sfc: Allow DRV_GEN events to be used outside of selftests
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
96/* RX slow fill workqueue. If memory allocation fails in the fast path,
97 * a work item is pushed onto this work queue to retry the allocation later,
98 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
99 * workqueue, there is nothing to be gained in making it per NIC
100 */
101static struct workqueue_struct *refill_workqueue;
102
1ab00629
SH
103/* Reset workqueue. If any NIC has a hardware failure then a reset will be
104 * queued onto this work queue. This is not a per-nic work queue, because
105 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
106 */
107static struct workqueue_struct *reset_workqueue;
108
8ceee660
BH
109/**************************************************************************
110 *
111 * Configurable values
112 *
113 *************************************************************************/
114
8ceee660
BH
115/*
116 * Use separate channels for TX and RX events
117 *
28b581ab
NT
118 * Set this to 1 to use separate channels for TX and RX. It allows us
119 * to control interrupt affinity separately for TX and RX.
8ceee660 120 *
28b581ab 121 * This is only used in MSI-X interrupt mode
8ceee660 122 */
28b581ab
NT
123static unsigned int separate_tx_channels;
124module_param(separate_tx_channels, uint, 0644);
125MODULE_PARM_DESC(separate_tx_channels,
126 "Use separate channels for TX and RX");
8ceee660
BH
127
128/* This is the weight assigned to each of the (per-channel) virtual
129 * NAPI devices.
130 */
131static int napi_weight = 64;
132
133/* This is the time (in jiffies) between invocations of the hardware
134 * monitor, which checks for known hardware bugs and resets the
135 * hardware and driver as necessary.
136 */
137unsigned int efx_monitor_interval = 1 * HZ;
138
8ceee660
BH
139/* This controls whether or not the driver will initialise devices
140 * with invalid MAC addresses stored in the EEPROM or flash. If true,
141 * such devices will be initialised with a random locally-generated
142 * MAC address. This allows for loading the sfc_mtd driver to
143 * reprogram the flash, even if the flash contents (including the MAC
144 * address) have previously been erased.
145 */
146static unsigned int allow_bad_hwaddr;
147
148/* Initial interrupt moderation settings. They can be modified after
149 * module load with ethtool.
150 *
151 * The default for RX should strike a balance between increasing the
152 * round-trip latency and reducing overhead.
153 */
154static unsigned int rx_irq_mod_usec = 60;
155
156/* Initial interrupt moderation settings. They can be modified after
157 * module load with ethtool.
158 *
159 * This default is chosen to ensure that a 10G link does not go idle
160 * while a TX queue is stopped after it has become full. A queue is
161 * restarted when it drops below half full. The time this takes (assuming
162 * worst case 3 descriptors per packet and 1024 descriptors) is
163 * 512 / 3 * 1.2 = 205 usec.
164 */
165static unsigned int tx_irq_mod_usec = 150;
166
167/* This is the first interrupt mode to try out of:
168 * 0 => MSI-X
169 * 1 => MSI
170 * 2 => legacy
171 */
172static unsigned int interrupt_mode;
173
174/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
175 * i.e. the number of CPUs among which we may distribute simultaneous
176 * interrupt handling.
177 *
178 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
179 * The default (0) means to assign an interrupt to each package (level II cache)
180 */
181static unsigned int rss_cpus;
182module_param(rss_cpus, uint, 0444);
183MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
184
84ae48fe
BH
185static int phy_flash_cfg;
186module_param(phy_flash_cfg, int, 0644);
187MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
188
6fb70fd1
BH
189static unsigned irq_adapt_low_thresh = 10000;
190module_param(irq_adapt_low_thresh, uint, 0644);
191MODULE_PARM_DESC(irq_adapt_low_thresh,
192 "Threshold score for reducing IRQ moderation");
193
194static unsigned irq_adapt_high_thresh = 20000;
195module_param(irq_adapt_high_thresh, uint, 0644);
196MODULE_PARM_DESC(irq_adapt_high_thresh,
197 "Threshold score for increasing IRQ moderation");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
204static void efx_remove_channel(struct efx_channel *channel);
205static void efx_remove_port(struct efx_nic *efx);
206static void efx_fini_napi(struct efx_nic *efx);
207static void efx_fini_channels(struct efx_nic *efx);
208
209#define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
332c1ce9
BH
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
8ceee660
BH
213 ASSERT_RTNL(); \
214 } while (0)
215
216/**************************************************************************
217 *
218 * Event queue processing
219 *
220 *************************************************************************/
221
222/* Process channel's event queue
223 *
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
228 */
fa236e18 229static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 230{
42cbe2d7 231 struct efx_nic *efx = channel->efx;
fa236e18 232 int spent;
8ceee660 233
42cbe2d7 234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 235 !channel->enabled))
42cbe2d7 236 return 0;
8ceee660 237
fa236e18
BH
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
42cbe2d7 240 return 0;
8ceee660
BH
241
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
247 }
248
8ceee660
BH
249 efx_rx_strategy(channel);
250
42cbe2d7 251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 252
fa236e18 253 return spent;
8ceee660
BH
254}
255
256/* Mark channel as finished processing
257 *
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
261 */
262static inline void efx_channel_processed(struct efx_channel *channel)
263{
5b9e207c
BH
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
dc8cfa55 267 channel->work_pending = false;
5b9e207c
BH
268 smp_wmb();
269
152b6a62 270 efx_nic_eventq_read_ack(channel);
8ceee660
BH
271}
272
273/* NAPI poll handler
274 *
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
277 */
278static int efx_poll(struct napi_struct *napi, int budget)
279{
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
fa236e18 282 int spent;
8ceee660
BH
283
284 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
285 channel->channel, raw_smp_processor_id());
286
fa236e18 287 spent = efx_process_channel(channel, budget);
8ceee660 288
fa236e18 289 if (spent < budget) {
6fb70fd1
BH
290 struct efx_nic *efx = channel->efx;
291
a4900ac9 292 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
0d86ebd8
BH
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1
BH
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
0d86ebd8
BH
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
ef2b90ee 306 efx->type->push_irq_moderation(channel);
0d86ebd8 307 }
6fb70fd1 308 }
6fb70fd1
BH
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
311 }
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
331 * Since we are touching interrupts the caller should hold the suspend lock
332 */
333void efx_process_channel_now(struct efx_channel *channel)
334{
335 struct efx_nic *efx = channel->efx;
336
8ceee660
BH
337 BUG_ON(!channel->enabled);
338
339 /* Disable interrupts and wait for ISRs to complete */
152b6a62 340 efx_nic_disable_interrupts(efx);
8ceee660
BH
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
3ffeabdd 350 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
152b6a62 357 efx_nic_enable_interrupts(efx);
8ceee660
BH
358}
359
360/* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
364 */
365static int efx_probe_eventq(struct efx_channel *channel)
366{
367 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
368
152b6a62 369 return efx_nic_probe_eventq(channel);
8ceee660
BH
370}
371
372/* Prepare channel's event queue */
bc3c90a2 373static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
374{
375 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
376
377 channel->eventq_read_ptr = 0;
378
152b6a62 379 efx_nic_init_eventq(channel);
8ceee660
BH
380}
381
382static void efx_fini_eventq(struct efx_channel *channel)
383{
384 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
385
152b6a62 386 efx_nic_fini_eventq(channel);
8ceee660
BH
387}
388
389static void efx_remove_eventq(struct efx_channel *channel)
390{
391 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
392
152b6a62 393 efx_nic_remove_eventq(channel);
8ceee660
BH
394}
395
396/**************************************************************************
397 *
398 * Channel handling
399 *
400 *************************************************************************/
401
8ceee660
BH
402static int efx_probe_channel(struct efx_channel *channel)
403{
404 struct efx_tx_queue *tx_queue;
405 struct efx_rx_queue *rx_queue;
406 int rc;
407
408 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
409
410 rc = efx_probe_eventq(channel);
411 if (rc)
412 goto fail1;
413
414 efx_for_each_channel_tx_queue(tx_queue, channel) {
415 rc = efx_probe_tx_queue(tx_queue);
416 if (rc)
417 goto fail2;
418 }
419
420 efx_for_each_channel_rx_queue(rx_queue, channel) {
421 rc = efx_probe_rx_queue(rx_queue);
422 if (rc)
423 goto fail3;
424 }
425
426 channel->n_rx_frm_trunc = 0;
427
428 return 0;
429
430 fail3:
431 efx_for_each_channel_rx_queue(rx_queue, channel)
432 efx_remove_rx_queue(rx_queue);
433 fail2:
434 efx_for_each_channel_tx_queue(tx_queue, channel)
435 efx_remove_tx_queue(tx_queue);
436 fail1:
437 return rc;
438}
439
440
56536e9c
BH
441static void efx_set_channel_names(struct efx_nic *efx)
442{
443 struct efx_channel *channel;
444 const char *type = "";
445 int number;
446
447 efx_for_each_channel(channel, efx) {
448 number = channel->channel;
a4900ac9
BH
449 if (efx->n_channels > efx->n_rx_channels) {
450 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
451 type = "-rx";
452 } else {
453 type = "-tx";
a4900ac9 454 number -= efx->n_rx_channels;
56536e9c
BH
455 }
456 }
457 snprintf(channel->name, sizeof(channel->name),
458 "%s%s-%d", efx->name, type, number);
459 }
460}
461
8ceee660
BH
462/* Channels are shutdown and reinitialised whilst the NIC is running
463 * to propagate configuration changes (mtu, checksum offload), or
464 * to clear hardware error conditions
465 */
bc3c90a2 466static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
467{
468 struct efx_tx_queue *tx_queue;
469 struct efx_rx_queue *rx_queue;
470 struct efx_channel *channel;
8ceee660 471
f7f13b0b
BH
472 /* Calculate the rx buffer allocation parameters required to
473 * support the current MTU, including padding for header
474 * alignment and overruns.
475 */
476 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
477 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
478 efx->type->rx_buffer_padding);
479 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
480
481 /* Initialise the channels */
482 efx_for_each_channel(channel, efx) {
483 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
484
bc3c90a2 485 efx_init_eventq(channel);
8ceee660 486
bc3c90a2
BH
487 efx_for_each_channel_tx_queue(tx_queue, channel)
488 efx_init_tx_queue(tx_queue);
8ceee660
BH
489
490 /* The rx buffer allocation strategy is MTU dependent */
491 efx_rx_strategy(channel);
492
bc3c90a2
BH
493 efx_for_each_channel_rx_queue(rx_queue, channel)
494 efx_init_rx_queue(rx_queue);
8ceee660
BH
495
496 WARN_ON(channel->rx_pkt != NULL);
497 efx_rx_strategy(channel);
498 }
8ceee660
BH
499}
500
501/* This enables event queue processing and packet transmission.
502 *
503 * Note that this function is not allowed to fail, since that would
504 * introduce too much complexity into the suspend/resume path.
505 */
506static void efx_start_channel(struct efx_channel *channel)
507{
508 struct efx_rx_queue *rx_queue;
509
510 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
511
5b9e207c
BH
512 /* The interrupt handler for this channel may set work_pending
513 * as soon as we enable it. Make sure it's cleared before
514 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
515 channel->work_pending = false;
516 channel->enabled = true;
5b9e207c 517 smp_wmb();
8ceee660
BH
518
519 napi_enable(&channel->napi_str);
520
521 /* Load up RX descriptors */
522 efx_for_each_channel_rx_queue(rx_queue, channel)
523 efx_fast_push_rx_descriptors(rx_queue);
524}
525
526/* This disables event queue processing and packet transmission.
527 * This function does not guarantee that all queue processing
528 * (e.g. RX refill) is complete.
529 */
530static void efx_stop_channel(struct efx_channel *channel)
531{
532 struct efx_rx_queue *rx_queue;
533
534 if (!channel->enabled)
535 return;
536
537 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
538
dc8cfa55 539 channel->enabled = false;
8ceee660
BH
540 napi_disable(&channel->napi_str);
541
542 /* Ensure that any worker threads have exited or will be no-ops */
543 efx_for_each_channel_rx_queue(rx_queue, channel) {
544 spin_lock_bh(&rx_queue->add_lock);
545 spin_unlock_bh(&rx_queue->add_lock);
546 }
547}
548
549static void efx_fini_channels(struct efx_nic *efx)
550{
551 struct efx_channel *channel;
552 struct efx_tx_queue *tx_queue;
553 struct efx_rx_queue *rx_queue;
6bc5d3a9 554 int rc;
8ceee660
BH
555
556 EFX_ASSERT_RESET_SERIALISED(efx);
557 BUG_ON(efx->port_enabled);
558
152b6a62 559 rc = efx_nic_flush_queues(efx);
fd371e32
SH
560 if (rc && EFX_WORKAROUND_7803(efx)) {
561 /* Schedule a reset to recover from the flush failure. The
562 * descriptor caches reference memory we're about to free,
563 * but falcon_reconfigure_mac_wrapper() won't reconnect
564 * the MACs because of the pending reset. */
565 EFX_ERR(efx, "Resetting to recover from flush failure\n");
566 efx_schedule_reset(efx, RESET_TYPE_ALL);
567 } else if (rc) {
6bc5d3a9 568 EFX_ERR(efx, "failed to flush queues\n");
fd371e32 569 } else {
6bc5d3a9 570 EFX_LOG(efx, "successfully flushed all queues\n");
fd371e32 571 }
6bc5d3a9 572
8ceee660
BH
573 efx_for_each_channel(channel, efx) {
574 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
575
576 efx_for_each_channel_rx_queue(rx_queue, channel)
577 efx_fini_rx_queue(rx_queue);
578 efx_for_each_channel_tx_queue(tx_queue, channel)
579 efx_fini_tx_queue(tx_queue);
8ceee660
BH
580 efx_fini_eventq(channel);
581 }
582}
583
584static void efx_remove_channel(struct efx_channel *channel)
585{
586 struct efx_tx_queue *tx_queue;
587 struct efx_rx_queue *rx_queue;
588
589 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
590
591 efx_for_each_channel_rx_queue(rx_queue, channel)
592 efx_remove_rx_queue(rx_queue);
593 efx_for_each_channel_tx_queue(tx_queue, channel)
594 efx_remove_tx_queue(tx_queue);
595 efx_remove_eventq(channel);
8ceee660
BH
596}
597
598void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
599{
600 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
601}
602
603/**************************************************************************
604 *
605 * Port handling
606 *
607 **************************************************************************/
608
609/* This ensures that the kernel is kept informed (via
610 * netif_carrier_on/off) of the link status, and also maintains the
611 * link status's stop on the port's TX queue.
612 */
fdaa9aed 613void efx_link_status_changed(struct efx_nic *efx)
8ceee660 614{
eb50c0d6
BH
615 struct efx_link_state *link_state = &efx->link_state;
616
8ceee660
BH
617 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
618 * that no events are triggered between unregister_netdev() and the
619 * driver unloading. A more general condition is that NETDEV_CHANGE
620 * can only be generated between NETDEV_UP and NETDEV_DOWN */
621 if (!netif_running(efx->net_dev))
622 return;
623
8c8661e4
BH
624 if (efx->port_inhibited) {
625 netif_carrier_off(efx->net_dev);
626 return;
627 }
628
eb50c0d6 629 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
630 efx->n_link_state_changes++;
631
eb50c0d6 632 if (link_state->up)
8ceee660
BH
633 netif_carrier_on(efx->net_dev);
634 else
635 netif_carrier_off(efx->net_dev);
636 }
637
638 /* Status message for kernel log */
eb50c0d6 639 if (link_state->up) {
f31a45d2 640 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 641 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
642 efx->net_dev->mtu,
643 (efx->promiscuous ? " [PROMISC]" : ""));
644 } else {
645 EFX_INFO(efx, "link down\n");
646 }
647
648}
649
d3245b28
BH
650void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
651{
652 efx->link_advertising = advertising;
653 if (advertising) {
654 if (advertising & ADVERTISED_Pause)
655 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
656 else
657 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
658 if (advertising & ADVERTISED_Asym_Pause)
659 efx->wanted_fc ^= EFX_FC_TX;
660 }
661}
662
663void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
664{
665 efx->wanted_fc = wanted_fc;
666 if (efx->link_advertising) {
667 if (wanted_fc & EFX_FC_RX)
668 efx->link_advertising |= (ADVERTISED_Pause |
669 ADVERTISED_Asym_Pause);
670 else
671 efx->link_advertising &= ~(ADVERTISED_Pause |
672 ADVERTISED_Asym_Pause);
673 if (wanted_fc & EFX_FC_TX)
674 efx->link_advertising ^= ADVERTISED_Asym_Pause;
675 }
676}
677
115122af
BH
678static void efx_fini_port(struct efx_nic *efx);
679
d3245b28
BH
680/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
681 * the MAC appropriately. All other PHY configuration changes are pushed
682 * through phy_op->set_settings(), and pushed asynchronously to the MAC
683 * through efx_monitor().
684 *
685 * Callers must hold the mac_lock
686 */
687int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 688{
d3245b28
BH
689 enum efx_phy_mode phy_mode;
690 int rc;
8ceee660 691
d3245b28 692 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 693
a816f75a
BH
694 /* Serialise the promiscuous flag with efx_set_multicast_list. */
695 if (efx_dev_registered(efx)) {
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
698 }
699
d3245b28
BH
700 /* Disable PHY transmit in mac level loopbacks */
701 phy_mode = efx->phy_mode;
177dfcd8
BH
702 if (LOOPBACK_INTERNAL(efx))
703 efx->phy_mode |= PHY_MODE_TX_DISABLED;
704 else
705 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 706
d3245b28 707 rc = efx->type->reconfigure_port(efx);
8ceee660 708
d3245b28
BH
709 if (rc)
710 efx->phy_mode = phy_mode;
177dfcd8 711
d3245b28 712 return rc;
8ceee660
BH
713}
714
715/* Reinitialise the MAC to pick up new PHY settings, even if the port is
716 * disabled. */
d3245b28 717int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 718{
d3245b28
BH
719 int rc;
720
8ceee660
BH
721 EFX_ASSERT_RESET_SERIALISED(efx);
722
723 mutex_lock(&efx->mac_lock);
d3245b28 724 rc = __efx_reconfigure_port(efx);
8ceee660 725 mutex_unlock(&efx->mac_lock);
d3245b28
BH
726
727 return rc;
8ceee660
BH
728}
729
8be4f3e6
BH
730/* Asynchronous work item for changing MAC promiscuity and multicast
731 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
732 * MAC directly. */
766ca0fa
BH
733static void efx_mac_work(struct work_struct *data)
734{
735 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
736
737 mutex_lock(&efx->mac_lock);
8be4f3e6 738 if (efx->port_enabled) {
ef2b90ee 739 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
740 efx->mac_op->reconfigure(efx);
741 }
766ca0fa
BH
742 mutex_unlock(&efx->mac_lock);
743}
744
8ceee660
BH
745static int efx_probe_port(struct efx_nic *efx)
746{
747 int rc;
748
749 EFX_LOG(efx, "create port\n");
750
ff3b00a0
SH
751 if (phy_flash_cfg)
752 efx->phy_mode = PHY_MODE_SPECIAL;
753
ef2b90ee
BH
754 /* Connect up MAC/PHY operations table */
755 rc = efx->type->probe_port(efx);
8ceee660
BH
756 if (rc)
757 goto err;
758
759 /* Sanity check MAC address */
760 if (is_valid_ether_addr(efx->mac_address)) {
761 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
762 } else {
e174961c
JB
763 EFX_ERR(efx, "invalid MAC address %pM\n",
764 efx->mac_address);
8ceee660
BH
765 if (!allow_bad_hwaddr) {
766 rc = -EINVAL;
767 goto err;
768 }
769 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
770 EFX_INFO(efx, "using locally-generated MAC %pM\n",
771 efx->net_dev->dev_addr);
8ceee660
BH
772 }
773
774 return 0;
775
776 err:
777 efx_remove_port(efx);
778 return rc;
779}
780
781static int efx_init_port(struct efx_nic *efx)
782{
783 int rc;
784
785 EFX_LOG(efx, "init port\n");
786
1dfc5cea
BH
787 mutex_lock(&efx->mac_lock);
788
177dfcd8 789 rc = efx->phy_op->init(efx);
8ceee660 790 if (rc)
1dfc5cea 791 goto fail1;
8ceee660 792
dc8cfa55 793 efx->port_initialized = true;
1dfc5cea 794
d3245b28
BH
795 /* Reconfigure the MAC before creating dma queues (required for
796 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
797 efx->mac_op->reconfigure(efx);
798
799 /* Ensure the PHY advertises the correct flow control settings */
800 rc = efx->phy_op->reconfigure(efx);
801 if (rc)
802 goto fail2;
803
1dfc5cea 804 mutex_unlock(&efx->mac_lock);
8ceee660 805 return 0;
177dfcd8 806
1dfc5cea 807fail2:
177dfcd8 808 efx->phy_op->fini(efx);
1dfc5cea
BH
809fail1:
810 mutex_unlock(&efx->mac_lock);
177dfcd8 811 return rc;
8ceee660
BH
812}
813
8ceee660
BH
814static void efx_start_port(struct efx_nic *efx)
815{
816 EFX_LOG(efx, "start port\n");
817 BUG_ON(efx->port_enabled);
818
819 mutex_lock(&efx->mac_lock);
dc8cfa55 820 efx->port_enabled = true;
8be4f3e6
BH
821
822 /* efx_mac_work() might have been scheduled after efx_stop_port(),
823 * and then cancelled by efx_flush_all() */
ef2b90ee 824 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
825 efx->mac_op->reconfigure(efx);
826
8ceee660
BH
827 mutex_unlock(&efx->mac_lock);
828}
829
fdaa9aed 830/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
831static void efx_stop_port(struct efx_nic *efx)
832{
833 EFX_LOG(efx, "stop port\n");
834
835 mutex_lock(&efx->mac_lock);
dc8cfa55 836 efx->port_enabled = false;
8ceee660
BH
837 mutex_unlock(&efx->mac_lock);
838
839 /* Serialise against efx_set_multicast_list() */
55668611 840 if (efx_dev_registered(efx)) {
b9e40857
DM
841 netif_addr_lock_bh(efx->net_dev);
842 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
843 }
844}
845
846static void efx_fini_port(struct efx_nic *efx)
847{
848 EFX_LOG(efx, "shut down port\n");
849
850 if (!efx->port_initialized)
851 return;
852
177dfcd8 853 efx->phy_op->fini(efx);
dc8cfa55 854 efx->port_initialized = false;
8ceee660 855
eb50c0d6 856 efx->link_state.up = false;
8ceee660
BH
857 efx_link_status_changed(efx);
858}
859
860static void efx_remove_port(struct efx_nic *efx)
861{
862 EFX_LOG(efx, "destroying port\n");
863
ef2b90ee 864 efx->type->remove_port(efx);
8ceee660
BH
865}
866
867/**************************************************************************
868 *
869 * NIC handling
870 *
871 **************************************************************************/
872
873/* This configures the PCI device to enable I/O and DMA. */
874static int efx_init_io(struct efx_nic *efx)
875{
876 struct pci_dev *pci_dev = efx->pci_dev;
877 dma_addr_t dma_mask = efx->type->max_dma_mask;
878 int rc;
879
880 EFX_LOG(efx, "initialising I/O\n");
881
882 rc = pci_enable_device(pci_dev);
883 if (rc) {
884 EFX_ERR(efx, "failed to enable PCI device\n");
885 goto fail1;
886 }
887
888 pci_set_master(pci_dev);
889
890 /* Set the PCI DMA mask. Try all possibilities from our
891 * genuine mask down to 32 bits, because some architectures
892 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
893 * masks event though they reject 46 bit masks.
894 */
895 while (dma_mask > 0x7fffffffUL) {
896 if (pci_dma_supported(pci_dev, dma_mask) &&
897 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
898 break;
899 dma_mask >>= 1;
900 }
901 if (rc) {
902 EFX_ERR(efx, "could not find a suitable DMA mask\n");
903 goto fail2;
904 }
905 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
906 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
907 if (rc) {
908 /* pci_set_consistent_dma_mask() is not *allowed* to
909 * fail with a mask that pci_set_dma_mask() accepted,
910 * but just in case...
911 */
912 EFX_ERR(efx, "failed to set consistent DMA mask\n");
913 goto fail2;
914 }
915
dc803df8
BH
916 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
917 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
918 if (rc) {
919 EFX_ERR(efx, "request for memory BAR failed\n");
920 rc = -EIO;
921 goto fail3;
922 }
923 efx->membase = ioremap_nocache(efx->membase_phys,
924 efx->type->mem_map_size);
925 if (!efx->membase) {
dc803df8 926 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 927 (unsigned long long)efx->membase_phys,
8ceee660
BH
928 efx->type->mem_map_size);
929 rc = -ENOMEM;
930 goto fail4;
931 }
dc803df8
BH
932 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
933 (unsigned long long)efx->membase_phys,
086ea356 934 efx->type->mem_map_size, efx->membase);
8ceee660
BH
935
936 return 0;
937
938 fail4:
dc803df8 939 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 940 fail3:
2c118e0f 941 efx->membase_phys = 0;
8ceee660
BH
942 fail2:
943 pci_disable_device(efx->pci_dev);
944 fail1:
945 return rc;
946}
947
948static void efx_fini_io(struct efx_nic *efx)
949{
950 EFX_LOG(efx, "shutting down I/O\n");
951
952 if (efx->membase) {
953 iounmap(efx->membase);
954 efx->membase = NULL;
955 }
956
957 if (efx->membase_phys) {
dc803df8 958 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 959 efx->membase_phys = 0;
8ceee660
BH
960 }
961
962 pci_disable_device(efx->pci_dev);
963}
964
a4900ac9
BH
965/* Get number of channels wanted. Each channel will have its own IRQ,
966 * 1 RX queue and/or 2 TX queues. */
967static int efx_wanted_channels(void)
46123d04 968{
2f8975fb 969 cpumask_var_t core_mask;
46123d04
BH
970 int count;
971 int cpu;
972
79f55997 973 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 974 printk(KERN_WARNING
3977d033 975 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
976 return 1;
977 }
978
46123d04
BH
979 count = 0;
980 for_each_online_cpu(cpu) {
2f8975fb 981 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 982 ++count;
2f8975fb 983 cpumask_or(core_mask, core_mask,
fbd59a8d 984 topology_core_cpumask(cpu));
46123d04
BH
985 }
986 }
987
2f8975fb 988 free_cpumask_var(core_mask);
46123d04
BH
989 return count;
990}
991
992/* Probe the number and type of interrupts we are able to obtain, and
993 * the resulting numbers of channels and RX queues.
994 */
8ceee660
BH
995static void efx_probe_interrupts(struct efx_nic *efx)
996{
46123d04
BH
997 int max_channels =
998 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
999 int rc, i;
1000
1001 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1002 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1003 int n_channels;
aa6ef27e 1004
a4900ac9
BH
1005 n_channels = efx_wanted_channels();
1006 if (separate_tx_channels)
1007 n_channels *= 2;
1008 n_channels = min(n_channels, max_channels);
8ceee660 1009
a4900ac9 1010 for (i = 0; i < n_channels; i++)
8ceee660 1011 xentries[i].entry = i;
a4900ac9 1012 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1013 if (rc > 0) {
28b581ab 1014 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
a4900ac9 1015 " available (%d < %d).\n", rc, n_channels);
28b581ab 1016 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1017 EFX_BUG_ON_PARANOID(rc >= n_channels);
1018 n_channels = rc;
8ceee660 1019 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1020 n_channels);
8ceee660
BH
1021 }
1022
1023 if (rc == 0) {
a4900ac9
BH
1024 efx->n_channels = n_channels;
1025 if (separate_tx_channels) {
1026 efx->n_tx_channels =
1027 max(efx->n_channels / 2, 1U);
1028 efx->n_rx_channels =
1029 max(efx->n_channels -
1030 efx->n_tx_channels, 1U);
1031 } else {
1032 efx->n_tx_channels = efx->n_channels;
1033 efx->n_rx_channels = efx->n_channels;
1034 }
1035 for (i = 0; i < n_channels; i++)
8ceee660 1036 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1037 } else {
1038 /* Fall back to single channel MSI */
1039 efx->interrupt_mode = EFX_INT_MODE_MSI;
1040 EFX_ERR(efx, "could not enable MSI-X\n");
1041 }
1042 }
1043
1044 /* Try single interrupt MSI */
1045 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1046 efx->n_channels = 1;
a4900ac9
BH
1047 efx->n_rx_channels = 1;
1048 efx->n_tx_channels = 1;
8ceee660
BH
1049 rc = pci_enable_msi(efx->pci_dev);
1050 if (rc == 0) {
1051 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1052 } else {
1053 EFX_ERR(efx, "could not enable MSI\n");
1054 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1055 }
1056 }
1057
1058 /* Assume legacy interrupts */
1059 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1060 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1061 efx->n_rx_channels = 1;
1062 efx->n_tx_channels = 1;
8ceee660
BH
1063 efx->legacy_irq = efx->pci_dev->irq;
1064 }
1065}
1066
1067static void efx_remove_interrupts(struct efx_nic *efx)
1068{
1069 struct efx_channel *channel;
1070
1071 /* Remove MSI/MSI-X interrupts */
64ee3120 1072 efx_for_each_channel(channel, efx)
8ceee660
BH
1073 channel->irq = 0;
1074 pci_disable_msi(efx->pci_dev);
1075 pci_disable_msix(efx->pci_dev);
1076
1077 /* Remove legacy interrupt */
1078 efx->legacy_irq = 0;
1079}
1080
8831da7b 1081static void efx_set_channels(struct efx_nic *efx)
8ceee660 1082{
a4900ac9 1083 struct efx_channel *channel;
8ceee660
BH
1084 struct efx_tx_queue *tx_queue;
1085 struct efx_rx_queue *rx_queue;
a4900ac9
BH
1086 unsigned tx_channel_offset =
1087 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1088
a4900ac9
BH
1089 efx_for_each_channel(channel, efx) {
1090 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1091 channel->tx_queue = &efx->tx_queue[
1092 (channel->channel - tx_channel_offset) *
1093 EFX_TXQ_TYPES];
1094 efx_for_each_channel_tx_queue(tx_queue, channel)
1095 tx_queue->channel = channel;
1096 }
60ac1065 1097 }
8ceee660 1098
a4900ac9 1099 efx_for_each_rx_queue(rx_queue, efx)
8831da7b 1100 rx_queue->channel = &efx->channel[rx_queue->queue];
8ceee660
BH
1101}
1102
1103static int efx_probe_nic(struct efx_nic *efx)
1104{
1105 int rc;
1106
1107 EFX_LOG(efx, "creating NIC\n");
1108
1109 /* Carry out hardware-type specific initialisation */
ef2b90ee 1110 rc = efx->type->probe(efx);
8ceee660
BH
1111 if (rc)
1112 return rc;
1113
a4900ac9 1114 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1115 * in MSI-X interrupts. */
1116 efx_probe_interrupts(efx);
1117
8831da7b 1118 efx_set_channels(efx);
a4900ac9 1119 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1120
1121 /* Initialise the interrupt moderation settings */
6fb70fd1 1122 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1123
1124 return 0;
1125}
1126
1127static void efx_remove_nic(struct efx_nic *efx)
1128{
1129 EFX_LOG(efx, "destroying NIC\n");
1130
1131 efx_remove_interrupts(efx);
ef2b90ee 1132 efx->type->remove(efx);
8ceee660
BH
1133}
1134
1135/**************************************************************************
1136 *
1137 * NIC startup/shutdown
1138 *
1139 *************************************************************************/
1140
1141static int efx_probe_all(struct efx_nic *efx)
1142{
1143 struct efx_channel *channel;
1144 int rc;
1145
1146 /* Create NIC */
1147 rc = efx_probe_nic(efx);
1148 if (rc) {
1149 EFX_ERR(efx, "failed to create NIC\n");
1150 goto fail1;
1151 }
1152
1153 /* Create port */
1154 rc = efx_probe_port(efx);
1155 if (rc) {
1156 EFX_ERR(efx, "failed to create port\n");
1157 goto fail2;
1158 }
1159
1160 /* Create channels */
1161 efx_for_each_channel(channel, efx) {
1162 rc = efx_probe_channel(channel);
1163 if (rc) {
1164 EFX_ERR(efx, "failed to create channel %d\n",
1165 channel->channel);
1166 goto fail3;
1167 }
1168 }
56536e9c 1169 efx_set_channel_names(efx);
8ceee660
BH
1170
1171 return 0;
1172
1173 fail3:
1174 efx_for_each_channel(channel, efx)
1175 efx_remove_channel(channel);
1176 efx_remove_port(efx);
1177 fail2:
1178 efx_remove_nic(efx);
1179 fail1:
1180 return rc;
1181}
1182
1183/* Called after previous invocation(s) of efx_stop_all, restarts the
1184 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1185 * and ensures that the port is scheduled to be reconfigured.
1186 * This function is safe to call multiple times when the NIC is in any
1187 * state. */
1188static void efx_start_all(struct efx_nic *efx)
1189{
1190 struct efx_channel *channel;
1191
1192 EFX_ASSERT_RESET_SERIALISED(efx);
1193
1194 /* Check that it is appropriate to restart the interface. All
1195 * of these flags are safe to read under just the rtnl lock */
1196 if (efx->port_enabled)
1197 return;
1198 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1199 return;
55668611 1200 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1201 return;
1202
1203 /* Mark the port as enabled so port reconfigurations can start, then
1204 * restart the transmit interface early so the watchdog timer stops */
1205 efx_start_port(efx);
8ceee660 1206
a4900ac9
BH
1207 efx_for_each_channel(channel, efx) {
1208 if (efx_dev_registered(efx))
1209 efx_wake_queue(channel);
8ceee660 1210 efx_start_channel(channel);
a4900ac9 1211 }
8ceee660 1212
152b6a62 1213 efx_nic_enable_interrupts(efx);
8ceee660 1214
8880f4ec
BH
1215 /* Switch to event based MCDI completions after enabling interrupts.
1216 * If a reset has been scheduled, then we need to stay in polled mode.
1217 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1218 * reset_pending [modified from an atomic context], we instead guarantee
1219 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1220 efx_mcdi_mode_event(efx);
1221 if (efx->reset_pending != RESET_TYPE_NONE)
1222 efx_mcdi_mode_poll(efx);
1223
78c1f0a0
SH
1224 /* Start the hardware monitor if there is one. Otherwise (we're link
1225 * event driven), we have to poll the PHY because after an event queue
1226 * flush, we could have a missed a link state change */
1227 if (efx->type->monitor != NULL) {
8ceee660
BH
1228 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1229 efx_monitor_interval);
78c1f0a0
SH
1230 } else {
1231 mutex_lock(&efx->mac_lock);
1232 if (efx->phy_op->poll(efx))
1233 efx_link_status_changed(efx);
1234 mutex_unlock(&efx->mac_lock);
1235 }
55edc6e6 1236
ef2b90ee 1237 efx->type->start_stats(efx);
8ceee660
BH
1238}
1239
1240/* Flush all delayed work. Should only be called when no more delayed work
1241 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1242 * since we're holding the rtnl_lock at this point. */
1243static void efx_flush_all(struct efx_nic *efx)
1244{
1245 struct efx_rx_queue *rx_queue;
1246
1247 /* Make sure the hardware monitor is stopped */
1248 cancel_delayed_work_sync(&efx->monitor_work);
1249
1250 /* Ensure that all RX slow refills are complete. */
b3475645 1251 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1252 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1253
1254 /* Stop scheduled port reconfigurations */
766ca0fa 1255 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1256}
1257
1258/* Quiesce hardware and software without bringing the link down.
1259 * Safe to call multiple times, when the nic and interface is in any
1260 * state. The caller is guaranteed to subsequently be in a position
1261 * to modify any hardware and software state they see fit without
1262 * taking locks. */
1263static void efx_stop_all(struct efx_nic *efx)
1264{
1265 struct efx_channel *channel;
1266
1267 EFX_ASSERT_RESET_SERIALISED(efx);
1268
1269 /* port_enabled can be read safely under the rtnl lock */
1270 if (!efx->port_enabled)
1271 return;
1272
ef2b90ee 1273 efx->type->stop_stats(efx);
55edc6e6 1274
8880f4ec
BH
1275 /* Switch to MCDI polling on Siena before disabling interrupts */
1276 efx_mcdi_mode_poll(efx);
1277
8ceee660 1278 /* Disable interrupts and wait for ISR to complete */
152b6a62 1279 efx_nic_disable_interrupts(efx);
8ceee660
BH
1280 if (efx->legacy_irq)
1281 synchronize_irq(efx->legacy_irq);
64ee3120 1282 efx_for_each_channel(channel, efx) {
8ceee660
BH
1283 if (channel->irq)
1284 synchronize_irq(channel->irq);
b3475645 1285 }
8ceee660
BH
1286
1287 /* Stop all NAPI processing and synchronous rx refills */
1288 efx_for_each_channel(channel, efx)
1289 efx_stop_channel(channel);
1290
1291 /* Stop all asynchronous port reconfigurations. Since all
1292 * event processing has already been stopped, there is no
1293 * window to loose phy events */
1294 efx_stop_port(efx);
1295
fdaa9aed 1296 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1297 efx_flush_all(efx);
1298
8ceee660
BH
1299 /* Stop the kernel transmit interface late, so the watchdog
1300 * timer isn't ticking over the flush */
55668611 1301 if (efx_dev_registered(efx)) {
a4900ac9
BH
1302 struct efx_channel *channel;
1303 efx_for_each_channel(channel, efx)
1304 efx_stop_queue(channel);
8ceee660
BH
1305 netif_tx_lock_bh(efx->net_dev);
1306 netif_tx_unlock_bh(efx->net_dev);
1307 }
1308}
1309
1310static void efx_remove_all(struct efx_nic *efx)
1311{
1312 struct efx_channel *channel;
1313
1314 efx_for_each_channel(channel, efx)
1315 efx_remove_channel(channel);
1316 efx_remove_port(efx);
1317 efx_remove_nic(efx);
1318}
1319
8ceee660
BH
1320/**************************************************************************
1321 *
1322 * Interrupt moderation
1323 *
1324 **************************************************************************/
1325
0d86ebd8
BH
1326static unsigned irq_mod_ticks(int usecs, int resolution)
1327{
1328 if (usecs <= 0)
1329 return 0; /* cannot receive interrupts ahead of time :-) */
1330 if (usecs < resolution)
1331 return 1; /* never round down to 0 */
1332 return usecs / resolution;
1333}
1334
8ceee660 1335/* Set interrupt moderation parameters */
6fb70fd1
BH
1336void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1337 bool rx_adaptive)
8ceee660
BH
1338{
1339 struct efx_tx_queue *tx_queue;
1340 struct efx_rx_queue *rx_queue;
152b6a62
BH
1341 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1342 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1343
1344 EFX_ASSERT_RESET_SERIALISED(efx);
1345
1346 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1347 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1348
6fb70fd1 1349 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1350 efx->irq_rx_moderation = rx_ticks;
8ceee660 1351 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1352 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1353}
1354
1355/**************************************************************************
1356 *
1357 * Hardware monitor
1358 *
1359 **************************************************************************/
1360
1361/* Run periodically off the general workqueue. Serialised against
1362 * efx_reconfigure_port via the mac_lock */
1363static void efx_monitor(struct work_struct *data)
1364{
1365 struct efx_nic *efx = container_of(data, struct efx_nic,
1366 monitor_work.work);
8ceee660
BH
1367
1368 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1369 raw_smp_processor_id());
ef2b90ee 1370 BUG_ON(efx->type->monitor == NULL);
8ceee660 1371
8ceee660
BH
1372 /* If the mac_lock is already held then it is likely a port
1373 * reconfiguration is already in place, which will likely do
1374 * most of the work of check_hw() anyway. */
766ca0fa
BH
1375 if (!mutex_trylock(&efx->mac_lock))
1376 goto out_requeue;
1377 if (!efx->port_enabled)
1378 goto out_unlock;
ef2b90ee 1379 efx->type->monitor(efx);
8ceee660 1380
766ca0fa 1381out_unlock:
8ceee660 1382 mutex_unlock(&efx->mac_lock);
766ca0fa 1383out_requeue:
8ceee660
BH
1384 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1385 efx_monitor_interval);
1386}
1387
1388/**************************************************************************
1389 *
1390 * ioctls
1391 *
1392 *************************************************************************/
1393
1394/* Net device ioctl
1395 * Context: process, rtnl_lock() held.
1396 */
1397static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1398{
767e468c 1399 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1400 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1401
1402 EFX_ASSERT_RESET_SERIALISED(efx);
1403
68e7f45e
BH
1404 /* Convert phy_id from older PRTAD/DEVAD format */
1405 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1406 (data->phy_id & 0xfc00) == 0x0400)
1407 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1408
1409 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1410}
1411
1412/**************************************************************************
1413 *
1414 * NAPI interface
1415 *
1416 **************************************************************************/
1417
1418static int efx_init_napi(struct efx_nic *efx)
1419{
1420 struct efx_channel *channel;
8ceee660
BH
1421
1422 efx_for_each_channel(channel, efx) {
1423 channel->napi_dev = efx->net_dev;
718cff1e
BH
1424 netif_napi_add(channel->napi_dev, &channel->napi_str,
1425 efx_poll, napi_weight);
8ceee660
BH
1426 }
1427 return 0;
8ceee660
BH
1428}
1429
1430static void efx_fini_napi(struct efx_nic *efx)
1431{
1432 struct efx_channel *channel;
1433
1434 efx_for_each_channel(channel, efx) {
718cff1e
BH
1435 if (channel->napi_dev)
1436 netif_napi_del(&channel->napi_str);
8ceee660
BH
1437 channel->napi_dev = NULL;
1438 }
1439}
1440
1441/**************************************************************************
1442 *
1443 * Kernel netpoll interface
1444 *
1445 *************************************************************************/
1446
1447#ifdef CONFIG_NET_POLL_CONTROLLER
1448
1449/* Although in the common case interrupts will be disabled, this is not
1450 * guaranteed. However, all our work happens inside the NAPI callback,
1451 * so no locking is required.
1452 */
1453static void efx_netpoll(struct net_device *net_dev)
1454{
767e468c 1455 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1456 struct efx_channel *channel;
1457
64ee3120 1458 efx_for_each_channel(channel, efx)
8ceee660
BH
1459 efx_schedule_channel(channel);
1460}
1461
1462#endif
1463
1464/**************************************************************************
1465 *
1466 * Kernel net device interface
1467 *
1468 *************************************************************************/
1469
1470/* Context: process, rtnl_lock() held. */
1471static int efx_net_open(struct net_device *net_dev)
1472{
767e468c 1473 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1474 EFX_ASSERT_RESET_SERIALISED(efx);
1475
1476 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1477 raw_smp_processor_id());
1478
f4bd954e
BH
1479 if (efx->state == STATE_DISABLED)
1480 return -EIO;
f8b87c17
BH
1481 if (efx->phy_mode & PHY_MODE_SPECIAL)
1482 return -EBUSY;
8880f4ec
BH
1483 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1484 return -EIO;
f8b87c17 1485
78c1f0a0
SH
1486 /* Notify the kernel of the link state polled during driver load,
1487 * before the monitor starts running */
1488 efx_link_status_changed(efx);
1489
8ceee660
BH
1490 efx_start_all(efx);
1491 return 0;
1492}
1493
1494/* Context: process, rtnl_lock() held.
1495 * Note that the kernel will ignore our return code; this method
1496 * should really be a void.
1497 */
1498static int efx_net_stop(struct net_device *net_dev)
1499{
767e468c 1500 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1501
1502 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1503 raw_smp_processor_id());
1504
f4bd954e
BH
1505 if (efx->state != STATE_DISABLED) {
1506 /* Stop the device and flush all the channels */
1507 efx_stop_all(efx);
1508 efx_fini_channels(efx);
1509 efx_init_channels(efx);
1510 }
8ceee660
BH
1511
1512 return 0;
1513}
1514
5b9e207c 1515/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1516static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1517{
767e468c 1518 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1519 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1520 struct net_device_stats *stats = &net_dev->stats;
1521
55edc6e6 1522 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1523 efx->type->update_stats(efx);
55edc6e6 1524 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1525
1526 stats->rx_packets = mac_stats->rx_packets;
1527 stats->tx_packets = mac_stats->tx_packets;
1528 stats->rx_bytes = mac_stats->rx_bytes;
1529 stats->tx_bytes = mac_stats->tx_bytes;
1530 stats->multicast = mac_stats->rx_multicast;
1531 stats->collisions = mac_stats->tx_collision;
1532 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1533 mac_stats->rx_length_error);
1534 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1535 stats->rx_crc_errors = mac_stats->rx_bad;
1536 stats->rx_frame_errors = mac_stats->rx_align_error;
1537 stats->rx_fifo_errors = mac_stats->rx_overflow;
1538 stats->rx_missed_errors = mac_stats->rx_missed;
1539 stats->tx_window_errors = mac_stats->tx_late_collision;
1540
1541 stats->rx_errors = (stats->rx_length_errors +
1542 stats->rx_over_errors +
1543 stats->rx_crc_errors +
1544 stats->rx_frame_errors +
1545 stats->rx_fifo_errors +
1546 stats->rx_missed_errors +
1547 mac_stats->rx_symbol_error);
1548 stats->tx_errors = (stats->tx_window_errors +
1549 mac_stats->tx_bad);
1550
1551 return stats;
1552}
1553
1554/* Context: netif_tx_lock held, BHs disabled. */
1555static void efx_watchdog(struct net_device *net_dev)
1556{
767e468c 1557 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1558
a4900ac9
BH
1559 EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n",
1560 efx->port_enabled);
8ceee660 1561
739bb23d 1562 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1563}
1564
1565
1566/* Context: process, rtnl_lock() held. */
1567static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1568{
767e468c 1569 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1570 int rc = 0;
1571
1572 EFX_ASSERT_RESET_SERIALISED(efx);
1573
1574 if (new_mtu > EFX_MAX_MTU)
1575 return -EINVAL;
1576
1577 efx_stop_all(efx);
1578
1579 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1580
1581 efx_fini_channels(efx);
d3245b28
BH
1582
1583 mutex_lock(&efx->mac_lock);
1584 /* Reconfigure the MAC before enabling the dma queues so that
1585 * the RX buffers don't overflow */
8ceee660 1586 net_dev->mtu = new_mtu;
d3245b28
BH
1587 efx->mac_op->reconfigure(efx);
1588 mutex_unlock(&efx->mac_lock);
1589
bc3c90a2 1590 efx_init_channels(efx);
8ceee660
BH
1591
1592 efx_start_all(efx);
1593 return rc;
8ceee660
BH
1594}
1595
1596static int efx_set_mac_address(struct net_device *net_dev, void *data)
1597{
767e468c 1598 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1599 struct sockaddr *addr = data;
1600 char *new_addr = addr->sa_data;
1601
1602 EFX_ASSERT_RESET_SERIALISED(efx);
1603
1604 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1605 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1606 new_addr);
8ceee660
BH
1607 return -EINVAL;
1608 }
1609
1610 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1611
1612 /* Reconfigure the MAC */
d3245b28
BH
1613 mutex_lock(&efx->mac_lock);
1614 efx->mac_op->reconfigure(efx);
1615 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1616
1617 return 0;
1618}
1619
a816f75a 1620/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1621static void efx_set_multicast_list(struct net_device *net_dev)
1622{
767e468c 1623 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1624 struct netdev_hw_addr *ha;
8ceee660 1625 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1626 u32 crc;
1627 int bit;
8ceee660 1628
8be4f3e6 1629 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1630
1631 /* Build multicast hash table */
8be4f3e6 1632 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1633 memset(mc_hash, 0xff, sizeof(*mc_hash));
1634 } else {
1635 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1636 netdev_for_each_mc_addr(ha, net_dev) {
1637 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1638 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1639 set_bit_le(bit, mc_hash->byte);
8ceee660 1640 }
8ceee660 1641
8be4f3e6
BH
1642 /* Broadcast packets go through the multicast hash filter.
1643 * ether_crc_le() of the broadcast address is 0xbe2612ff
1644 * so we always add bit 0xff to the mask.
1645 */
1646 set_bit_le(0xff, mc_hash->byte);
1647 }
a816f75a 1648
8be4f3e6
BH
1649 if (efx->port_enabled)
1650 queue_work(efx->workqueue, &efx->mac_work);
1651 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1652}
1653
c3ecb9f3
SH
1654static const struct net_device_ops efx_netdev_ops = {
1655 .ndo_open = efx_net_open,
1656 .ndo_stop = efx_net_stop,
1657 .ndo_get_stats = efx_net_stats,
1658 .ndo_tx_timeout = efx_watchdog,
1659 .ndo_start_xmit = efx_hard_start_xmit,
1660 .ndo_validate_addr = eth_validate_addr,
1661 .ndo_do_ioctl = efx_ioctl,
1662 .ndo_change_mtu = efx_change_mtu,
1663 .ndo_set_mac_address = efx_set_mac_address,
1664 .ndo_set_multicast_list = efx_set_multicast_list,
1665#ifdef CONFIG_NET_POLL_CONTROLLER
1666 .ndo_poll_controller = efx_netpoll,
1667#endif
1668};
1669
7dde596e
BH
1670static void efx_update_name(struct efx_nic *efx)
1671{
1672 strcpy(efx->name, efx->net_dev->name);
1673 efx_mtd_rename(efx);
1674 efx_set_channel_names(efx);
1675}
1676
8ceee660
BH
1677static int efx_netdev_event(struct notifier_block *this,
1678 unsigned long event, void *ptr)
1679{
d3208b5e 1680 struct net_device *net_dev = ptr;
8ceee660 1681
7dde596e
BH
1682 if (net_dev->netdev_ops == &efx_netdev_ops &&
1683 event == NETDEV_CHANGENAME)
1684 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1685
1686 return NOTIFY_DONE;
1687}
1688
1689static struct notifier_block efx_netdev_notifier = {
1690 .notifier_call = efx_netdev_event,
1691};
1692
06d5e193
BH
1693static ssize_t
1694show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1695{
1696 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1697 return sprintf(buf, "%d\n", efx->phy_type);
1698}
1699static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1700
8ceee660
BH
1701static int efx_register_netdev(struct efx_nic *efx)
1702{
1703 struct net_device *net_dev = efx->net_dev;
1704 int rc;
1705
1706 net_dev->watchdog_timeo = 5 * HZ;
1707 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1708 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1709 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1710 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1711
8ceee660 1712 /* Clear MAC statistics */
177dfcd8 1713 efx->mac_op->update_stats(efx);
8ceee660
BH
1714 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1715
7dde596e 1716 rtnl_lock();
aed0628d
BH
1717
1718 rc = dev_alloc_name(net_dev, net_dev->name);
1719 if (rc < 0)
1720 goto fail_locked;
7dde596e 1721 efx_update_name(efx);
aed0628d
BH
1722
1723 rc = register_netdevice(net_dev);
1724 if (rc)
1725 goto fail_locked;
1726
1727 /* Always start with carrier off; PHY events will detect the link */
1728 netif_carrier_off(efx->net_dev);
1729
7dde596e 1730 rtnl_unlock();
8ceee660 1731
06d5e193
BH
1732 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1733 if (rc) {
1734 EFX_ERR(efx, "failed to init net dev attributes\n");
1735 goto fail_registered;
1736 }
1737
8ceee660 1738 return 0;
06d5e193 1739
aed0628d
BH
1740fail_locked:
1741 rtnl_unlock();
1742 EFX_ERR(efx, "could not register net dev\n");
1743 return rc;
1744
06d5e193
BH
1745fail_registered:
1746 unregister_netdev(net_dev);
1747 return rc;
8ceee660
BH
1748}
1749
1750static void efx_unregister_netdev(struct efx_nic *efx)
1751{
1752 struct efx_tx_queue *tx_queue;
1753
1754 if (!efx->net_dev)
1755 return;
1756
767e468c 1757 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1758
1759 /* Free up any skbs still remaining. This has to happen before
1760 * we try to unregister the netdev as running their destructors
1761 * may be needed to get the device ref. count to 0. */
1762 efx_for_each_tx_queue(tx_queue, efx)
1763 efx_release_tx_buffers(tx_queue);
1764
55668611 1765 if (efx_dev_registered(efx)) {
8ceee660 1766 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1767 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1768 unregister_netdev(efx->net_dev);
1769 }
1770}
1771
1772/**************************************************************************
1773 *
1774 * Device reset and suspend
1775 *
1776 **************************************************************************/
1777
2467ca46
BH
1778/* Tears down the entire software state and most of the hardware state
1779 * before reset. */
d3245b28 1780void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1781{
8ceee660
BH
1782 EFX_ASSERT_RESET_SERIALISED(efx);
1783
2467ca46
BH
1784 efx_stop_all(efx);
1785 mutex_lock(&efx->mac_lock);
f4150724 1786 mutex_lock(&efx->spi_lock);
2467ca46 1787
8ceee660 1788 efx_fini_channels(efx);
4b988280
SH
1789 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1790 efx->phy_op->fini(efx);
ef2b90ee 1791 efx->type->fini(efx);
8ceee660
BH
1792}
1793
2467ca46
BH
1794/* This function will always ensure that the locks acquired in
1795 * efx_reset_down() are released. A failure return code indicates
1796 * that we were unable to reinitialise the hardware, and the
1797 * driver should be disabled. If ok is false, then the rx and tx
1798 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1799int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1800{
1801 int rc;
1802
2467ca46 1803 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1804
ef2b90ee 1805 rc = efx->type->init(efx);
8ceee660 1806 if (rc) {
2467ca46 1807 EFX_ERR(efx, "failed to initialise NIC\n");
eb9f6744 1808 goto fail;
8ceee660
BH
1809 }
1810
eb9f6744
BH
1811 if (!ok)
1812 goto fail;
1813
4b988280 1814 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1815 rc = efx->phy_op->init(efx);
1816 if (rc)
1817 goto fail;
1818 if (efx->phy_op->reconfigure(efx))
1819 EFX_ERR(efx, "could not restore PHY settings\n");
4b988280
SH
1820 }
1821
eb9f6744 1822 efx->mac_op->reconfigure(efx);
8ceee660 1823
eb9f6744
BH
1824 efx_init_channels(efx);
1825
1826 mutex_unlock(&efx->spi_lock);
1827 mutex_unlock(&efx->mac_lock);
1828
1829 efx_start_all(efx);
1830
1831 return 0;
1832
1833fail:
1834 efx->port_initialized = false;
2467ca46 1835
f4150724 1836 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1837 mutex_unlock(&efx->mac_lock);
1838
8ceee660
BH
1839 return rc;
1840}
1841
eb9f6744
BH
1842/* Reset the NIC using the specified method. Note that the reset may
1843 * fail, in which case the card will be left in an unusable state.
8ceee660 1844 *
eb9f6744 1845 * Caller must hold the rtnl_lock.
8ceee660 1846 */
eb9f6744 1847int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1848{
eb9f6744
BH
1849 int rc, rc2;
1850 bool disabled;
8ceee660 1851
c459302d 1852 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1853
d3245b28 1854 efx_reset_down(efx, method);
8ceee660 1855
ef2b90ee 1856 rc = efx->type->reset(efx, method);
8ceee660
BH
1857 if (rc) {
1858 EFX_ERR(efx, "failed to reset hardware\n");
eb9f6744 1859 goto out;
8ceee660
BH
1860 }
1861
1862 /* Allow resets to be rescheduled. */
1863 efx->reset_pending = RESET_TYPE_NONE;
1864
1865 /* Reinitialise bus-mastering, which may have been turned off before
1866 * the reset was scheduled. This is still appropriate, even in the
1867 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1868 * can respond to requests. */
1869 pci_set_master(efx->pci_dev);
1870
eb9f6744 1871out:
8ceee660 1872 /* Leave device stopped if necessary */
eb9f6744
BH
1873 disabled = rc || method == RESET_TYPE_DISABLE;
1874 rc2 = efx_reset_up(efx, method, !disabled);
1875 if (rc2) {
1876 disabled = true;
1877 if (!rc)
1878 rc = rc2;
8ceee660
BH
1879 }
1880
eb9f6744 1881 if (disabled) {
f49a4589 1882 dev_close(efx->net_dev);
f4bd954e
BH
1883 EFX_ERR(efx, "has been disabled\n");
1884 efx->state = STATE_DISABLED;
f4bd954e
BH
1885 } else {
1886 EFX_LOG(efx, "reset complete\n");
1887 }
8ceee660
BH
1888 return rc;
1889}
1890
1891/* The worker thread exists so that code that cannot sleep can
1892 * schedule a reset for later.
1893 */
1894static void efx_reset_work(struct work_struct *data)
1895{
eb9f6744 1896 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1897
319ba649
SH
1898 if (efx->reset_pending == RESET_TYPE_NONE)
1899 return;
1900
eb9f6744
BH
1901 /* If we're not RUNNING then don't reset. Leave the reset_pending
1902 * flag set so that efx_pci_probe_main will be retried */
1903 if (efx->state != STATE_RUNNING) {
1904 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1905 return;
1906 }
1907
1908 rtnl_lock();
f49a4589 1909 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 1910 rtnl_unlock();
8ceee660
BH
1911}
1912
1913void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1914{
1915 enum reset_type method;
1916
1917 if (efx->reset_pending != RESET_TYPE_NONE) {
1918 EFX_INFO(efx, "quenching already scheduled reset\n");
1919 return;
1920 }
1921
1922 switch (type) {
1923 case RESET_TYPE_INVISIBLE:
1924 case RESET_TYPE_ALL:
1925 case RESET_TYPE_WORLD:
1926 case RESET_TYPE_DISABLE:
1927 method = type;
1928 break;
1929 case RESET_TYPE_RX_RECOVERY:
1930 case RESET_TYPE_RX_DESC_FETCH:
1931 case RESET_TYPE_TX_DESC_FETCH:
1932 case RESET_TYPE_TX_SKIP:
1933 method = RESET_TYPE_INVISIBLE;
1934 break;
8880f4ec 1935 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1936 default:
1937 method = RESET_TYPE_ALL;
1938 break;
1939 }
1940
1941 if (method != type)
c459302d
BH
1942 EFX_LOG(efx, "scheduling %s reset for %s\n",
1943 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1944 else
c459302d 1945 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1946
1947 efx->reset_pending = method;
1948
8880f4ec
BH
1949 /* efx_process_channel() will no longer read events once a
1950 * reset is scheduled. So switch back to poll'd MCDI completions. */
1951 efx_mcdi_mode_poll(efx);
1952
1ab00629 1953 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1954}
1955
1956/**************************************************************************
1957 *
1958 * List of NICs we support
1959 *
1960 **************************************************************************/
1961
1962/* PCI device ID table */
a3aa1884 1963static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1964 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1965 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1966 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1967 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1968 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1969 .driver_data = (unsigned long) &siena_a0_nic_type},
1970 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1971 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1972 {0} /* end of list */
1973};
1974
1975/**************************************************************************
1976 *
3759433d 1977 * Dummy PHY/MAC operations
8ceee660 1978 *
01aad7b6 1979 * Can be used for some unimplemented operations
8ceee660
BH
1980 * Needed so all function pointers are valid and do not have to be tested
1981 * before use
1982 *
1983 **************************************************************************/
1984int efx_port_dummy_op_int(struct efx_nic *efx)
1985{
1986 return 0;
1987}
1988void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1989void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1990{
1991}
fdaa9aed
SH
1992bool efx_port_dummy_op_poll(struct efx_nic *efx)
1993{
1994 return false;
1995}
8ceee660
BH
1996
1997static struct efx_phy_operations efx_dummy_phy_operations = {
1998 .init = efx_port_dummy_op_int,
d3245b28 1999 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2000 .poll = efx_port_dummy_op_poll,
8ceee660 2001 .fini = efx_port_dummy_op_void,
8ceee660
BH
2002};
2003
8ceee660
BH
2004/**************************************************************************
2005 *
2006 * Data housekeeping
2007 *
2008 **************************************************************************/
2009
2010/* This zeroes out and then fills in the invariants in a struct
2011 * efx_nic (including all sub-structures).
2012 */
2013static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2014 struct pci_dev *pci_dev, struct net_device *net_dev)
2015{
2016 struct efx_channel *channel;
2017 struct efx_tx_queue *tx_queue;
2018 struct efx_rx_queue *rx_queue;
1ab00629 2019 int i;
8ceee660
BH
2020
2021 /* Initialise common structures */
2022 memset(efx, 0, sizeof(*efx));
2023 spin_lock_init(&efx->biu_lock);
ab867461 2024 mutex_init(&efx->mdio_lock);
f4150724 2025 mutex_init(&efx->spi_lock);
76884835
BH
2026#ifdef CONFIG_SFC_MTD
2027 INIT_LIST_HEAD(&efx->mtd_list);
2028#endif
8ceee660
BH
2029 INIT_WORK(&efx->reset_work, efx_reset_work);
2030 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2031 efx->pci_dev = pci_dev;
2032 efx->state = STATE_INIT;
2033 efx->reset_pending = RESET_TYPE_NONE;
2034 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2035
2036 efx->net_dev = net_dev;
dc8cfa55 2037 efx->rx_checksum_enabled = true;
8ceee660
BH
2038 spin_lock_init(&efx->stats_lock);
2039 mutex_init(&efx->mac_lock);
b895d73e 2040 efx->mac_op = type->default_mac_ops;
8ceee660 2041 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2042 efx->mdio.dev = net_dev;
766ca0fa 2043 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2044
2045 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2046 channel = &efx->channel[i];
2047 channel->efx = efx;
2048 channel->channel = i;
dc8cfa55 2049 channel->work_pending = false;
a4900ac9
BH
2050 spin_lock_init(&channel->tx_stop_lock);
2051 atomic_set(&channel->tx_stop_count, 1);
8ceee660 2052 }
a4900ac9 2053 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
8ceee660
BH
2054 tx_queue = &efx->tx_queue[i];
2055 tx_queue->efx = efx;
2056 tx_queue->queue = i;
2057 tx_queue->buffer = NULL;
2058 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2059 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2060 }
2061 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2062 rx_queue = &efx->rx_queue[i];
2063 rx_queue->efx = efx;
2064 rx_queue->queue = i;
2065 rx_queue->channel = &efx->channel[0]; /* for safety */
2066 rx_queue->buffer = NULL;
2067 spin_lock_init(&rx_queue->add_lock);
2068 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2069 }
2070
2071 efx->type = type;
2072
8ceee660 2073 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2074 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2075
8ceee660
BH
2076 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2077
2078 /* Higher numbered interrupt modes are less capable! */
2079 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2080 interrupt_mode);
2081
6977dc63
BH
2082 /* Would be good to use the net_dev name, but we're too early */
2083 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2084 pci_name(pci_dev));
2085 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2086 if (!efx->workqueue)
2087 return -ENOMEM;
8d9853d9 2088
8ceee660 2089 return 0;
8ceee660
BH
2090}
2091
2092static void efx_fini_struct(struct efx_nic *efx)
2093{
2094 if (efx->workqueue) {
2095 destroy_workqueue(efx->workqueue);
2096 efx->workqueue = NULL;
2097 }
2098}
2099
2100/**************************************************************************
2101 *
2102 * PCI interface
2103 *
2104 **************************************************************************/
2105
2106/* Main body of final NIC shutdown code
2107 * This is called only at module unload (or hotplug removal).
2108 */
2109static void efx_pci_remove_main(struct efx_nic *efx)
2110{
152b6a62 2111 efx_nic_fini_interrupt(efx);
8ceee660
BH
2112 efx_fini_channels(efx);
2113 efx_fini_port(efx);
ef2b90ee 2114 efx->type->fini(efx);
8ceee660
BH
2115 efx_fini_napi(efx);
2116 efx_remove_all(efx);
2117}
2118
2119/* Final NIC shutdown
2120 * This is called only at module unload (or hotplug removal).
2121 */
2122static void efx_pci_remove(struct pci_dev *pci_dev)
2123{
2124 struct efx_nic *efx;
2125
2126 efx = pci_get_drvdata(pci_dev);
2127 if (!efx)
2128 return;
2129
2130 /* Mark the NIC as fini, then stop the interface */
2131 rtnl_lock();
2132 efx->state = STATE_FINI;
2133 dev_close(efx->net_dev);
2134
2135 /* Allow any queued efx_resets() to complete */
2136 rtnl_unlock();
2137
8ceee660
BH
2138 efx_unregister_netdev(efx);
2139
7dde596e
BH
2140 efx_mtd_remove(efx);
2141
8ceee660
BH
2142 /* Wait for any scheduled resets to complete. No more will be
2143 * scheduled from this point because efx_stop_all() has been
2144 * called, we are no longer registered with driverlink, and
2145 * the net_device's have been removed. */
1ab00629 2146 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2147
2148 efx_pci_remove_main(efx);
2149
8ceee660
BH
2150 efx_fini_io(efx);
2151 EFX_LOG(efx, "shutdown successful\n");
2152
2153 pci_set_drvdata(pci_dev, NULL);
2154 efx_fini_struct(efx);
2155 free_netdev(efx->net_dev);
2156};
2157
2158/* Main body of NIC initialisation
2159 * This is called at module load (or hotplug insertion, theoretically).
2160 */
2161static int efx_pci_probe_main(struct efx_nic *efx)
2162{
2163 int rc;
2164
2165 /* Do start-of-day initialisation */
2166 rc = efx_probe_all(efx);
2167 if (rc)
2168 goto fail1;
2169
2170 rc = efx_init_napi(efx);
2171 if (rc)
2172 goto fail2;
2173
ef2b90ee 2174 rc = efx->type->init(efx);
8ceee660
BH
2175 if (rc) {
2176 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2177 goto fail3;
8ceee660
BH
2178 }
2179
2180 rc = efx_init_port(efx);
2181 if (rc) {
2182 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2183 goto fail4;
8ceee660
BH
2184 }
2185
bc3c90a2 2186 efx_init_channels(efx);
8ceee660 2187
152b6a62 2188 rc = efx_nic_init_interrupt(efx);
8ceee660 2189 if (rc)
278c0621 2190 goto fail5;
8ceee660
BH
2191
2192 return 0;
2193
278c0621 2194 fail5:
bc3c90a2 2195 efx_fini_channels(efx);
8ceee660 2196 efx_fini_port(efx);
8ceee660 2197 fail4:
ef2b90ee 2198 efx->type->fini(efx);
8ceee660
BH
2199 fail3:
2200 efx_fini_napi(efx);
2201 fail2:
2202 efx_remove_all(efx);
2203 fail1:
2204 return rc;
2205}
2206
2207/* NIC initialisation
2208 *
2209 * This is called at module load (or hotplug insertion,
2210 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2211 * sets up and registers the network devices with the kernel and hooks
2212 * the interrupt service routine. It does not prepare the device for
2213 * transmission; this is left to the first time one of the network
2214 * interfaces is brought up (i.e. efx_net_open).
2215 */
2216static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2217 const struct pci_device_id *entry)
2218{
2219 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2220 struct net_device *net_dev;
2221 struct efx_nic *efx;
2222 int i, rc;
2223
2224 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2225 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2226 if (!net_dev)
2227 return -ENOMEM;
c383b537 2228 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2229 NETIF_F_HIGHDMA | NETIF_F_TSO |
2230 NETIF_F_GRO);
738a8f4b
BH
2231 if (type->offload_features & NETIF_F_V6_CSUM)
2232 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2233 /* Mask for features that also apply to VLAN devices */
2234 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2235 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2236 efx = netdev_priv(net_dev);
8ceee660
BH
2237 pci_set_drvdata(pci_dev, efx);
2238 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2239 if (rc)
2240 goto fail1;
2241
2242 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2243
2244 /* Set up basic I/O (BAR mappings etc) */
2245 rc = efx_init_io(efx);
2246 if (rc)
2247 goto fail2;
2248
2249 /* No serialisation is required with the reset path because
2250 * we're in STATE_INIT. */
2251 for (i = 0; i < 5; i++) {
2252 rc = efx_pci_probe_main(efx);
8ceee660
BH
2253
2254 /* Serialise against efx_reset(). No more resets will be
2255 * scheduled since efx_stop_all() has been called, and we
2256 * have not and never have been registered with either
2257 * the rtnetlink or driverlink layers. */
1ab00629 2258 cancel_work_sync(&efx->reset_work);
8ceee660 2259
fa402b2e
SH
2260 if (rc == 0) {
2261 if (efx->reset_pending != RESET_TYPE_NONE) {
2262 /* If there was a scheduled reset during
2263 * probe, the NIC is probably hosed anyway */
2264 efx_pci_remove_main(efx);
2265 rc = -EIO;
2266 } else {
2267 break;
2268 }
2269 }
2270
8ceee660
BH
2271 /* Retry if a recoverably reset event has been scheduled */
2272 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2273 (efx->reset_pending != RESET_TYPE_ALL))
2274 goto fail3;
2275
2276 efx->reset_pending = RESET_TYPE_NONE;
2277 }
2278
2279 if (rc) {
2280 EFX_ERR(efx, "Could not reset NIC\n");
2281 goto fail4;
2282 }
2283
55edc6e6
BH
2284 /* Switch to the running state before we expose the device to the OS,
2285 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2286 efx->state = STATE_RUNNING;
7dde596e 2287
8ceee660
BH
2288 rc = efx_register_netdev(efx);
2289 if (rc)
2290 goto fail5;
2291
2292 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2293
2294 rtnl_lock();
2295 efx_mtd_probe(efx); /* allowed to fail */
2296 rtnl_unlock();
8ceee660
BH
2297 return 0;
2298
2299 fail5:
2300 efx_pci_remove_main(efx);
2301 fail4:
2302 fail3:
2303 efx_fini_io(efx);
2304 fail2:
2305 efx_fini_struct(efx);
2306 fail1:
5e2a911c 2307 WARN_ON(rc > 0);
8ceee660
BH
2308 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2309 free_netdev(net_dev);
2310 return rc;
2311}
2312
89c758fa
BH
2313static int efx_pm_freeze(struct device *dev)
2314{
2315 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2316
2317 efx->state = STATE_FINI;
2318
2319 netif_device_detach(efx->net_dev);
2320
2321 efx_stop_all(efx);
2322 efx_fini_channels(efx);
2323
2324 return 0;
2325}
2326
2327static int efx_pm_thaw(struct device *dev)
2328{
2329 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2330
2331 efx->state = STATE_INIT;
2332
2333 efx_init_channels(efx);
2334
2335 mutex_lock(&efx->mac_lock);
2336 efx->phy_op->reconfigure(efx);
2337 mutex_unlock(&efx->mac_lock);
2338
2339 efx_start_all(efx);
2340
2341 netif_device_attach(efx->net_dev);
2342
2343 efx->state = STATE_RUNNING;
2344
2345 efx->type->resume_wol(efx);
2346
319ba649
SH
2347 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2348 queue_work(reset_workqueue, &efx->reset_work);
2349
89c758fa
BH
2350 return 0;
2351}
2352
2353static int efx_pm_poweroff(struct device *dev)
2354{
2355 struct pci_dev *pci_dev = to_pci_dev(dev);
2356 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2357
2358 efx->type->fini(efx);
2359
2360 efx->reset_pending = RESET_TYPE_NONE;
2361
2362 pci_save_state(pci_dev);
2363 return pci_set_power_state(pci_dev, PCI_D3hot);
2364}
2365
2366/* Used for both resume and restore */
2367static int efx_pm_resume(struct device *dev)
2368{
2369 struct pci_dev *pci_dev = to_pci_dev(dev);
2370 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2371 int rc;
2372
2373 rc = pci_set_power_state(pci_dev, PCI_D0);
2374 if (rc)
2375 return rc;
2376 pci_restore_state(pci_dev);
2377 rc = pci_enable_device(pci_dev);
2378 if (rc)
2379 return rc;
2380 pci_set_master(efx->pci_dev);
2381 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2382 if (rc)
2383 return rc;
2384 rc = efx->type->init(efx);
2385 if (rc)
2386 return rc;
2387 efx_pm_thaw(dev);
2388 return 0;
2389}
2390
2391static int efx_pm_suspend(struct device *dev)
2392{
2393 int rc;
2394
2395 efx_pm_freeze(dev);
2396 rc = efx_pm_poweroff(dev);
2397 if (rc)
2398 efx_pm_resume(dev);
2399 return rc;
2400}
2401
2402static struct dev_pm_ops efx_pm_ops = {
2403 .suspend = efx_pm_suspend,
2404 .resume = efx_pm_resume,
2405 .freeze = efx_pm_freeze,
2406 .thaw = efx_pm_thaw,
2407 .poweroff = efx_pm_poweroff,
2408 .restore = efx_pm_resume,
2409};
2410
8ceee660
BH
2411static struct pci_driver efx_pci_driver = {
2412 .name = EFX_DRIVER_NAME,
2413 .id_table = efx_pci_table,
2414 .probe = efx_pci_probe,
2415 .remove = efx_pci_remove,
89c758fa 2416 .driver.pm = &efx_pm_ops,
8ceee660
BH
2417};
2418
2419/**************************************************************************
2420 *
2421 * Kernel module interface
2422 *
2423 *************************************************************************/
2424
2425module_param(interrupt_mode, uint, 0444);
2426MODULE_PARM_DESC(interrupt_mode,
2427 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2428
2429static int __init efx_init_module(void)
2430{
2431 int rc;
2432
2433 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2434
2435 rc = register_netdevice_notifier(&efx_netdev_notifier);
2436 if (rc)
2437 goto err_notifier;
2438
2439 refill_workqueue = create_workqueue("sfc_refill");
2440 if (!refill_workqueue) {
2441 rc = -ENOMEM;
2442 goto err_refill;
2443 }
1ab00629
SH
2444 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2445 if (!reset_workqueue) {
2446 rc = -ENOMEM;
2447 goto err_reset;
2448 }
8ceee660
BH
2449
2450 rc = pci_register_driver(&efx_pci_driver);
2451 if (rc < 0)
2452 goto err_pci;
2453
2454 return 0;
2455
2456 err_pci:
1ab00629
SH
2457 destroy_workqueue(reset_workqueue);
2458 err_reset:
8ceee660
BH
2459 destroy_workqueue(refill_workqueue);
2460 err_refill:
2461 unregister_netdevice_notifier(&efx_netdev_notifier);
2462 err_notifier:
2463 return rc;
2464}
2465
2466static void __exit efx_exit_module(void)
2467{
2468 printk(KERN_INFO "Solarflare NET driver unloading\n");
2469
2470 pci_unregister_driver(&efx_pci_driver);
1ab00629 2471 destroy_workqueue(reset_workqueue);
8ceee660
BH
2472 destroy_workqueue(refill_workqueue);
2473 unregister_netdevice_notifier(&efx_netdev_notifier);
2474
2475}
2476
2477module_init(efx_init_module);
2478module_exit(efx_exit_module);
2479
906bb26c
BH
2480MODULE_AUTHOR("Solarflare Communications and "
2481 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2482MODULE_DESCRIPTION("Solarflare Communications network driver");
2483MODULE_LICENSE("GPL");
2484MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.473505 seconds and 5 git commands to generate.