niu: Use netif_set_real_num_{rx,tx}_queues()
[deliverable/linux.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab 116static unsigned int separate_tx_channels;
8313aca3 117module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
127 * monitor. On Falcon-based NICs, this will:
128 * - Check the on-board hardware monitor;
129 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660
BH
130 */
131unsigned int efx_monitor_interval = 1 * HZ;
132
8ceee660
BH
133/* This controls whether or not the driver will initialise devices
134 * with invalid MAC addresses stored in the EEPROM or flash. If true,
135 * such devices will be initialised with a random locally-generated
136 * MAC address. This allows for loading the sfc_mtd driver to
137 * reprogram the flash, even if the flash contents (including the MAC
138 * address) have previously been erased.
139 */
140static unsigned int allow_bad_hwaddr;
141
142/* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
144 *
145 * The default for RX should strike a balance between increasing the
146 * round-trip latency and reducing overhead.
147 */
148static unsigned int rx_irq_mod_usec = 60;
149
150/* Initial interrupt moderation settings. They can be modified after
151 * module load with ethtool.
152 *
153 * This default is chosen to ensure that a 10G link does not go idle
154 * while a TX queue is stopped after it has become full. A queue is
155 * restarted when it drops below half full. The time this takes (assuming
156 * worst case 3 descriptors per packet and 1024 descriptors) is
157 * 512 / 3 * 1.2 = 205 usec.
158 */
159static unsigned int tx_irq_mod_usec = 150;
160
161/* This is the first interrupt mode to try out of:
162 * 0 => MSI-X
163 * 1 => MSI
164 * 2 => legacy
165 */
166static unsigned int interrupt_mode;
167
168/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
169 * i.e. the number of CPUs among which we may distribute simultaneous
170 * interrupt handling.
171 *
172 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
173 * The default (0) means to assign an interrupt to each package (level II cache)
174 */
175static unsigned int rss_cpus;
176module_param(rss_cpus, uint, 0444);
177MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
178
84ae48fe
BH
179static int phy_flash_cfg;
180module_param(phy_flash_cfg, int, 0644);
181MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
182
6fb70fd1
BH
183static unsigned irq_adapt_low_thresh = 10000;
184module_param(irq_adapt_low_thresh, uint, 0644);
185MODULE_PARM_DESC(irq_adapt_low_thresh,
186 "Threshold score for reducing IRQ moderation");
187
188static unsigned irq_adapt_high_thresh = 20000;
189module_param(irq_adapt_high_thresh, uint, 0644);
190MODULE_PARM_DESC(irq_adapt_high_thresh,
191 "Threshold score for increasing IRQ moderation");
192
62776d03
BH
193static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
194 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
195 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
196 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
197module_param(debug, uint, 0);
198MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
199
8ceee660
BH
200/**************************************************************************
201 *
202 * Utility functions and prototypes
203 *
204 *************************************************************************/
4642610c
BH
205
206static void efx_remove_channels(struct efx_nic *efx);
8ceee660
BH
207static void efx_remove_port(struct efx_nic *efx);
208static void efx_fini_napi(struct efx_nic *efx);
4642610c
BH
209static void efx_fini_struct(struct efx_nic *efx);
210static void efx_start_all(struct efx_nic *efx);
211static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
212
213#define EFX_ASSERT_RESET_SERIALISED(efx) \
214 do { \
332c1ce9
BH
215 if ((efx->state == STATE_RUNNING) || \
216 (efx->state == STATE_DISABLED)) \
8ceee660
BH
217 ASSERT_RTNL(); \
218 } while (0)
219
220/**************************************************************************
221 *
222 * Event queue processing
223 *
224 *************************************************************************/
225
226/* Process channel's event queue
227 *
228 * This function is responsible for processing the event queue of a
229 * single channel. The caller must guarantee that this function will
230 * never be concurrently called more than once on the same channel,
231 * though different channels may be being processed concurrently.
232 */
fa236e18 233static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 234{
42cbe2d7 235 struct efx_nic *efx = channel->efx;
fa236e18 236 int spent;
8ceee660 237
42cbe2d7 238 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 239 !channel->enabled))
42cbe2d7 240 return 0;
8ceee660 241
fa236e18
BH
242 spent = efx_nic_process_eventq(channel, budget);
243 if (spent == 0)
42cbe2d7 244 return 0;
8ceee660
BH
245
246 /* Deliver last RX packet. */
247 if (channel->rx_pkt) {
248 __efx_rx_packet(channel, channel->rx_pkt,
249 channel->rx_pkt_csummed);
250 channel->rx_pkt = NULL;
251 }
252
8ceee660
BH
253 efx_rx_strategy(channel);
254
f7d12cdc 255 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 256
fa236e18 257 return spent;
8ceee660
BH
258}
259
260/* Mark channel as finished processing
261 *
262 * Note that since we will not receive further interrupts for this
263 * channel before we finish processing and call the eventq_read_ack()
264 * method, there is no need to use the interrupt hold-off timers.
265 */
266static inline void efx_channel_processed(struct efx_channel *channel)
267{
5b9e207c
BH
268 /* The interrupt handler for this channel may set work_pending
269 * as soon as we acknowledge the events we've seen. Make sure
270 * it's cleared before then. */
dc8cfa55 271 channel->work_pending = false;
5b9e207c
BH
272 smp_wmb();
273
152b6a62 274 efx_nic_eventq_read_ack(channel);
8ceee660
BH
275}
276
277/* NAPI poll handler
278 *
279 * NAPI guarantees serialisation of polls of the same device, which
280 * provides the guarantee required by efx_process_channel().
281 */
282static int efx_poll(struct napi_struct *napi, int budget)
283{
284 struct efx_channel *channel =
285 container_of(napi, struct efx_channel, napi_str);
62776d03 286 struct efx_nic *efx = channel->efx;
fa236e18 287 int spent;
8ceee660 288
62776d03
BH
289 netif_vdbg(efx, intr, efx->net_dev,
290 "channel %d NAPI poll executing on CPU %d\n",
291 channel->channel, raw_smp_processor_id());
8ceee660 292
fa236e18 293 spent = efx_process_channel(channel, budget);
8ceee660 294
fa236e18 295 if (spent < budget) {
a4900ac9 296 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
297 efx->irq_rx_adaptive &&
298 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
299 if (unlikely(channel->irq_mod_score <
300 irq_adapt_low_thresh)) {
0d86ebd8
BH
301 if (channel->irq_moderation > 1) {
302 channel->irq_moderation -= 1;
ef2b90ee 303 efx->type->push_irq_moderation(channel);
0d86ebd8 304 }
6fb70fd1
BH
305 } else if (unlikely(channel->irq_mod_score >
306 irq_adapt_high_thresh)) {
0d86ebd8
BH
307 if (channel->irq_moderation <
308 efx->irq_rx_moderation) {
309 channel->irq_moderation += 1;
ef2b90ee 310 efx->type->push_irq_moderation(channel);
0d86ebd8 311 }
6fb70fd1 312 }
6fb70fd1
BH
313 channel->irq_count = 0;
314 channel->irq_mod_score = 0;
315 }
316
8ceee660 317 /* There is no race here; although napi_disable() will
288379f0 318 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
319 * since efx_channel_processed() will have no effect if
320 * interrupts have already been disabled.
321 */
288379f0 322 napi_complete(napi);
8ceee660
BH
323 efx_channel_processed(channel);
324 }
325
fa236e18 326 return spent;
8ceee660
BH
327}
328
329/* Process the eventq of the specified channel immediately on this CPU
330 *
331 * Disable hardware generated interrupts, wait for any existing
332 * processing to finish, then directly poll (and ack ) the eventq.
333 * Finally reenable NAPI and interrupts.
334 *
335 * Since we are touching interrupts the caller should hold the suspend lock
336 */
337void efx_process_channel_now(struct efx_channel *channel)
338{
339 struct efx_nic *efx = channel->efx;
340
8313aca3 341 BUG_ON(channel->channel >= efx->n_channels);
8ceee660
BH
342 BUG_ON(!channel->enabled);
343
344 /* Disable interrupts and wait for ISRs to complete */
152b6a62 345 efx_nic_disable_interrupts(efx);
8ceee660
BH
346 if (efx->legacy_irq)
347 synchronize_irq(efx->legacy_irq);
64ee3120 348 if (channel->irq)
8ceee660
BH
349 synchronize_irq(channel->irq);
350
351 /* Wait for any NAPI processing to complete */
352 napi_disable(&channel->napi_str);
353
354 /* Poll the channel */
ecc910f5 355 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
356
357 /* Ack the eventq. This may cause an interrupt to be generated
358 * when they are reenabled */
359 efx_channel_processed(channel);
360
361 napi_enable(&channel->napi_str);
152b6a62 362 efx_nic_enable_interrupts(efx);
8ceee660
BH
363}
364
365/* Create event queue
366 * Event queue memory allocations are done only once. If the channel
367 * is reset, the memory buffer will be reused; this guards against
368 * errors during channel reset and also simplifies interrupt handling.
369 */
370static int efx_probe_eventq(struct efx_channel *channel)
371{
ecc910f5
SH
372 struct efx_nic *efx = channel->efx;
373 unsigned long entries;
374
62776d03
BH
375 netif_dbg(channel->efx, probe, channel->efx->net_dev,
376 "chan %d create event queue\n", channel->channel);
8ceee660 377
ecc910f5
SH
378 /* Build an event queue with room for one event per tx and rx buffer,
379 * plus some extra for link state events and MCDI completions. */
380 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
381 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
382 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
383
152b6a62 384 return efx_nic_probe_eventq(channel);
8ceee660
BH
385}
386
387/* Prepare channel's event queue */
bc3c90a2 388static void efx_init_eventq(struct efx_channel *channel)
8ceee660 389{
62776d03
BH
390 netif_dbg(channel->efx, drv, channel->efx->net_dev,
391 "chan %d init event queue\n", channel->channel);
8ceee660
BH
392
393 channel->eventq_read_ptr = 0;
394
152b6a62 395 efx_nic_init_eventq(channel);
8ceee660
BH
396}
397
398static void efx_fini_eventq(struct efx_channel *channel)
399{
62776d03
BH
400 netif_dbg(channel->efx, drv, channel->efx->net_dev,
401 "chan %d fini event queue\n", channel->channel);
8ceee660 402
152b6a62 403 efx_nic_fini_eventq(channel);
8ceee660
BH
404}
405
406static void efx_remove_eventq(struct efx_channel *channel)
407{
62776d03
BH
408 netif_dbg(channel->efx, drv, channel->efx->net_dev,
409 "chan %d remove event queue\n", channel->channel);
8ceee660 410
152b6a62 411 efx_nic_remove_eventq(channel);
8ceee660
BH
412}
413
414/**************************************************************************
415 *
416 * Channel handling
417 *
418 *************************************************************************/
419
4642610c
BH
420/* Allocate and initialise a channel structure, optionally copying
421 * parameters (but not resources) from an old channel structure. */
422static struct efx_channel *
423efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
424{
425 struct efx_channel *channel;
426 struct efx_rx_queue *rx_queue;
427 struct efx_tx_queue *tx_queue;
428 int j;
429
430 if (old_channel) {
431 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
432 if (!channel)
433 return NULL;
434
435 *channel = *old_channel;
436
437 memset(&channel->eventq, 0, sizeof(channel->eventq));
438
439 rx_queue = &channel->rx_queue;
440 rx_queue->buffer = NULL;
441 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
442
443 for (j = 0; j < EFX_TXQ_TYPES; j++) {
444 tx_queue = &channel->tx_queue[j];
445 if (tx_queue->channel)
446 tx_queue->channel = channel;
447 tx_queue->buffer = NULL;
448 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
449 }
450 } else {
451 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
452 if (!channel)
453 return NULL;
454
455 channel->efx = efx;
456 channel->channel = i;
457
458 for (j = 0; j < EFX_TXQ_TYPES; j++) {
459 tx_queue = &channel->tx_queue[j];
460 tx_queue->efx = efx;
461 tx_queue->queue = i * EFX_TXQ_TYPES + j;
462 tx_queue->channel = channel;
463 }
464 }
465
466 spin_lock_init(&channel->tx_stop_lock);
467 atomic_set(&channel->tx_stop_count, 1);
468
469 rx_queue = &channel->rx_queue;
470 rx_queue->efx = efx;
471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 (unsigned long)rx_queue);
473
474 return channel;
475}
476
8ceee660
BH
477static int efx_probe_channel(struct efx_channel *channel)
478{
479 struct efx_tx_queue *tx_queue;
480 struct efx_rx_queue *rx_queue;
481 int rc;
482
62776d03
BH
483 netif_dbg(channel->efx, probe, channel->efx->net_dev,
484 "creating channel %d\n", channel->channel);
8ceee660
BH
485
486 rc = efx_probe_eventq(channel);
487 if (rc)
488 goto fail1;
489
490 efx_for_each_channel_tx_queue(tx_queue, channel) {
491 rc = efx_probe_tx_queue(tx_queue);
492 if (rc)
493 goto fail2;
494 }
495
496 efx_for_each_channel_rx_queue(rx_queue, channel) {
497 rc = efx_probe_rx_queue(rx_queue);
498 if (rc)
499 goto fail3;
500 }
501
502 channel->n_rx_frm_trunc = 0;
503
504 return 0;
505
506 fail3:
507 efx_for_each_channel_rx_queue(rx_queue, channel)
508 efx_remove_rx_queue(rx_queue);
509 fail2:
510 efx_for_each_channel_tx_queue(tx_queue, channel)
511 efx_remove_tx_queue(tx_queue);
512 fail1:
513 return rc;
514}
515
516
56536e9c
BH
517static void efx_set_channel_names(struct efx_nic *efx)
518{
519 struct efx_channel *channel;
520 const char *type = "";
521 int number;
522
523 efx_for_each_channel(channel, efx) {
524 number = channel->channel;
a4900ac9
BH
525 if (efx->n_channels > efx->n_rx_channels) {
526 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
527 type = "-rx";
528 } else {
529 type = "-tx";
a4900ac9 530 number -= efx->n_rx_channels;
56536e9c
BH
531 }
532 }
4642610c
BH
533 snprintf(efx->channel_name[channel->channel],
534 sizeof(efx->channel_name[0]),
56536e9c
BH
535 "%s%s-%d", efx->name, type, number);
536 }
537}
538
4642610c
BH
539static int efx_probe_channels(struct efx_nic *efx)
540{
541 struct efx_channel *channel;
542 int rc;
543
544 /* Restart special buffer allocation */
545 efx->next_buffer_table = 0;
546
547 efx_for_each_channel(channel, efx) {
548 rc = efx_probe_channel(channel);
549 if (rc) {
550 netif_err(efx, probe, efx->net_dev,
551 "failed to create channel %d\n",
552 channel->channel);
553 goto fail;
554 }
555 }
556 efx_set_channel_names(efx);
557
558 return 0;
559
560fail:
561 efx_remove_channels(efx);
562 return rc;
563}
564
8ceee660
BH
565/* Channels are shutdown and reinitialised whilst the NIC is running
566 * to propagate configuration changes (mtu, checksum offload), or
567 * to clear hardware error conditions
568 */
bc3c90a2 569static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
570{
571 struct efx_tx_queue *tx_queue;
572 struct efx_rx_queue *rx_queue;
573 struct efx_channel *channel;
8ceee660 574
f7f13b0b
BH
575 /* Calculate the rx buffer allocation parameters required to
576 * support the current MTU, including padding for header
577 * alignment and overruns.
578 */
579 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
580 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 581 efx->type->rx_buffer_hash_size +
f7f13b0b 582 efx->type->rx_buffer_padding);
62b330ba
SH
583 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
584 sizeof(struct efx_rx_page_state));
8ceee660
BH
585
586 /* Initialise the channels */
587 efx_for_each_channel(channel, efx) {
62776d03
BH
588 netif_dbg(channel->efx, drv, channel->efx->net_dev,
589 "init chan %d\n", channel->channel);
8ceee660 590
bc3c90a2 591 efx_init_eventq(channel);
8ceee660 592
bc3c90a2
BH
593 efx_for_each_channel_tx_queue(tx_queue, channel)
594 efx_init_tx_queue(tx_queue);
8ceee660
BH
595
596 /* The rx buffer allocation strategy is MTU dependent */
597 efx_rx_strategy(channel);
598
bc3c90a2
BH
599 efx_for_each_channel_rx_queue(rx_queue, channel)
600 efx_init_rx_queue(rx_queue);
8ceee660
BH
601
602 WARN_ON(channel->rx_pkt != NULL);
603 efx_rx_strategy(channel);
604 }
8ceee660
BH
605}
606
607/* This enables event queue processing and packet transmission.
608 *
609 * Note that this function is not allowed to fail, since that would
610 * introduce too much complexity into the suspend/resume path.
611 */
612static void efx_start_channel(struct efx_channel *channel)
613{
614 struct efx_rx_queue *rx_queue;
615
62776d03
BH
616 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
617 "starting chan %d\n", channel->channel);
8ceee660 618
5b9e207c
BH
619 /* The interrupt handler for this channel may set work_pending
620 * as soon as we enable it. Make sure it's cleared before
621 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
622 channel->work_pending = false;
623 channel->enabled = true;
5b9e207c 624 smp_wmb();
8ceee660 625
90d683af 626 /* Fill the queues before enabling NAPI */
8ceee660
BH
627 efx_for_each_channel_rx_queue(rx_queue, channel)
628 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
629
630 napi_enable(&channel->napi_str);
8ceee660
BH
631}
632
633/* This disables event queue processing and packet transmission.
634 * This function does not guarantee that all queue processing
635 * (e.g. RX refill) is complete.
636 */
637static void efx_stop_channel(struct efx_channel *channel)
638{
8ceee660
BH
639 if (!channel->enabled)
640 return;
641
62776d03
BH
642 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
643 "stop chan %d\n", channel->channel);
8ceee660 644
dc8cfa55 645 channel->enabled = false;
8ceee660 646 napi_disable(&channel->napi_str);
8ceee660
BH
647}
648
649static void efx_fini_channels(struct efx_nic *efx)
650{
651 struct efx_channel *channel;
652 struct efx_tx_queue *tx_queue;
653 struct efx_rx_queue *rx_queue;
6bc5d3a9 654 int rc;
8ceee660
BH
655
656 EFX_ASSERT_RESET_SERIALISED(efx);
657 BUG_ON(efx->port_enabled);
658
152b6a62 659 rc = efx_nic_flush_queues(efx);
fd371e32
SH
660 if (rc && EFX_WORKAROUND_7803(efx)) {
661 /* Schedule a reset to recover from the flush failure. The
662 * descriptor caches reference memory we're about to free,
663 * but falcon_reconfigure_mac_wrapper() won't reconnect
664 * the MACs because of the pending reset. */
62776d03
BH
665 netif_err(efx, drv, efx->net_dev,
666 "Resetting to recover from flush failure\n");
fd371e32
SH
667 efx_schedule_reset(efx, RESET_TYPE_ALL);
668 } else if (rc) {
62776d03 669 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 670 } else {
62776d03
BH
671 netif_dbg(efx, drv, efx->net_dev,
672 "successfully flushed all queues\n");
fd371e32 673 }
6bc5d3a9 674
8ceee660 675 efx_for_each_channel(channel, efx) {
62776d03
BH
676 netif_dbg(channel->efx, drv, channel->efx->net_dev,
677 "shut down chan %d\n", channel->channel);
8ceee660
BH
678
679 efx_for_each_channel_rx_queue(rx_queue, channel)
680 efx_fini_rx_queue(rx_queue);
681 efx_for_each_channel_tx_queue(tx_queue, channel)
682 efx_fini_tx_queue(tx_queue);
8ceee660
BH
683 efx_fini_eventq(channel);
684 }
685}
686
687static void efx_remove_channel(struct efx_channel *channel)
688{
689 struct efx_tx_queue *tx_queue;
690 struct efx_rx_queue *rx_queue;
691
62776d03
BH
692 netif_dbg(channel->efx, drv, channel->efx->net_dev,
693 "destroy chan %d\n", channel->channel);
8ceee660
BH
694
695 efx_for_each_channel_rx_queue(rx_queue, channel)
696 efx_remove_rx_queue(rx_queue);
697 efx_for_each_channel_tx_queue(tx_queue, channel)
698 efx_remove_tx_queue(tx_queue);
699 efx_remove_eventq(channel);
8ceee660
BH
700}
701
4642610c
BH
702static void efx_remove_channels(struct efx_nic *efx)
703{
704 struct efx_channel *channel;
705
706 efx_for_each_channel(channel, efx)
707 efx_remove_channel(channel);
708}
709
710int
711efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
712{
713 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
714 u32 old_rxq_entries, old_txq_entries;
715 unsigned i;
716 int rc;
717
718 efx_stop_all(efx);
719 efx_fini_channels(efx);
720
721 /* Clone channels */
722 memset(other_channel, 0, sizeof(other_channel));
723 for (i = 0; i < efx->n_channels; i++) {
724 channel = efx_alloc_channel(efx, i, efx->channel[i]);
725 if (!channel) {
726 rc = -ENOMEM;
727 goto out;
728 }
729 other_channel[i] = channel;
730 }
731
732 /* Swap entry counts and channel pointers */
733 old_rxq_entries = efx->rxq_entries;
734 old_txq_entries = efx->txq_entries;
735 efx->rxq_entries = rxq_entries;
736 efx->txq_entries = txq_entries;
737 for (i = 0; i < efx->n_channels; i++) {
738 channel = efx->channel[i];
739 efx->channel[i] = other_channel[i];
740 other_channel[i] = channel;
741 }
742
743 rc = efx_probe_channels(efx);
744 if (rc)
745 goto rollback;
746
747 /* Destroy old channels */
748 for (i = 0; i < efx->n_channels; i++)
749 efx_remove_channel(other_channel[i]);
750out:
751 /* Free unused channel structures */
752 for (i = 0; i < efx->n_channels; i++)
753 kfree(other_channel[i]);
754
755 efx_init_channels(efx);
756 efx_start_all(efx);
757 return rc;
758
759rollback:
760 /* Swap back */
761 efx->rxq_entries = old_rxq_entries;
762 efx->txq_entries = old_txq_entries;
763 for (i = 0; i < efx->n_channels; i++) {
764 channel = efx->channel[i];
765 efx->channel[i] = other_channel[i];
766 other_channel[i] = channel;
767 }
768 goto out;
769}
770
90d683af 771void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 772{
90d683af 773 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
774}
775
776/**************************************************************************
777 *
778 * Port handling
779 *
780 **************************************************************************/
781
782/* This ensures that the kernel is kept informed (via
783 * netif_carrier_on/off) of the link status, and also maintains the
784 * link status's stop on the port's TX queue.
785 */
fdaa9aed 786void efx_link_status_changed(struct efx_nic *efx)
8ceee660 787{
eb50c0d6
BH
788 struct efx_link_state *link_state = &efx->link_state;
789
8ceee660
BH
790 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
791 * that no events are triggered between unregister_netdev() and the
792 * driver unloading. A more general condition is that NETDEV_CHANGE
793 * can only be generated between NETDEV_UP and NETDEV_DOWN */
794 if (!netif_running(efx->net_dev))
795 return;
796
8c8661e4
BH
797 if (efx->port_inhibited) {
798 netif_carrier_off(efx->net_dev);
799 return;
800 }
801
eb50c0d6 802 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
803 efx->n_link_state_changes++;
804
eb50c0d6 805 if (link_state->up)
8ceee660
BH
806 netif_carrier_on(efx->net_dev);
807 else
808 netif_carrier_off(efx->net_dev);
809 }
810
811 /* Status message for kernel log */
eb50c0d6 812 if (link_state->up) {
62776d03
BH
813 netif_info(efx, link, efx->net_dev,
814 "link up at %uMbps %s-duplex (MTU %d)%s\n",
815 link_state->speed, link_state->fd ? "full" : "half",
816 efx->net_dev->mtu,
817 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 818 } else {
62776d03 819 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
820 }
821
822}
823
d3245b28
BH
824void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
825{
826 efx->link_advertising = advertising;
827 if (advertising) {
828 if (advertising & ADVERTISED_Pause)
829 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
830 else
831 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
832 if (advertising & ADVERTISED_Asym_Pause)
833 efx->wanted_fc ^= EFX_FC_TX;
834 }
835}
836
837void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
838{
839 efx->wanted_fc = wanted_fc;
840 if (efx->link_advertising) {
841 if (wanted_fc & EFX_FC_RX)
842 efx->link_advertising |= (ADVERTISED_Pause |
843 ADVERTISED_Asym_Pause);
844 else
845 efx->link_advertising &= ~(ADVERTISED_Pause |
846 ADVERTISED_Asym_Pause);
847 if (wanted_fc & EFX_FC_TX)
848 efx->link_advertising ^= ADVERTISED_Asym_Pause;
849 }
850}
851
115122af
BH
852static void efx_fini_port(struct efx_nic *efx);
853
d3245b28
BH
854/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
855 * the MAC appropriately. All other PHY configuration changes are pushed
856 * through phy_op->set_settings(), and pushed asynchronously to the MAC
857 * through efx_monitor().
858 *
859 * Callers must hold the mac_lock
860 */
861int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 862{
d3245b28
BH
863 enum efx_phy_mode phy_mode;
864 int rc;
8ceee660 865
d3245b28 866 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 867
a816f75a
BH
868 /* Serialise the promiscuous flag with efx_set_multicast_list. */
869 if (efx_dev_registered(efx)) {
870 netif_addr_lock_bh(efx->net_dev);
871 netif_addr_unlock_bh(efx->net_dev);
872 }
873
d3245b28
BH
874 /* Disable PHY transmit in mac level loopbacks */
875 phy_mode = efx->phy_mode;
177dfcd8
BH
876 if (LOOPBACK_INTERNAL(efx))
877 efx->phy_mode |= PHY_MODE_TX_DISABLED;
878 else
879 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 880
d3245b28 881 rc = efx->type->reconfigure_port(efx);
8ceee660 882
d3245b28
BH
883 if (rc)
884 efx->phy_mode = phy_mode;
177dfcd8 885
d3245b28 886 return rc;
8ceee660
BH
887}
888
889/* Reinitialise the MAC to pick up new PHY settings, even if the port is
890 * disabled. */
d3245b28 891int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 892{
d3245b28
BH
893 int rc;
894
8ceee660
BH
895 EFX_ASSERT_RESET_SERIALISED(efx);
896
897 mutex_lock(&efx->mac_lock);
d3245b28 898 rc = __efx_reconfigure_port(efx);
8ceee660 899 mutex_unlock(&efx->mac_lock);
d3245b28
BH
900
901 return rc;
8ceee660
BH
902}
903
8be4f3e6
BH
904/* Asynchronous work item for changing MAC promiscuity and multicast
905 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
906 * MAC directly. */
766ca0fa
BH
907static void efx_mac_work(struct work_struct *data)
908{
909 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
910
911 mutex_lock(&efx->mac_lock);
8be4f3e6 912 if (efx->port_enabled) {
ef2b90ee 913 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
914 efx->mac_op->reconfigure(efx);
915 }
766ca0fa
BH
916 mutex_unlock(&efx->mac_lock);
917}
918
8ceee660
BH
919static int efx_probe_port(struct efx_nic *efx)
920{
921 int rc;
922
62776d03 923 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 924
ff3b00a0
SH
925 if (phy_flash_cfg)
926 efx->phy_mode = PHY_MODE_SPECIAL;
927
ef2b90ee
BH
928 /* Connect up MAC/PHY operations table */
929 rc = efx->type->probe_port(efx);
8ceee660 930 if (rc)
e42de262 931 return rc;
8ceee660
BH
932
933 /* Sanity check MAC address */
934 if (is_valid_ether_addr(efx->mac_address)) {
935 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
936 } else {
62776d03
BH
937 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
938 efx->mac_address);
8ceee660
BH
939 if (!allow_bad_hwaddr) {
940 rc = -EINVAL;
941 goto err;
942 }
943 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
944 netif_info(efx, probe, efx->net_dev,
945 "using locally-generated MAC %pM\n",
946 efx->net_dev->dev_addr);
8ceee660
BH
947 }
948
949 return 0;
950
951 err:
e42de262 952 efx->type->remove_port(efx);
8ceee660
BH
953 return rc;
954}
955
956static int efx_init_port(struct efx_nic *efx)
957{
958 int rc;
959
62776d03 960 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 961
1dfc5cea
BH
962 mutex_lock(&efx->mac_lock);
963
177dfcd8 964 rc = efx->phy_op->init(efx);
8ceee660 965 if (rc)
1dfc5cea 966 goto fail1;
8ceee660 967
dc8cfa55 968 efx->port_initialized = true;
1dfc5cea 969
d3245b28
BH
970 /* Reconfigure the MAC before creating dma queues (required for
971 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972 efx->mac_op->reconfigure(efx);
973
974 /* Ensure the PHY advertises the correct flow control settings */
975 rc = efx->phy_op->reconfigure(efx);
976 if (rc)
977 goto fail2;
978
1dfc5cea 979 mutex_unlock(&efx->mac_lock);
8ceee660 980 return 0;
177dfcd8 981
1dfc5cea 982fail2:
177dfcd8 983 efx->phy_op->fini(efx);
1dfc5cea
BH
984fail1:
985 mutex_unlock(&efx->mac_lock);
177dfcd8 986 return rc;
8ceee660
BH
987}
988
8ceee660
BH
989static void efx_start_port(struct efx_nic *efx)
990{
62776d03 991 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
992 BUG_ON(efx->port_enabled);
993
994 mutex_lock(&efx->mac_lock);
dc8cfa55 995 efx->port_enabled = true;
8be4f3e6
BH
996
997 /* efx_mac_work() might have been scheduled after efx_stop_port(),
998 * and then cancelled by efx_flush_all() */
ef2b90ee 999 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
1000 efx->mac_op->reconfigure(efx);
1001
8ceee660
BH
1002 mutex_unlock(&efx->mac_lock);
1003}
1004
fdaa9aed 1005/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1006static void efx_stop_port(struct efx_nic *efx)
1007{
62776d03 1008 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1009
1010 mutex_lock(&efx->mac_lock);
dc8cfa55 1011 efx->port_enabled = false;
8ceee660
BH
1012 mutex_unlock(&efx->mac_lock);
1013
1014 /* Serialise against efx_set_multicast_list() */
55668611 1015 if (efx_dev_registered(efx)) {
b9e40857
DM
1016 netif_addr_lock_bh(efx->net_dev);
1017 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1018 }
1019}
1020
1021static void efx_fini_port(struct efx_nic *efx)
1022{
62776d03 1023 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1024
1025 if (!efx->port_initialized)
1026 return;
1027
177dfcd8 1028 efx->phy_op->fini(efx);
dc8cfa55 1029 efx->port_initialized = false;
8ceee660 1030
eb50c0d6 1031 efx->link_state.up = false;
8ceee660
BH
1032 efx_link_status_changed(efx);
1033}
1034
1035static void efx_remove_port(struct efx_nic *efx)
1036{
62776d03 1037 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1038
ef2b90ee 1039 efx->type->remove_port(efx);
8ceee660
BH
1040}
1041
1042/**************************************************************************
1043 *
1044 * NIC handling
1045 *
1046 **************************************************************************/
1047
1048/* This configures the PCI device to enable I/O and DMA. */
1049static int efx_init_io(struct efx_nic *efx)
1050{
1051 struct pci_dev *pci_dev = efx->pci_dev;
1052 dma_addr_t dma_mask = efx->type->max_dma_mask;
1053 int rc;
1054
62776d03 1055 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1056
1057 rc = pci_enable_device(pci_dev);
1058 if (rc) {
62776d03
BH
1059 netif_err(efx, probe, efx->net_dev,
1060 "failed to enable PCI device\n");
8ceee660
BH
1061 goto fail1;
1062 }
1063
1064 pci_set_master(pci_dev);
1065
1066 /* Set the PCI DMA mask. Try all possibilities from our
1067 * genuine mask down to 32 bits, because some architectures
1068 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069 * masks event though they reject 46 bit masks.
1070 */
1071 while (dma_mask > 0x7fffffffUL) {
1072 if (pci_dma_supported(pci_dev, dma_mask) &&
1073 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1074 break;
1075 dma_mask >>= 1;
1076 }
1077 if (rc) {
62776d03
BH
1078 netif_err(efx, probe, efx->net_dev,
1079 "could not find a suitable DMA mask\n");
8ceee660
BH
1080 goto fail2;
1081 }
62776d03
BH
1082 netif_dbg(efx, probe, efx->net_dev,
1083 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1084 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1085 if (rc) {
1086 /* pci_set_consistent_dma_mask() is not *allowed* to
1087 * fail with a mask that pci_set_dma_mask() accepted,
1088 * but just in case...
1089 */
62776d03
BH
1090 netif_err(efx, probe, efx->net_dev,
1091 "failed to set consistent DMA mask\n");
8ceee660
BH
1092 goto fail2;
1093 }
1094
dc803df8
BH
1095 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1096 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1097 if (rc) {
62776d03
BH
1098 netif_err(efx, probe, efx->net_dev,
1099 "request for memory BAR failed\n");
8ceee660
BH
1100 rc = -EIO;
1101 goto fail3;
1102 }
1103 efx->membase = ioremap_nocache(efx->membase_phys,
1104 efx->type->mem_map_size);
1105 if (!efx->membase) {
62776d03
BH
1106 netif_err(efx, probe, efx->net_dev,
1107 "could not map memory BAR at %llx+%x\n",
1108 (unsigned long long)efx->membase_phys,
1109 efx->type->mem_map_size);
8ceee660
BH
1110 rc = -ENOMEM;
1111 goto fail4;
1112 }
62776d03
BH
1113 netif_dbg(efx, probe, efx->net_dev,
1114 "memory BAR at %llx+%x (virtual %p)\n",
1115 (unsigned long long)efx->membase_phys,
1116 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1117
1118 return 0;
1119
1120 fail4:
dc803df8 1121 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1122 fail3:
2c118e0f 1123 efx->membase_phys = 0;
8ceee660
BH
1124 fail2:
1125 pci_disable_device(efx->pci_dev);
1126 fail1:
1127 return rc;
1128}
1129
1130static void efx_fini_io(struct efx_nic *efx)
1131{
62776d03 1132 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1133
1134 if (efx->membase) {
1135 iounmap(efx->membase);
1136 efx->membase = NULL;
1137 }
1138
1139 if (efx->membase_phys) {
dc803df8 1140 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1141 efx->membase_phys = 0;
8ceee660
BH
1142 }
1143
1144 pci_disable_device(efx->pci_dev);
1145}
1146
a4900ac9
BH
1147/* Get number of channels wanted. Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149static int efx_wanted_channels(void)
46123d04 1150{
2f8975fb 1151 cpumask_var_t core_mask;
46123d04
BH
1152 int count;
1153 int cpu;
1154
79f55997 1155 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 1156 printk(KERN_WARNING
3977d033 1157 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1158 return 1;
1159 }
1160
46123d04
BH
1161 count = 0;
1162 for_each_online_cpu(cpu) {
2f8975fb 1163 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 1164 ++count;
2f8975fb 1165 cpumask_or(core_mask, core_mask,
fbd59a8d 1166 topology_core_cpumask(cpu));
46123d04
BH
1167 }
1168 }
1169
2f8975fb 1170 free_cpumask_var(core_mask);
46123d04
BH
1171 return count;
1172}
1173
1174/* Probe the number and type of interrupts we are able to obtain, and
1175 * the resulting numbers of channels and RX queues.
1176 */
8ceee660
BH
1177static void efx_probe_interrupts(struct efx_nic *efx)
1178{
46123d04
BH
1179 int max_channels =
1180 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1181 int rc, i;
1182
1183 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1184 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1185 int n_channels;
aa6ef27e 1186
a4900ac9
BH
1187 n_channels = efx_wanted_channels();
1188 if (separate_tx_channels)
1189 n_channels *= 2;
1190 n_channels = min(n_channels, max_channels);
8ceee660 1191
a4900ac9 1192 for (i = 0; i < n_channels; i++)
8ceee660 1193 xentries[i].entry = i;
a4900ac9 1194 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1195 if (rc > 0) {
62776d03
BH
1196 netif_err(efx, drv, efx->net_dev,
1197 "WARNING: Insufficient MSI-X vectors"
1198 " available (%d < %d).\n", rc, n_channels);
1199 netif_err(efx, drv, efx->net_dev,
1200 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1201 EFX_BUG_ON_PARANOID(rc >= n_channels);
1202 n_channels = rc;
8ceee660 1203 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1204 n_channels);
8ceee660
BH
1205 }
1206
1207 if (rc == 0) {
a4900ac9
BH
1208 efx->n_channels = n_channels;
1209 if (separate_tx_channels) {
1210 efx->n_tx_channels =
1211 max(efx->n_channels / 2, 1U);
1212 efx->n_rx_channels =
1213 max(efx->n_channels -
1214 efx->n_tx_channels, 1U);
1215 } else {
1216 efx->n_tx_channels = efx->n_channels;
1217 efx->n_rx_channels = efx->n_channels;
1218 }
1219 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1220 efx_get_channel(efx, i)->irq =
1221 xentries[i].vector;
8ceee660
BH
1222 } else {
1223 /* Fall back to single channel MSI */
1224 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1225 netif_err(efx, drv, efx->net_dev,
1226 "could not enable MSI-X\n");
8ceee660
BH
1227 }
1228 }
1229
1230 /* Try single interrupt MSI */
1231 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1232 efx->n_channels = 1;
a4900ac9
BH
1233 efx->n_rx_channels = 1;
1234 efx->n_tx_channels = 1;
8ceee660
BH
1235 rc = pci_enable_msi(efx->pci_dev);
1236 if (rc == 0) {
f7d12cdc 1237 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1238 } else {
62776d03
BH
1239 netif_err(efx, drv, efx->net_dev,
1240 "could not enable MSI\n");
8ceee660
BH
1241 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1242 }
1243 }
1244
1245 /* Assume legacy interrupts */
1246 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1247 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1248 efx->n_rx_channels = 1;
1249 efx->n_tx_channels = 1;
8ceee660
BH
1250 efx->legacy_irq = efx->pci_dev->irq;
1251 }
1252}
1253
1254static void efx_remove_interrupts(struct efx_nic *efx)
1255{
1256 struct efx_channel *channel;
1257
1258 /* Remove MSI/MSI-X interrupts */
64ee3120 1259 efx_for_each_channel(channel, efx)
8ceee660
BH
1260 channel->irq = 0;
1261 pci_disable_msi(efx->pci_dev);
1262 pci_disable_msix(efx->pci_dev);
1263
1264 /* Remove legacy interrupt */
1265 efx->legacy_irq = 0;
1266}
1267
8313aca3
BH
1268struct efx_tx_queue *
1269efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1270{
1271 unsigned tx_channel_offset =
1272 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1273 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1274 type >= EFX_TXQ_TYPES);
1275 return &efx->channel[tx_channel_offset + index]->tx_queue[type];
1276}
1277
8831da7b 1278static void efx_set_channels(struct efx_nic *efx)
8ceee660 1279{
a4900ac9 1280 struct efx_channel *channel;
8ceee660 1281 struct efx_tx_queue *tx_queue;
a4900ac9
BH
1282 unsigned tx_channel_offset =
1283 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1284
8313aca3
BH
1285 /* Channel pointers were set in efx_init_struct() but we now
1286 * need to clear them for TX queues in any RX-only channels. */
a4900ac9 1287 efx_for_each_channel(channel, efx) {
8313aca3
BH
1288 if (channel->channel - tx_channel_offset >=
1289 efx->n_tx_channels) {
a4900ac9 1290 efx_for_each_channel_tx_queue(tx_queue, channel)
8313aca3 1291 tx_queue->channel = NULL;
a4900ac9 1292 }
60ac1065 1293 }
8ceee660
BH
1294}
1295
1296static int efx_probe_nic(struct efx_nic *efx)
1297{
765c9f46 1298 size_t i;
8ceee660
BH
1299 int rc;
1300
62776d03 1301 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1302
1303 /* Carry out hardware-type specific initialisation */
ef2b90ee 1304 rc = efx->type->probe(efx);
8ceee660
BH
1305 if (rc)
1306 return rc;
1307
a4900ac9 1308 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1309 * in MSI-X interrupts. */
1310 efx_probe_interrupts(efx);
1311
5d3a6fca
BH
1312 if (efx->n_channels > 1)
1313 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1314 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1315 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1316
8831da7b 1317 efx_set_channels(efx);
a4900ac9 1318 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1319
1320 /* Initialise the interrupt moderation settings */
6fb70fd1 1321 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1322
1323 return 0;
1324}
1325
1326static void efx_remove_nic(struct efx_nic *efx)
1327{
62776d03 1328 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1329
1330 efx_remove_interrupts(efx);
ef2b90ee 1331 efx->type->remove(efx);
8ceee660
BH
1332}
1333
1334/**************************************************************************
1335 *
1336 * NIC startup/shutdown
1337 *
1338 *************************************************************************/
1339
1340static int efx_probe_all(struct efx_nic *efx)
1341{
8ceee660
BH
1342 int rc;
1343
8ceee660
BH
1344 rc = efx_probe_nic(efx);
1345 if (rc) {
62776d03 1346 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1347 goto fail1;
1348 }
1349
8ceee660
BH
1350 rc = efx_probe_port(efx);
1351 if (rc) {
62776d03 1352 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1353 goto fail2;
1354 }
1355
ecc910f5 1356 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1357 rc = efx_probe_channels(efx);
1358 if (rc)
1359 goto fail3;
8ceee660 1360
64eebcfd
BH
1361 rc = efx_probe_filters(efx);
1362 if (rc) {
1363 netif_err(efx, probe, efx->net_dev,
1364 "failed to create filter tables\n");
1365 goto fail4;
1366 }
1367
8ceee660
BH
1368 return 0;
1369
64eebcfd
BH
1370 fail4:
1371 efx_remove_channels(efx);
8ceee660 1372 fail3:
8ceee660
BH
1373 efx_remove_port(efx);
1374 fail2:
1375 efx_remove_nic(efx);
1376 fail1:
1377 return rc;
1378}
1379
1380/* Called after previous invocation(s) of efx_stop_all, restarts the
1381 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1382 * and ensures that the port is scheduled to be reconfigured.
1383 * This function is safe to call multiple times when the NIC is in any
1384 * state. */
1385static void efx_start_all(struct efx_nic *efx)
1386{
1387 struct efx_channel *channel;
1388
1389 EFX_ASSERT_RESET_SERIALISED(efx);
1390
1391 /* Check that it is appropriate to restart the interface. All
1392 * of these flags are safe to read under just the rtnl lock */
1393 if (efx->port_enabled)
1394 return;
1395 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1396 return;
55668611 1397 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1398 return;
1399
1400 /* Mark the port as enabled so port reconfigurations can start, then
1401 * restart the transmit interface early so the watchdog timer stops */
1402 efx_start_port(efx);
8ceee660 1403
a4900ac9
BH
1404 efx_for_each_channel(channel, efx) {
1405 if (efx_dev_registered(efx))
1406 efx_wake_queue(channel);
8ceee660 1407 efx_start_channel(channel);
a4900ac9 1408 }
8ceee660 1409
152b6a62 1410 efx_nic_enable_interrupts(efx);
8ceee660 1411
8880f4ec
BH
1412 /* Switch to event based MCDI completions after enabling interrupts.
1413 * If a reset has been scheduled, then we need to stay in polled mode.
1414 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1415 * reset_pending [modified from an atomic context], we instead guarantee
1416 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1417 efx_mcdi_mode_event(efx);
1418 if (efx->reset_pending != RESET_TYPE_NONE)
1419 efx_mcdi_mode_poll(efx);
1420
78c1f0a0
SH
1421 /* Start the hardware monitor if there is one. Otherwise (we're link
1422 * event driven), we have to poll the PHY because after an event queue
1423 * flush, we could have a missed a link state change */
1424 if (efx->type->monitor != NULL) {
8ceee660
BH
1425 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1426 efx_monitor_interval);
78c1f0a0
SH
1427 } else {
1428 mutex_lock(&efx->mac_lock);
1429 if (efx->phy_op->poll(efx))
1430 efx_link_status_changed(efx);
1431 mutex_unlock(&efx->mac_lock);
1432 }
55edc6e6 1433
ef2b90ee 1434 efx->type->start_stats(efx);
8ceee660
BH
1435}
1436
1437/* Flush all delayed work. Should only be called when no more delayed work
1438 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1439 * since we're holding the rtnl_lock at this point. */
1440static void efx_flush_all(struct efx_nic *efx)
1441{
8ceee660
BH
1442 /* Make sure the hardware monitor is stopped */
1443 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1444 /* Stop scheduled port reconfigurations */
766ca0fa 1445 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1446}
1447
1448/* Quiesce hardware and software without bringing the link down.
1449 * Safe to call multiple times, when the nic and interface is in any
1450 * state. The caller is guaranteed to subsequently be in a position
1451 * to modify any hardware and software state they see fit without
1452 * taking locks. */
1453static void efx_stop_all(struct efx_nic *efx)
1454{
1455 struct efx_channel *channel;
1456
1457 EFX_ASSERT_RESET_SERIALISED(efx);
1458
1459 /* port_enabled can be read safely under the rtnl lock */
1460 if (!efx->port_enabled)
1461 return;
1462
ef2b90ee 1463 efx->type->stop_stats(efx);
55edc6e6 1464
8880f4ec
BH
1465 /* Switch to MCDI polling on Siena before disabling interrupts */
1466 efx_mcdi_mode_poll(efx);
1467
8ceee660 1468 /* Disable interrupts and wait for ISR to complete */
152b6a62 1469 efx_nic_disable_interrupts(efx);
8ceee660
BH
1470 if (efx->legacy_irq)
1471 synchronize_irq(efx->legacy_irq);
64ee3120 1472 efx_for_each_channel(channel, efx) {
8ceee660
BH
1473 if (channel->irq)
1474 synchronize_irq(channel->irq);
b3475645 1475 }
8ceee660
BH
1476
1477 /* Stop all NAPI processing and synchronous rx refills */
1478 efx_for_each_channel(channel, efx)
1479 efx_stop_channel(channel);
1480
1481 /* Stop all asynchronous port reconfigurations. Since all
1482 * event processing has already been stopped, there is no
1483 * window to loose phy events */
1484 efx_stop_port(efx);
1485
fdaa9aed 1486 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1487 efx_flush_all(efx);
1488
8ceee660
BH
1489 /* Stop the kernel transmit interface late, so the watchdog
1490 * timer isn't ticking over the flush */
55668611 1491 if (efx_dev_registered(efx)) {
a4900ac9
BH
1492 struct efx_channel *channel;
1493 efx_for_each_channel(channel, efx)
1494 efx_stop_queue(channel);
8ceee660
BH
1495 netif_tx_lock_bh(efx->net_dev);
1496 netif_tx_unlock_bh(efx->net_dev);
1497 }
1498}
1499
1500static void efx_remove_all(struct efx_nic *efx)
1501{
64eebcfd 1502 efx_remove_filters(efx);
4642610c 1503 efx_remove_channels(efx);
8ceee660
BH
1504 efx_remove_port(efx);
1505 efx_remove_nic(efx);
1506}
1507
8ceee660
BH
1508/**************************************************************************
1509 *
1510 * Interrupt moderation
1511 *
1512 **************************************************************************/
1513
0d86ebd8
BH
1514static unsigned irq_mod_ticks(int usecs, int resolution)
1515{
1516 if (usecs <= 0)
1517 return 0; /* cannot receive interrupts ahead of time :-) */
1518 if (usecs < resolution)
1519 return 1; /* never round down to 0 */
1520 return usecs / resolution;
1521}
1522
8ceee660 1523/* Set interrupt moderation parameters */
6fb70fd1
BH
1524void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1525 bool rx_adaptive)
8ceee660 1526{
f7d12cdc 1527 struct efx_channel *channel;
152b6a62
BH
1528 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1529 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1530
1531 EFX_ASSERT_RESET_SERIALISED(efx);
1532
6fb70fd1 1533 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1534 efx->irq_rx_moderation = rx_ticks;
f7d12cdc
BH
1535 efx_for_each_channel(channel, efx) {
1536 if (efx_channel_get_rx_queue(channel))
1537 channel->irq_moderation = rx_ticks;
1538 else if (efx_channel_get_tx_queue(channel, 0))
1539 channel->irq_moderation = tx_ticks;
1540 }
8ceee660
BH
1541}
1542
1543/**************************************************************************
1544 *
1545 * Hardware monitor
1546 *
1547 **************************************************************************/
1548
e254c274 1549/* Run periodically off the general workqueue */
8ceee660
BH
1550static void efx_monitor(struct work_struct *data)
1551{
1552 struct efx_nic *efx = container_of(data, struct efx_nic,
1553 monitor_work.work);
8ceee660 1554
62776d03
BH
1555 netif_vdbg(efx, timer, efx->net_dev,
1556 "hardware monitor executing on CPU %d\n",
1557 raw_smp_processor_id());
ef2b90ee 1558 BUG_ON(efx->type->monitor == NULL);
8ceee660 1559
8ceee660
BH
1560 /* If the mac_lock is already held then it is likely a port
1561 * reconfiguration is already in place, which will likely do
e254c274
BH
1562 * most of the work of monitor() anyway. */
1563 if (mutex_trylock(&efx->mac_lock)) {
1564 if (efx->port_enabled)
1565 efx->type->monitor(efx);
1566 mutex_unlock(&efx->mac_lock);
1567 }
8ceee660 1568
8ceee660
BH
1569 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1570 efx_monitor_interval);
1571}
1572
1573/**************************************************************************
1574 *
1575 * ioctls
1576 *
1577 *************************************************************************/
1578
1579/* Net device ioctl
1580 * Context: process, rtnl_lock() held.
1581 */
1582static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1583{
767e468c 1584 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1585 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1586
1587 EFX_ASSERT_RESET_SERIALISED(efx);
1588
68e7f45e
BH
1589 /* Convert phy_id from older PRTAD/DEVAD format */
1590 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1591 (data->phy_id & 0xfc00) == 0x0400)
1592 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1593
1594 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1595}
1596
1597/**************************************************************************
1598 *
1599 * NAPI interface
1600 *
1601 **************************************************************************/
1602
1603static int efx_init_napi(struct efx_nic *efx)
1604{
1605 struct efx_channel *channel;
8ceee660
BH
1606
1607 efx_for_each_channel(channel, efx) {
1608 channel->napi_dev = efx->net_dev;
718cff1e
BH
1609 netif_napi_add(channel->napi_dev, &channel->napi_str,
1610 efx_poll, napi_weight);
8ceee660
BH
1611 }
1612 return 0;
8ceee660
BH
1613}
1614
1615static void efx_fini_napi(struct efx_nic *efx)
1616{
1617 struct efx_channel *channel;
1618
1619 efx_for_each_channel(channel, efx) {
718cff1e
BH
1620 if (channel->napi_dev)
1621 netif_napi_del(&channel->napi_str);
8ceee660
BH
1622 channel->napi_dev = NULL;
1623 }
1624}
1625
1626/**************************************************************************
1627 *
1628 * Kernel netpoll interface
1629 *
1630 *************************************************************************/
1631
1632#ifdef CONFIG_NET_POLL_CONTROLLER
1633
1634/* Although in the common case interrupts will be disabled, this is not
1635 * guaranteed. However, all our work happens inside the NAPI callback,
1636 * so no locking is required.
1637 */
1638static void efx_netpoll(struct net_device *net_dev)
1639{
767e468c 1640 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1641 struct efx_channel *channel;
1642
64ee3120 1643 efx_for_each_channel(channel, efx)
8ceee660
BH
1644 efx_schedule_channel(channel);
1645}
1646
1647#endif
1648
1649/**************************************************************************
1650 *
1651 * Kernel net device interface
1652 *
1653 *************************************************************************/
1654
1655/* Context: process, rtnl_lock() held. */
1656static int efx_net_open(struct net_device *net_dev)
1657{
767e468c 1658 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1659 EFX_ASSERT_RESET_SERIALISED(efx);
1660
62776d03
BH
1661 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1662 raw_smp_processor_id());
8ceee660 1663
f4bd954e
BH
1664 if (efx->state == STATE_DISABLED)
1665 return -EIO;
f8b87c17
BH
1666 if (efx->phy_mode & PHY_MODE_SPECIAL)
1667 return -EBUSY;
8880f4ec
BH
1668 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1669 return -EIO;
f8b87c17 1670
78c1f0a0
SH
1671 /* Notify the kernel of the link state polled during driver load,
1672 * before the monitor starts running */
1673 efx_link_status_changed(efx);
1674
8ceee660
BH
1675 efx_start_all(efx);
1676 return 0;
1677}
1678
1679/* Context: process, rtnl_lock() held.
1680 * Note that the kernel will ignore our return code; this method
1681 * should really be a void.
1682 */
1683static int efx_net_stop(struct net_device *net_dev)
1684{
767e468c 1685 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1686
62776d03
BH
1687 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1688 raw_smp_processor_id());
8ceee660 1689
f4bd954e
BH
1690 if (efx->state != STATE_DISABLED) {
1691 /* Stop the device and flush all the channels */
1692 efx_stop_all(efx);
1693 efx_fini_channels(efx);
1694 efx_init_channels(efx);
1695 }
8ceee660
BH
1696
1697 return 0;
1698}
1699
5b9e207c 1700/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1701static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1702{
767e468c 1703 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1704 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1705
55edc6e6 1706 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1707 efx->type->update_stats(efx);
55edc6e6 1708 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1709
1710 stats->rx_packets = mac_stats->rx_packets;
1711 stats->tx_packets = mac_stats->tx_packets;
1712 stats->rx_bytes = mac_stats->rx_bytes;
1713 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1714 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1715 stats->multicast = mac_stats->rx_multicast;
1716 stats->collisions = mac_stats->tx_collision;
1717 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1718 mac_stats->rx_length_error);
8ceee660
BH
1719 stats->rx_crc_errors = mac_stats->rx_bad;
1720 stats->rx_frame_errors = mac_stats->rx_align_error;
1721 stats->rx_fifo_errors = mac_stats->rx_overflow;
1722 stats->rx_missed_errors = mac_stats->rx_missed;
1723 stats->tx_window_errors = mac_stats->tx_late_collision;
1724
1725 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1726 stats->rx_crc_errors +
1727 stats->rx_frame_errors +
8ceee660
BH
1728 mac_stats->rx_symbol_error);
1729 stats->tx_errors = (stats->tx_window_errors +
1730 mac_stats->tx_bad);
1731
1732 return stats;
1733}
1734
1735/* Context: netif_tx_lock held, BHs disabled. */
1736static void efx_watchdog(struct net_device *net_dev)
1737{
767e468c 1738 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1739
62776d03
BH
1740 netif_err(efx, tx_err, efx->net_dev,
1741 "TX stuck with port_enabled=%d: resetting channels\n",
1742 efx->port_enabled);
8ceee660 1743
739bb23d 1744 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1745}
1746
1747
1748/* Context: process, rtnl_lock() held. */
1749static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1750{
767e468c 1751 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1752 int rc = 0;
1753
1754 EFX_ASSERT_RESET_SERIALISED(efx);
1755
1756 if (new_mtu > EFX_MAX_MTU)
1757 return -EINVAL;
1758
1759 efx_stop_all(efx);
1760
62776d03 1761 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1762
1763 efx_fini_channels(efx);
d3245b28
BH
1764
1765 mutex_lock(&efx->mac_lock);
1766 /* Reconfigure the MAC before enabling the dma queues so that
1767 * the RX buffers don't overflow */
8ceee660 1768 net_dev->mtu = new_mtu;
d3245b28
BH
1769 efx->mac_op->reconfigure(efx);
1770 mutex_unlock(&efx->mac_lock);
1771
bc3c90a2 1772 efx_init_channels(efx);
8ceee660
BH
1773
1774 efx_start_all(efx);
1775 return rc;
8ceee660
BH
1776}
1777
1778static int efx_set_mac_address(struct net_device *net_dev, void *data)
1779{
767e468c 1780 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1781 struct sockaddr *addr = data;
1782 char *new_addr = addr->sa_data;
1783
1784 EFX_ASSERT_RESET_SERIALISED(efx);
1785
1786 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1787 netif_err(efx, drv, efx->net_dev,
1788 "invalid ethernet MAC address requested: %pM\n",
1789 new_addr);
8ceee660
BH
1790 return -EINVAL;
1791 }
1792
1793 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1794
1795 /* Reconfigure the MAC */
d3245b28
BH
1796 mutex_lock(&efx->mac_lock);
1797 efx->mac_op->reconfigure(efx);
1798 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1799
1800 return 0;
1801}
1802
a816f75a 1803/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1804static void efx_set_multicast_list(struct net_device *net_dev)
1805{
767e468c 1806 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1807 struct netdev_hw_addr *ha;
8ceee660 1808 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1809 u32 crc;
1810 int bit;
8ceee660 1811
8be4f3e6 1812 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1813
1814 /* Build multicast hash table */
8be4f3e6 1815 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1816 memset(mc_hash, 0xff, sizeof(*mc_hash));
1817 } else {
1818 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1819 netdev_for_each_mc_addr(ha, net_dev) {
1820 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1821 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1822 set_bit_le(bit, mc_hash->byte);
8ceee660 1823 }
8ceee660 1824
8be4f3e6
BH
1825 /* Broadcast packets go through the multicast hash filter.
1826 * ether_crc_le() of the broadcast address is 0xbe2612ff
1827 * so we always add bit 0xff to the mask.
1828 */
1829 set_bit_le(0xff, mc_hash->byte);
1830 }
a816f75a 1831
8be4f3e6
BH
1832 if (efx->port_enabled)
1833 queue_work(efx->workqueue, &efx->mac_work);
1834 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1835}
1836
c3ecb9f3
SH
1837static const struct net_device_ops efx_netdev_ops = {
1838 .ndo_open = efx_net_open,
1839 .ndo_stop = efx_net_stop,
4472702e 1840 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1841 .ndo_tx_timeout = efx_watchdog,
1842 .ndo_start_xmit = efx_hard_start_xmit,
1843 .ndo_validate_addr = eth_validate_addr,
1844 .ndo_do_ioctl = efx_ioctl,
1845 .ndo_change_mtu = efx_change_mtu,
1846 .ndo_set_mac_address = efx_set_mac_address,
1847 .ndo_set_multicast_list = efx_set_multicast_list,
1848#ifdef CONFIG_NET_POLL_CONTROLLER
1849 .ndo_poll_controller = efx_netpoll,
1850#endif
1851};
1852
7dde596e
BH
1853static void efx_update_name(struct efx_nic *efx)
1854{
1855 strcpy(efx->name, efx->net_dev->name);
1856 efx_mtd_rename(efx);
1857 efx_set_channel_names(efx);
1858}
1859
8ceee660
BH
1860static int efx_netdev_event(struct notifier_block *this,
1861 unsigned long event, void *ptr)
1862{
d3208b5e 1863 struct net_device *net_dev = ptr;
8ceee660 1864
7dde596e
BH
1865 if (net_dev->netdev_ops == &efx_netdev_ops &&
1866 event == NETDEV_CHANGENAME)
1867 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1868
1869 return NOTIFY_DONE;
1870}
1871
1872static struct notifier_block efx_netdev_notifier = {
1873 .notifier_call = efx_netdev_event,
1874};
1875
06d5e193
BH
1876static ssize_t
1877show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1878{
1879 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1880 return sprintf(buf, "%d\n", efx->phy_type);
1881}
1882static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1883
8ceee660
BH
1884static int efx_register_netdev(struct efx_nic *efx)
1885{
1886 struct net_device *net_dev = efx->net_dev;
1887 int rc;
1888
1889 net_dev->watchdog_timeo = 5 * HZ;
1890 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1891 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1892 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1893
8ceee660 1894 /* Clear MAC statistics */
177dfcd8 1895 efx->mac_op->update_stats(efx);
8ceee660
BH
1896 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1897
7dde596e 1898 rtnl_lock();
aed0628d
BH
1899
1900 rc = dev_alloc_name(net_dev, net_dev->name);
1901 if (rc < 0)
1902 goto fail_locked;
7dde596e 1903 efx_update_name(efx);
aed0628d
BH
1904
1905 rc = register_netdevice(net_dev);
1906 if (rc)
1907 goto fail_locked;
1908
1909 /* Always start with carrier off; PHY events will detect the link */
1910 netif_carrier_off(efx->net_dev);
1911
7dde596e 1912 rtnl_unlock();
8ceee660 1913
06d5e193
BH
1914 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1915 if (rc) {
62776d03
BH
1916 netif_err(efx, drv, efx->net_dev,
1917 "failed to init net dev attributes\n");
06d5e193
BH
1918 goto fail_registered;
1919 }
1920
8ceee660 1921 return 0;
06d5e193 1922
aed0628d
BH
1923fail_locked:
1924 rtnl_unlock();
62776d03 1925 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1926 return rc;
1927
06d5e193
BH
1928fail_registered:
1929 unregister_netdev(net_dev);
1930 return rc;
8ceee660
BH
1931}
1932
1933static void efx_unregister_netdev(struct efx_nic *efx)
1934{
f7d12cdc 1935 struct efx_channel *channel;
8ceee660
BH
1936 struct efx_tx_queue *tx_queue;
1937
1938 if (!efx->net_dev)
1939 return;
1940
767e468c 1941 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1942
1943 /* Free up any skbs still remaining. This has to happen before
1944 * we try to unregister the netdev as running their destructors
1945 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
1946 efx_for_each_channel(channel, efx) {
1947 efx_for_each_channel_tx_queue(tx_queue, channel)
1948 efx_release_tx_buffers(tx_queue);
1949 }
8ceee660 1950
55668611 1951 if (efx_dev_registered(efx)) {
8ceee660 1952 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1953 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1954 unregister_netdev(efx->net_dev);
1955 }
1956}
1957
1958/**************************************************************************
1959 *
1960 * Device reset and suspend
1961 *
1962 **************************************************************************/
1963
2467ca46
BH
1964/* Tears down the entire software state and most of the hardware state
1965 * before reset. */
d3245b28 1966void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1967{
8ceee660
BH
1968 EFX_ASSERT_RESET_SERIALISED(efx);
1969
2467ca46
BH
1970 efx_stop_all(efx);
1971 mutex_lock(&efx->mac_lock);
f4150724 1972 mutex_lock(&efx->spi_lock);
2467ca46 1973
8ceee660 1974 efx_fini_channels(efx);
4b988280
SH
1975 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1976 efx->phy_op->fini(efx);
ef2b90ee 1977 efx->type->fini(efx);
8ceee660
BH
1978}
1979
2467ca46
BH
1980/* This function will always ensure that the locks acquired in
1981 * efx_reset_down() are released. A failure return code indicates
1982 * that we were unable to reinitialise the hardware, and the
1983 * driver should be disabled. If ok is false, then the rx and tx
1984 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1985int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1986{
1987 int rc;
1988
2467ca46 1989 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1990
ef2b90ee 1991 rc = efx->type->init(efx);
8ceee660 1992 if (rc) {
62776d03 1993 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1994 goto fail;
8ceee660
BH
1995 }
1996
eb9f6744
BH
1997 if (!ok)
1998 goto fail;
1999
4b988280 2000 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2001 rc = efx->phy_op->init(efx);
2002 if (rc)
2003 goto fail;
2004 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2005 netif_err(efx, drv, efx->net_dev,
2006 "could not restore PHY settings\n");
4b988280
SH
2007 }
2008
eb9f6744 2009 efx->mac_op->reconfigure(efx);
8ceee660 2010
eb9f6744 2011 efx_init_channels(efx);
64eebcfd 2012 efx_restore_filters(efx);
eb9f6744
BH
2013
2014 mutex_unlock(&efx->spi_lock);
2015 mutex_unlock(&efx->mac_lock);
2016
2017 efx_start_all(efx);
2018
2019 return 0;
2020
2021fail:
2022 efx->port_initialized = false;
2467ca46 2023
f4150724 2024 mutex_unlock(&efx->spi_lock);
2467ca46
BH
2025 mutex_unlock(&efx->mac_lock);
2026
8ceee660
BH
2027 return rc;
2028}
2029
eb9f6744
BH
2030/* Reset the NIC using the specified method. Note that the reset may
2031 * fail, in which case the card will be left in an unusable state.
8ceee660 2032 *
eb9f6744 2033 * Caller must hold the rtnl_lock.
8ceee660 2034 */
eb9f6744 2035int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2036{
eb9f6744
BH
2037 int rc, rc2;
2038 bool disabled;
8ceee660 2039
62776d03
BH
2040 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2041 RESET_TYPE(method));
8ceee660 2042
d3245b28 2043 efx_reset_down(efx, method);
8ceee660 2044
ef2b90ee 2045 rc = efx->type->reset(efx, method);
8ceee660 2046 if (rc) {
62776d03 2047 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2048 goto out;
8ceee660
BH
2049 }
2050
2051 /* Allow resets to be rescheduled. */
2052 efx->reset_pending = RESET_TYPE_NONE;
2053
2054 /* Reinitialise bus-mastering, which may have been turned off before
2055 * the reset was scheduled. This is still appropriate, even in the
2056 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2057 * can respond to requests. */
2058 pci_set_master(efx->pci_dev);
2059
eb9f6744 2060out:
8ceee660 2061 /* Leave device stopped if necessary */
eb9f6744
BH
2062 disabled = rc || method == RESET_TYPE_DISABLE;
2063 rc2 = efx_reset_up(efx, method, !disabled);
2064 if (rc2) {
2065 disabled = true;
2066 if (!rc)
2067 rc = rc2;
8ceee660
BH
2068 }
2069
eb9f6744 2070 if (disabled) {
f49a4589 2071 dev_close(efx->net_dev);
62776d03 2072 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2073 efx->state = STATE_DISABLED;
f4bd954e 2074 } else {
62776d03 2075 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 2076 }
8ceee660
BH
2077 return rc;
2078}
2079
2080/* The worker thread exists so that code that cannot sleep can
2081 * schedule a reset for later.
2082 */
2083static void efx_reset_work(struct work_struct *data)
2084{
eb9f6744 2085 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 2086
319ba649
SH
2087 if (efx->reset_pending == RESET_TYPE_NONE)
2088 return;
2089
eb9f6744
BH
2090 /* If we're not RUNNING then don't reset. Leave the reset_pending
2091 * flag set so that efx_pci_probe_main will be retried */
2092 if (efx->state != STATE_RUNNING) {
62776d03
BH
2093 netif_info(efx, drv, efx->net_dev,
2094 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2095 return;
2096 }
2097
2098 rtnl_lock();
f49a4589 2099 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 2100 rtnl_unlock();
8ceee660
BH
2101}
2102
2103void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2104{
2105 enum reset_type method;
2106
2107 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
2108 netif_info(efx, drv, efx->net_dev,
2109 "quenching already scheduled reset\n");
8ceee660
BH
2110 return;
2111 }
2112
2113 switch (type) {
2114 case RESET_TYPE_INVISIBLE:
2115 case RESET_TYPE_ALL:
2116 case RESET_TYPE_WORLD:
2117 case RESET_TYPE_DISABLE:
2118 method = type;
2119 break;
2120 case RESET_TYPE_RX_RECOVERY:
2121 case RESET_TYPE_RX_DESC_FETCH:
2122 case RESET_TYPE_TX_DESC_FETCH:
2123 case RESET_TYPE_TX_SKIP:
2124 method = RESET_TYPE_INVISIBLE;
2125 break;
8880f4ec 2126 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
2127 default:
2128 method = RESET_TYPE_ALL;
2129 break;
2130 }
2131
2132 if (method != type)
62776d03
BH
2133 netif_dbg(efx, drv, efx->net_dev,
2134 "scheduling %s reset for %s\n",
2135 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 2136 else
62776d03
BH
2137 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2138 RESET_TYPE(method));
8ceee660
BH
2139
2140 efx->reset_pending = method;
2141
8880f4ec
BH
2142 /* efx_process_channel() will no longer read events once a
2143 * reset is scheduled. So switch back to poll'd MCDI completions. */
2144 efx_mcdi_mode_poll(efx);
2145
1ab00629 2146 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2147}
2148
2149/**************************************************************************
2150 *
2151 * List of NICs we support
2152 *
2153 **************************************************************************/
2154
2155/* PCI device ID table */
a3aa1884 2156static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 2157 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 2158 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 2159 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 2160 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
2161 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2162 .driver_data = (unsigned long) &siena_a0_nic_type},
2163 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2164 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2165 {0} /* end of list */
2166};
2167
2168/**************************************************************************
2169 *
3759433d 2170 * Dummy PHY/MAC operations
8ceee660 2171 *
01aad7b6 2172 * Can be used for some unimplemented operations
8ceee660
BH
2173 * Needed so all function pointers are valid and do not have to be tested
2174 * before use
2175 *
2176 **************************************************************************/
2177int efx_port_dummy_op_int(struct efx_nic *efx)
2178{
2179 return 0;
2180}
2181void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2182void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2183{
2184}
fdaa9aed
SH
2185bool efx_port_dummy_op_poll(struct efx_nic *efx)
2186{
2187 return false;
2188}
8ceee660
BH
2189
2190static struct efx_phy_operations efx_dummy_phy_operations = {
2191 .init = efx_port_dummy_op_int,
d3245b28 2192 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2193 .poll = efx_port_dummy_op_poll,
8ceee660 2194 .fini = efx_port_dummy_op_void,
8ceee660
BH
2195};
2196
8ceee660
BH
2197/**************************************************************************
2198 *
2199 * Data housekeeping
2200 *
2201 **************************************************************************/
2202
2203/* This zeroes out and then fills in the invariants in a struct
2204 * efx_nic (including all sub-structures).
2205 */
2206static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2207 struct pci_dev *pci_dev, struct net_device *net_dev)
2208{
4642610c 2209 int i;
8ceee660
BH
2210
2211 /* Initialise common structures */
2212 memset(efx, 0, sizeof(*efx));
2213 spin_lock_init(&efx->biu_lock);
ab867461 2214 mutex_init(&efx->mdio_lock);
f4150724 2215 mutex_init(&efx->spi_lock);
76884835
BH
2216#ifdef CONFIG_SFC_MTD
2217 INIT_LIST_HEAD(&efx->mtd_list);
2218#endif
8ceee660
BH
2219 INIT_WORK(&efx->reset_work, efx_reset_work);
2220 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2221 efx->pci_dev = pci_dev;
62776d03 2222 efx->msg_enable = debug;
8ceee660
BH
2223 efx->state = STATE_INIT;
2224 efx->reset_pending = RESET_TYPE_NONE;
2225 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2226
2227 efx->net_dev = net_dev;
dc8cfa55 2228 efx->rx_checksum_enabled = true;
8ceee660
BH
2229 spin_lock_init(&efx->stats_lock);
2230 mutex_init(&efx->mac_lock);
b895d73e 2231 efx->mac_op = type->default_mac_ops;
8ceee660 2232 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2233 efx->mdio.dev = net_dev;
766ca0fa 2234 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2235
2236 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2237 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2238 if (!efx->channel[i])
2239 goto fail;
8ceee660
BH
2240 }
2241
2242 efx->type = type;
2243
8ceee660
BH
2244 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2245
2246 /* Higher numbered interrupt modes are less capable! */
2247 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2248 interrupt_mode);
2249
6977dc63
BH
2250 /* Would be good to use the net_dev name, but we're too early */
2251 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2252 pci_name(pci_dev));
2253 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2254 if (!efx->workqueue)
4642610c 2255 goto fail;
8d9853d9 2256
8ceee660 2257 return 0;
4642610c
BH
2258
2259fail:
2260 efx_fini_struct(efx);
2261 return -ENOMEM;
8ceee660
BH
2262}
2263
2264static void efx_fini_struct(struct efx_nic *efx)
2265{
8313aca3
BH
2266 int i;
2267
2268 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2269 kfree(efx->channel[i]);
2270
8ceee660
BH
2271 if (efx->workqueue) {
2272 destroy_workqueue(efx->workqueue);
2273 efx->workqueue = NULL;
2274 }
2275}
2276
2277/**************************************************************************
2278 *
2279 * PCI interface
2280 *
2281 **************************************************************************/
2282
2283/* Main body of final NIC shutdown code
2284 * This is called only at module unload (or hotplug removal).
2285 */
2286static void efx_pci_remove_main(struct efx_nic *efx)
2287{
152b6a62 2288 efx_nic_fini_interrupt(efx);
8ceee660
BH
2289 efx_fini_channels(efx);
2290 efx_fini_port(efx);
ef2b90ee 2291 efx->type->fini(efx);
8ceee660
BH
2292 efx_fini_napi(efx);
2293 efx_remove_all(efx);
2294}
2295
2296/* Final NIC shutdown
2297 * This is called only at module unload (or hotplug removal).
2298 */
2299static void efx_pci_remove(struct pci_dev *pci_dev)
2300{
2301 struct efx_nic *efx;
2302
2303 efx = pci_get_drvdata(pci_dev);
2304 if (!efx)
2305 return;
2306
2307 /* Mark the NIC as fini, then stop the interface */
2308 rtnl_lock();
2309 efx->state = STATE_FINI;
2310 dev_close(efx->net_dev);
2311
2312 /* Allow any queued efx_resets() to complete */
2313 rtnl_unlock();
2314
8ceee660
BH
2315 efx_unregister_netdev(efx);
2316
7dde596e
BH
2317 efx_mtd_remove(efx);
2318
8ceee660
BH
2319 /* Wait for any scheduled resets to complete. No more will be
2320 * scheduled from this point because efx_stop_all() has been
2321 * called, we are no longer registered with driverlink, and
2322 * the net_device's have been removed. */
1ab00629 2323 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2324
2325 efx_pci_remove_main(efx);
2326
8ceee660 2327 efx_fini_io(efx);
62776d03 2328 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2329
2330 pci_set_drvdata(pci_dev, NULL);
2331 efx_fini_struct(efx);
2332 free_netdev(efx->net_dev);
2333};
2334
2335/* Main body of NIC initialisation
2336 * This is called at module load (or hotplug insertion, theoretically).
2337 */
2338static int efx_pci_probe_main(struct efx_nic *efx)
2339{
2340 int rc;
2341
2342 /* Do start-of-day initialisation */
2343 rc = efx_probe_all(efx);
2344 if (rc)
2345 goto fail1;
2346
2347 rc = efx_init_napi(efx);
2348 if (rc)
2349 goto fail2;
2350
ef2b90ee 2351 rc = efx->type->init(efx);
8ceee660 2352 if (rc) {
62776d03
BH
2353 netif_err(efx, probe, efx->net_dev,
2354 "failed to initialise NIC\n");
278c0621 2355 goto fail3;
8ceee660
BH
2356 }
2357
2358 rc = efx_init_port(efx);
2359 if (rc) {
62776d03
BH
2360 netif_err(efx, probe, efx->net_dev,
2361 "failed to initialise port\n");
278c0621 2362 goto fail4;
8ceee660
BH
2363 }
2364
bc3c90a2 2365 efx_init_channels(efx);
8ceee660 2366
152b6a62 2367 rc = efx_nic_init_interrupt(efx);
8ceee660 2368 if (rc)
278c0621 2369 goto fail5;
8ceee660
BH
2370
2371 return 0;
2372
278c0621 2373 fail5:
bc3c90a2 2374 efx_fini_channels(efx);
8ceee660 2375 efx_fini_port(efx);
8ceee660 2376 fail4:
ef2b90ee 2377 efx->type->fini(efx);
8ceee660
BH
2378 fail3:
2379 efx_fini_napi(efx);
2380 fail2:
2381 efx_remove_all(efx);
2382 fail1:
2383 return rc;
2384}
2385
2386/* NIC initialisation
2387 *
2388 * This is called at module load (or hotplug insertion,
2389 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2390 * sets up and registers the network devices with the kernel and hooks
2391 * the interrupt service routine. It does not prepare the device for
2392 * transmission; this is left to the first time one of the network
2393 * interfaces is brought up (i.e. efx_net_open).
2394 */
2395static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2396 const struct pci_device_id *entry)
2397{
2398 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2399 struct net_device *net_dev;
2400 struct efx_nic *efx;
2401 int i, rc;
2402
2403 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2404 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2405 if (!net_dev)
2406 return -ENOMEM;
c383b537 2407 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2408 NETIF_F_HIGHDMA | NETIF_F_TSO |
2409 NETIF_F_GRO);
738a8f4b
BH
2410 if (type->offload_features & NETIF_F_V6_CSUM)
2411 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2412 /* Mask for features that also apply to VLAN devices */
2413 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2414 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2415 efx = netdev_priv(net_dev);
8ceee660 2416 pci_set_drvdata(pci_dev, efx);
62776d03 2417 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2418 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2419 if (rc)
2420 goto fail1;
2421
62776d03
BH
2422 netif_info(efx, probe, efx->net_dev,
2423 "Solarflare Communications NIC detected\n");
8ceee660
BH
2424
2425 /* Set up basic I/O (BAR mappings etc) */
2426 rc = efx_init_io(efx);
2427 if (rc)
2428 goto fail2;
2429
2430 /* No serialisation is required with the reset path because
2431 * we're in STATE_INIT. */
2432 for (i = 0; i < 5; i++) {
2433 rc = efx_pci_probe_main(efx);
8ceee660
BH
2434
2435 /* Serialise against efx_reset(). No more resets will be
2436 * scheduled since efx_stop_all() has been called, and we
2437 * have not and never have been registered with either
2438 * the rtnetlink or driverlink layers. */
1ab00629 2439 cancel_work_sync(&efx->reset_work);
8ceee660 2440
fa402b2e
SH
2441 if (rc == 0) {
2442 if (efx->reset_pending != RESET_TYPE_NONE) {
2443 /* If there was a scheduled reset during
2444 * probe, the NIC is probably hosed anyway */
2445 efx_pci_remove_main(efx);
2446 rc = -EIO;
2447 } else {
2448 break;
2449 }
2450 }
2451
8ceee660
BH
2452 /* Retry if a recoverably reset event has been scheduled */
2453 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2454 (efx->reset_pending != RESET_TYPE_ALL))
2455 goto fail3;
2456
2457 efx->reset_pending = RESET_TYPE_NONE;
2458 }
2459
2460 if (rc) {
62776d03 2461 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2462 goto fail4;
2463 }
2464
55edc6e6
BH
2465 /* Switch to the running state before we expose the device to the OS,
2466 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2467 efx->state = STATE_RUNNING;
7dde596e 2468
8ceee660
BH
2469 rc = efx_register_netdev(efx);
2470 if (rc)
2471 goto fail5;
2472
62776d03 2473 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2474
2475 rtnl_lock();
2476 efx_mtd_probe(efx); /* allowed to fail */
2477 rtnl_unlock();
8ceee660
BH
2478 return 0;
2479
2480 fail5:
2481 efx_pci_remove_main(efx);
2482 fail4:
2483 fail3:
2484 efx_fini_io(efx);
2485 fail2:
2486 efx_fini_struct(efx);
2487 fail1:
5e2a911c 2488 WARN_ON(rc > 0);
62776d03 2489 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2490 free_netdev(net_dev);
2491 return rc;
2492}
2493
89c758fa
BH
2494static int efx_pm_freeze(struct device *dev)
2495{
2496 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2497
2498 efx->state = STATE_FINI;
2499
2500 netif_device_detach(efx->net_dev);
2501
2502 efx_stop_all(efx);
2503 efx_fini_channels(efx);
2504
2505 return 0;
2506}
2507
2508static int efx_pm_thaw(struct device *dev)
2509{
2510 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2511
2512 efx->state = STATE_INIT;
2513
2514 efx_init_channels(efx);
2515
2516 mutex_lock(&efx->mac_lock);
2517 efx->phy_op->reconfigure(efx);
2518 mutex_unlock(&efx->mac_lock);
2519
2520 efx_start_all(efx);
2521
2522 netif_device_attach(efx->net_dev);
2523
2524 efx->state = STATE_RUNNING;
2525
2526 efx->type->resume_wol(efx);
2527
319ba649
SH
2528 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2529 queue_work(reset_workqueue, &efx->reset_work);
2530
89c758fa
BH
2531 return 0;
2532}
2533
2534static int efx_pm_poweroff(struct device *dev)
2535{
2536 struct pci_dev *pci_dev = to_pci_dev(dev);
2537 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2538
2539 efx->type->fini(efx);
2540
2541 efx->reset_pending = RESET_TYPE_NONE;
2542
2543 pci_save_state(pci_dev);
2544 return pci_set_power_state(pci_dev, PCI_D3hot);
2545}
2546
2547/* Used for both resume and restore */
2548static int efx_pm_resume(struct device *dev)
2549{
2550 struct pci_dev *pci_dev = to_pci_dev(dev);
2551 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2552 int rc;
2553
2554 rc = pci_set_power_state(pci_dev, PCI_D0);
2555 if (rc)
2556 return rc;
2557 pci_restore_state(pci_dev);
2558 rc = pci_enable_device(pci_dev);
2559 if (rc)
2560 return rc;
2561 pci_set_master(efx->pci_dev);
2562 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2563 if (rc)
2564 return rc;
2565 rc = efx->type->init(efx);
2566 if (rc)
2567 return rc;
2568 efx_pm_thaw(dev);
2569 return 0;
2570}
2571
2572static int efx_pm_suspend(struct device *dev)
2573{
2574 int rc;
2575
2576 efx_pm_freeze(dev);
2577 rc = efx_pm_poweroff(dev);
2578 if (rc)
2579 efx_pm_resume(dev);
2580 return rc;
2581}
2582
2583static struct dev_pm_ops efx_pm_ops = {
2584 .suspend = efx_pm_suspend,
2585 .resume = efx_pm_resume,
2586 .freeze = efx_pm_freeze,
2587 .thaw = efx_pm_thaw,
2588 .poweroff = efx_pm_poweroff,
2589 .restore = efx_pm_resume,
2590};
2591
8ceee660 2592static struct pci_driver efx_pci_driver = {
c5d5f5fd 2593 .name = KBUILD_MODNAME,
8ceee660
BH
2594 .id_table = efx_pci_table,
2595 .probe = efx_pci_probe,
2596 .remove = efx_pci_remove,
89c758fa 2597 .driver.pm = &efx_pm_ops,
8ceee660
BH
2598};
2599
2600/**************************************************************************
2601 *
2602 * Kernel module interface
2603 *
2604 *************************************************************************/
2605
2606module_param(interrupt_mode, uint, 0444);
2607MODULE_PARM_DESC(interrupt_mode,
2608 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2609
2610static int __init efx_init_module(void)
2611{
2612 int rc;
2613
2614 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2615
2616 rc = register_netdevice_notifier(&efx_netdev_notifier);
2617 if (rc)
2618 goto err_notifier;
2619
1ab00629
SH
2620 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2621 if (!reset_workqueue) {
2622 rc = -ENOMEM;
2623 goto err_reset;
2624 }
8ceee660
BH
2625
2626 rc = pci_register_driver(&efx_pci_driver);
2627 if (rc < 0)
2628 goto err_pci;
2629
2630 return 0;
2631
2632 err_pci:
1ab00629
SH
2633 destroy_workqueue(reset_workqueue);
2634 err_reset:
8ceee660
BH
2635 unregister_netdevice_notifier(&efx_netdev_notifier);
2636 err_notifier:
2637 return rc;
2638}
2639
2640static void __exit efx_exit_module(void)
2641{
2642 printk(KERN_INFO "Solarflare NET driver unloading\n");
2643
2644 pci_unregister_driver(&efx_pci_driver);
1ab00629 2645 destroy_workqueue(reset_workqueue);
8ceee660
BH
2646 unregister_netdevice_notifier(&efx_netdev_notifier);
2647
2648}
2649
2650module_init(efx_init_module);
2651module_exit(efx_exit_module);
2652
906bb26c
BH
2653MODULE_AUTHOR("Solarflare Communications and "
2654 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2655MODULE_DESCRIPTION("Solarflare Communications network driver");
2656MODULE_LICENSE("GPL");
2657MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.551353 seconds and 5 git commands to generate.