sfc: Create multiple TX queues
[deliverable/linux.git] / drivers / net / sfc / tx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/pci.h>
12#include <linux/tcp.h>
13#include <linux/ip.h>
14#include <linux/in.h>
738a8f4b 15#include <linux/ipv6.h>
5a0e3ad6 16#include <linux/slab.h>
738a8f4b 17#include <net/ipv6.h>
8ceee660
BH
18#include <linux/if_ether.h>
19#include <linux/highmem.h>
20#include "net_driver.h"
8ceee660 21#include "efx.h"
744093c9 22#include "nic.h"
8ceee660
BH
23#include "workarounds.h"
24
25/*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
3ffeabdd 31#define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
8ceee660 32
a4900ac9
BH
33/* We need to be able to nest calls to netif_tx_stop_queue(), partly
34 * because of the 2 hardware queues associated with each core queue,
35 * but also so that we can inhibit TX for reasons other than a full
36 * hardware queue. */
37void efx_stop_queue(struct efx_channel *channel)
8ceee660 38{
a4900ac9
BH
39 struct efx_nic *efx = channel->efx;
40
41 if (!channel->tx_queue)
42 return;
43
44 spin_lock_bh(&channel->tx_stop_lock);
8ceee660
BH
45 EFX_TRACE(efx, "stop TX queue\n");
46
a4900ac9
BH
47 atomic_inc(&channel->tx_stop_count);
48 netif_tx_stop_queue(
49 netdev_get_tx_queue(
50 efx->net_dev,
51 channel->tx_queue->queue / EFX_TXQ_TYPES));
8ceee660 52
a4900ac9 53 spin_unlock_bh(&channel->tx_stop_lock);
8ceee660
BH
54}
55
a4900ac9
BH
56/* Decrement core TX queue stop count and wake it if the count is 0 */
57void efx_wake_queue(struct efx_channel *channel)
8ceee660 58{
a4900ac9
BH
59 struct efx_nic *efx = channel->efx;
60
61 if (!channel->tx_queue)
62 return;
63
8ceee660 64 local_bh_disable();
a4900ac9
BH
65 if (atomic_dec_and_lock(&channel->tx_stop_count,
66 &channel->tx_stop_lock)) {
8ceee660 67 EFX_TRACE(efx, "waking TX queue\n");
a4900ac9
BH
68 netif_tx_wake_queue(
69 netdev_get_tx_queue(
70 efx->net_dev,
71 channel->tx_queue->queue / EFX_TXQ_TYPES));
72 spin_unlock(&channel->tx_stop_lock);
8ceee660
BH
73 }
74 local_bh_enable();
75}
76
4d566063
BH
77static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
78 struct efx_tx_buffer *buffer)
8ceee660
BH
79{
80 if (buffer->unmap_len) {
81 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
cc12dac2
BH
82 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
83 buffer->unmap_len);
8ceee660 84 if (buffer->unmap_single)
cc12dac2
BH
85 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
86 PCI_DMA_TODEVICE);
8ceee660 87 else
cc12dac2
BH
88 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
89 PCI_DMA_TODEVICE);
8ceee660 90 buffer->unmap_len = 0;
dc8cfa55 91 buffer->unmap_single = false;
8ceee660
BH
92 }
93
94 if (buffer->skb) {
95 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
96 buffer->skb = NULL;
97 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
98 "complete\n", tx_queue->queue, read_ptr);
99 }
100}
101
b9b39b62
BH
102/**
103 * struct efx_tso_header - a DMA mapped buffer for packet headers
104 * @next: Linked list of free ones.
105 * The list is protected by the TX queue lock.
106 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
107 * @dma_addr: The DMA address of the header below.
108 *
109 * This controls the memory used for a TSO header. Use TSOH_DATA()
110 * to find the packet header data. Use TSOH_SIZE() to calculate the
111 * total size required for a given packet header length. TSO headers
112 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
113 */
114struct efx_tso_header {
115 union {
116 struct efx_tso_header *next;
117 size_t unmap_len;
118 };
119 dma_addr_t dma_addr;
120};
121
122static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 123 struct sk_buff *skb);
b9b39b62
BH
124static void efx_fini_tso(struct efx_tx_queue *tx_queue);
125static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
126 struct efx_tso_header *tsoh);
127
4d566063
BH
128static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
129 struct efx_tx_buffer *buffer)
b9b39b62
BH
130{
131 if (buffer->tsoh) {
132 if (likely(!buffer->tsoh->unmap_len)) {
133 buffer->tsoh->next = tx_queue->tso_headers_free;
134 tx_queue->tso_headers_free = buffer->tsoh;
135 } else {
136 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
137 }
138 buffer->tsoh = NULL;
139 }
140}
141
8ceee660 142
63f19884
BH
143static inline unsigned
144efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
145{
146 /* Depending on the NIC revision, we can use descriptor
147 * lengths up to 8K or 8K-1. However, since PCI Express
148 * devices must split read requests at 4K boundaries, there is
149 * little benefit from using descriptors that cross those
150 * boundaries and we keep things simple by not doing so.
151 */
152 unsigned len = (~dma_addr & 0xfff) + 1;
153
154 /* Work around hardware bug for unaligned buffers. */
155 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
156 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
157
158 return len;
159}
160
8ceee660
BH
161/*
162 * Add a socket buffer to a TX queue
163 *
164 * This maps all fragments of a socket buffer for DMA and adds them to
165 * the TX queue. The queue's insert pointer will be incremented by
166 * the number of fragments in the socket buffer.
167 *
168 * If any DMA mapping fails, any mapped fragments will be unmapped,
169 * the queue's insert pointer will be restored to its original value.
170 *
497f5ba3
BH
171 * This function is split out from efx_hard_start_xmit to allow the
172 * loopback test to direct packets via specific TX queues.
173 *
8ceee660
BH
174 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
175 * You must hold netif_tx_lock() to call this function.
176 */
497f5ba3 177netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
8ceee660
BH
178{
179 struct efx_nic *efx = tx_queue->efx;
180 struct pci_dev *pci_dev = efx->pci_dev;
181 struct efx_tx_buffer *buffer;
182 skb_frag_t *fragment;
183 struct page *page;
184 int page_offset;
63f19884 185 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
8ceee660
BH
186 dma_addr_t dma_addr, unmap_addr = 0;
187 unsigned int dma_len;
dc8cfa55 188 bool unmap_single;
8ceee660 189 int q_space, i = 0;
61357325 190 netdev_tx_t rc = NETDEV_TX_OK;
8ceee660
BH
191
192 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
193
9bc183d7 194 if (skb_shinfo(skb)->gso_size)
b9b39b62
BH
195 return efx_enqueue_skb_tso(tx_queue, skb);
196
8ceee660
BH
197 /* Get size of the initial fragment */
198 len = skb_headlen(skb);
199
bb145a9e
BH
200 /* Pad if necessary */
201 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
202 EFX_BUG_ON_PARANOID(skb->data_len);
203 len = 32 + 1;
204 if (skb_pad(skb, len - skb->len))
205 return NETDEV_TX_OK;
206 }
207
8ceee660 208 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
3ffeabdd 209 q_space = EFX_TXQ_MASK - 1 - fill_level;
8ceee660
BH
210
211 /* Map for DMA. Use pci_map_single rather than pci_map_page
212 * since this is more efficient on machines with sparse
213 * memory.
214 */
dc8cfa55 215 unmap_single = true;
8ceee660
BH
216 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
217
218 /* Process all fragments */
219 while (1) {
8d8bb39b 220 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
8ceee660
BH
221 goto pci_err;
222
223 /* Store fields for marking in the per-fragment final
224 * descriptor */
225 unmap_len = len;
226 unmap_addr = dma_addr;
227
228 /* Add to TX queue, splitting across DMA boundaries */
229 do {
230 if (unlikely(q_space-- <= 0)) {
231 /* It might be that completions have
232 * happened since the xmit path last
233 * checked. Update the xmit path's
234 * copy of read_count.
235 */
236 ++tx_queue->stopped;
237 /* This memory barrier protects the
238 * change of stopped from the access
239 * of read_count. */
240 smp_mb();
241 tx_queue->old_read_count =
242 *(volatile unsigned *)
243 &tx_queue->read_count;
244 fill_level = (tx_queue->insert_count
245 - tx_queue->old_read_count);
3ffeabdd 246 q_space = EFX_TXQ_MASK - 1 - fill_level;
8ceee660
BH
247 if (unlikely(q_space-- <= 0))
248 goto stop;
249 smp_mb();
250 --tx_queue->stopped;
251 }
252
3ffeabdd 253 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
8ceee660 254 buffer = &tx_queue->buffer[insert_ptr];
b9b39b62
BH
255 efx_tsoh_free(tx_queue, buffer);
256 EFX_BUG_ON_PARANOID(buffer->tsoh);
8ceee660
BH
257 EFX_BUG_ON_PARANOID(buffer->skb);
258 EFX_BUG_ON_PARANOID(buffer->len);
dc8cfa55 259 EFX_BUG_ON_PARANOID(!buffer->continuation);
8ceee660
BH
260 EFX_BUG_ON_PARANOID(buffer->unmap_len);
261
63f19884
BH
262 dma_len = efx_max_tx_len(efx, dma_addr);
263 if (likely(dma_len >= len))
8ceee660
BH
264 dma_len = len;
265
8ceee660
BH
266 /* Fill out per descriptor fields */
267 buffer->len = dma_len;
268 buffer->dma_addr = dma_addr;
269 len -= dma_len;
270 dma_addr += dma_len;
271 ++tx_queue->insert_count;
272 } while (len);
273
274 /* Transfer ownership of the unmapping to the final buffer */
8ceee660
BH
275 buffer->unmap_single = unmap_single;
276 buffer->unmap_len = unmap_len;
277 unmap_len = 0;
278
279 /* Get address and size of next fragment */
280 if (i >= skb_shinfo(skb)->nr_frags)
281 break;
282 fragment = &skb_shinfo(skb)->frags[i];
283 len = fragment->size;
284 page = fragment->page;
285 page_offset = fragment->page_offset;
286 i++;
287 /* Map for DMA */
dc8cfa55 288 unmap_single = false;
8ceee660
BH
289 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
290 PCI_DMA_TODEVICE);
291 }
292
293 /* Transfer ownership of the skb to the final buffer */
294 buffer->skb = skb;
dc8cfa55 295 buffer->continuation = false;
8ceee660
BH
296
297 /* Pass off to hardware */
152b6a62 298 efx_nic_push_buffers(tx_queue);
8ceee660
BH
299
300 return NETDEV_TX_OK;
301
302 pci_err:
303 EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
304 "fragments for DMA\n", tx_queue->queue, skb->len,
305 skb_shinfo(skb)->nr_frags + 1);
306
307 /* Mark the packet as transmitted, and free the SKB ourselves */
9bc183d7 308 dev_kfree_skb_any(skb);
8ceee660
BH
309 goto unwind;
310
311 stop:
312 rc = NETDEV_TX_BUSY;
313
314 if (tx_queue->stopped == 1)
a4900ac9 315 efx_stop_queue(tx_queue->channel);
8ceee660
BH
316
317 unwind:
318 /* Work backwards until we hit the original insert pointer value */
319 while (tx_queue->insert_count != tx_queue->write_count) {
320 --tx_queue->insert_count;
3ffeabdd 321 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
8ceee660
BH
322 buffer = &tx_queue->buffer[insert_ptr];
323 efx_dequeue_buffer(tx_queue, buffer);
324 buffer->len = 0;
325 }
326
327 /* Free the fragment we were mid-way through pushing */
ecbd95c1
BH
328 if (unmap_len) {
329 if (unmap_single)
330 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
331 PCI_DMA_TODEVICE);
332 else
333 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
334 PCI_DMA_TODEVICE);
335 }
8ceee660
BH
336
337 return rc;
338}
339
340/* Remove packets from the TX queue
341 *
342 * This removes packets from the TX queue, up to and including the
343 * specified index.
344 */
4d566063
BH
345static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
346 unsigned int index)
8ceee660
BH
347{
348 struct efx_nic *efx = tx_queue->efx;
349 unsigned int stop_index, read_ptr;
8ceee660 350
3ffeabdd
BH
351 stop_index = (index + 1) & EFX_TXQ_MASK;
352 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
8ceee660
BH
353
354 while (read_ptr != stop_index) {
355 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
356 if (unlikely(buffer->len == 0)) {
357 EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
358 "completion id %x\n", tx_queue->queue,
359 read_ptr);
360 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
361 return;
362 }
363
364 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 365 buffer->continuation = true;
8ceee660
BH
366 buffer->len = 0;
367
368 ++tx_queue->read_count;
3ffeabdd 369 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
8ceee660
BH
370 }
371}
372
8ceee660
BH
373/* Initiate a packet transmission. We use one channel per CPU
374 * (sharing when we have more CPUs than channels). On Falcon, the TX
375 * completion events will be directed back to the CPU that transmitted
376 * the packet, which should be cache-efficient.
377 *
378 * Context: non-blocking.
379 * Note that returning anything other than NETDEV_TX_OK will cause the
380 * OS to free the skb.
381 */
61357325
SH
382netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
383 struct net_device *net_dev)
8ceee660 384{
767e468c 385 struct efx_nic *efx = netdev_priv(net_dev);
60ac1065
BH
386 struct efx_tx_queue *tx_queue;
387
a7ef5933
BH
388 if (unlikely(efx->port_inhibited))
389 return NETDEV_TX_BUSY;
390
a4900ac9 391 tx_queue = &efx->tx_queue[EFX_TXQ_TYPES * skb_get_queue_mapping(skb)];
60ac1065 392 if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
a4900ac9 393 tx_queue += EFX_TXQ_TYPE_OFFLOAD;
60ac1065 394
497f5ba3 395 return efx_enqueue_skb(tx_queue, skb);
8ceee660
BH
396}
397
398void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
399{
400 unsigned fill_level;
401 struct efx_nic *efx = tx_queue->efx;
402
3ffeabdd 403 EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
8ceee660
BH
404
405 efx_dequeue_buffers(tx_queue, index);
406
407 /* See if we need to restart the netif queue. This barrier
408 * separates the update of read_count from the test of
409 * stopped. */
410 smp_mb();
32d76007 411 if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
8ceee660 412 fill_level = tx_queue->insert_count - tx_queue->read_count;
3ffeabdd 413 if (fill_level < EFX_TXQ_THRESHOLD) {
55668611 414 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
8ceee660
BH
415
416 /* Do this under netif_tx_lock(), to avoid racing
417 * with efx_xmit(). */
418 netif_tx_lock(efx->net_dev);
419 if (tx_queue->stopped) {
420 tx_queue->stopped = 0;
a4900ac9 421 efx_wake_queue(tx_queue->channel);
8ceee660
BH
422 }
423 netif_tx_unlock(efx->net_dev);
424 }
425 }
426}
427
428int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
429{
430 struct efx_nic *efx = tx_queue->efx;
431 unsigned int txq_size;
432 int i, rc;
433
434 EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
435
436 /* Allocate software ring */
3ffeabdd 437 txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
8ceee660 438 tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
60ac1065
BH
439 if (!tx_queue->buffer)
440 return -ENOMEM;
3ffeabdd 441 for (i = 0; i <= EFX_TXQ_MASK; ++i)
dc8cfa55 442 tx_queue->buffer[i].continuation = true;
8ceee660
BH
443
444 /* Allocate hardware ring */
152b6a62 445 rc = efx_nic_probe_tx(tx_queue);
8ceee660 446 if (rc)
60ac1065 447 goto fail;
8ceee660
BH
448
449 return 0;
450
60ac1065 451 fail:
8ceee660
BH
452 kfree(tx_queue->buffer);
453 tx_queue->buffer = NULL;
8ceee660
BH
454 return rc;
455}
456
bc3c90a2 457void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
8ceee660
BH
458{
459 EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
460
461 tx_queue->insert_count = 0;
462 tx_queue->write_count = 0;
463 tx_queue->read_count = 0;
464 tx_queue->old_read_count = 0;
465 BUG_ON(tx_queue->stopped);
466
467 /* Set up TX descriptor ring */
152b6a62 468 efx_nic_init_tx(tx_queue);
8ceee660
BH
469}
470
471void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
472{
473 struct efx_tx_buffer *buffer;
474
475 if (!tx_queue->buffer)
476 return;
477
478 /* Free any buffers left in the ring */
479 while (tx_queue->read_count != tx_queue->write_count) {
3ffeabdd 480 buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
8ceee660 481 efx_dequeue_buffer(tx_queue, buffer);
dc8cfa55 482 buffer->continuation = true;
8ceee660
BH
483 buffer->len = 0;
484
485 ++tx_queue->read_count;
486 }
487}
488
489void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
490{
491 EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
492
493 /* Flush TX queue, remove descriptor ring */
152b6a62 494 efx_nic_fini_tx(tx_queue);
8ceee660
BH
495
496 efx_release_tx_buffers(tx_queue);
497
b9b39b62
BH
498 /* Free up TSO header cache */
499 efx_fini_tso(tx_queue);
500
8ceee660
BH
501 /* Release queue's stop on port, if any */
502 if (tx_queue->stopped) {
503 tx_queue->stopped = 0;
a4900ac9 504 efx_wake_queue(tx_queue->channel);
8ceee660
BH
505 }
506}
507
508void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
509{
510 EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
152b6a62 511 efx_nic_remove_tx(tx_queue);
8ceee660
BH
512
513 kfree(tx_queue->buffer);
514 tx_queue->buffer = NULL;
8ceee660
BH
515}
516
517
b9b39b62
BH
518/* Efx TCP segmentation acceleration.
519 *
520 * Why? Because by doing it here in the driver we can go significantly
521 * faster than the GSO.
522 *
523 * Requires TX checksum offload support.
524 */
525
526/* Number of bytes inserted at the start of a TSO header buffer,
527 * similar to NET_IP_ALIGN.
528 */
13e9ab11 529#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
b9b39b62
BH
530#define TSOH_OFFSET 0
531#else
532#define TSOH_OFFSET NET_IP_ALIGN
533#endif
534
535#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
536
537/* Total size of struct efx_tso_header, buffer and padding */
538#define TSOH_SIZE(hdr_len) \
539 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
540
541/* Size of blocks on free list. Larger blocks must be allocated from
542 * the heap.
543 */
544#define TSOH_STD_SIZE 128
545
546#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
547#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
548#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
549#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
738a8f4b 550#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
b9b39b62
BH
551
552/**
553 * struct tso_state - TSO state for an SKB
23d9e60b 554 * @out_len: Remaining length in current segment
b9b39b62 555 * @seqnum: Current sequence number
23d9e60b 556 * @ipv4_id: Current IPv4 ID, host endian
b9b39b62 557 * @packet_space: Remaining space in current packet
23d9e60b
BH
558 * @dma_addr: DMA address of current position
559 * @in_len: Remaining length in current SKB fragment
560 * @unmap_len: Length of SKB fragment
561 * @unmap_addr: DMA address of SKB fragment
562 * @unmap_single: DMA single vs page mapping flag
738a8f4b 563 * @protocol: Network protocol (after any VLAN header)
23d9e60b
BH
564 * @header_len: Number of bytes of header
565 * @full_packet_size: Number of bytes to put in each outgoing segment
b9b39b62
BH
566 *
567 * The state used during segmentation. It is put into this data structure
568 * just to make it easy to pass into inline functions.
569 */
570struct tso_state {
23d9e60b
BH
571 /* Output position */
572 unsigned out_len;
b9b39b62 573 unsigned seqnum;
23d9e60b 574 unsigned ipv4_id;
b9b39b62
BH
575 unsigned packet_space;
576
23d9e60b
BH
577 /* Input position */
578 dma_addr_t dma_addr;
579 unsigned in_len;
580 unsigned unmap_len;
581 dma_addr_t unmap_addr;
582 bool unmap_single;
583
738a8f4b 584 __be16 protocol;
23d9e60b
BH
585 unsigned header_len;
586 int full_packet_size;
b9b39b62
BH
587};
588
589
590/*
591 * Verify that our various assumptions about sk_buffs and the conditions
738a8f4b 592 * under which TSO will be attempted hold true. Return the protocol number.
b9b39b62 593 */
738a8f4b 594static __be16 efx_tso_check_protocol(struct sk_buff *skb)
b9b39b62 595{
740847da
BH
596 __be16 protocol = skb->protocol;
597
b9b39b62 598 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
740847da
BH
599 protocol);
600 if (protocol == htons(ETH_P_8021Q)) {
601 /* Find the encapsulated protocol; reset network header
602 * and transport header based on that. */
603 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
604 protocol = veh->h_vlan_encapsulated_proto;
605 skb_set_network_header(skb, sizeof(*veh));
606 if (protocol == htons(ETH_P_IP))
607 skb_set_transport_header(skb, sizeof(*veh) +
608 4 * ip_hdr(skb)->ihl);
738a8f4b
BH
609 else if (protocol == htons(ETH_P_IPV6))
610 skb_set_transport_header(skb, sizeof(*veh) +
611 sizeof(struct ipv6hdr));
740847da
BH
612 }
613
738a8f4b
BH
614 if (protocol == htons(ETH_P_IP)) {
615 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
616 } else {
617 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
618 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
619 }
b9b39b62
BH
620 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
621 + (tcp_hdr(skb)->doff << 2u)) >
622 skb_headlen(skb));
738a8f4b
BH
623
624 return protocol;
b9b39b62
BH
625}
626
627
628/*
629 * Allocate a page worth of efx_tso_header structures, and string them
630 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
631 */
632static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
633{
634
635 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
636 struct efx_tso_header *tsoh;
637 dma_addr_t dma_addr;
638 u8 *base_kva, *kva;
639
640 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
641 if (base_kva == NULL) {
642 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
643 " headers\n");
644 return -ENOMEM;
645 }
646
647 /* pci_alloc_consistent() allocates pages. */
648 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
649
650 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
651 tsoh = (struct efx_tso_header *)kva;
652 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
653 tsoh->next = tx_queue->tso_headers_free;
654 tx_queue->tso_headers_free = tsoh;
655 }
656
657 return 0;
658}
659
660
661/* Free up a TSO header, and all others in the same page. */
662static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
663 struct efx_tso_header *tsoh,
664 struct pci_dev *pci_dev)
665{
666 struct efx_tso_header **p;
667 unsigned long base_kva;
668 dma_addr_t base_dma;
669
670 base_kva = (unsigned long)tsoh & PAGE_MASK;
671 base_dma = tsoh->dma_addr & PAGE_MASK;
672
673 p = &tx_queue->tso_headers_free;
b3475645 674 while (*p != NULL) {
b9b39b62
BH
675 if (((unsigned long)*p & PAGE_MASK) == base_kva)
676 *p = (*p)->next;
677 else
678 p = &(*p)->next;
b3475645 679 }
b9b39b62
BH
680
681 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
682}
683
684static struct efx_tso_header *
685efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
686{
687 struct efx_tso_header *tsoh;
688
689 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
690 if (unlikely(!tsoh))
691 return NULL;
692
693 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
694 TSOH_BUFFER(tsoh), header_len,
695 PCI_DMA_TODEVICE);
8d8bb39b
FT
696 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
697 tsoh->dma_addr))) {
b9b39b62
BH
698 kfree(tsoh);
699 return NULL;
700 }
701
702 tsoh->unmap_len = header_len;
703 return tsoh;
704}
705
706static void
707efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
708{
709 pci_unmap_single(tx_queue->efx->pci_dev,
710 tsoh->dma_addr, tsoh->unmap_len,
711 PCI_DMA_TODEVICE);
712 kfree(tsoh);
713}
714
715/**
716 * efx_tx_queue_insert - push descriptors onto the TX queue
717 * @tx_queue: Efx TX queue
718 * @dma_addr: DMA address of fragment
719 * @len: Length of fragment
ecbd95c1 720 * @final_buffer: The final buffer inserted into the queue
b9b39b62
BH
721 *
722 * Push descriptors onto the TX queue. Return 0 on success or 1 if
723 * @tx_queue full.
724 */
725static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
726 dma_addr_t dma_addr, unsigned len,
ecbd95c1 727 struct efx_tx_buffer **final_buffer)
b9b39b62
BH
728{
729 struct efx_tx_buffer *buffer;
730 struct efx_nic *efx = tx_queue->efx;
63f19884 731 unsigned dma_len, fill_level, insert_ptr;
b9b39b62
BH
732 int q_space;
733
734 EFX_BUG_ON_PARANOID(len <= 0);
735
736 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
737 /* -1 as there is no way to represent all descriptors used */
3ffeabdd 738 q_space = EFX_TXQ_MASK - 1 - fill_level;
b9b39b62
BH
739
740 while (1) {
741 if (unlikely(q_space-- <= 0)) {
742 /* It might be that completions have happened
743 * since the xmit path last checked. Update
744 * the xmit path's copy of read_count.
745 */
746 ++tx_queue->stopped;
747 /* This memory barrier protects the change of
748 * stopped from the access of read_count. */
749 smp_mb();
750 tx_queue->old_read_count =
751 *(volatile unsigned *)&tx_queue->read_count;
752 fill_level = (tx_queue->insert_count
753 - tx_queue->old_read_count);
3ffeabdd 754 q_space = EFX_TXQ_MASK - 1 - fill_level;
ecbd95c1
BH
755 if (unlikely(q_space-- <= 0)) {
756 *final_buffer = NULL;
b9b39b62 757 return 1;
ecbd95c1 758 }
b9b39b62
BH
759 smp_mb();
760 --tx_queue->stopped;
761 }
762
3ffeabdd 763 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
b9b39b62
BH
764 buffer = &tx_queue->buffer[insert_ptr];
765 ++tx_queue->insert_count;
766
767 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
768 tx_queue->read_count >
3ffeabdd 769 EFX_TXQ_MASK);
b9b39b62
BH
770
771 efx_tsoh_free(tx_queue, buffer);
772 EFX_BUG_ON_PARANOID(buffer->len);
773 EFX_BUG_ON_PARANOID(buffer->unmap_len);
774 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 775 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
776 EFX_BUG_ON_PARANOID(buffer->tsoh);
777
778 buffer->dma_addr = dma_addr;
779
63f19884 780 dma_len = efx_max_tx_len(efx, dma_addr);
b9b39b62
BH
781
782 /* If there is enough space to send then do so */
783 if (dma_len >= len)
784 break;
785
786 buffer->len = dma_len; /* Don't set the other members */
787 dma_addr += dma_len;
788 len -= dma_len;
789 }
790
791 EFX_BUG_ON_PARANOID(!len);
792 buffer->len = len;
ecbd95c1 793 *final_buffer = buffer;
b9b39b62
BH
794 return 0;
795}
796
797
798/*
799 * Put a TSO header into the TX queue.
800 *
801 * This is special-cased because we know that it is small enough to fit in
802 * a single fragment, and we know it doesn't cross a page boundary. It
803 * also allows us to not worry about end-of-packet etc.
804 */
4d566063
BH
805static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
806 struct efx_tso_header *tsoh, unsigned len)
b9b39b62
BH
807{
808 struct efx_tx_buffer *buffer;
809
3ffeabdd 810 buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
b9b39b62
BH
811 efx_tsoh_free(tx_queue, buffer);
812 EFX_BUG_ON_PARANOID(buffer->len);
813 EFX_BUG_ON_PARANOID(buffer->unmap_len);
814 EFX_BUG_ON_PARANOID(buffer->skb);
dc8cfa55 815 EFX_BUG_ON_PARANOID(!buffer->continuation);
b9b39b62
BH
816 EFX_BUG_ON_PARANOID(buffer->tsoh);
817 buffer->len = len;
818 buffer->dma_addr = tsoh->dma_addr;
819 buffer->tsoh = tsoh;
820
821 ++tx_queue->insert_count;
822}
823
824
825/* Remove descriptors put into a tx_queue. */
826static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
827{
828 struct efx_tx_buffer *buffer;
cc12dac2 829 dma_addr_t unmap_addr;
b9b39b62
BH
830
831 /* Work backwards until we hit the original insert pointer value */
832 while (tx_queue->insert_count != tx_queue->write_count) {
833 --tx_queue->insert_count;
834 buffer = &tx_queue->buffer[tx_queue->insert_count &
3ffeabdd 835 EFX_TXQ_MASK];
b9b39b62
BH
836 efx_tsoh_free(tx_queue, buffer);
837 EFX_BUG_ON_PARANOID(buffer->skb);
b9b39b62 838 if (buffer->unmap_len) {
cc12dac2
BH
839 unmap_addr = (buffer->dma_addr + buffer->len -
840 buffer->unmap_len);
ecbd95c1
BH
841 if (buffer->unmap_single)
842 pci_unmap_single(tx_queue->efx->pci_dev,
cc12dac2 843 unmap_addr, buffer->unmap_len,
ecbd95c1
BH
844 PCI_DMA_TODEVICE);
845 else
846 pci_unmap_page(tx_queue->efx->pci_dev,
cc12dac2 847 unmap_addr, buffer->unmap_len,
ecbd95c1 848 PCI_DMA_TODEVICE);
b9b39b62
BH
849 buffer->unmap_len = 0;
850 }
a7ebd27a
NT
851 buffer->len = 0;
852 buffer->continuation = true;
b9b39b62
BH
853 }
854}
855
856
857/* Parse the SKB header and initialise state. */
4d566063 858static void tso_start(struct tso_state *st, const struct sk_buff *skb)
b9b39b62
BH
859{
860 /* All ethernet/IP/TCP headers combined size is TCP header size
861 * plus offset of TCP header relative to start of packet.
862 */
23d9e60b
BH
863 st->header_len = ((tcp_hdr(skb)->doff << 2u)
864 + PTR_DIFF(tcp_hdr(skb), skb->data));
865 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
b9b39b62 866
738a8f4b
BH
867 if (st->protocol == htons(ETH_P_IP))
868 st->ipv4_id = ntohs(ip_hdr(skb)->id);
869 else
870 st->ipv4_id = 0;
b9b39b62
BH
871 st->seqnum = ntohl(tcp_hdr(skb)->seq);
872
873 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
874 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
875 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
876
23d9e60b
BH
877 st->packet_space = st->full_packet_size;
878 st->out_len = skb->len - st->header_len;
879 st->unmap_len = 0;
880 st->unmap_single = false;
b9b39b62
BH
881}
882
4d566063
BH
883static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
884 skb_frag_t *frag)
b9b39b62 885{
23d9e60b
BH
886 st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
887 frag->page_offset, frag->size,
888 PCI_DMA_TODEVICE);
889 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
890 st->unmap_single = false;
891 st->unmap_len = frag->size;
892 st->in_len = frag->size;
893 st->dma_addr = st->unmap_addr;
ecbd95c1
BH
894 return 0;
895 }
896 return -ENOMEM;
897}
898
4d566063
BH
899static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
900 const struct sk_buff *skb)
ecbd95c1 901{
23d9e60b 902 int hl = st->header_len;
ecbd95c1 903 int len = skb_headlen(skb) - hl;
b9b39b62 904
23d9e60b
BH
905 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
906 len, PCI_DMA_TODEVICE);
907 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
908 st->unmap_single = true;
909 st->unmap_len = len;
910 st->in_len = len;
911 st->dma_addr = st->unmap_addr;
b9b39b62
BH
912 return 0;
913 }
914 return -ENOMEM;
915}
916
917
918/**
919 * tso_fill_packet_with_fragment - form descriptors for the current fragment
920 * @tx_queue: Efx TX queue
921 * @skb: Socket buffer
922 * @st: TSO state
923 *
924 * Form descriptors for the current fragment, until we reach the end
925 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
926 * space in @tx_queue.
927 */
4d566063
BH
928static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
929 const struct sk_buff *skb,
930 struct tso_state *st)
b9b39b62 931{
ecbd95c1 932 struct efx_tx_buffer *buffer;
b9b39b62
BH
933 int n, end_of_packet, rc;
934
23d9e60b 935 if (st->in_len == 0)
b9b39b62
BH
936 return 0;
937 if (st->packet_space == 0)
938 return 0;
939
23d9e60b 940 EFX_BUG_ON_PARANOID(st->in_len <= 0);
b9b39b62
BH
941 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
942
23d9e60b 943 n = min(st->in_len, st->packet_space);
b9b39b62
BH
944
945 st->packet_space -= n;
23d9e60b
BH
946 st->out_len -= n;
947 st->in_len -= n;
b9b39b62 948
23d9e60b 949 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
ecbd95c1 950 if (likely(rc == 0)) {
23d9e60b 951 if (st->out_len == 0)
ecbd95c1
BH
952 /* Transfer ownership of the skb */
953 buffer->skb = skb;
b9b39b62 954
23d9e60b 955 end_of_packet = st->out_len == 0 || st->packet_space == 0;
ecbd95c1 956 buffer->continuation = !end_of_packet;
b9b39b62 957
23d9e60b 958 if (st->in_len == 0) {
ecbd95c1 959 /* Transfer ownership of the pci mapping */
23d9e60b
BH
960 buffer->unmap_len = st->unmap_len;
961 buffer->unmap_single = st->unmap_single;
962 st->unmap_len = 0;
ecbd95c1
BH
963 }
964 }
965
23d9e60b 966 st->dma_addr += n;
b9b39b62
BH
967 return rc;
968}
969
970
971/**
972 * tso_start_new_packet - generate a new header and prepare for the new packet
973 * @tx_queue: Efx TX queue
974 * @skb: Socket buffer
975 * @st: TSO state
976 *
977 * Generate a new header and prepare for the new packet. Return 0 on
978 * success, or -1 if failed to alloc header.
979 */
4d566063
BH
980static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
981 const struct sk_buff *skb,
982 struct tso_state *st)
b9b39b62
BH
983{
984 struct efx_tso_header *tsoh;
b9b39b62
BH
985 struct tcphdr *tsoh_th;
986 unsigned ip_length;
987 u8 *header;
988
989 /* Allocate a DMA-mapped header buffer. */
23d9e60b 990 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
b3475645 991 if (tx_queue->tso_headers_free == NULL) {
b9b39b62
BH
992 if (efx_tsoh_block_alloc(tx_queue))
993 return -1;
b3475645 994 }
b9b39b62
BH
995 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
996 tsoh = tx_queue->tso_headers_free;
997 tx_queue->tso_headers_free = tsoh->next;
998 tsoh->unmap_len = 0;
999 } else {
1000 tx_queue->tso_long_headers++;
23d9e60b 1001 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
b9b39b62
BH
1002 if (unlikely(!tsoh))
1003 return -1;
1004 }
1005
1006 header = TSOH_BUFFER(tsoh);
1007 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
b9b39b62
BH
1008
1009 /* Copy and update the headers. */
23d9e60b 1010 memcpy(header, skb->data, st->header_len);
b9b39b62
BH
1011
1012 tsoh_th->seq = htonl(st->seqnum);
1013 st->seqnum += skb_shinfo(skb)->gso_size;
23d9e60b 1014 if (st->out_len > skb_shinfo(skb)->gso_size) {
b9b39b62 1015 /* This packet will not finish the TSO burst. */
23d9e60b 1016 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
b9b39b62
BH
1017 tsoh_th->fin = 0;
1018 tsoh_th->psh = 0;
1019 } else {
1020 /* This packet will be the last in the TSO burst. */
23d9e60b 1021 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
b9b39b62
BH
1022 tsoh_th->fin = tcp_hdr(skb)->fin;
1023 tsoh_th->psh = tcp_hdr(skb)->psh;
1024 }
b9b39b62 1025
738a8f4b
BH
1026 if (st->protocol == htons(ETH_P_IP)) {
1027 struct iphdr *tsoh_iph =
1028 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1029
1030 tsoh_iph->tot_len = htons(ip_length);
1031
1032 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1033 tsoh_iph->id = htons(st->ipv4_id);
1034 st->ipv4_id++;
1035 } else {
1036 struct ipv6hdr *tsoh_iph =
1037 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1038
1039 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1040 }
b9b39b62
BH
1041
1042 st->packet_space = skb_shinfo(skb)->gso_size;
1043 ++tx_queue->tso_packets;
1044
1045 /* Form a descriptor for this header. */
23d9e60b 1046 efx_tso_put_header(tx_queue, tsoh, st->header_len);
b9b39b62
BH
1047
1048 return 0;
1049}
1050
1051
1052/**
1053 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1054 * @tx_queue: Efx TX queue
1055 * @skb: Socket buffer
1056 *
1057 * Context: You must hold netif_tx_lock() to call this function.
1058 *
1059 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1060 * @skb was not enqueued. In all cases @skb is consumed. Return
1061 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1062 */
1063static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
740847da 1064 struct sk_buff *skb)
b9b39b62 1065{
ecbd95c1 1066 struct efx_nic *efx = tx_queue->efx;
b9b39b62
BH
1067 int frag_i, rc, rc2 = NETDEV_TX_OK;
1068 struct tso_state state;
b9b39b62 1069
738a8f4b
BH
1070 /* Find the packet protocol and sanity-check it */
1071 state.protocol = efx_tso_check_protocol(skb);
b9b39b62
BH
1072
1073 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1074
1075 tso_start(&state, skb);
1076
1077 /* Assume that skb header area contains exactly the headers, and
1078 * all payload is in the frag list.
1079 */
23d9e60b 1080 if (skb_headlen(skb) == state.header_len) {
b9b39b62
BH
1081 /* Grab the first payload fragment. */
1082 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1083 frag_i = 0;
ecbd95c1
BH
1084 rc = tso_get_fragment(&state, efx,
1085 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1086 if (rc)
1087 goto mem_err;
1088 } else {
ecbd95c1 1089 rc = tso_get_head_fragment(&state, efx, skb);
b9b39b62
BH
1090 if (rc)
1091 goto mem_err;
1092 frag_i = -1;
1093 }
1094
1095 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1096 goto mem_err;
1097
1098 while (1) {
1099 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1100 if (unlikely(rc))
1101 goto stop;
1102
1103 /* Move onto the next fragment? */
23d9e60b 1104 if (state.in_len == 0) {
b9b39b62
BH
1105 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1106 /* End of payload reached. */
1107 break;
ecbd95c1
BH
1108 rc = tso_get_fragment(&state, efx,
1109 skb_shinfo(skb)->frags + frag_i);
b9b39b62
BH
1110 if (rc)
1111 goto mem_err;
1112 }
1113
1114 /* Start at new packet? */
1115 if (state.packet_space == 0 &&
1116 tso_start_new_packet(tx_queue, skb, &state) < 0)
1117 goto mem_err;
1118 }
1119
1120 /* Pass off to hardware */
152b6a62 1121 efx_nic_push_buffers(tx_queue);
b9b39b62
BH
1122
1123 tx_queue->tso_bursts++;
1124 return NETDEV_TX_OK;
1125
1126 mem_err:
ecbd95c1 1127 EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
9bc183d7 1128 dev_kfree_skb_any(skb);
b9b39b62
BH
1129 goto unwind;
1130
1131 stop:
1132 rc2 = NETDEV_TX_BUSY;
1133
1134 /* Stop the queue if it wasn't stopped before. */
1135 if (tx_queue->stopped == 1)
a4900ac9 1136 efx_stop_queue(tx_queue->channel);
b9b39b62
BH
1137
1138 unwind:
5988b63a 1139 /* Free the DMA mapping we were in the process of writing out */
23d9e60b
BH
1140 if (state.unmap_len) {
1141 if (state.unmap_single)
1142 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1143 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1144 else
23d9e60b
BH
1145 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1146 state.unmap_len, PCI_DMA_TODEVICE);
ecbd95c1 1147 }
5988b63a 1148
b9b39b62
BH
1149 efx_enqueue_unwind(tx_queue);
1150 return rc2;
1151}
1152
1153
1154/*
1155 * Free up all TSO datastructures associated with tx_queue. This
1156 * routine should be called only once the tx_queue is both empty and
1157 * will no longer be used.
1158 */
1159static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1160{
1161 unsigned i;
1162
b3475645 1163 if (tx_queue->buffer) {
3ffeabdd 1164 for (i = 0; i <= EFX_TXQ_MASK; ++i)
b9b39b62 1165 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
b3475645 1166 }
b9b39b62
BH
1167
1168 while (tx_queue->tso_headers_free != NULL)
1169 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1170 tx_queue->efx->pci_dev);
1171}
This page took 0.468736 seconds and 5 git commands to generate.