sfc: Reduce the size of struct efx_tx_buffer
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
54static int lro = 1;
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
67static unsigned int separate_tx_and_rx_channels = 1;
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
83static unsigned int monitor_reset = 1;
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
147
148/**************************************************************************
149 *
150 * Event queue processing
151 *
152 *************************************************************************/
153
154/* Process channel's event queue
155 *
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
160 */
161static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
162{
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
165
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
169
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
171
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
177 }
178
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
181
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
189 }
190
191 return rx_quota;
192}
193
194/* Mark channel as finished processing
195 *
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
199 */
200static inline void efx_channel_processed(struct efx_channel *channel)
201{
5b9e207c
BH
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
8ceee660 205 channel->work_pending = 0;
5b9e207c
BH
206 smp_wmb();
207
8ceee660
BH
208 falcon_eventq_read_ack(channel);
209}
210
211/* NAPI poll handler
212 *
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
215 */
216static int efx_poll(struct napi_struct *napi, int budget)
217{
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
223
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
226
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
229
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
235 */
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
238 }
239
240 return rx_packets;
241}
242
243/* Process the eventq of the specified channel immediately on this CPU
244 *
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
248 *
249 * Since we are touching interrupts the caller should hold the suspend lock
250 */
251void efx_process_channel_now(struct efx_channel *channel)
252{
253 struct efx_nic *efx = channel->efx;
254
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
257
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
262 if (channel->has_interrupt && channel->irq)
263 synchronize_irq(channel->irq);
264
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
267
268 /* Poll the channel */
91ad757c 269 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
270
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
274
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
277}
278
279/* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
283 */
284static int efx_probe_eventq(struct efx_channel *channel)
285{
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
287
288 return falcon_probe_eventq(channel);
289}
290
291/* Prepare channel's event queue */
292static int efx_init_eventq(struct efx_channel *channel)
293{
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
295
296 channel->eventq_read_ptr = 0;
297
298 return falcon_init_eventq(channel);
299}
300
301static void efx_fini_eventq(struct efx_channel *channel)
302{
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
304
305 falcon_fini_eventq(channel);
306}
307
308static void efx_remove_eventq(struct efx_channel *channel)
309{
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
311
312 falcon_remove_eventq(channel);
313}
314
315/**************************************************************************
316 *
317 * Channel handling
318 *
319 *************************************************************************/
320
8ceee660
BH
321static int efx_probe_channel(struct efx_channel *channel)
322{
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
326
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
328
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
332
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
337 }
338
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
343 }
344
345 channel->n_rx_frm_trunc = 0;
346
347 return 0;
348
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
357}
358
359
360/* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
364static int efx_init_channels(struct efx_nic *efx)
365{
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
370
f7f13b0b
BH
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
374 */
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
379
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
383
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
387
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
392 }
393
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
396
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
401 }
402
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
405 }
406
407 return 0;
408
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
414}
415
416/* This enables event queue processing and packet transmission.
417 *
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
420 */
421static void efx_start_channel(struct efx_channel *channel)
422{
423 struct efx_rx_queue *rx_queue;
424
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
430
5b9e207c
BH
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
8ceee660
BH
434 channel->work_pending = 0;
435 channel->enabled = 1;
5b9e207c 436 smp_wmb();
8ceee660
BH
437
438 napi_enable(&channel->napi_str);
439
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
443}
444
445/* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
448 */
449static void efx_stop_channel(struct efx_channel *channel)
450{
451 struct efx_rx_queue *rx_queue;
452
453 if (!channel->enabled)
454 return;
455
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457
458 channel->enabled = 0;
459 napi_disable(&channel->napi_str);
460
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
465 }
466}
467
468static void efx_fini_channels(struct efx_nic *efx)
469{
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
479
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
484 }
485
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
490
491 efx_fini_eventq(channel);
492 }
493}
494
495static void efx_remove_channel(struct efx_channel *channel)
496{
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
499
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
507
508 channel->used_flags = 0;
509}
510
511void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512{
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
514}
515
516/**************************************************************************
517 *
518 * Port handling
519 *
520 **************************************************************************/
521
522/* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
525 */
526static void efx_link_status_changed(struct efx_nic *efx)
527{
528 int carrier_ok;
529
530 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
531 * that no events are triggered between unregister_netdev() and the
532 * driver unloading. A more general condition is that NETDEV_CHANGE
533 * can only be generated between NETDEV_UP and NETDEV_DOWN */
534 if (!netif_running(efx->net_dev))
535 return;
536
537 carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
538 if (efx->link_up != carrier_ok) {
539 efx->n_link_state_changes++;
540
541 if (efx->link_up)
542 netif_carrier_on(efx->net_dev);
543 else
544 netif_carrier_off(efx->net_dev);
545 }
546
547 /* Status message for kernel log */
548 if (efx->link_up) {
549 struct mii_if_info *gmii = &efx->mii;
550 unsigned adv, lpa;
551 /* NONE here means direct XAUI from the controller, with no
552 * MDIO-attached device we can query. */
553 if (efx->phy_type != PHY_TYPE_NONE) {
554 adv = gmii_advertised(gmii);
555 lpa = gmii_lpa(gmii);
556 } else {
557 lpa = GM_LPA_10000 | LPA_DUPLEX;
558 adv = lpa;
559 }
560 EFX_INFO(efx, "link up at %dMbps %s-duplex "
561 "(adv %04x lpa %04x) (MTU %d)%s\n",
562 (efx->link_options & GM_LPA_10000 ? 10000 :
563 (efx->link_options & GM_LPA_1000 ? 1000 :
564 (efx->link_options & GM_LPA_100 ? 100 :
565 10))),
566 (efx->link_options & GM_LPA_DUPLEX ?
567 "full" : "half"),
568 adv, lpa,
569 efx->net_dev->mtu,
570 (efx->promiscuous ? " [PROMISC]" : ""));
571 } else {
572 EFX_INFO(efx, "link down\n");
573 }
574
575}
576
577/* This call reinitialises the MAC to pick up new PHY settings. The
578 * caller must hold the mac_lock */
579static void __efx_reconfigure_port(struct efx_nic *efx)
580{
581 WARN_ON(!mutex_is_locked(&efx->mac_lock));
582
583 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
584 raw_smp_processor_id());
585
586 falcon_reconfigure_xmac(efx);
587
588 /* Inform kernel of loss/gain of carrier */
589 efx_link_status_changed(efx);
590}
591
592/* Reinitialise the MAC to pick up new PHY settings, even if the port is
593 * disabled. */
594void efx_reconfigure_port(struct efx_nic *efx)
595{
596 EFX_ASSERT_RESET_SERIALISED(efx);
597
598 mutex_lock(&efx->mac_lock);
599 __efx_reconfigure_port(efx);
600 mutex_unlock(&efx->mac_lock);
601}
602
603/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
604 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
605 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
606static void efx_reconfigure_work(struct work_struct *data)
607{
608 struct efx_nic *efx = container_of(data, struct efx_nic,
609 reconfigure_work);
610
611 mutex_lock(&efx->mac_lock);
612 if (efx->port_enabled)
613 __efx_reconfigure_port(efx);
614 mutex_unlock(&efx->mac_lock);
615}
616
617static int efx_probe_port(struct efx_nic *efx)
618{
619 int rc;
620
621 EFX_LOG(efx, "create port\n");
622
623 /* Connect up MAC/PHY operations table and read MAC address */
624 rc = falcon_probe_port(efx);
625 if (rc)
626 goto err;
627
628 /* Sanity check MAC address */
629 if (is_valid_ether_addr(efx->mac_address)) {
630 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
631 } else {
632 DECLARE_MAC_BUF(mac);
633
634 EFX_ERR(efx, "invalid MAC address %s\n",
635 print_mac(mac, efx->mac_address));
636 if (!allow_bad_hwaddr) {
637 rc = -EINVAL;
638 goto err;
639 }
640 random_ether_addr(efx->net_dev->dev_addr);
641 EFX_INFO(efx, "using locally-generated MAC %s\n",
642 print_mac(mac, efx->net_dev->dev_addr));
643 }
644
645 return 0;
646
647 err:
648 efx_remove_port(efx);
649 return rc;
650}
651
652static int efx_init_port(struct efx_nic *efx)
653{
654 int rc;
655
656 EFX_LOG(efx, "init port\n");
657
658 /* Initialise the MAC and PHY */
659 rc = falcon_init_xmac(efx);
660 if (rc)
661 return rc;
662
663 efx->port_initialized = 1;
664
665 /* Reconfigure port to program MAC registers */
666 falcon_reconfigure_xmac(efx);
667
668 return 0;
669}
670
671/* Allow efx_reconfigure_port() to be scheduled, and close the window
672 * between efx_stop_port and efx_flush_all whereby a previously scheduled
673 * efx_reconfigure_port() may have been cancelled */
674static void efx_start_port(struct efx_nic *efx)
675{
676 EFX_LOG(efx, "start port\n");
677 BUG_ON(efx->port_enabled);
678
679 mutex_lock(&efx->mac_lock);
680 efx->port_enabled = 1;
681 __efx_reconfigure_port(efx);
682 mutex_unlock(&efx->mac_lock);
683}
684
685/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
686 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
687 * efx_reconfigure_work can still be scheduled via NAPI processing
688 * until efx_flush_all() is called */
689static void efx_stop_port(struct efx_nic *efx)
690{
691 EFX_LOG(efx, "stop port\n");
692
693 mutex_lock(&efx->mac_lock);
694 efx->port_enabled = 0;
695 mutex_unlock(&efx->mac_lock);
696
697 /* Serialise against efx_set_multicast_list() */
55668611 698 if (efx_dev_registered(efx)) {
b9e40857
DM
699 netif_addr_lock_bh(efx->net_dev);
700 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
701 }
702}
703
704static void efx_fini_port(struct efx_nic *efx)
705{
706 EFX_LOG(efx, "shut down port\n");
707
708 if (!efx->port_initialized)
709 return;
710
711 falcon_fini_xmac(efx);
712 efx->port_initialized = 0;
713
714 efx->link_up = 0;
715 efx_link_status_changed(efx);
716}
717
718static void efx_remove_port(struct efx_nic *efx)
719{
720 EFX_LOG(efx, "destroying port\n");
721
722 falcon_remove_port(efx);
723}
724
725/**************************************************************************
726 *
727 * NIC handling
728 *
729 **************************************************************************/
730
731/* This configures the PCI device to enable I/O and DMA. */
732static int efx_init_io(struct efx_nic *efx)
733{
734 struct pci_dev *pci_dev = efx->pci_dev;
735 dma_addr_t dma_mask = efx->type->max_dma_mask;
736 int rc;
737
738 EFX_LOG(efx, "initialising I/O\n");
739
740 rc = pci_enable_device(pci_dev);
741 if (rc) {
742 EFX_ERR(efx, "failed to enable PCI device\n");
743 goto fail1;
744 }
745
746 pci_set_master(pci_dev);
747
748 /* Set the PCI DMA mask. Try all possibilities from our
749 * genuine mask down to 32 bits, because some architectures
750 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
751 * masks event though they reject 46 bit masks.
752 */
753 while (dma_mask > 0x7fffffffUL) {
754 if (pci_dma_supported(pci_dev, dma_mask) &&
755 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
756 break;
757 dma_mask >>= 1;
758 }
759 if (rc) {
760 EFX_ERR(efx, "could not find a suitable DMA mask\n");
761 goto fail2;
762 }
763 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
764 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
765 if (rc) {
766 /* pci_set_consistent_dma_mask() is not *allowed* to
767 * fail with a mask that pci_set_dma_mask() accepted,
768 * but just in case...
769 */
770 EFX_ERR(efx, "failed to set consistent DMA mask\n");
771 goto fail2;
772 }
773
774 efx->membase_phys = pci_resource_start(efx->pci_dev,
775 efx->type->mem_bar);
776 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
777 if (rc) {
778 EFX_ERR(efx, "request for memory BAR failed\n");
779 rc = -EIO;
780 goto fail3;
781 }
782 efx->membase = ioremap_nocache(efx->membase_phys,
783 efx->type->mem_map_size);
784 if (!efx->membase) {
086ea356
BH
785 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
786 efx->type->mem_bar,
787 (unsigned long long)efx->membase_phys,
8ceee660
BH
788 efx->type->mem_map_size);
789 rc = -ENOMEM;
790 goto fail4;
791 }
086ea356
BH
792 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
793 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
794 efx->type->mem_map_size, efx->membase);
8ceee660
BH
795
796 return 0;
797
798 fail4:
799 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
800 fail3:
2c118e0f 801 efx->membase_phys = 0;
8ceee660
BH
802 fail2:
803 pci_disable_device(efx->pci_dev);
804 fail1:
805 return rc;
806}
807
808static void efx_fini_io(struct efx_nic *efx)
809{
810 EFX_LOG(efx, "shutting down I/O\n");
811
812 if (efx->membase) {
813 iounmap(efx->membase);
814 efx->membase = NULL;
815 }
816
817 if (efx->membase_phys) {
818 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 819 efx->membase_phys = 0;
8ceee660
BH
820 }
821
822 pci_disable_device(efx->pci_dev);
823}
824
825/* Probe the number and type of interrupts we are able to obtain. */
826static void efx_probe_interrupts(struct efx_nic *efx)
827{
828 int max_channel = efx->type->phys_addr_channels - 1;
829 struct msix_entry xentries[EFX_MAX_CHANNELS];
830 int rc, i;
831
832 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
833 BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
834
aa6ef27e
BH
835 if (rss_cpus == 0) {
836 cpumask_t core_mask;
837 int cpu;
838
839 cpus_clear(core_mask);
840 efx->rss_queues = 0;
841 for_each_online_cpu(cpu) {
842 if (!cpu_isset(cpu, core_mask)) {
843 ++efx->rss_queues;
844 cpus_or(core_mask, core_mask,
845 topology_core_siblings(cpu));
846 }
847 }
848 } else {
849 efx->rss_queues = rss_cpus;
850 }
851
8ceee660
BH
852 efx->rss_queues = min(efx->rss_queues, max_channel + 1);
853 efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
854
855 /* Request maximum number of MSI interrupts, and fill out
856 * the channel interrupt information the allowed allocation */
857 for (i = 0; i < efx->rss_queues; i++)
858 xentries[i].entry = i;
859 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
860 if (rc > 0) {
861 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
862 efx->rss_queues = rc;
863 rc = pci_enable_msix(efx->pci_dev, xentries,
864 efx->rss_queues);
865 }
866
867 if (rc == 0) {
868 for (i = 0; i < efx->rss_queues; i++) {
869 efx->channel[i].has_interrupt = 1;
870 efx->channel[i].irq = xentries[i].vector;
871 }
872 } else {
873 /* Fall back to single channel MSI */
874 efx->interrupt_mode = EFX_INT_MODE_MSI;
875 EFX_ERR(efx, "could not enable MSI-X\n");
876 }
877 }
878
879 /* Try single interrupt MSI */
880 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
881 efx->rss_queues = 1;
882 rc = pci_enable_msi(efx->pci_dev);
883 if (rc == 0) {
884 efx->channel[0].irq = efx->pci_dev->irq;
885 efx->channel[0].has_interrupt = 1;
886 } else {
887 EFX_ERR(efx, "could not enable MSI\n");
888 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
889 }
890 }
891
892 /* Assume legacy interrupts */
893 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
894 efx->rss_queues = 1;
895 /* Every channel is interruptible */
896 for (i = 0; i < EFX_MAX_CHANNELS; i++)
897 efx->channel[i].has_interrupt = 1;
898 efx->legacy_irq = efx->pci_dev->irq;
899 }
900}
901
902static void efx_remove_interrupts(struct efx_nic *efx)
903{
904 struct efx_channel *channel;
905
906 /* Remove MSI/MSI-X interrupts */
907 efx_for_each_channel_with_interrupt(channel, efx)
908 channel->irq = 0;
909 pci_disable_msi(efx->pci_dev);
910 pci_disable_msix(efx->pci_dev);
911
912 /* Remove legacy interrupt */
913 efx->legacy_irq = 0;
914}
915
916/* Select number of used resources
917 * Should be called after probe_interrupts()
918 */
919static void efx_select_used(struct efx_nic *efx)
920{
921 struct efx_tx_queue *tx_queue;
922 struct efx_rx_queue *rx_queue;
923 int i;
924
60ac1065
BH
925 efx_for_each_tx_queue(tx_queue, efx) {
926 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
927 tx_queue->channel = &efx->channel[1];
928 else
929 tx_queue->channel = &efx->channel[0];
930 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
931 }
8ceee660
BH
932
933 /* RX queues. Each has a dedicated channel. */
934 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
935 rx_queue = &efx->rx_queue[i];
936
937 if (i < efx->rss_queues) {
938 rx_queue->used = 1;
939 /* If we allow multiple RX queues per channel
940 * we need to decide that here
941 */
942 rx_queue->channel = &efx->channel[rx_queue->queue];
943 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
944 rx_queue++;
945 }
946 }
947}
948
949static int efx_probe_nic(struct efx_nic *efx)
950{
951 int rc;
952
953 EFX_LOG(efx, "creating NIC\n");
954
955 /* Carry out hardware-type specific initialisation */
956 rc = falcon_probe_nic(efx);
957 if (rc)
958 return rc;
959
960 /* Determine the number of channels and RX queues by trying to hook
961 * in MSI-X interrupts. */
962 efx_probe_interrupts(efx);
963
964 /* Determine number of RX queues and TX queues */
965 efx_select_used(efx);
966
967 /* Initialise the interrupt moderation settings */
968 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
969
970 return 0;
971}
972
973static void efx_remove_nic(struct efx_nic *efx)
974{
975 EFX_LOG(efx, "destroying NIC\n");
976
977 efx_remove_interrupts(efx);
978 falcon_remove_nic(efx);
979}
980
981/**************************************************************************
982 *
983 * NIC startup/shutdown
984 *
985 *************************************************************************/
986
987static int efx_probe_all(struct efx_nic *efx)
988{
989 struct efx_channel *channel;
990 int rc;
991
992 /* Create NIC */
993 rc = efx_probe_nic(efx);
994 if (rc) {
995 EFX_ERR(efx, "failed to create NIC\n");
996 goto fail1;
997 }
998
999 /* Create port */
1000 rc = efx_probe_port(efx);
1001 if (rc) {
1002 EFX_ERR(efx, "failed to create port\n");
1003 goto fail2;
1004 }
1005
1006 /* Create channels */
1007 efx_for_each_channel(channel, efx) {
1008 rc = efx_probe_channel(channel);
1009 if (rc) {
1010 EFX_ERR(efx, "failed to create channel %d\n",
1011 channel->channel);
1012 goto fail3;
1013 }
1014 }
1015
1016 return 0;
1017
1018 fail3:
1019 efx_for_each_channel(channel, efx)
1020 efx_remove_channel(channel);
1021 efx_remove_port(efx);
1022 fail2:
1023 efx_remove_nic(efx);
1024 fail1:
1025 return rc;
1026}
1027
1028/* Called after previous invocation(s) of efx_stop_all, restarts the
1029 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1030 * and ensures that the port is scheduled to be reconfigured.
1031 * This function is safe to call multiple times when the NIC is in any
1032 * state. */
1033static void efx_start_all(struct efx_nic *efx)
1034{
1035 struct efx_channel *channel;
1036
1037 EFX_ASSERT_RESET_SERIALISED(efx);
1038
1039 /* Check that it is appropriate to restart the interface. All
1040 * of these flags are safe to read under just the rtnl lock */
1041 if (efx->port_enabled)
1042 return;
1043 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1044 return;
55668611 1045 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1046 return;
1047
1048 /* Mark the port as enabled so port reconfigurations can start, then
1049 * restart the transmit interface early so the watchdog timer stops */
1050 efx_start_port(efx);
1051 efx_wake_queue(efx);
1052
1053 efx_for_each_channel(channel, efx)
1054 efx_start_channel(channel);
1055
1056 falcon_enable_interrupts(efx);
1057
1058 /* Start hardware monitor if we're in RUNNING */
1059 if (efx->state == STATE_RUNNING)
1060 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1061 efx_monitor_interval);
1062}
1063
1064/* Flush all delayed work. Should only be called when no more delayed work
1065 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1066 * since we're holding the rtnl_lock at this point. */
1067static void efx_flush_all(struct efx_nic *efx)
1068{
1069 struct efx_rx_queue *rx_queue;
1070
1071 /* Make sure the hardware monitor is stopped */
1072 cancel_delayed_work_sync(&efx->monitor_work);
1073
1074 /* Ensure that all RX slow refills are complete. */
b3475645 1075 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1076 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1077
1078 /* Stop scheduled port reconfigurations */
1079 cancel_work_sync(&efx->reconfigure_work);
1080
1081}
1082
1083/* Quiesce hardware and software without bringing the link down.
1084 * Safe to call multiple times, when the nic and interface is in any
1085 * state. The caller is guaranteed to subsequently be in a position
1086 * to modify any hardware and software state they see fit without
1087 * taking locks. */
1088static void efx_stop_all(struct efx_nic *efx)
1089{
1090 struct efx_channel *channel;
1091
1092 EFX_ASSERT_RESET_SERIALISED(efx);
1093
1094 /* port_enabled can be read safely under the rtnl lock */
1095 if (!efx->port_enabled)
1096 return;
1097
1098 /* Disable interrupts and wait for ISR to complete */
1099 falcon_disable_interrupts(efx);
1100 if (efx->legacy_irq)
1101 synchronize_irq(efx->legacy_irq);
b3475645 1102 efx_for_each_channel_with_interrupt(channel, efx) {
8ceee660
BH
1103 if (channel->irq)
1104 synchronize_irq(channel->irq);
b3475645 1105 }
8ceee660
BH
1106
1107 /* Stop all NAPI processing and synchronous rx refills */
1108 efx_for_each_channel(channel, efx)
1109 efx_stop_channel(channel);
1110
1111 /* Stop all asynchronous port reconfigurations. Since all
1112 * event processing has already been stopped, there is no
1113 * window to loose phy events */
1114 efx_stop_port(efx);
1115
1116 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1117 efx_flush_all(efx);
1118
1119 /* Isolate the MAC from the TX and RX engines, so that queue
1120 * flushes will complete in a timely fashion. */
1121 falcon_deconfigure_mac_wrapper(efx);
1122 falcon_drain_tx_fifo(efx);
1123
1124 /* Stop the kernel transmit interface late, so the watchdog
1125 * timer isn't ticking over the flush */
1126 efx_stop_queue(efx);
55668611 1127 if (efx_dev_registered(efx)) {
8ceee660
BH
1128 netif_tx_lock_bh(efx->net_dev);
1129 netif_tx_unlock_bh(efx->net_dev);
1130 }
1131}
1132
1133static void efx_remove_all(struct efx_nic *efx)
1134{
1135 struct efx_channel *channel;
1136
1137 efx_for_each_channel(channel, efx)
1138 efx_remove_channel(channel);
1139 efx_remove_port(efx);
1140 efx_remove_nic(efx);
1141}
1142
1143/* A convinience function to safely flush all the queues */
1144int efx_flush_queues(struct efx_nic *efx)
1145{
1146 int rc;
1147
1148 EFX_ASSERT_RESET_SERIALISED(efx);
1149
1150 efx_stop_all(efx);
1151
1152 efx_fini_channels(efx);
1153 rc = efx_init_channels(efx);
1154 if (rc) {
1155 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1156 return rc;
1157 }
1158
1159 efx_start_all(efx);
1160
1161 return 0;
1162}
1163
1164/**************************************************************************
1165 *
1166 * Interrupt moderation
1167 *
1168 **************************************************************************/
1169
1170/* Set interrupt moderation parameters */
1171void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1172{
1173 struct efx_tx_queue *tx_queue;
1174 struct efx_rx_queue *rx_queue;
1175
1176 EFX_ASSERT_RESET_SERIALISED(efx);
1177
1178 efx_for_each_tx_queue(tx_queue, efx)
1179 tx_queue->channel->irq_moderation = tx_usecs;
1180
1181 efx_for_each_rx_queue(rx_queue, efx)
1182 rx_queue->channel->irq_moderation = rx_usecs;
1183}
1184
1185/**************************************************************************
1186 *
1187 * Hardware monitor
1188 *
1189 **************************************************************************/
1190
1191/* Run periodically off the general workqueue. Serialised against
1192 * efx_reconfigure_port via the mac_lock */
1193static void efx_monitor(struct work_struct *data)
1194{
1195 struct efx_nic *efx = container_of(data, struct efx_nic,
1196 monitor_work.work);
1197 int rc = 0;
1198
1199 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1200 raw_smp_processor_id());
1201
1202
1203 /* If the mac_lock is already held then it is likely a port
1204 * reconfiguration is already in place, which will likely do
1205 * most of the work of check_hw() anyway. */
1206 if (!mutex_trylock(&efx->mac_lock)) {
1207 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1208 efx_monitor_interval);
1209 return;
1210 }
1211
1212 if (efx->port_enabled)
1213 rc = falcon_check_xmac(efx);
1214 mutex_unlock(&efx->mac_lock);
1215
1216 if (rc) {
1217 if (monitor_reset) {
1218 EFX_ERR(efx, "hardware monitor detected a fault: "
1219 "triggering reset\n");
1220 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1221 } else {
1222 EFX_ERR(efx, "hardware monitor detected a fault, "
1223 "skipping reset\n");
1224 }
1225 }
1226
1227 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1228 efx_monitor_interval);
1229}
1230
1231/**************************************************************************
1232 *
1233 * ioctls
1234 *
1235 *************************************************************************/
1236
1237/* Net device ioctl
1238 * Context: process, rtnl_lock() held.
1239 */
1240static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1241{
767e468c 1242 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1243
1244 EFX_ASSERT_RESET_SERIALISED(efx);
1245
1246 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1247}
1248
1249/**************************************************************************
1250 *
1251 * NAPI interface
1252 *
1253 **************************************************************************/
1254
1255static int efx_init_napi(struct efx_nic *efx)
1256{
1257 struct efx_channel *channel;
1258 int rc;
1259
1260 efx_for_each_channel(channel, efx) {
1261 channel->napi_dev = efx->net_dev;
1262 rc = efx_lro_init(&channel->lro_mgr, efx);
1263 if (rc)
1264 goto err;
1265 }
1266 return 0;
1267 err:
1268 efx_fini_napi(efx);
1269 return rc;
1270}
1271
1272static void efx_fini_napi(struct efx_nic *efx)
1273{
1274 struct efx_channel *channel;
1275
1276 efx_for_each_channel(channel, efx) {
1277 efx_lro_fini(&channel->lro_mgr);
1278 channel->napi_dev = NULL;
1279 }
1280}
1281
1282/**************************************************************************
1283 *
1284 * Kernel netpoll interface
1285 *
1286 *************************************************************************/
1287
1288#ifdef CONFIG_NET_POLL_CONTROLLER
1289
1290/* Although in the common case interrupts will be disabled, this is not
1291 * guaranteed. However, all our work happens inside the NAPI callback,
1292 * so no locking is required.
1293 */
1294static void efx_netpoll(struct net_device *net_dev)
1295{
767e468c 1296 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1297 struct efx_channel *channel;
1298
1299 efx_for_each_channel_with_interrupt(channel, efx)
1300 efx_schedule_channel(channel);
1301}
1302
1303#endif
1304
1305/**************************************************************************
1306 *
1307 * Kernel net device interface
1308 *
1309 *************************************************************************/
1310
1311/* Context: process, rtnl_lock() held. */
1312static int efx_net_open(struct net_device *net_dev)
1313{
767e468c 1314 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1315 EFX_ASSERT_RESET_SERIALISED(efx);
1316
1317 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1318 raw_smp_processor_id());
1319
1320 efx_start_all(efx);
1321 return 0;
1322}
1323
1324/* Context: process, rtnl_lock() held.
1325 * Note that the kernel will ignore our return code; this method
1326 * should really be a void.
1327 */
1328static int efx_net_stop(struct net_device *net_dev)
1329{
767e468c 1330 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1331 int rc;
1332
1333 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1334 raw_smp_processor_id());
1335
1336 /* Stop the device and flush all the channels */
1337 efx_stop_all(efx);
1338 efx_fini_channels(efx);
1339 rc = efx_init_channels(efx);
1340 if (rc)
1341 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1342
1343 return 0;
1344}
1345
5b9e207c 1346/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1347static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1348{
767e468c 1349 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1350 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1351 struct net_device_stats *stats = &net_dev->stats;
1352
5b9e207c
BH
1353 /* Update stats if possible, but do not wait if another thread
1354 * is updating them (or resetting the NIC); slightly stale
1355 * stats are acceptable.
1356 */
8ceee660
BH
1357 if (!spin_trylock(&efx->stats_lock))
1358 return stats;
1359 if (efx->state == STATE_RUNNING) {
1360 falcon_update_stats_xmac(efx);
1361 falcon_update_nic_stats(efx);
1362 }
1363 spin_unlock(&efx->stats_lock);
1364
1365 stats->rx_packets = mac_stats->rx_packets;
1366 stats->tx_packets = mac_stats->tx_packets;
1367 stats->rx_bytes = mac_stats->rx_bytes;
1368 stats->tx_bytes = mac_stats->tx_bytes;
1369 stats->multicast = mac_stats->rx_multicast;
1370 stats->collisions = mac_stats->tx_collision;
1371 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1372 mac_stats->rx_length_error);
1373 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1374 stats->rx_crc_errors = mac_stats->rx_bad;
1375 stats->rx_frame_errors = mac_stats->rx_align_error;
1376 stats->rx_fifo_errors = mac_stats->rx_overflow;
1377 stats->rx_missed_errors = mac_stats->rx_missed;
1378 stats->tx_window_errors = mac_stats->tx_late_collision;
1379
1380 stats->rx_errors = (stats->rx_length_errors +
1381 stats->rx_over_errors +
1382 stats->rx_crc_errors +
1383 stats->rx_frame_errors +
1384 stats->rx_fifo_errors +
1385 stats->rx_missed_errors +
1386 mac_stats->rx_symbol_error);
1387 stats->tx_errors = (stats->tx_window_errors +
1388 mac_stats->tx_bad);
1389
1390 return stats;
1391}
1392
1393/* Context: netif_tx_lock held, BHs disabled. */
1394static void efx_watchdog(struct net_device *net_dev)
1395{
767e468c 1396 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1397
1398 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1399 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1400 monitor_reset ? "resetting channels" : "skipping reset");
1401
1402 if (monitor_reset)
1403 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1404}
1405
1406
1407/* Context: process, rtnl_lock() held. */
1408static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1409{
767e468c 1410 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1411 int rc = 0;
1412
1413 EFX_ASSERT_RESET_SERIALISED(efx);
1414
1415 if (new_mtu > EFX_MAX_MTU)
1416 return -EINVAL;
1417
1418 efx_stop_all(efx);
1419
1420 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1421
1422 efx_fini_channels(efx);
1423 net_dev->mtu = new_mtu;
1424 rc = efx_init_channels(efx);
1425 if (rc)
1426 goto fail;
1427
1428 efx_start_all(efx);
1429 return rc;
1430
1431 fail:
1432 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1433 return rc;
1434}
1435
1436static int efx_set_mac_address(struct net_device *net_dev, void *data)
1437{
767e468c 1438 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1439 struct sockaddr *addr = data;
1440 char *new_addr = addr->sa_data;
1441
1442 EFX_ASSERT_RESET_SERIALISED(efx);
1443
1444 if (!is_valid_ether_addr(new_addr)) {
1445 DECLARE_MAC_BUF(mac);
1446 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1447 print_mac(mac, new_addr));
1448 return -EINVAL;
1449 }
1450
1451 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1452
1453 /* Reconfigure the MAC */
1454 efx_reconfigure_port(efx);
1455
1456 return 0;
1457}
1458
1459/* Context: netif_tx_lock held, BHs disabled. */
1460static void efx_set_multicast_list(struct net_device *net_dev)
1461{
767e468c 1462 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1463 struct dev_mc_list *mc_list = net_dev->mc_list;
1464 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1465 int promiscuous;
1466 u32 crc;
1467 int bit;
1468 int i;
1469
1470 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1471 promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
1472 if (efx->promiscuous != promiscuous) {
1473 efx->promiscuous = promiscuous;
1474 /* Close the window between efx_stop_port() and efx_flush_all()
1475 * by only queuing work when the port is enabled. */
1476 if (efx->port_enabled)
1477 queue_work(efx->workqueue, &efx->reconfigure_work);
1478 }
1479
1480 /* Build multicast hash table */
1481 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1482 memset(mc_hash, 0xff, sizeof(*mc_hash));
1483 } else {
1484 memset(mc_hash, 0x00, sizeof(*mc_hash));
1485 for (i = 0; i < net_dev->mc_count; i++) {
1486 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1487 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1488 set_bit_le(bit, mc_hash->byte);
1489 mc_list = mc_list->next;
1490 }
1491 }
1492
1493 /* Create and activate new global multicast hash table */
1494 falcon_set_multicast_hash(efx);
1495}
1496
1497static int efx_netdev_event(struct notifier_block *this,
1498 unsigned long event, void *ptr)
1499{
d3208b5e 1500 struct net_device *net_dev = ptr;
8ceee660
BH
1501
1502 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1503 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1504
1505 strcpy(efx->name, net_dev->name);
1506 }
1507
1508 return NOTIFY_DONE;
1509}
1510
1511static struct notifier_block efx_netdev_notifier = {
1512 .notifier_call = efx_netdev_event,
1513};
1514
1515static int efx_register_netdev(struct efx_nic *efx)
1516{
1517 struct net_device *net_dev = efx->net_dev;
1518 int rc;
1519
1520 net_dev->watchdog_timeo = 5 * HZ;
1521 net_dev->irq = efx->pci_dev->irq;
1522 net_dev->open = efx_net_open;
1523 net_dev->stop = efx_net_stop;
1524 net_dev->get_stats = efx_net_stats;
1525 net_dev->tx_timeout = &efx_watchdog;
1526 net_dev->hard_start_xmit = efx_hard_start_xmit;
1527 net_dev->do_ioctl = efx_ioctl;
1528 net_dev->change_mtu = efx_change_mtu;
1529 net_dev->set_mac_address = efx_set_mac_address;
1530 net_dev->set_multicast_list = efx_set_multicast_list;
1531#ifdef CONFIG_NET_POLL_CONTROLLER
1532 net_dev->poll_controller = efx_netpoll;
1533#endif
1534 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1535 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1536
1537 /* Always start with carrier off; PHY events will detect the link */
1538 netif_carrier_off(efx->net_dev);
1539
1540 /* Clear MAC statistics */
1541 falcon_update_stats_xmac(efx);
1542 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1543
1544 rc = register_netdev(net_dev);
1545 if (rc) {
1546 EFX_ERR(efx, "could not register net dev\n");
1547 return rc;
1548 }
1549 strcpy(efx->name, net_dev->name);
1550
1551 return 0;
1552}
1553
1554static void efx_unregister_netdev(struct efx_nic *efx)
1555{
1556 struct efx_tx_queue *tx_queue;
1557
1558 if (!efx->net_dev)
1559 return;
1560
767e468c 1561 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1562
1563 /* Free up any skbs still remaining. This has to happen before
1564 * we try to unregister the netdev as running their destructors
1565 * may be needed to get the device ref. count to 0. */
1566 efx_for_each_tx_queue(tx_queue, efx)
1567 efx_release_tx_buffers(tx_queue);
1568
55668611 1569 if (efx_dev_registered(efx)) {
8ceee660
BH
1570 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1571 unregister_netdev(efx->net_dev);
1572 }
1573}
1574
1575/**************************************************************************
1576 *
1577 * Device reset and suspend
1578 *
1579 **************************************************************************/
1580
1581/* The final hardware and software finalisation before reset. */
1582static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1583{
1584 int rc;
1585
1586 EFX_ASSERT_RESET_SERIALISED(efx);
1587
1588 rc = falcon_xmac_get_settings(efx, ecmd);
1589 if (rc) {
1590 EFX_ERR(efx, "could not back up PHY settings\n");
1591 goto fail;
1592 }
1593
1594 efx_fini_channels(efx);
1595 return 0;
1596
1597 fail:
1598 return rc;
1599}
1600
1601/* The first part of software initialisation after a hardware reset
1602 * This function does not handle serialisation with the kernel, it
1603 * assumes the caller has done this */
1604static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1605{
1606 int rc;
1607
1608 rc = efx_init_channels(efx);
1609 if (rc)
1610 goto fail1;
1611
1612 /* Restore MAC and PHY settings. */
1613 rc = falcon_xmac_set_settings(efx, ecmd);
1614 if (rc) {
1615 EFX_ERR(efx, "could not restore PHY settings\n");
1616 goto fail2;
1617 }
1618
1619 return 0;
1620
1621 fail2:
1622 efx_fini_channels(efx);
1623 fail1:
1624 return rc;
1625}
1626
1627/* Reset the NIC as transparently as possible. Do not reset the PHY
1628 * Note that the reset may fail, in which case the card will be left
1629 * in a most-probably-unusable state.
1630 *
1631 * This function will sleep. You cannot reset from within an atomic
1632 * state; use efx_schedule_reset() instead.
1633 *
1634 * Grabs the rtnl_lock.
1635 */
1636static int efx_reset(struct efx_nic *efx)
1637{
1638 struct ethtool_cmd ecmd;
1639 enum reset_type method = efx->reset_pending;
1640 int rc;
1641
1642 /* Serialise with kernel interfaces */
1643 rtnl_lock();
1644
1645 /* If we're not RUNNING then don't reset. Leave the reset_pending
1646 * flag set so that efx_pci_probe_main will be retried */
1647 if (efx->state != STATE_RUNNING) {
1648 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1649 goto unlock_rtnl;
1650 }
1651
1652 efx->state = STATE_RESETTING;
1653 EFX_INFO(efx, "resetting (%d)\n", method);
1654
1655 /* The net_dev->get_stats handler is quite slow, and will fail
1656 * if a fetch is pending over reset. Serialise against it. */
1657 spin_lock(&efx->stats_lock);
1658 spin_unlock(&efx->stats_lock);
1659
1660 efx_stop_all(efx);
1661 mutex_lock(&efx->mac_lock);
1662
1663 rc = efx_reset_down(efx, &ecmd);
1664 if (rc)
1665 goto fail1;
1666
1667 rc = falcon_reset_hw(efx, method);
1668 if (rc) {
1669 EFX_ERR(efx, "failed to reset hardware\n");
1670 goto fail2;
1671 }
1672
1673 /* Allow resets to be rescheduled. */
1674 efx->reset_pending = RESET_TYPE_NONE;
1675
1676 /* Reinitialise bus-mastering, which may have been turned off before
1677 * the reset was scheduled. This is still appropriate, even in the
1678 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1679 * can respond to requests. */
1680 pci_set_master(efx->pci_dev);
1681
1682 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1683 * case so the driver can talk to external SRAM */
1684 rc = falcon_init_nic(efx);
1685 if (rc) {
1686 EFX_ERR(efx, "failed to initialise NIC\n");
1687 goto fail3;
1688 }
1689
1690 /* Leave device stopped if necessary */
1691 if (method == RESET_TYPE_DISABLE) {
1692 /* Reinitialise the device anyway so the driver unload sequence
1693 * can talk to the external SRAM */
91ad757c 1694 falcon_init_nic(efx);
8ceee660
BH
1695 rc = -EIO;
1696 goto fail4;
1697 }
1698
1699 rc = efx_reset_up(efx, &ecmd);
1700 if (rc)
1701 goto fail5;
1702
1703 mutex_unlock(&efx->mac_lock);
1704 EFX_LOG(efx, "reset complete\n");
1705
1706 efx->state = STATE_RUNNING;
1707 efx_start_all(efx);
1708
1709 unlock_rtnl:
1710 rtnl_unlock();
1711 return 0;
1712
1713 fail5:
1714 fail4:
1715 fail3:
1716 fail2:
1717 fail1:
1718 EFX_ERR(efx, "has been disabled\n");
1719 efx->state = STATE_DISABLED;
1720
1721 mutex_unlock(&efx->mac_lock);
1722 rtnl_unlock();
1723 efx_unregister_netdev(efx);
1724 efx_fini_port(efx);
1725 return rc;
1726}
1727
1728/* The worker thread exists so that code that cannot sleep can
1729 * schedule a reset for later.
1730 */
1731static void efx_reset_work(struct work_struct *data)
1732{
1733 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1734
1735 efx_reset(nic);
1736}
1737
1738void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1739{
1740 enum reset_type method;
1741
1742 if (efx->reset_pending != RESET_TYPE_NONE) {
1743 EFX_INFO(efx, "quenching already scheduled reset\n");
1744 return;
1745 }
1746
1747 switch (type) {
1748 case RESET_TYPE_INVISIBLE:
1749 case RESET_TYPE_ALL:
1750 case RESET_TYPE_WORLD:
1751 case RESET_TYPE_DISABLE:
1752 method = type;
1753 break;
1754 case RESET_TYPE_RX_RECOVERY:
1755 case RESET_TYPE_RX_DESC_FETCH:
1756 case RESET_TYPE_TX_DESC_FETCH:
1757 case RESET_TYPE_TX_SKIP:
1758 method = RESET_TYPE_INVISIBLE;
1759 break;
1760 default:
1761 method = RESET_TYPE_ALL;
1762 break;
1763 }
1764
1765 if (method != type)
1766 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1767 else
1768 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1769
1770 efx->reset_pending = method;
1771
8d9853d9 1772 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1773}
1774
1775/**************************************************************************
1776 *
1777 * List of NICs we support
1778 *
1779 **************************************************************************/
1780
1781/* PCI device ID table */
1782static struct pci_device_id efx_pci_table[] __devinitdata = {
1783 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1784 .driver_data = (unsigned long) &falcon_a_nic_type},
1785 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1786 .driver_data = (unsigned long) &falcon_b_nic_type},
1787 {0} /* end of list */
1788};
1789
1790/**************************************************************************
1791 *
1792 * Dummy PHY/MAC/Board operations
1793 *
1794 * Can be used where the MAC does not implement this operation
1795 * Needed so all function pointers are valid and do not have to be tested
1796 * before use
1797 *
1798 **************************************************************************/
1799int efx_port_dummy_op_int(struct efx_nic *efx)
1800{
1801 return 0;
1802}
1803void efx_port_dummy_op_void(struct efx_nic *efx) {}
1804void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
1805
1806static struct efx_phy_operations efx_dummy_phy_operations = {
1807 .init = efx_port_dummy_op_int,
1808 .reconfigure = efx_port_dummy_op_void,
1809 .check_hw = efx_port_dummy_op_int,
1810 .fini = efx_port_dummy_op_void,
1811 .clear_interrupt = efx_port_dummy_op_void,
1812 .reset_xaui = efx_port_dummy_op_void,
1813};
1814
1815/* Dummy board operations */
1816static int efx_nic_dummy_op_int(struct efx_nic *nic)
1817{
1818 return 0;
1819}
1820
1821static struct efx_board efx_dummy_board_info = {
1822 .init = efx_nic_dummy_op_int,
1823 .init_leds = efx_port_dummy_op_int,
1824 .set_fault_led = efx_port_dummy_op_blink,
37b5a603 1825 .fini = efx_port_dummy_op_void,
8ceee660
BH
1826};
1827
1828/**************************************************************************
1829 *
1830 * Data housekeeping
1831 *
1832 **************************************************************************/
1833
1834/* This zeroes out and then fills in the invariants in a struct
1835 * efx_nic (including all sub-structures).
1836 */
1837static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1838 struct pci_dev *pci_dev, struct net_device *net_dev)
1839{
1840 struct efx_channel *channel;
1841 struct efx_tx_queue *tx_queue;
1842 struct efx_rx_queue *rx_queue;
1843 int i, rc;
1844
1845 /* Initialise common structures */
1846 memset(efx, 0, sizeof(*efx));
1847 spin_lock_init(&efx->biu_lock);
1848 spin_lock_init(&efx->phy_lock);
1849 INIT_WORK(&efx->reset_work, efx_reset_work);
1850 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1851 efx->pci_dev = pci_dev;
1852 efx->state = STATE_INIT;
1853 efx->reset_pending = RESET_TYPE_NONE;
1854 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1855 efx->board_info = efx_dummy_board_info;
1856
1857 efx->net_dev = net_dev;
1858 efx->rx_checksum_enabled = 1;
1859 spin_lock_init(&efx->netif_stop_lock);
1860 spin_lock_init(&efx->stats_lock);
1861 mutex_init(&efx->mac_lock);
1862 efx->phy_op = &efx_dummy_phy_operations;
1863 efx->mii.dev = net_dev;
1864 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1865 atomic_set(&efx->netif_stop_count, 1);
1866
1867 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1868 channel = &efx->channel[i];
1869 channel->efx = efx;
1870 channel->channel = i;
1871 channel->evqnum = i;
1872 channel->work_pending = 0;
1873 }
60ac1065 1874 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1875 tx_queue = &efx->tx_queue[i];
1876 tx_queue->efx = efx;
1877 tx_queue->queue = i;
1878 tx_queue->buffer = NULL;
1879 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1880 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1881 }
1882 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1883 rx_queue = &efx->rx_queue[i];
1884 rx_queue->efx = efx;
1885 rx_queue->queue = i;
1886 rx_queue->channel = &efx->channel[0]; /* for safety */
1887 rx_queue->buffer = NULL;
1888 spin_lock_init(&rx_queue->add_lock);
1889 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1890 }
1891
1892 efx->type = type;
1893
1894 /* Sanity-check NIC type */
1895 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1896 (efx->type->txd_ring_mask + 1));
1897 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1898 (efx->type->rxd_ring_mask + 1));
1899 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1900 (efx->type->evq_size - 1));
1901 /* As close as we can get to guaranteeing that we don't overflow */
1902 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1903 (efx->type->txd_ring_mask + 1 +
1904 efx->type->rxd_ring_mask + 1));
1905 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1906
1907 /* Higher numbered interrupt modes are less capable! */
1908 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1909 interrupt_mode);
1910
1911 efx->workqueue = create_singlethread_workqueue("sfc_work");
1912 if (!efx->workqueue) {
1913 rc = -ENOMEM;
1914 goto fail1;
1915 }
1916
8d9853d9
BH
1917 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1918 if (!efx->reset_workqueue) {
1919 rc = -ENOMEM;
1920 goto fail2;
1921 }
1922
8ceee660
BH
1923 return 0;
1924
8d9853d9
BH
1925 fail2:
1926 destroy_workqueue(efx->workqueue);
1927 efx->workqueue = NULL;
1928
8ceee660
BH
1929 fail1:
1930 return rc;
1931}
1932
1933static void efx_fini_struct(struct efx_nic *efx)
1934{
8d9853d9
BH
1935 if (efx->reset_workqueue) {
1936 destroy_workqueue(efx->reset_workqueue);
1937 efx->reset_workqueue = NULL;
1938 }
8ceee660
BH
1939 if (efx->workqueue) {
1940 destroy_workqueue(efx->workqueue);
1941 efx->workqueue = NULL;
1942 }
1943}
1944
1945/**************************************************************************
1946 *
1947 * PCI interface
1948 *
1949 **************************************************************************/
1950
1951/* Main body of final NIC shutdown code
1952 * This is called only at module unload (or hotplug removal).
1953 */
1954static void efx_pci_remove_main(struct efx_nic *efx)
1955{
1956 EFX_ASSERT_RESET_SERIALISED(efx);
1957
1958 /* Skip everything if we never obtained a valid membase */
1959 if (!efx->membase)
1960 return;
1961
1962 efx_fini_channels(efx);
1963 efx_fini_port(efx);
1964
1965 /* Shutdown the board, then the NIC and board state */
37b5a603 1966 efx->board_info.fini(efx);
8ceee660
BH
1967 falcon_fini_interrupt(efx);
1968
1969 efx_fini_napi(efx);
1970 efx_remove_all(efx);
1971}
1972
1973/* Final NIC shutdown
1974 * This is called only at module unload (or hotplug removal).
1975 */
1976static void efx_pci_remove(struct pci_dev *pci_dev)
1977{
1978 struct efx_nic *efx;
1979
1980 efx = pci_get_drvdata(pci_dev);
1981 if (!efx)
1982 return;
1983
1984 /* Mark the NIC as fini, then stop the interface */
1985 rtnl_lock();
1986 efx->state = STATE_FINI;
1987 dev_close(efx->net_dev);
1988
1989 /* Allow any queued efx_resets() to complete */
1990 rtnl_unlock();
1991
1992 if (efx->membase == NULL)
1993 goto out;
1994
1995 efx_unregister_netdev(efx);
1996
1997 /* Wait for any scheduled resets to complete. No more will be
1998 * scheduled from this point because efx_stop_all() has been
1999 * called, we are no longer registered with driverlink, and
2000 * the net_device's have been removed. */
8d9853d9 2001 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2002
2003 efx_pci_remove_main(efx);
2004
2005out:
2006 efx_fini_io(efx);
2007 EFX_LOG(efx, "shutdown successful\n");
2008
2009 pci_set_drvdata(pci_dev, NULL);
2010 efx_fini_struct(efx);
2011 free_netdev(efx->net_dev);
2012};
2013
2014/* Main body of NIC initialisation
2015 * This is called at module load (or hotplug insertion, theoretically).
2016 */
2017static int efx_pci_probe_main(struct efx_nic *efx)
2018{
2019 int rc;
2020
2021 /* Do start-of-day initialisation */
2022 rc = efx_probe_all(efx);
2023 if (rc)
2024 goto fail1;
2025
2026 rc = efx_init_napi(efx);
2027 if (rc)
2028 goto fail2;
2029
2030 /* Initialise the board */
2031 rc = efx->board_info.init(efx);
2032 if (rc) {
2033 EFX_ERR(efx, "failed to initialise board\n");
2034 goto fail3;
2035 }
2036
2037 rc = falcon_init_nic(efx);
2038 if (rc) {
2039 EFX_ERR(efx, "failed to initialise NIC\n");
2040 goto fail4;
2041 }
2042
2043 rc = efx_init_port(efx);
2044 if (rc) {
2045 EFX_ERR(efx, "failed to initialise port\n");
2046 goto fail5;
2047 }
2048
2049 rc = efx_init_channels(efx);
2050 if (rc)
2051 goto fail6;
2052
2053 rc = falcon_init_interrupt(efx);
2054 if (rc)
2055 goto fail7;
2056
2057 return 0;
2058
2059 fail7:
2060 efx_fini_channels(efx);
2061 fail6:
2062 efx_fini_port(efx);
2063 fail5:
2064 fail4:
2065 fail3:
2066 efx_fini_napi(efx);
2067 fail2:
2068 efx_remove_all(efx);
2069 fail1:
2070 return rc;
2071}
2072
2073/* NIC initialisation
2074 *
2075 * This is called at module load (or hotplug insertion,
2076 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2077 * sets up and registers the network devices with the kernel and hooks
2078 * the interrupt service routine. It does not prepare the device for
2079 * transmission; this is left to the first time one of the network
2080 * interfaces is brought up (i.e. efx_net_open).
2081 */
2082static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2083 const struct pci_device_id *entry)
2084{
2085 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2086 struct net_device *net_dev;
2087 struct efx_nic *efx;
2088 int i, rc;
2089
2090 /* Allocate and initialise a struct net_device and struct efx_nic */
2091 net_dev = alloc_etherdev(sizeof(*efx));
2092 if (!net_dev)
2093 return -ENOMEM;
b9b39b62
BH
2094 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2095 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2096 if (lro)
2097 net_dev->features |= NETIF_F_LRO;
767e468c 2098 efx = netdev_priv(net_dev);
8ceee660
BH
2099 pci_set_drvdata(pci_dev, efx);
2100 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2101 if (rc)
2102 goto fail1;
2103
2104 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2105
2106 /* Set up basic I/O (BAR mappings etc) */
2107 rc = efx_init_io(efx);
2108 if (rc)
2109 goto fail2;
2110
2111 /* No serialisation is required with the reset path because
2112 * we're in STATE_INIT. */
2113 for (i = 0; i < 5; i++) {
2114 rc = efx_pci_probe_main(efx);
2115 if (rc == 0)
2116 break;
2117
2118 /* Serialise against efx_reset(). No more resets will be
2119 * scheduled since efx_stop_all() has been called, and we
2120 * have not and never have been registered with either
2121 * the rtnetlink or driverlink layers. */
8d9853d9 2122 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2123
2124 /* Retry if a recoverably reset event has been scheduled */
2125 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2126 (efx->reset_pending != RESET_TYPE_ALL))
2127 goto fail3;
2128
2129 efx->reset_pending = RESET_TYPE_NONE;
2130 }
2131
2132 if (rc) {
2133 EFX_ERR(efx, "Could not reset NIC\n");
2134 goto fail4;
2135 }
2136
2137 /* Switch to the running state before we expose the device to
2138 * the OS. This is to ensure that the initial gathering of
2139 * MAC stats succeeds. */
2140 rtnl_lock();
2141 efx->state = STATE_RUNNING;
2142 rtnl_unlock();
2143
2144 rc = efx_register_netdev(efx);
2145 if (rc)
2146 goto fail5;
2147
2148 EFX_LOG(efx, "initialisation successful\n");
2149
2150 return 0;
2151
2152 fail5:
2153 efx_pci_remove_main(efx);
2154 fail4:
2155 fail3:
2156 efx_fini_io(efx);
2157 fail2:
2158 efx_fini_struct(efx);
2159 fail1:
2160 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2161 free_netdev(net_dev);
2162 return rc;
2163}
2164
2165static struct pci_driver efx_pci_driver = {
2166 .name = EFX_DRIVER_NAME,
2167 .id_table = efx_pci_table,
2168 .probe = efx_pci_probe,
2169 .remove = efx_pci_remove,
2170};
2171
2172/**************************************************************************
2173 *
2174 * Kernel module interface
2175 *
2176 *************************************************************************/
2177
2178module_param(interrupt_mode, uint, 0444);
2179MODULE_PARM_DESC(interrupt_mode,
2180 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2181
2182static int __init efx_init_module(void)
2183{
2184 int rc;
2185
2186 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2187
2188 rc = register_netdevice_notifier(&efx_netdev_notifier);
2189 if (rc)
2190 goto err_notifier;
2191
2192 refill_workqueue = create_workqueue("sfc_refill");
2193 if (!refill_workqueue) {
2194 rc = -ENOMEM;
2195 goto err_refill;
2196 }
2197
2198 rc = pci_register_driver(&efx_pci_driver);
2199 if (rc < 0)
2200 goto err_pci;
2201
2202 return 0;
2203
2204 err_pci:
2205 destroy_workqueue(refill_workqueue);
2206 err_refill:
2207 unregister_netdevice_notifier(&efx_netdev_notifier);
2208 err_notifier:
2209 return rc;
2210}
2211
2212static void __exit efx_exit_module(void)
2213{
2214 printk(KERN_INFO "Solarflare NET driver unloading\n");
2215
2216 pci_unregister_driver(&efx_pci_driver);
2217 destroy_workqueue(refill_workqueue);
2218 unregister_netdevice_notifier(&efx_netdev_notifier);
2219
2220}
2221
2222module_init(efx_init_module);
2223module_exit(efx_exit_module);
2224
2225MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2226 "Solarflare Communications");
2227MODULE_DESCRIPTION("Solarflare Communications network driver");
2228MODULE_LICENSE("GPL");
2229MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.255456 seconds and 5 git commands to generate.