 * of these flags are safe to read under just the rtnl lock */
1219 if (efx->port_enabled)
1220 return;
1221 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1222 return;
55668611 1223 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1224 return;
1225
1226 /* Mark the port as enabled so port reconfigurations can start, then
1227 * restart the transmit interface early so the watchdog timer stops */
1228 efx_start_port(efx);
8ceee660 1229
a4900ac9
BH
1230 efx_for_each_channel(channel, efx) {
1231 if (efx_dev_registered(efx))
1232 efx_wake_queue(channel);
8ceee660 1233 efx_start_channel(channel);
a4900ac9 1234 }
8ceee660 1235
152b6a62 1236 efx_nic_enable_interrupts(efx);
8ceee660 1237
8880f4ec
BH
1238 /* Switch to event based MCDI completions after enabling interrupts.
1239 * If a reset has been scheduled, then we need to stay in polled mode.
1240 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1241 * reset_pending [modified from an atomic context], we instead guarantee
1242 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1243 efx_mcdi_mode_event(efx);
1244 if (efx->reset_pending != RESET_TYPE_NONE)
1245 efx_mcdi_mode_poll(efx);
1246
78c1f0a0
SH
1247 /* Start the hardware monitor if there is one. Otherwise (we're link
1248 * event driven), we have to poll the PHY because after an event queue
1249 * flush, we could have a missed a link state change */
1250 if (efx->type->monitor != NULL) {
8ceee660
BH
1251 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1252 efx_monitor_interval);
78c1f0a0
SH
1253 } else {
1254 mutex_lock(&efx->mac_lock);
1255 if (efx->phy_op->poll(efx))
1256 efx_link_status_changed(efx);
1257 mutex_unlock(&efx->mac_lock);
1258 }
55edc6e6 1259
ef2b90ee 1260 efx->type->start_stats(efx);
8ceee660
BH
1261}
1262
1263/* Flush all delayed work. Should only be called when no more delayed work
1264 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1265 * since we're holding the rtnl_lock at this point. */
1266static void efx_flush_all(struct efx_nic *efx)
1267{
8ceee660
BH
1268 /* Make sure the hardware monitor is stopped */
1269 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1270 /* Stop scheduled port reconfigurations */
766ca0fa 1271 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1272}
1273
1274/* Quiesce hardware and software without bringing the link down.
1275 * Safe to call multiple times, when the nic and interface is in any
1276 * state. The caller is guaranteed to subsequently be in a position
1277 * to modify any hardware and software state they see fit without
1278 * taking locks. */
1279static void efx_stop_all(struct efx_nic *efx)
1280{
1281 struct efx_channel *channel;
1282
1283 EFX_ASSERT_RESET_SERIALISED(efx);
1284
1285 /* port_enabled can be read safely under the rtnl lock */
1286 if (!efx->port_enabled)
1287 return;
1288
ef2b90ee 1289 efx->type->stop_stats(efx);
55edc6e6 1290
8880f4ec
BH
1291 /* Switch to MCDI polling on Siena before disabling interrupts */
1292 efx_mcdi_mode_poll(efx);
1293
8ceee660 1294 /* Disable interrupts and wait for ISR to complete */
152b6a62 1295 efx_nic_disable_interrupts(efx);
8ceee660
BH
1296 if (efx->legacy_irq)
1297 synchronize_irq(efx->legacy_irq);
64ee3120 1298 efx_for_each_channel(channel, efx) {
8ceee660
BH
1299 if (channel->irq)
1300 synchronize_irq(channel->irq);
b3475645 1301 }
8ceee660
BH
1302
1303 /* Stop all NAPI processing and synchronous rx refills */
1304 efx_for_each_channel(channel, efx)
1305 efx_stop_channel(channel);
1306
1307 /* Stop all asynchronous port reconfigurations. Since all
1308 * event processing has already been stopped, there is no
1309 * window to loose phy events */
1310 efx_stop_port(efx);
1311
fdaa9aed 1312 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1313 efx_flush_all(efx);
1314
8ceee660
BH
1315 /* Stop the kernel transmit interface late, so the watchdog
1316 * timer isn't ticking over the flush */
55668611 1317 if (efx_dev_registered(efx)) {
a4900ac9
BH
1318 struct efx_channel *channel;
1319 efx_for_each_channel(channel, efx)
1320 efx_stop_queue(channel);
8ceee660
BH
1321 netif_tx_lock_bh(efx->net_dev);
1322 netif_tx_unlock_bh(efx->net_dev);
1323 }
1324}
1325
1326static void efx_remove_all(struct efx_nic *efx)
1327{
1328 struct efx_channel *channel;
1329
1330 efx_for_each_channel(channel, efx)
1331 efx_remove_channel(channel);
1332 efx_remove_port(efx);
1333 efx_remove_nic(efx);
1334}
1335
8ceee660
BH
1336/**************************************************************************
1337 *
1338 * Interrupt moderation
1339 *
1340 **************************************************************************/
1341
0d86ebd8
BH
1342static unsigned irq_mod_ticks(int usecs, int resolution)
1343{
1344 if (usecs <= 0)
1345 return 0; /* cannot receive interrupts ahead of time :-) */
1346 if (usecs < resolution)
1347 return 1; /* never round down to 0 */
1348 return usecs / resolution;
1349}
1350
8ceee660 1351/* Set interrupt moderation parameters */
6fb70fd1
BH
1352void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1353 bool rx_adaptive)
8ceee660
BH
1354{
1355 struct efx_tx_queue *tx_queue;
1356 struct efx_rx_queue *rx_queue;
152b6a62
BH
1357 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1358 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1359
1360 EFX_ASSERT_RESET_SERIALISED(efx);
1361
1362 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1363 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1364
6fb70fd1 1365 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1366 efx->irq_rx_moderation = rx_ticks;
8ceee660 1367 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1368 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1369}
1370
1371/**************************************************************************
1372 *
1373 * Hardware monitor
1374 *
1375 **************************************************************************/
1376
1377/* Run periodically off the general workqueue. Serialised against
1378 * efx_reconfigure_port via the mac_lock */
1379static void efx_monitor(struct work_struct *data)
1380{
1381 struct efx_nic *efx = container_of(data, struct efx_nic,
1382 monitor_work.work);
8ceee660 1383
62776d03
BH
1384 netif_vdbg(efx, timer, efx->net_dev,
1385 "hardware monitor executing on CPU %d\n",
1386 raw_smp_processor_id());
ef2b90ee 1387 BUG_ON(efx->type->monitor == NULL);
8ceee660 1388
8ceee660
BH
1389 /* If the mac_lock is already held then it is likely a port
1390 * reconfiguration is already in place, which will likely do
1391 * most of the work of check_hw() anyway. */
766ca0fa
BH
1392 if (!mutex_trylock(&efx->mac_lock))
1393 goto out_requeue;
1394 if (!efx->port_enabled)
1395 goto out_unlock;
ef2b90ee 1396 efx->type->monitor(efx);
8ceee660 1397
766ca0fa 1398out_unlock:
8ceee660 1399 mutex_unlock(&efx->mac_lock);
766ca0fa 1400out_requeue:
8ceee660
BH
1401 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1402 efx_monitor_interval);
1403}
1404
1405/**************************************************************************
1406 *
1407 * ioctls
1408 *
1409 *************************************************************************/
1410
1411/* Net device ioctl
1412 * Context: process, rtnl_lock() held.
1413 */
1414static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1415{
767e468c 1416 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1417 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1418
1419 EFX_ASSERT_RESET_SERIALISED(efx);
1420
68e7f45e
BH
1421 /* Convert phy_id from older PRTAD/DEVAD format */
1422 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1423 (data->phy_id & 0xfc00) == 0x0400)
1424 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1425
1426 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1427}
1428
1429/**************************************************************************
1430 *
1431 * NAPI interface
1432 *
1433 **************************************************************************/
1434
1435static int efx_init_napi(struct efx_nic *efx)
1436{
1437 struct efx_channel *channel;
8ceee660
BH
1438
1439 efx_for_each_channel(channel, efx) {
1440 channel->napi_dev = efx->net_dev;
718cff1e
BH
1441 netif_napi_add(channel->napi_dev, &channel->napi_str,
1442 efx_poll, napi_weight);
8ceee660
BH
1443 }
1444 return 0;
8ceee660
BH
1445}
1446
1447static void efx_fini_napi(struct efx_nic *efx)
1448{
1449 struct efx_channel *channel;
1450
1451 efx_for_each_channel(channel, efx) {
718cff1e
BH
1452 if (channel->napi_dev)
1453 netif_napi_del(&channel->napi_str);
8ceee660
BH
1454 channel->napi_dev = NULL;
1455 }
1456}
1457
1458/**************************************************************************
1459 *
1460 * Kernel netpoll interface
1461 *
1462 *************************************************************************/
1463
1464#ifdef CONFIG_NET_POLL_CONTROLLER
1465
1466/* Although in the common case interrupts will be disabled, this is not
1467 * guaranteed. However, all our work happens inside the NAPI callback,
1468 * so no locking is required.
1469 */
1470static void efx_netpoll(struct net_device *net_dev)
1471{
767e468c 1472 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1473 struct efx_channel *channel;
1474
64ee3120 1475 efx_for_each_channel(channel, efx)
8ceee660
BH
1476 efx_schedule_channel(channel);
1477}
1478
1479#endif
1480
1481/**************************************************************************
1482 *
1483 * Kernel net device interface
1484 *
1485 *************************************************************************/
1486
1487/* Context: process, rtnl_lock() held. */
1488static int efx_net_open(struct net_device *net_dev)
1489{
767e468c 1490 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1491 EFX_ASSERT_RESET_SERIALISED(efx);
1492
62776d03
BH
1493 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1494 raw_smp_processor_id());
8ceee660 1495
f4bd954e
BH
1496 if (efx->state == STATE_DISABLED)
1497 return -EIO;
f8b87c17
BH
1498 if (efx->phy_mode & PHY_MODE_SPECIAL)
1499 return -EBUSY;
8880f4ec
BH
1500 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1501 return -EIO;
f8b87c17 1502
78c1f0a0
SH
1503 /* Notify the kernel of the link state polled during driver load,
1504 * before the monitor starts running */
1505 efx_link_status_changed(efx);
1506
8ceee660
BH
1507 efx_start_all(efx);
1508 return 0;
1509}
1510
1511/* Context: process, rtnl_lock() held.
1512 * Note that the kernel will ignore our return code; this method
1513 * should really be a void.
1514 */
1515static int efx_net_stop(struct net_device *net_dev)
1516{
767e468c 1517 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1518
62776d03
BH
1519 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1520 raw_smp_processor_id());
8ceee660 1521
f4bd954e
BH
1522 if (efx->state != STATE_DISABLED) {
1523 /* Stop the device and flush all the channels */
1524 efx_stop_all(efx);
1525 efx_fini_channels(efx);
1526 efx_init_channels(efx);
1527 }
8ceee660
BH
1528
1529 return 0;
1530}
1531
5b9e207c 1532/* Context: process, dev_base_lock or RTNL held, non-blocking. */
4472702e 1533static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev)
8ceee660 1534{
767e468c 1535 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1536 struct efx_mac_stats *mac_stats = &efx->mac_stats;
4472702e 1537 struct rtnl_link_stats64 *stats = &net_dev->stats64;
8ceee660 1538
55edc6e6 1539 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1540 efx->type->update_stats(efx);
55edc6e6 1541 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1542
1543 stats->rx_packets = mac_stats->rx_packets;
1544 stats->tx_packets = mac_stats->tx_packets;
1545 stats->rx_bytes = mac_stats->rx_bytes;
1546 stats->tx_bytes = mac_stats->tx_bytes;
1547 stats->multicast = mac_stats->rx_multicast;
1548 stats->collisions = mac_stats->tx_collision;
1549 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1550 mac_stats->rx_length_error);
1551 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1552 stats->rx_crc_errors = mac_stats->rx_bad;
1553 stats->rx_frame_errors = mac_stats->rx_align_error;
1554 stats->rx_fifo_errors = mac_stats->rx_overflow;
1555 stats->rx_missed_errors = mac_stats->rx_missed;
1556 stats->tx_window_errors = mac_stats->tx_late_collision;
1557
1558 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1559 stats->rx_crc_errors +
1560 stats->rx_frame_errors +
8ceee660
BH
1561 mac_stats->rx_symbol_error);
1562 stats->tx_errors = (stats->tx_window_errors +
1563 mac_stats->tx_bad);
1564
1565 return stats;
1566}
1567
1568/* Context: netif_tx_lock held, BHs disabled. */
1569static void efx_watchdog(struct net_device *net_dev)
1570{
767e468c 1571 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1572
62776d03
BH
1573 netif_err(efx, tx_err, efx->net_dev,
1574 "TX stuck with port_enabled=%d: resetting channels\n",
1575 efx->port_enabled);
8ceee660 1576
739bb23d 1577 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1578}
1579
1580
1581/* Context: process, rtnl_lock() held. */
1582static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1583{
767e468c 1584 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1585 int rc = 0;
1586
1587 EFX_ASSERT_RESET_SERIALISED(efx);
1588
1589 if (new_mtu > EFX_MAX_MTU)
1590 return -EINVAL;
1591
1592 efx_stop_all(efx);
1593
62776d03 1594 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1595
1596 efx_fini_channels(efx);
d3245b28
BH
1597
1598 mutex_lock(&efx->mac_lock);
1599 /* Reconfigure the MAC before enabling the dma queues so that
1600 * the RX buffers don't overflow */
8ceee660 1601 net_dev->mtu = new_mtu;
d3245b28
BH
1602 efx->mac_op->reconfigure(efx);
1603 mutex_unlock(&efx->mac_lock);
1604
bc3c90a2 1605 efx_init_channels(efx);
8ceee660
BH
1606
1607 efx_start_all(efx);
1608 return rc;
8ceee660
BH
1609}
1610
1611static int efx_set_mac_address(struct net_device *net_dev, void *data)
1612{
767e468c 1613 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1614 struct sockaddr *addr = data;
1615 char *new_addr = addr->sa_data;
1616
1617 EFX_ASSERT_RESET_SERIALISED(efx);
1618
1619 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1620 netif_err(efx, drv, efx->net_dev,
1621 "invalid ethernet MAC address requested: %pM\n",
1622 new_addr);
8ceee660
BH
1623 return -EINVAL;
1624 }
1625
1626 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1627
1628 /* Reconfigure the MAC */
d3245b28
BH
1629 mutex_lock(&efx->mac_lock);
1630 efx->mac_op->reconfigure(efx);
1631 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1632
1633 return 0;
1634}
1635
a816f75a 1636/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1637static void efx_set_multicast_list(struct net_device *net_dev)
1638{
767e468c 1639 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1640 struct netdev_hw_addr *ha;
8ceee660 1641 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1642 u32 crc;
1643 int bit;
8ceee660 1644
8be4f3e6 1645 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1646
1647 /* Build multicast hash table */
8be4f3e6 1648 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1649 memset(mc_hash, 0xff, sizeof(*mc_hash));
1650 } else {
1651 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1652 netdev_for_each_mc_addr(ha, net_dev) {
1653 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1654 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1655 set_bit_le(bit, mc_hash->byte);
8ceee660 1656 }
8ceee660 1657
8be4f3e6
BH
1658 /* Broadcast packets go through the multicast hash filter.
1659 * ether_crc_le() of the broadcast address is 0xbe2612ff
1660 * so we always add bit 0xff to the mask.
1661 */
1662 set_bit_le(0xff, mc_hash->byte);
1663 }
a816f75a 1664
8be4f3e6
BH
1665 if (efx->port_enabled)
1666 queue_work(efx->workqueue, &efx->mac_work);
1667 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1668}
1669
c3ecb9f3
SH
1670static const struct net_device_ops efx_netdev_ops = {
1671 .ndo_open = efx_net_open,
1672 .ndo_stop = efx_net_stop,
4472702e 1673 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1674 .ndo_tx_timeout = efx_watchdog,
1675 .ndo_start_xmit = efx_hard_start_xmit,
1676 .ndo_validate_addr = eth_validate_addr,
1677 .ndo_do_ioctl = efx_ioctl,
1678 .ndo_change_mtu = efx_change_mtu,
1679 .ndo_set_mac_address = efx_set_mac_address,
1680 .ndo_set_multicast_list = efx_set_multicast_list,
1681#ifdef CONFIG_NET_POLL_CONTROLLER
1682 .ndo_poll_controller = efx_netpoll,
1683#endif
1684};
1685
7dde596e
BH
1686static void efx_update_name(struct efx_nic *efx)
1687{
1688 strcpy(efx->name, efx->net_dev->name);
1689 efx_mtd_rename(efx);
1690 efx_set_channel_names(efx);
1691}
1692
8ceee660
BH
1693static int efx_netdev_event(struct notifier_block *this,
1694 unsigned long event, void *ptr)
1695{
d3208b5e 1696 struct net_device *net_dev = ptr;
8ceee660 1697
7dde596e
BH
1698 if (net_dev->netdev_ops == &efx_netdev_ops &&
1699 event == NETDEV_CHANGENAME)
1700 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1701
1702 return NOTIFY_DONE;
1703}
1704
1705static struct notifier_block efx_netdev_notifier = {
1706 .notifier_call = efx_netdev_event,
1707};
1708
06d5e193
BH
1709static ssize_t
1710show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1711{
1712 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1713 return sprintf(buf, "%d\n", efx->phy_type);
1714}
1715static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1716
8ceee660
BH
1717static int efx_register_netdev(struct efx_nic *efx)
1718{
1719 struct net_device *net_dev = efx->net_dev;
1720 int rc;
1721
1722 net_dev->watchdog_timeo = 5 * HZ;
1723 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1724 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1725 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1726
8ceee660 1727 /* Clear MAC statistics */
177dfcd8 1728 efx->mac_op->update_stats(efx);
8ceee660
BH
1729 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1730
7dde596e 1731 rtnl_lock();
aed0628d
BH
1732
1733 rc = dev_alloc_name(net_dev, net_dev->name);
1734 if (rc < 0)
1735 goto fail_locked;
7dde596e 1736 efx_update_name(efx);
aed0628d
BH
1737
1738 rc = register_netdevice(net_dev);
1739 if (rc)
1740 goto fail_locked;
1741
1742 /* Always start with carrier off; PHY events will detect the link */
1743 netif_carrier_off(efx->net_dev);
1744
7dde596e 1745 rtnl_unlock();
8ceee660 1746
06d5e193
BH
1747 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1748 if (rc) {
62776d03
BH
1749 netif_err(efx, drv, efx->net_dev,
1750 "failed to init net dev attributes\n");
06d5e193
BH
1751 goto fail_registered;
1752 }
1753
8ceee660 1754 return 0;
06d5e193 1755
aed0628d
BH
1756fail_locked:
1757 rtnl_unlock();
62776d03 1758 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1759 return rc;
1760
06d5e193
BH
1761fail_registered:
1762 unregister_netdev(net_dev);
1763 return rc;
8ceee660
BH
1764}
1765
1766static void efx_unregister_netdev(struct efx_nic *efx)
1767{
1768 struct efx_tx_queue *tx_queue;
1769
1770 if (!efx->net_dev)
1771 return;
1772
767e468c 1773 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1774
1775 /* Free up any skbs still remaining. This has to happen before
1776 * we try to unregister the netdev as running their destructors
1777 * may be needed to get the device ref. count to 0. */
1778 efx_for_each_tx_queue(tx_queue, efx)
1779 efx_release_tx_buffers(tx_queue);
1780
55668611 1781 if (efx_dev_registered(efx)) {
8ceee660 1782 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1783 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1784 unregister_netdev(efx->net_dev);
1785 }
1786}
1787
1788/**************************************************************************
1789 *
1790 * Device reset and suspend
1791 *
1792 **************************************************************************/
1793
2467ca46
BH
1794/* Tears down the entire software state and most of the hardware state
1795 * before reset. */
d3245b28 1796void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1797{
8ceee660
BH
1798 EFX_ASSERT_RESET_SERIALISED(efx);
1799
2467ca46
BH
1800 efx_stop_all(efx);
1801 mutex_lock(&efx->mac_lock);
f4150724 1802 mutex_lock(&efx->spi_lock);
2467ca46 1803
8ceee660 1804 efx_fini_channels(efx);
4b988280
SH
1805 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1806 efx->phy_op->fini(efx);
ef2b90ee 1807 efx->type->fini(efx);
8ceee660
BH
1808}
1809
2467ca46
BH
1810/* This function will always ensure that the locks acquired in
1811 * efx_reset_down() are released. A failure return code indicates
1812 * that we were unable to reinitialise the hardware, and the
1813 * driver should be disabled. If ok is false, then the rx and tx
1814 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1815int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1816{
1817 int rc;
1818
2467ca46 1819 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1820
ef2b90ee 1821 rc = efx->type->init(efx);
8ceee660 1822 if (rc) {
62776d03 1823 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1824 goto fail;
8ceee660
BH
1825 }
1826
eb9f6744
BH
1827 if (!ok)
1828 goto fail;
1829
4b988280 1830 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1831 rc = efx->phy_op->init(efx);
1832 if (rc)
1833 goto fail;
1834 if (efx->phy_op->reconfigure(efx))
62776d03
BH
1835 netif_err(efx, drv, efx->net_dev,
1836 "could not restore PHY settings\n");
4b988280
SH
1837 }
1838
eb9f6744 1839 efx->mac_op->reconfigure(efx);
8ceee660 1840
eb9f6744
BH
1841 efx_init_channels(efx);
1842
1843 mutex_unlock(&efx->spi_lock);
1844 mutex_unlock(&efx->mac_lock);
1845
1846 efx_start_all(efx);
1847
1848 return 0;
1849
1850fail:
1851 efx->port_initialized = false;
2467ca46 1852
f4150724 1853 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1854 mutex_unlock(&efx->mac_lock);
1855
8ceee660
BH
1856 return rc;
1857}
1858
eb9f6744
BH
1859/* Reset the NIC using the specified method. Note that the reset may
1860 * fail, in which case the card will be left in an unusable state.
8ceee660 1861 *
eb9f6744 1862 * Caller must hold the rtnl_lock.
8ceee660 1863 */
eb9f6744 1864int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1865{
eb9f6744
BH
1866 int rc, rc2;
1867 bool disabled;
8ceee660 1868
62776d03
BH
1869 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1870 RESET_TYPE(method));
8ceee660 1871
d3245b28 1872 efx_reset_down(efx, method);
8ceee660 1873
ef2b90ee 1874 rc = efx->type->reset(efx, method);
8ceee660 1875 if (rc) {
62776d03 1876 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 1877 goto out;
8ceee660
BH
1878 }
1879
1880 /* Allow resets to be rescheduled. */
1881 efx->reset_pending = RESET_TYPE_NONE;
1882
1883 /* Reinitialise bus-mastering, which may have been turned off before
1884 * the reset was scheduled. This is still appropriate, even in the
1885 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1886 * can respond to requests. */
1887 pci_set_master(efx->pci_dev);
1888
eb9f6744 1889out:
8ceee660 1890 /* Leave device stopped if necessary */
eb9f6744
BH
1891 disabled = rc || method == RESET_TYPE_DISABLE;
1892 rc2 = efx_reset_up(efx, method, !disabled);
1893 if (rc2) {
1894 disabled = true;
1895 if (!rc)
1896 rc = rc2;
8ceee660
BH
1897 }
1898
eb9f6744 1899 if (disabled) {
f49a4589 1900 dev_close(efx->net_dev);
62776d03 1901 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 1902 efx->state = STATE_DISABLED;
f4bd954e 1903 } else {
62776d03 1904 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 1905 }
8ceee660
BH
1906 return rc;
1907}
1908
1909/* The worker thread exists so that code that cannot sleep can
1910 * schedule a reset for later.
1911 */
1912static void efx_reset_work(struct work_struct *data)
1913{
eb9f6744 1914 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1915
319ba649
SH
1916 if (efx->reset_pending == RESET_TYPE_NONE)
1917 return;
1918
eb9f6744
BH
1919 /* If we're not RUNNING then don't reset. Leave the reset_pending
1920 * flag set so that efx_pci_probe_main will be retried */
1921 if (efx->state != STATE_RUNNING) {
62776d03
BH
1922 netif_info(efx, drv, efx->net_dev,
1923 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
1924 return;
1925 }
1926
1927 rtnl_lock();
f49a4589 1928 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1929 rtnl_unlock();
8ceee660
BH
1930}
1931
1932void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1933{
1934 enum reset_type method;
1935
1936 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
1937 netif_info(efx, drv, efx->net_dev,
1938 "quenching already scheduled reset\n");
8ceee660
BH
1939 return;
1940 }
1941
1942 switch (type) {
1943 case RESET_TYPE_INVISIBLE:
1944 case RESET_TYPE_ALL:
1945 case RESET_TYPE_WORLD:
1946 case RESET_TYPE_DISABLE:
1947 method = type;
1948 break;
1949 case RESET_TYPE_RX_RECOVERY:
1950 case RESET_TYPE_RX_DESC_FETCH:
1951 case RESET_TYPE_TX_DESC_FETCH:
1952 case RESET_TYPE_TX_SKIP:
1953 method = RESET_TYPE_INVISIBLE;
1954 break;
8880f4ec 1955 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1956 default:
1957 method = RESET_TYPE_ALL;
1958 break;
1959 }
1960
1961 if (method != type)
62776d03
BH
1962 netif_dbg(efx, drv, efx->net_dev,
1963 "scheduling %s reset for %s\n",
1964 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1965 else
62776d03
BH
1966 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1967 RESET_TYPE(method));
8ceee660
BH
1968
1969 efx->reset_pending = method;
1970
8880f4ec
BH
1971 /* efx_process_channel() will no longer read events once a
1972 * reset is scheduled. So switch back to poll'd MCDI completions. */
1973 efx_mcdi_mode_poll(efx);
1974
1ab00629 1975 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1976}
1977
1978/**************************************************************************
1979 *
1980 * List of NICs we support
1981 *
1982 **************************************************************************/
1983
1984/* PCI device ID table */
a3aa1884 1985static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1986 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1987 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1988 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1989 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1990 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1991 .driver_data = (unsigned long) &siena_a0_nic_type},
1992 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1993 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1994 {0} /* end of list */
1995};
1996
1997/**************************************************************************
1998 *
3759433d 1999 * Dummy PHY/MAC operations
8ceee660 2000 *
01aad7b6 2001 * Can be used for some unimplemented operations
8ceee660
BH
2002 * Needed so all function pointers are valid and do not have to be tested
2003 * before use
2004 *
2005 **************************************************************************/
2006int efx_port_dummy_op_int(struct efx_nic *efx)
2007{
2008 return 0;
2009}
2010void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2011void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2012{
2013}
fdaa9aed
SH
2014bool efx_port_dummy_op_poll(struct efx_nic *efx)
2015{
2016 return false;
2017}
8ceee660
BH
2018
2019static struct efx_phy_operations efx_dummy_phy_operations = {
2020 .init = efx_port_dummy_op_int,
d3245b28 2021 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2022 .poll = efx_port_dummy_op_poll,
8ceee660 2023 .fini = efx_port_dummy_op_void,
8ceee660
BH
2024};
2025
8ceee660
BH
2026/**************************************************************************
2027 *
2028 * Data housekeeping
2029 *
2030 **************************************************************************/
2031
2032/* This zeroes out and then fills in the invariants in a struct
2033 * efx_nic (including all sub-structures).
2034 */
2035static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2036 struct pci_dev *pci_dev, struct net_device *net_dev)
2037{
2038 struct efx_channel *channel;
2039 struct efx_tx_queue *tx_queue;
2040 struct efx_rx_queue *rx_queue;
1ab00629 2041 int i;
8ceee660
BH
2042
2043 /* Initialise common structures */
2044 memset(efx, 0, sizeof(*efx));
2045 spin_lock_init(&efx->biu_lock);
ab867461 2046 mutex_init(&efx->mdio_lock);
f4150724 2047 mutex_init(&efx->spi_lock);
76884835
BH
2048#ifdef CONFIG_SFC_MTD
2049 INIT_LIST_HEAD(&efx->mtd_list);
2050#endif
8ceee660
BH
2051 INIT_WORK(&efx->reset_work, efx_reset_work);
2052 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2053 efx->pci_dev = pci_dev;
62776d03 2054 efx->msg_enable = debug;
8ceee660
BH
2055 efx->state = STATE_INIT;
2056 efx->reset_pending = RESET_TYPE_NONE;
2057 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2058
2059 efx->net_dev = net_dev;
dc8cfa55 2060 efx->rx_checksum_enabled = true;
8ceee660
BH
2061 spin_lock_init(&efx->stats_lock);
2062 mutex_init(&efx->mac_lock);
b895d73e 2063 efx->mac_op = type->default_mac_ops;
8ceee660 2064 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2065 efx->mdio.dev = net_dev;
766ca0fa 2066 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2067
2068 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2069 channel = &efx->channel[i];
2070 channel->efx = efx;
2071 channel->channel = i;
dc8cfa55 2072 channel->work_pending = false;
a4900ac9
BH
2073 spin_lock_init(&channel->tx_stop_lock);
2074 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2075 }
a4900ac9 2076 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2077 tx_queue = &efx->tx_queue[i];
2078 tx_queue->efx = efx;
2079 tx_queue->queue = i;
2080 tx_queue->buffer = NULL;
2081 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2082 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2083 }
2084 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2085 rx_queue = &efx->rx_queue[i];
2086 rx_queue->efx = efx;
2087 rx_queue->queue = i;
2088 rx_queue->channel = &efx->channel[0]; /* for safety */
2089 rx_queue->buffer = NULL;
90d683af
SH
2090 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2091 (unsigned long)rx_queue);
8ceee660
BH
2092 }
2093
2094 efx->type = type;
2095
8ceee660 2096 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2097 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2098
8ceee660
BH
2099 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2100
2101 /* Higher numbered interrupt modes are less capable! */
2102 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2103 interrupt_mode);
2104
6977dc63
BH
2105 /* Would be good to use the net_dev name, but we're too early */
2106 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2107 pci_name(pci_dev));
2108 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2109 if (!efx->workqueue)
2110 return -ENOMEM;
8d9853d9 2111
8ceee660 2112 return 0;
8ceee660
BH
2113}
2114
2115static void efx_fini_struct(struct efx_nic *efx)
2116{
2117 if (efx->workqueue) {
2118 destroy_workqueue(efx->workqueue);
2119 efx->workqueue = NULL;
2120 }
2121}
2122
2123/**************************************************************************
2124 *
2125 * PCI interface
2126 *
2127 **************************************************************************/
2128
2129/* Main body of final NIC shutdown code
2130 * This is called only at module unload (or hotplug removal).
2131 */
2132static void efx_pci_remove_main(struct efx_nic *efx)
2133{
152b6a62 2134 efx_nic_fini_interrupt(efx);
8ceee660
BH
2135 efx_fini_channels(efx);
2136 efx_fini_port(efx);
ef2b90ee 2137 efx->type->fini(efx);
8ceee660
BH
2138 efx_fini_napi(efx);
2139 efx_remove_all(efx);
2140}
2141
2142/* Final NIC shutdown
2143 * This is called only at module unload (or hotplug removal).
2144 */
2145static void efx_pci_remove(struct pci_dev *pci_dev)
2146{
2147 struct efx_nic *efx;
2148
2149 efx = pci_get_drvdata(pci_dev);
2150 if (!efx)
2151 return;
2152
2153 /* Mark the NIC as fini, then stop the interface */
2154 rtnl_lock();
2155 efx->state = STATE_FINI;
2156 dev_close(efx->net_dev);
2157
2158 /* Allow any queued efx_resets() to complete */
2159 rtnl_unlock();
2160
8ceee660
BH
2161 efx_unregister_netdev(efx);
2162
7dde596e
BH
2163 efx_mtd_remove(efx);
2164
8ceee660
BH
2165 /* Wait for any scheduled resets to complete. No more will be
2166 * scheduled from this point because efx_stop_all() has been
2167 * called, we are no longer registered with driverlink, and
2168 * the net_device's have been removed. */
1ab00629 2169 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2170
2171 efx_pci_remove_main(efx);
2172
8ceee660 2173 efx_fini_io(efx);
62776d03 2174 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2175
2176 pci_set_drvdata(pci_dev, NULL);
2177 efx_fini_struct(efx);
2178 free_netdev(efx->net_dev);
2179};
2180
2181/* Main body of NIC initialisation
2182 * This is called at module load (or hotplug insertion, theoretically).
2183 */
2184static int efx_pci_probe_main(struct efx_nic *efx)
2185{
2186 int rc;
2187
2188 /* Do start-of-day initialisation */
2189 rc = efx_probe_all(efx);
2190 if (rc)
2191 goto fail1;
2192
2193 rc = efx_init_napi(efx);
2194 if (rc)
2195 goto fail2;
2196
ef2b90ee 2197 rc = efx->type->init(efx);
8ceee660 2198 if (rc) {
62776d03
BH
2199 netif_err(efx, probe, efx->net_dev,
2200 "failed to initialise NIC\n");
278c0621 2201 goto fail3;
8ceee660
BH
2202 }
2203
2204 rc = efx_init_port(efx);
2205 if (rc) {
62776d03
BH
2206 netif_err(efx, probe, efx->net_dev,
2207 "failed to initialise port\n");
278c0621 2208 goto fail4;
8ceee660
BH
2209 }
2210
bc3c90a2 2211 efx_init_channels(efx);
8ceee660 2212
152b6a62 2213 rc = efx_nic_init_interrupt(efx);
8ceee660 2214 if (rc)
278c0621 2215 goto fail5;
8ceee660
BH
2216
2217 return 0;
2218
278c0621 2219 fail5:
bc3c90a2 2220 efx_fini_channels(efx);
8ceee660 2221 efx_fini_port(efx);
8ceee660 2222 fail4:
ef2b90ee 2223 efx->type->fini(efx);
8ceee660
BH
2224 fail3:
2225 efx_fini_napi(efx);
2226 fail2:
2227 efx_remove_all(efx);
2228 fail1:
2229 return rc;
2230}
2231
2232/* NIC initialisation
2233 *
2234 * This is called at module load (or hotplug insertion,
2235 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2236 * sets up and registers the network devices with the kernel and hooks
2237 * the interrupt service routine. It does not prepare the device for
2238 * transmission; this is left to the first time one of the network
2239 * interfaces is brought up (i.e. efx_net_open).
2240 */
2241static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2242 const struct pci_device_id *entry)
2243{
2244 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2245 struct net_device *net_dev;
2246 struct efx_nic *efx;
2247 int i, rc;
2248
2249 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2250 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2251 if (!net_dev)
2252 return -ENOMEM;
c383b537 2253 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2254 NETIF_F_HIGHDMA | NETIF_F_TSO |
2255 NETIF_F_GRO);
738a8f4b
BH
2256 if (type->offload_features & NETIF_F_V6_CSUM)
2257 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2258 /* Mask for features that also apply to VLAN devices */
2259 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2260 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2261 efx = netdev_priv(net_dev);
8ceee660 2262 pci_set_drvdata(pci_dev, efx);
62776d03 2263 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2264 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2265 if (rc)
2266 goto fail1;
2267
62776d03
BH
2268 netif_info(efx, probe, efx->net_dev,
2269 "Solarflare Communications NIC detected\n");
8ceee660
BH
2270
2271 /* Set up basic I/O (BAR mappings etc) */
2272 rc = efx_init_io(efx);
2273 if (rc)
2274 goto fail2;
2275
2276 /* No serialisation is required with the reset path because
2277 * we're in STATE_INIT. */
2278 for (i = 0; i < 5; i++) {
2279 rc = efx_pci_probe_main(efx);
8ceee660
BH
2280
2281 /* Serialise against efx_reset(). No more resets will be
2282 * scheduled since efx_stop_all() has been called, and we
2283 * have not and never have been registered with either
2284 * the rtnetlink or driverlink layers. */
1ab00629 2285 cancel_work_sync(&efx->reset_work);
8ceee660 2286
fa402b2e
SH
2287 if (rc == 0) {
2288 if (efx->reset_pending != RESET_TYPE_NONE) {
2289 /* If there was a scheduled reset during
2290 * probe, the NIC is probably hosed anyway */
2291 efx_pci_remove_main(efx);
2292 rc = -EIO;
2293 } else {
2294 break;
2295 }
2296 }
2297
8ceee660
BH
2298 /* Retry if a recoverably reset event has been scheduled */
2299 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2300 (efx->reset_pending != RESET_TYPE_ALL))
2301 goto fail3;
2302
2303 efx->reset_pending = RESET_TYPE_NONE;
2304 }
2305
2306 if (rc) {
62776d03 2307 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2308 goto fail4;
2309 }
2310
55edc6e6
BH
2311 /* Switch to the running state before we expose the device to the OS,
2312 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2313 efx->state = STATE_RUNNING;
7dde596e 2314
8ceee660
BH
2315 rc = efx_register_netdev(efx);
2316 if (rc)
2317 goto fail5;
2318
62776d03 2319 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2320
2321 rtnl_lock();
2322 efx_mtd_probe(efx); /* allowed to fail */
2323 rtnl_unlock();
8ceee660
BH
2324 return 0;
2325
2326 fail5:
2327 efx_pci_remove_main(efx);
2328 fail4:
2329 fail3:
2330 efx_fini_io(efx);
2331 fail2:
2332 efx_fini_struct(efx);
2333 fail1:
5e2a911c 2334 WARN_ON(rc > 0);
62776d03 2335 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2336 free_netdev(net_dev);
2337 return rc;
2338}
2339
89c758fa
BH
2340static int efx_pm_freeze(struct device *dev)
2341{
2342 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2343
2344 efx->state = STATE_FINI;
2345
2346 netif_device_detach(efx->net_dev);
2347
2348 efx_stop_all(efx);
2349 efx_fini_channels(efx);
2350
2351 return 0;
2352}
2353
2354static int efx_pm_thaw(struct device *dev)
2355{
2356 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2357
2358 efx->state = STATE_INIT;
2359
2360 efx_init_channels(efx);
2361
2362 mutex_lock(&efx->mac_lock);
2363 efx->phy_op->reconfigure(efx);
2364 mutex_unlock(&efx->mac_lock);
2365
2366 efx_start_all(efx);
2367
2368 netif_device_attach(efx->net_dev);
2369
2370 efx->state = STATE_RUNNING;
2371
2372 efx->type->resume_wol(efx);
2373
319ba649
SH
2374 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2375 queue_work(reset_workqueue, &efx->reset_work);
2376
89c758fa
BH
2377 return 0;
2378}
2379
2380static int efx_pm_poweroff(struct device *dev)
2381{
2382 struct pci_dev *pci_dev = to_pci_dev(dev);
2383 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2384
2385 efx->type->fini(efx);
2386
2387 efx->reset_pending = RESET_TYPE_NONE;
2388
2389 pci_save_state(pci_dev);
2390 return pci_set_power_state(pci_dev, PCI_D3hot);
2391}
2392
2393/* Used for both resume and restore */
2394static int efx_pm_resume(struct device *dev)
2395{
2396 struct pci_dev *pci_dev = to_pci_dev(dev);
2397 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2398 int rc;
2399
2400 rc = pci_set_power_state(pci_dev, PCI_D0);
2401 if (rc)
2402 return rc;
2403 pci_restore_state(pci_dev);
2404 rc = pci_enable_device(pci_dev);
2405 if (rc)
2406 return rc;
2407 pci_set_master(efx->pci_dev);
2408 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2409 if (rc)
2410 return rc;
2411 rc = efx->type->init(efx);
2412 if (rc)
2413 return rc;
2414 efx_pm_thaw(dev);
2415 return 0;
2416}
2417
2418static int efx_pm_suspend(struct device *dev)
2419{
2420 int rc;
2421
2422 efx_pm_freeze(dev);
2423 rc = efx_pm_poweroff(dev);
2424 if (rc)
2425 efx_pm_resume(dev);
2426 return rc;
2427}
2428
2429static struct dev_pm_ops efx_pm_ops = {
2430 .suspend = efx_pm_suspend,
2431 .resume = efx_pm_resume,
2432 .freeze = efx_pm_freeze,
2433 .thaw = efx_pm_thaw,
2434 .poweroff = efx_pm_poweroff,
2435 .restore = efx_pm_resume,
2436};
2437
8ceee660 2438static struct pci_driver efx_pci_driver = {
c5d5f5fd 2439 .name = KBUILD_MODNAME,
8ceee660
BH
2440 .id_table = efx_pci_table,
2441 .probe = efx_pci_probe,
2442 .remove = efx_pci_remove,
89c758fa 2443 .driver.pm = &efx_pm_ops,
8ceee660
BH
2444};
2445
2446/**************************************************************************
2447 *
2448 * Kernel module interface
2449 *
2450 *************************************************************************/
2451
2452module_param(interrupt_mode, uint, 0444);
2453MODULE_PARM_DESC(interrupt_mode,
2454 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2455
2456static int __init efx_init_module(void)
2457{
2458 int rc;
2459
2460 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2461
2462 rc = register_netdevice_notifier(&efx_netdev_notifier);
2463 if (rc)
2464 goto err_notifier;
2465
1ab00629
SH
2466 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2467 if (!reset_workqueue) {
2468 rc = -ENOMEM;
2469 goto err_reset;
2470 }
8ceee660
BH
2471
2472 rc = pci_register_driver(&efx_pci_driver);
2473 if (rc < 0)
2474 goto err_pci;
2475
2476 return 0;
2477
2478 err_pci:
1ab00629
SH
2479 destroy_workqueue(reset_workqueue);
2480 err_reset:
8ceee660
BH
2481 unregister_netdevice_notifier(&efx_netdev_notifier);
2482 err_notifier:
2483 return rc;
2484}
2485
2486static void __exit efx_exit_module(void)
2487{
2488 printk(KERN_INFO "Solarflare NET driver unloading\n");
2489
2490 pci_unregister_driver(&efx_pci_driver);
1ab00629 2491 destroy_workqueue(reset_workqueue);
8ceee660
BH
2492 unregister_netdevice_notifier(&efx_netdev_notifier);
2493
2494}
2495
2496module_init(efx_init_module);
2497module_exit(efx_exit_module);
2498
906bb26c
BH
2499MODULE_AUTHOR("Solarflare Communications and "
2500 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2501MODULE_DESCRIPTION("Solarflare Communications network driver");
2502MODULE_LICENSE("GPL");
2503MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.490514 seconds and 5 git commands to generate.