brcm80211: use endian annotation for pmk related structure
[deliverable/linux.git] / drivers / net / smc91x.c
CommitLineData
1da177e4
LT
1/*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 *
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
29 *
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
32 *
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
35 *
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
2f82af08 38 * Nicolas Pitre <nico@fluxnic.net>
1da177e4
LT
39 * Russell King <rmk@arm.linux.org.uk>
40 *
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
59 */
60static const char version[] =
2f82af08 61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
1da177e4
LT
62
63/* Debugging level */
64#ifndef SMC_DEBUG
65#define SMC_DEBUG 0
66#endif
67
68
1da177e4
LT
69#include <linux/init.h>
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/sched.h>
1da177e4
LT
73#include <linux/delay.h>
74#include <linux/interrupt.h>
476c32c4 75#include <linux/irq.h>
1da177e4
LT
76#include <linux/errno.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
d052d1be 79#include <linux/platform_device.h>
1da177e4
LT
80#include <linux/spinlock.h>
81#include <linux/ethtool.h>
82#include <linux/mii.h>
83#include <linux/workqueue.h>
682a1694 84#include <linux/of.h>
1da177e4
LT
85
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89
90#include <asm/io.h>
1da177e4
LT
91
92#include "smc91x.h"
93
1da177e4
LT
94#ifndef SMC_NOWAIT
95# define SMC_NOWAIT 0
96#endif
97static int nowait = SMC_NOWAIT;
98module_param(nowait, int, 0400);
99MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
100
101/*
102 * Transmit timeout, default 5 seconds.
103 */
ea937560 104static int watchdog = 1000;
1da177e4
LT
105module_param(watchdog, int, 0400);
106MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
107
108MODULE_LICENSE("GPL");
72abb461 109MODULE_ALIAS("platform:smc91x");
1da177e4
LT
110
111/*
112 * The internal workings of the driver. If you are changing anything
113 * here with the SMC stuff, you should have the datasheet and know
114 * what you are doing.
115 */
116#define CARDNAME "smc91x"
117
118/*
119 * Use power-down feature of the chip
120 */
121#define POWER_DOWN 1
122
123/*
124 * Wait time for memory to be free. This probably shouldn't be
125 * tuned that much, as waiting for this means nothing else happens
126 * in the system
127 */
128#define MEMORY_WAIT_TIME 16
129
5d0571d9
NP
130/*
131 * The maximum number of processing loops allowed for each call to the
6aa20a22 132 * IRQ handler.
5d0571d9
NP
133 */
134#define MAX_IRQ_LOOPS 8
135
1da177e4
LT
136/*
137 * This selects whether TX packets are sent one by one to the SMC91x internal
138 * memory and throttled until transmission completes. This may prevent
139 * RX overruns a litle by keeping much of the memory free for RX packets
140 * but to the expense of reduced TX throughput and increased IRQ overhead.
141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
142 */
143#define THROTTLE_TX_PKTS 0
144
145/*
146 * The MII clock high/low times. 2x this number gives the MII clock period
147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
148 */
149#define MII_DELAY 1
150
1da177e4
LT
151#if SMC_DEBUG > 0
152#define DBG(n, args...) \
153 do { \
154 if (SMC_DEBUG >= (n)) \
155 printk(args); \
156 } while (0)
157
158#define PRINTK(args...) printk(args)
159#else
160#define DBG(n, args...) do { } while(0)
161#define PRINTK(args...) printk(KERN_DEBUG args)
162#endif
163
164#if SMC_DEBUG > 3
165static void PRINT_PKT(u_char *buf, int length)
166{
167 int i;
168 int remainder;
169 int lines;
170
171 lines = length / 16;
172 remainder = length % 16;
173
174 for (i = 0; i < lines ; i ++) {
175 int cur;
176 for (cur = 0; cur < 8; cur++) {
177 u_char a, b;
178 a = *buf++;
179 b = *buf++;
180 printk("%02x%02x ", a, b);
181 }
182 printk("\n");
183 }
184 for (i = 0; i < remainder/2 ; i++) {
185 u_char a, b;
186 a = *buf++;
187 b = *buf++;
188 printk("%02x%02x ", a, b);
189 }
190 printk("\n");
191}
192#else
193#define PRINT_PKT(x...) do { } while(0)
194#endif
195
196
197/* this enables an interrupt in the interrupt mask register */
cfdfa865 198#define SMC_ENABLE_INT(lp, x) do { \
1da177e4 199 unsigned char mask; \
8ff499e4
DD
200 unsigned long smc_enable_flags; \
201 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
cfdfa865 202 mask = SMC_GET_INT_MASK(lp); \
1da177e4 203 mask |= (x); \
cfdfa865 204 SMC_SET_INT_MASK(lp, mask); \
8ff499e4 205 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
1da177e4
LT
206} while (0)
207
208/* this disables an interrupt from the interrupt mask register */
cfdfa865 209#define SMC_DISABLE_INT(lp, x) do { \
1da177e4 210 unsigned char mask; \
8ff499e4
DD
211 unsigned long smc_disable_flags; \
212 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
cfdfa865 213 mask = SMC_GET_INT_MASK(lp); \
1da177e4 214 mask &= ~(x); \
cfdfa865 215 SMC_SET_INT_MASK(lp, mask); \
8ff499e4 216 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
1da177e4
LT
217} while (0)
218
219/*
220 * Wait while MMU is busy. This is usually in the order of a few nanosecs
221 * if at all, but let's avoid deadlocking the system if the hardware
222 * decides to go south.
223 */
cfdfa865
MD
224#define SMC_WAIT_MMU_BUSY(lp) do { \
225 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
1da177e4 226 unsigned long timeout = jiffies + 2; \
cfdfa865 227 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
1da177e4
LT
228 if (time_after(jiffies, timeout)) { \
229 printk("%s: timeout %s line %d\n", \
230 dev->name, __FILE__, __LINE__); \
231 break; \
232 } \
233 cpu_relax(); \
234 } \
235 } \
236} while (0)
237
238
239/*
240 * this does a soft reset on the device
241 */
242static void smc_reset(struct net_device *dev)
243{
244 struct smc_local *lp = netdev_priv(dev);
245 void __iomem *ioaddr = lp->base;
246 unsigned int ctl, cfg;
be83668a 247 struct sk_buff *pending_skb;
1da177e4 248
b39d66a8 249 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4 250
be83668a 251 /* Disable all interrupts, block TX tasklet */
76cb4fe7 252 spin_lock_irq(&lp->lock);
cfdfa865
MD
253 SMC_SELECT_BANK(lp, 2);
254 SMC_SET_INT_MASK(lp, 0);
be83668a
NP
255 pending_skb = lp->pending_tx_skb;
256 lp->pending_tx_skb = NULL;
76cb4fe7 257 spin_unlock_irq(&lp->lock);
1da177e4 258
be83668a
NP
259 /* free any pending tx skb */
260 if (pending_skb) {
261 dev_kfree_skb(pending_skb);
09f75cd7
JG
262 dev->stats.tx_errors++;
263 dev->stats.tx_aborted_errors++;
be83668a
NP
264 }
265
1da177e4
LT
266 /*
267 * This resets the registers mostly to defaults, but doesn't
268 * affect EEPROM. That seems unnecessary
269 */
cfdfa865
MD
270 SMC_SELECT_BANK(lp, 0);
271 SMC_SET_RCR(lp, RCR_SOFTRST);
1da177e4
LT
272
273 /*
274 * Setup the Configuration Register
275 * This is necessary because the CONFIG_REG is not affected
276 * by a soft reset
277 */
cfdfa865 278 SMC_SELECT_BANK(lp, 1);
1da177e4
LT
279
280 cfg = CONFIG_DEFAULT;
281
282 /*
283 * Setup for fast accesses if requested. If the card/system
284 * can't handle it then there will be no recovery except for
285 * a hard reset or power cycle
286 */
c4f0e767 287 if (lp->cfg.flags & SMC91X_NOWAIT)
1da177e4
LT
288 cfg |= CONFIG_NO_WAIT;
289
290 /*
291 * Release from possible power-down state
292 * Configuration register is not affected by Soft Reset
293 */
294 cfg |= CONFIG_EPH_POWER_EN;
295
cfdfa865 296 SMC_SET_CONFIG(lp, cfg);
1da177e4
LT
297
298 /* this should pause enough for the chip to be happy */
299 /*
300 * elaborate? What does the chip _need_? --jgarzik
301 *
302 * This seems to be undocumented, but something the original
303 * driver(s) have always done. Suspect undocumented timing
304 * info/determined empirically. --rmk
305 */
306 udelay(1);
307
308 /* Disable transmit and receive functionality */
cfdfa865
MD
309 SMC_SELECT_BANK(lp, 0);
310 SMC_SET_RCR(lp, RCR_CLEAR);
311 SMC_SET_TCR(lp, TCR_CLEAR);
1da177e4 312
cfdfa865
MD
313 SMC_SELECT_BANK(lp, 1);
314 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
1da177e4
LT
315
316 /*
317 * Set the control register to automatically release successfully
318 * transmitted packets, to make the best use out of our limited
319 * memory
320 */
321 if(!THROTTLE_TX_PKTS)
322 ctl |= CTL_AUTO_RELEASE;
323 else
324 ctl &= ~CTL_AUTO_RELEASE;
cfdfa865 325 SMC_SET_CTL(lp, ctl);
1da177e4
LT
326
327 /* Reset the MMU */
cfdfa865
MD
328 SMC_SELECT_BANK(lp, 2);
329 SMC_SET_MMU_CMD(lp, MC_RESET);
330 SMC_WAIT_MMU_BUSY(lp);
1da177e4
LT
331}
332
333/*
334 * Enable Interrupts, Receive, and Transmit
335 */
336static void smc_enable(struct net_device *dev)
337{
338 struct smc_local *lp = netdev_priv(dev);
339 void __iomem *ioaddr = lp->base;
340 int mask;
341
b39d66a8 342 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
343
344 /* see the header file for options in TCR/RCR DEFAULT */
cfdfa865
MD
345 SMC_SELECT_BANK(lp, 0);
346 SMC_SET_TCR(lp, lp->tcr_cur_mode);
347 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1da177e4 348
cfdfa865
MD
349 SMC_SELECT_BANK(lp, 1);
350 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
1da177e4
LT
351
352 /* now, enable interrupts */
353 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
354 if (lp->version >= (CHIP_91100 << 4))
355 mask |= IM_MDINT;
cfdfa865
MD
356 SMC_SELECT_BANK(lp, 2);
357 SMC_SET_INT_MASK(lp, mask);
1da177e4
LT
358
359 /*
360 * From this point the register bank must _NOT_ be switched away
361 * to something else than bank 2 without proper locking against
362 * races with any tasklet or interrupt handlers until smc_shutdown()
363 * or smc_reset() is called.
364 */
365}
366
367/*
368 * this puts the device in an inactive state
369 */
370static void smc_shutdown(struct net_device *dev)
371{
372 struct smc_local *lp = netdev_priv(dev);
373 void __iomem *ioaddr = lp->base;
be83668a 374 struct sk_buff *pending_skb;
1da177e4 375
b39d66a8 376 DBG(2, "%s: %s\n", CARDNAME, __func__);
1da177e4
LT
377
378 /* no more interrupts for me */
76cb4fe7 379 spin_lock_irq(&lp->lock);
cfdfa865
MD
380 SMC_SELECT_BANK(lp, 2);
381 SMC_SET_INT_MASK(lp, 0);
be83668a
NP
382 pending_skb = lp->pending_tx_skb;
383 lp->pending_tx_skb = NULL;
76cb4fe7 384 spin_unlock_irq(&lp->lock);
be83668a
NP
385 if (pending_skb)
386 dev_kfree_skb(pending_skb);
1da177e4
LT
387
388 /* and tell the card to stay away from that nasty outside world */
cfdfa865
MD
389 SMC_SELECT_BANK(lp, 0);
390 SMC_SET_RCR(lp, RCR_CLEAR);
391 SMC_SET_TCR(lp, TCR_CLEAR);
1da177e4
LT
392
393#ifdef POWER_DOWN
394 /* finally, shut the chip down */
cfdfa865
MD
395 SMC_SELECT_BANK(lp, 1);
396 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
1da177e4
LT
397#endif
398}
399
400/*
401 * This is the procedure to handle the receipt of a packet.
402 */
403static inline void smc_rcv(struct net_device *dev)
404{
405 struct smc_local *lp = netdev_priv(dev);
406 void __iomem *ioaddr = lp->base;
407 unsigned int packet_number, status, packet_len;
408
b39d66a8 409 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4 410
cfdfa865 411 packet_number = SMC_GET_RXFIFO(lp);
1da177e4
LT
412 if (unlikely(packet_number & RXFIFO_REMPTY)) {
413 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
414 return;
415 }
416
417 /* read from start of packet */
cfdfa865 418 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
1da177e4
LT
419
420 /* First two words are status and packet length */
cfdfa865 421 SMC_GET_PKT_HDR(lp, status, packet_len);
1da177e4
LT
422 packet_len &= 0x07ff; /* mask off top bits */
423 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
424 dev->name, packet_number, status,
425 packet_len, packet_len);
426
427 back:
428 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
429 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
430 /* accept VLAN packets */
431 status &= ~RS_TOOLONG;
432 goto back;
433 }
434 if (packet_len < 6) {
435 /* bloody hardware */
436 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
437 dev->name, packet_len, status);
438 status |= RS_TOOSHORT;
439 }
cfdfa865
MD
440 SMC_WAIT_MMU_BUSY(lp);
441 SMC_SET_MMU_CMD(lp, MC_RELEASE);
09f75cd7 442 dev->stats.rx_errors++;
1da177e4 443 if (status & RS_ALGNERR)
09f75cd7 444 dev->stats.rx_frame_errors++;
1da177e4 445 if (status & (RS_TOOSHORT | RS_TOOLONG))
09f75cd7 446 dev->stats.rx_length_errors++;
1da177e4 447 if (status & RS_BADCRC)
09f75cd7 448 dev->stats.rx_crc_errors++;
1da177e4
LT
449 } else {
450 struct sk_buff *skb;
451 unsigned char *data;
452 unsigned int data_len;
453
454 /* set multicast stats */
455 if (status & RS_MULTICAST)
09f75cd7 456 dev->stats.multicast++;
1da177e4
LT
457
458 /*
459 * Actual payload is packet_len - 6 (or 5 if odd byte).
460 * We want skb_reserve(2) and the final ctrl word
461 * (2 bytes, possibly containing the payload odd byte).
462 * Furthermore, we add 2 bytes to allow rounding up to
463 * multiple of 4 bytes on 32 bit buses.
464 * Hence packet_len - 6 + 2 + 2 + 2.
465 */
466 skb = dev_alloc_skb(packet_len);
467 if (unlikely(skb == NULL)) {
468 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
469 dev->name);
cfdfa865
MD
470 SMC_WAIT_MMU_BUSY(lp);
471 SMC_SET_MMU_CMD(lp, MC_RELEASE);
09f75cd7 472 dev->stats.rx_dropped++;
1da177e4
LT
473 return;
474 }
475
476 /* Align IP header to 32 bits */
477 skb_reserve(skb, 2);
478
479 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
480 if (lp->version == 0x90)
481 status |= RS_ODDFRAME;
482
483 /*
484 * If odd length: packet_len - 5,
485 * otherwise packet_len - 6.
486 * With the trailing ctrl byte it's packet_len - 4.
487 */
488 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
489 data = skb_put(skb, data_len);
cfdfa865 490 SMC_PULL_DATA(lp, data, packet_len - 4);
1da177e4 491
cfdfa865
MD
492 SMC_WAIT_MMU_BUSY(lp);
493 SMC_SET_MMU_CMD(lp, MC_RELEASE);
1da177e4
LT
494
495 PRINT_PKT(data, packet_len - 4);
496
1da177e4
LT
497 skb->protocol = eth_type_trans(skb, dev);
498 netif_rx(skb);
09f75cd7
JG
499 dev->stats.rx_packets++;
500 dev->stats.rx_bytes += data_len;
1da177e4
LT
501 }
502}
503
504#ifdef CONFIG_SMP
505/*
506 * On SMP we have the following problem:
507 *
508 * A = smc_hardware_send_pkt()
509 * B = smc_hard_start_xmit()
510 * C = smc_interrupt()
511 *
512 * A and B can never be executed simultaneously. However, at least on UP,
513 * it is possible (and even desirable) for C to interrupt execution of
514 * A or B in order to have better RX reliability and avoid overruns.
515 * C, just like A and B, must have exclusive access to the chip and
516 * each of them must lock against any other concurrent access.
517 * Unfortunately this is not possible to have C suspend execution of A or
518 * B taking place on another CPU. On UP this is no an issue since A and B
519 * are run from softirq context and C from hard IRQ context, and there is
520 * no other CPU where concurrent access can happen.
521 * If ever there is a way to force at least B and C to always be executed
522 * on the same CPU then we could use read/write locks to protect against
523 * any other concurrent access and C would always interrupt B. But life
524 * isn't that easy in a SMP world...
525 */
8ff499e4 526#define smc_special_trylock(lock, flags) \
1da177e4
LT
527({ \
528 int __ret; \
8ff499e4 529 local_irq_save(flags); \
1da177e4
LT
530 __ret = spin_trylock(lock); \
531 if (!__ret) \
8ff499e4 532 local_irq_restore(flags); \
1da177e4
LT
533 __ret; \
534})
0b4f2928 535#define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
8ff499e4 536#define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
1da177e4 537#else
fd0775bf
MF
538#define smc_special_trylock(lock, flags) (flags == flags)
539#define smc_special_lock(lock, flags) do { flags = 0; } while (0)
540#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
1da177e4
LT
541#endif
542
543/*
544 * This is called to actually send a packet to the chip.
545 */
546static void smc_hardware_send_pkt(unsigned long data)
547{
548 struct net_device *dev = (struct net_device *)data;
549 struct smc_local *lp = netdev_priv(dev);
550 void __iomem *ioaddr = lp->base;
551 struct sk_buff *skb;
552 unsigned int packet_no, len;
553 unsigned char *buf;
8ff499e4 554 unsigned long flags;
1da177e4 555
b39d66a8 556 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4 557
8ff499e4 558 if (!smc_special_trylock(&lp->lock, flags)) {
1da177e4
LT
559 netif_stop_queue(dev);
560 tasklet_schedule(&lp->tx_task);
561 return;
562 }
563
564 skb = lp->pending_tx_skb;
be83668a 565 if (unlikely(!skb)) {
8ff499e4 566 smc_special_unlock(&lp->lock, flags);
be83668a
NP
567 return;
568 }
1da177e4 569 lp->pending_tx_skb = NULL;
be83668a 570
cfdfa865 571 packet_no = SMC_GET_AR(lp);
1da177e4
LT
572 if (unlikely(packet_no & AR_FAILED)) {
573 printk("%s: Memory allocation failed.\n", dev->name);
09f75cd7
JG
574 dev->stats.tx_errors++;
575 dev->stats.tx_fifo_errors++;
8ff499e4 576 smc_special_unlock(&lp->lock, flags);
1da177e4
LT
577 goto done;
578 }
579
580 /* point to the beginning of the packet */
cfdfa865
MD
581 SMC_SET_PN(lp, packet_no);
582 SMC_SET_PTR(lp, PTR_AUTOINC);
1da177e4
LT
583
584 buf = skb->data;
585 len = skb->len;
586 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
587 dev->name, packet_no, len, len, buf);
588 PRINT_PKT(buf, len);
589
590 /*
591 * Send the packet length (+6 for status words, length, and ctl.
592 * The card will pad to 64 bytes with zeroes if packet is too small.
593 */
cfdfa865 594 SMC_PUT_PKT_HDR(lp, 0, len + 6);
1da177e4
LT
595
596 /* send the actual data */
cfdfa865 597 SMC_PUSH_DATA(lp, buf, len & ~1);
1da177e4
LT
598
599 /* Send final ctl word with the last byte if there is one */
cfdfa865 600 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
1da177e4
LT
601
602 /*
ea937560
NP
603 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
604 * have the effect of having at most one packet queued for TX
605 * in the chip's memory at all time.
606 *
607 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
608 * when memory allocation (MC_ALLOC) does not succeed right away.
1da177e4 609 */
ea937560 610 if (THROTTLE_TX_PKTS)
1da177e4
LT
611 netif_stop_queue(dev);
612
613 /* queue the packet for TX */
cfdfa865 614 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
8ff499e4 615 smc_special_unlock(&lp->lock, flags);
1da177e4
LT
616
617 dev->trans_start = jiffies;
09f75cd7
JG
618 dev->stats.tx_packets++;
619 dev->stats.tx_bytes += len;
1da177e4 620
cfdfa865 621 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
1da177e4
LT
622
623done: if (!THROTTLE_TX_PKTS)
624 netif_wake_queue(dev);
625
626 dev_kfree_skb(skb);
627}
628
629/*
630 * Since I am not sure if I will have enough room in the chip's ram
631 * to store the packet, I call this routine which either sends it
632 * now, or set the card to generates an interrupt when ready
633 * for the packet.
634 */
635static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
636{
637 struct smc_local *lp = netdev_priv(dev);
638 void __iomem *ioaddr = lp->base;
639 unsigned int numPages, poll_count, status;
8ff499e4 640 unsigned long flags;
1da177e4 641
b39d66a8 642 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4
LT
643
644 BUG_ON(lp->pending_tx_skb != NULL);
1da177e4
LT
645
646 /*
647 * The MMU wants the number of pages to be the number of 256 bytes
648 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
649 *
650 * The 91C111 ignores the size bits, but earlier models don't.
651 *
652 * Pkt size for allocating is data length +6 (for additional status
653 * words, length and ctl)
654 *
655 * If odd size then last byte is included in ctl word.
656 */
657 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
658 if (unlikely(numPages > 7)) {
659 printk("%s: Far too big packet error.\n", dev->name);
09f75cd7
JG
660 dev->stats.tx_errors++;
661 dev->stats.tx_dropped++;
1da177e4 662 dev_kfree_skb(skb);
6ed10654 663 return NETDEV_TX_OK;
1da177e4
LT
664 }
665
8ff499e4 666 smc_special_lock(&lp->lock, flags);
1da177e4
LT
667
668 /* now, try to allocate the memory */
cfdfa865 669 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
1da177e4
LT
670
671 /*
672 * Poll the chip for a short amount of time in case the
673 * allocation succeeds quickly.
674 */
675 poll_count = MEMORY_WAIT_TIME;
676 do {
cfdfa865 677 status = SMC_GET_INT(lp);
1da177e4 678 if (status & IM_ALLOC_INT) {
cfdfa865 679 SMC_ACK_INT(lp, IM_ALLOC_INT);
1da177e4
LT
680 break;
681 }
682 } while (--poll_count);
683
8ff499e4 684 smc_special_unlock(&lp->lock, flags);
1da177e4 685
be83668a 686 lp->pending_tx_skb = skb;
1da177e4
LT
687 if (!poll_count) {
688 /* oh well, wait until the chip finds memory later */
689 netif_stop_queue(dev);
690 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
cfdfa865 691 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
1da177e4
LT
692 } else {
693 /*
694 * Allocation succeeded: push packet to the chip's own memory
695 * immediately.
6aa20a22 696 */
1da177e4
LT
697 smc_hardware_send_pkt((unsigned long)dev);
698 }
699
6ed10654 700 return NETDEV_TX_OK;
1da177e4
LT
701}
702
703/*
704 * This handles a TX interrupt, which is only called when:
705 * - a TX error occurred, or
706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
707 */
708static void smc_tx(struct net_device *dev)
709{
710 struct smc_local *lp = netdev_priv(dev);
711 void __iomem *ioaddr = lp->base;
712 unsigned int saved_packet, packet_no, tx_status, pkt_len;
713
b39d66a8 714 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4
LT
715
716 /* If the TX FIFO is empty then nothing to do */
cfdfa865 717 packet_no = SMC_GET_TXFIFO(lp);
1da177e4
LT
718 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
719 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
720 return;
721 }
722
723 /* select packet to read from */
cfdfa865
MD
724 saved_packet = SMC_GET_PN(lp);
725 SMC_SET_PN(lp, packet_no);
1da177e4
LT
726
727 /* read the first word (status word) from this packet */
cfdfa865
MD
728 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
729 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
1da177e4
LT
730 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
731 dev->name, tx_status, packet_no);
732
8de90115 733 if (!(tx_status & ES_TX_SUC))
09f75cd7 734 dev->stats.tx_errors++;
8de90115
NP
735
736 if (tx_status & ES_LOSTCARR)
09f75cd7 737 dev->stats.tx_carrier_errors++;
1da177e4 738
8de90115
NP
739 if (tx_status & (ES_LATCOL | ES_16COL)) {
740 PRINTK("%s: %s occurred on last xmit\n", dev->name,
741 (tx_status & ES_LATCOL) ?
742 "late collision" : "too many collisions");
09f75cd7
JG
743 dev->stats.tx_window_errors++;
744 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
8de90115
NP
745 printk(KERN_INFO "%s: unexpectedly large number of "
746 "bad collisions. Please check duplex "
1da177e4
LT
747 "setting.\n", dev->name);
748 }
749 }
750
751 /* kill the packet */
cfdfa865
MD
752 SMC_WAIT_MMU_BUSY(lp);
753 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
1da177e4
LT
754
755 /* Don't restore Packet Number Reg until busy bit is cleared */
cfdfa865
MD
756 SMC_WAIT_MMU_BUSY(lp);
757 SMC_SET_PN(lp, saved_packet);
1da177e4
LT
758
759 /* re-enable transmit */
cfdfa865
MD
760 SMC_SELECT_BANK(lp, 0);
761 SMC_SET_TCR(lp, lp->tcr_cur_mode);
762 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
763}
764
765
766/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
767
768static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
769{
770 struct smc_local *lp = netdev_priv(dev);
771 void __iomem *ioaddr = lp->base;
772 unsigned int mii_reg, mask;
773
cfdfa865 774 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
1da177e4
LT
775 mii_reg |= MII_MDOE;
776
777 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
778 if (val & mask)
779 mii_reg |= MII_MDO;
780 else
781 mii_reg &= ~MII_MDO;
782
cfdfa865 783 SMC_SET_MII(lp, mii_reg);
1da177e4 784 udelay(MII_DELAY);
cfdfa865 785 SMC_SET_MII(lp, mii_reg | MII_MCLK);
1da177e4
LT
786 udelay(MII_DELAY);
787 }
788}
789
790static unsigned int smc_mii_in(struct net_device *dev, int bits)
791{
792 struct smc_local *lp = netdev_priv(dev);
793 void __iomem *ioaddr = lp->base;
794 unsigned int mii_reg, mask, val;
795
cfdfa865
MD
796 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
797 SMC_SET_MII(lp, mii_reg);
1da177e4
LT
798
799 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
cfdfa865 800 if (SMC_GET_MII(lp) & MII_MDI)
1da177e4
LT
801 val |= mask;
802
cfdfa865 803 SMC_SET_MII(lp, mii_reg);
1da177e4 804 udelay(MII_DELAY);
cfdfa865 805 SMC_SET_MII(lp, mii_reg | MII_MCLK);
1da177e4
LT
806 udelay(MII_DELAY);
807 }
808
809 return val;
810}
811
812/*
813 * Reads a register from the MII Management serial interface
814 */
815static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
816{
817 struct smc_local *lp = netdev_priv(dev);
818 void __iomem *ioaddr = lp->base;
819 unsigned int phydata;
820
cfdfa865 821 SMC_SELECT_BANK(lp, 3);
1da177e4
LT
822
823 /* Idle - 32 ones */
824 smc_mii_out(dev, 0xffffffff, 32);
825
826 /* Start code (01) + read (10) + phyaddr + phyreg */
827 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
828
829 /* Turnaround (2bits) + phydata */
830 phydata = smc_mii_in(dev, 18);
831
832 /* Return to idle state */
cfdfa865 833 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
1da177e4
LT
834
835 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
b39d66a8 836 __func__, phyaddr, phyreg, phydata);
1da177e4 837
cfdfa865 838 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
839 return phydata;
840}
841
842/*
843 * Writes a register to the MII Management serial interface
844 */
845static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
846 int phydata)
847{
848 struct smc_local *lp = netdev_priv(dev);
849 void __iomem *ioaddr = lp->base;
850
cfdfa865 851 SMC_SELECT_BANK(lp, 3);
1da177e4
LT
852
853 /* Idle - 32 ones */
854 smc_mii_out(dev, 0xffffffff, 32);
855
856 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
857 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
858
859 /* Return to idle state */
cfdfa865 860 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
1da177e4
LT
861
862 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
b39d66a8 863 __func__, phyaddr, phyreg, phydata);
1da177e4 864
cfdfa865 865 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
866}
867
868/*
869 * Finds and reports the PHY address
870 */
871static void smc_phy_detect(struct net_device *dev)
872{
873 struct smc_local *lp = netdev_priv(dev);
874 int phyaddr;
875
b39d66a8 876 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
877
878 lp->phy_type = 0;
879
880 /*
881 * Scan all 32 PHY addresses if necessary, starting at
882 * PHY#1 to PHY#31, and then PHY#0 last.
883 */
884 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
885 unsigned int id1, id2;
886
887 /* Read the PHY identifiers */
888 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
889 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
890
891 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
892 dev->name, id1, id2);
893
894 /* Make sure it is a valid identifier */
895 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
896 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
897 /* Save the PHY's address */
898 lp->mii.phy_id = phyaddr & 31;
899 lp->phy_type = id1 << 16 | id2;
900 break;
901 }
902 }
903}
904
905/*
906 * Sets the PHY to a configuration as determined by the user
907 */
908static int smc_phy_fixed(struct net_device *dev)
909{
910 struct smc_local *lp = netdev_priv(dev);
911 void __iomem *ioaddr = lp->base;
912 int phyaddr = lp->mii.phy_id;
913 int bmcr, cfg1;
914
b39d66a8 915 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4
LT
916
917 /* Enter Link Disable state */
918 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
919 cfg1 |= PHY_CFG1_LNKDIS;
920 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
921
922 /*
923 * Set our fixed capabilities
924 * Disable auto-negotiation
925 */
926 bmcr = 0;
927
928 if (lp->ctl_rfduplx)
929 bmcr |= BMCR_FULLDPLX;
930
931 if (lp->ctl_rspeed == 100)
932 bmcr |= BMCR_SPEED100;
933
934 /* Write our capabilities to the phy control register */
935 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
936
937 /* Re-Configure the Receive/Phy Control register */
cfdfa865
MD
938 SMC_SELECT_BANK(lp, 0);
939 SMC_SET_RPC(lp, lp->rpc_cur_mode);
940 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
941
942 return 1;
943}
944
945/*
946 * smc_phy_reset - reset the phy
947 * @dev: net device
948 * @phy: phy address
949 *
950 * Issue a software reset for the specified PHY and
951 * wait up to 100ms for the reset to complete. We should
952 * not access the PHY for 50ms after issuing the reset.
953 *
954 * The time to wait appears to be dependent on the PHY.
955 *
956 * Must be called with lp->lock locked.
957 */
958static int smc_phy_reset(struct net_device *dev, int phy)
959{
960 struct smc_local *lp = netdev_priv(dev);
961 unsigned int bmcr;
962 int timeout;
963
964 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
965
966 for (timeout = 2; timeout; timeout--) {
967 spin_unlock_irq(&lp->lock);
968 msleep(50);
969 spin_lock_irq(&lp->lock);
970
971 bmcr = smc_phy_read(dev, phy, MII_BMCR);
972 if (!(bmcr & BMCR_RESET))
973 break;
974 }
975
976 return bmcr & BMCR_RESET;
977}
978
979/*
980 * smc_phy_powerdown - powerdown phy
981 * @dev: net device
982 *
983 * Power down the specified PHY
984 */
985static void smc_phy_powerdown(struct net_device *dev)
986{
987 struct smc_local *lp = netdev_priv(dev);
988 unsigned int bmcr;
989 int phy = lp->mii.phy_id;
990
991 if (lp->phy_type == 0)
992 return;
993
994 /* We need to ensure that no calls to smc_phy_configure are
995 pending.
1da177e4 996 */
4bb073c0 997 cancel_work_sync(&lp->phy_configure);
1da177e4
LT
998
999 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1000 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1001}
1002
1003/*
1004 * smc_phy_check_media - check the media status and adjust TCR
1005 * @dev: net device
1006 * @init: set true for initialisation
1007 *
1008 * Select duplex mode depending on negotiation state. This
1009 * also updates our carrier state.
1010 */
1011static void smc_phy_check_media(struct net_device *dev, int init)
1012{
1013 struct smc_local *lp = netdev_priv(dev);
1014 void __iomem *ioaddr = lp->base;
1015
1016 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1017 /* duplex state has changed */
1018 if (lp->mii.full_duplex) {
1019 lp->tcr_cur_mode |= TCR_SWFDUP;
1020 } else {
1021 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1022 }
1023
cfdfa865
MD
1024 SMC_SELECT_BANK(lp, 0);
1025 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1da177e4
LT
1026 }
1027}
1028
1029/*
1030 * Configures the specified PHY through the MII management interface
1031 * using Autonegotiation.
1032 * Calls smc_phy_fixed() if the user has requested a certain config.
1033 * If RPC ANEG bit is set, the media selection is dependent purely on
1034 * the selection by the MII (either in the MII BMCR reg or the result
1035 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1036 * is controlled by the RPC SPEED and RPC DPLX bits.
1037 */
6d5aefb8 1038static void smc_phy_configure(struct work_struct *work)
1da177e4 1039{
6d5aefb8
DH
1040 struct smc_local *lp =
1041 container_of(work, struct smc_local, phy_configure);
1042 struct net_device *dev = lp->dev;
1da177e4
LT
1043 void __iomem *ioaddr = lp->base;
1044 int phyaddr = lp->mii.phy_id;
1045 int my_phy_caps; /* My PHY capabilities */
1046 int my_ad_caps; /* My Advertised capabilities */
1047 int status;
1048
1049 DBG(3, "%s:smc_program_phy()\n", dev->name);
1050
1051 spin_lock_irq(&lp->lock);
1052
1053 /*
1054 * We should not be called if phy_type is zero.
1055 */
1056 if (lp->phy_type == 0)
1057 goto smc_phy_configure_exit;
1058
1059 if (smc_phy_reset(dev, phyaddr)) {
1060 printk("%s: PHY reset timed out\n", dev->name);
1061 goto smc_phy_configure_exit;
1062 }
1063
1064 /*
1065 * Enable PHY Interrupts (for register 18)
1066 * Interrupts listed here are disabled
1067 */
1068 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1069 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1070 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1071 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1072
1073 /* Configure the Receive/Phy Control register */
cfdfa865
MD
1074 SMC_SELECT_BANK(lp, 0);
1075 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1da177e4
LT
1076
1077 /* If the user requested no auto neg, then go set his request */
1078 if (lp->mii.force_media) {
1079 smc_phy_fixed(dev);
1080 goto smc_phy_configure_exit;
1081 }
1082
1083 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1084 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1085
1086 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1087 printk(KERN_INFO "Auto negotiation NOT supported\n");
1088 smc_phy_fixed(dev);
1089 goto smc_phy_configure_exit;
1090 }
1091
1092 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1093
1094 if (my_phy_caps & BMSR_100BASE4)
1095 my_ad_caps |= ADVERTISE_100BASE4;
1096 if (my_phy_caps & BMSR_100FULL)
1097 my_ad_caps |= ADVERTISE_100FULL;
1098 if (my_phy_caps & BMSR_100HALF)
1099 my_ad_caps |= ADVERTISE_100HALF;
1100 if (my_phy_caps & BMSR_10FULL)
1101 my_ad_caps |= ADVERTISE_10FULL;
1102 if (my_phy_caps & BMSR_10HALF)
1103 my_ad_caps |= ADVERTISE_10HALF;
1104
1105 /* Disable capabilities not selected by our user */
1106 if (lp->ctl_rspeed != 100)
1107 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1108
1109 if (!lp->ctl_rfduplx)
1110 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1111
1112 /* Update our Auto-Neg Advertisement Register */
1113 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1114 lp->mii.advertising = my_ad_caps;
1115
1116 /*
1117 * Read the register back. Without this, it appears that when
1118 * auto-negotiation is restarted, sometimes it isn't ready and
1119 * the link does not come up.
1120 */
1121 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1122
1123 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1124 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1125
1126 /* Restart auto-negotiation process in order to advertise my caps */
1127 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1128
1129 smc_phy_check_media(dev, 1);
1130
1131smc_phy_configure_exit:
cfdfa865 1132 SMC_SELECT_BANK(lp, 2);
1da177e4 1133 spin_unlock_irq(&lp->lock);
1da177e4
LT
1134}
1135
1136/*
1137 * smc_phy_interrupt
1138 *
1139 * Purpose: Handle interrupts relating to PHY register 18. This is
1140 * called from the "hard" interrupt handler under our private spinlock.
1141 */
1142static void smc_phy_interrupt(struct net_device *dev)
1143{
1144 struct smc_local *lp = netdev_priv(dev);
1145 int phyaddr = lp->mii.phy_id;
1146 int phy18;
1147
b39d66a8 1148 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1149
1150 if (lp->phy_type == 0)
1151 return;
1152
1153 for(;;) {
1154 smc_phy_check_media(dev, 0);
1155
1156 /* Read PHY Register 18, Status Output */
1157 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1158 if ((phy18 & PHY_INT_INT) == 0)
1159 break;
1160 }
1161}
1162
1163/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1164
1165static void smc_10bt_check_media(struct net_device *dev, int init)
1166{
1167 struct smc_local *lp = netdev_priv(dev);
1168 void __iomem *ioaddr = lp->base;
1169 unsigned int old_carrier, new_carrier;
1170
1171 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1172
cfdfa865
MD
1173 SMC_SELECT_BANK(lp, 0);
1174 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1175 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
1176
1177 if (init || (old_carrier != new_carrier)) {
1178 if (!new_carrier) {
1179 netif_carrier_off(dev);
1180 } else {
1181 netif_carrier_on(dev);
1182 }
1183 if (netif_msg_link(lp))
1184 printk(KERN_INFO "%s: link %s\n", dev->name,
1185 new_carrier ? "up" : "down");
1186 }
1187}
1188
1189static void smc_eph_interrupt(struct net_device *dev)
1190{
1191 struct smc_local *lp = netdev_priv(dev);
1192 void __iomem *ioaddr = lp->base;
1193 unsigned int ctl;
1194
1195 smc_10bt_check_media(dev, 0);
1196
cfdfa865
MD
1197 SMC_SELECT_BANK(lp, 1);
1198 ctl = SMC_GET_CTL(lp);
1199 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1200 SMC_SET_CTL(lp, ctl);
1201 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
1202}
1203
1204/*
1205 * This is the main routine of the driver, to handle the device when
1206 * it needs some attention.
1207 */
7d12e780 1208static irqreturn_t smc_interrupt(int irq, void *dev_id)
1da177e4
LT
1209{
1210 struct net_device *dev = dev_id;
1211 struct smc_local *lp = netdev_priv(dev);
1212 void __iomem *ioaddr = lp->base;
1213 int status, mask, timeout, card_stats;
1214 int saved_pointer;
1215
b39d66a8 1216 DBG(3, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1217
1218 spin_lock(&lp->lock);
1219
1220 /* A preamble may be used when there is a potential race
1221 * between the interruptible transmit functions and this
1222 * ISR. */
1223 SMC_INTERRUPT_PREAMBLE;
1224
cfdfa865
MD
1225 saved_pointer = SMC_GET_PTR(lp);
1226 mask = SMC_GET_INT_MASK(lp);
1227 SMC_SET_INT_MASK(lp, 0);
1da177e4
LT
1228
1229 /* set a timeout value, so I don't stay here forever */
5d0571d9 1230 timeout = MAX_IRQ_LOOPS;
1da177e4
LT
1231
1232 do {
cfdfa865 1233 status = SMC_GET_INT(lp);
1da177e4
LT
1234
1235 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1236 dev->name, status, mask,
cfdfa865
MD
1237 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1238 meminfo = SMC_GET_MIR(lp);
1239 SMC_SELECT_BANK(lp, 2); meminfo; }),
1240 SMC_GET_FIFO(lp));
1da177e4
LT
1241
1242 status &= mask;
1243 if (!status)
1244 break;
1245
ea937560
NP
1246 if (status & IM_TX_INT) {
1247 /* do this before RX as it will free memory quickly */
1da177e4
LT
1248 DBG(3, "%s: TX int\n", dev->name);
1249 smc_tx(dev);
cfdfa865 1250 SMC_ACK_INT(lp, IM_TX_INT);
1da177e4
LT
1251 if (THROTTLE_TX_PKTS)
1252 netif_wake_queue(dev);
ea937560
NP
1253 } else if (status & IM_RCV_INT) {
1254 DBG(3, "%s: RX irq\n", dev->name);
1255 smc_rcv(dev);
1da177e4
LT
1256 } else if (status & IM_ALLOC_INT) {
1257 DBG(3, "%s: Allocation irq\n", dev->name);
1258 tasklet_hi_schedule(&lp->tx_task);
1259 mask &= ~IM_ALLOC_INT;
1260 } else if (status & IM_TX_EMPTY_INT) {
1261 DBG(3, "%s: TX empty\n", dev->name);
1262 mask &= ~IM_TX_EMPTY_INT;
1263
1264 /* update stats */
cfdfa865
MD
1265 SMC_SELECT_BANK(lp, 0);
1266 card_stats = SMC_GET_COUNTER(lp);
1267 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
1268
1269 /* single collisions */
09f75cd7 1270 dev->stats.collisions += card_stats & 0xF;
1da177e4
LT
1271 card_stats >>= 4;
1272
1273 /* multiple collisions */
09f75cd7 1274 dev->stats.collisions += card_stats & 0xF;
1da177e4 1275 } else if (status & IM_RX_OVRN_INT) {
8de90115 1276 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
cfdfa865
MD
1277 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1278 eph_st = SMC_GET_EPH_STATUS(lp);
1279 SMC_SELECT_BANK(lp, 2); eph_st; }));
1280 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
09f75cd7
JG
1281 dev->stats.rx_errors++;
1282 dev->stats.rx_fifo_errors++;
1da177e4
LT
1283 } else if (status & IM_EPH_INT) {
1284 smc_eph_interrupt(dev);
1285 } else if (status & IM_MDINT) {
cfdfa865 1286 SMC_ACK_INT(lp, IM_MDINT);
1da177e4
LT
1287 smc_phy_interrupt(dev);
1288 } else if (status & IM_ERCV_INT) {
cfdfa865 1289 SMC_ACK_INT(lp, IM_ERCV_INT);
84d57bd6 1290 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name);
1da177e4
LT
1291 }
1292 } while (--timeout);
1293
1294 /* restore register states */
cfdfa865
MD
1295 SMC_SET_PTR(lp, saved_pointer);
1296 SMC_SET_INT_MASK(lp, mask);
1da177e4
LT
1297 spin_unlock(&lp->lock);
1298
c500cb26 1299#ifndef CONFIG_NET_POLL_CONTROLLER
5d0571d9
NP
1300 if (timeout == MAX_IRQ_LOOPS)
1301 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1302 dev->name, mask);
c500cb26 1303#endif
5d0571d9
NP
1304 DBG(3, "%s: Interrupt done (%d loops)\n",
1305 dev->name, MAX_IRQ_LOOPS - timeout);
1da177e4
LT
1306
1307 /*
1308 * We return IRQ_HANDLED unconditionally here even if there was
1309 * nothing to do. There is a possibility that a packet might
1310 * get enqueued into the chip right after TX_EMPTY_INT is raised
1311 * but just before the CPU acknowledges the IRQ.
1312 * Better take an unneeded IRQ in some occasions than complexifying
1313 * the code for all cases.
1314 */
1315 return IRQ_HANDLED;
1316}
1317
1318#ifdef CONFIG_NET_POLL_CONTROLLER
1319/*
1320 * Polling receive - used by netconsole and other diagnostic tools
1321 * to allow network i/o with interrupts disabled.
1322 */
1323static void smc_poll_controller(struct net_device *dev)
1324{
1325 disable_irq(dev->irq);
9c8e7f5c 1326 smc_interrupt(dev->irq, dev);
1da177e4
LT
1327 enable_irq(dev->irq);
1328}
1329#endif
1330
1331/* Our watchdog timed out. Called by the networking layer */
1332static void smc_timeout(struct net_device *dev)
1333{
1334 struct smc_local *lp = netdev_priv(dev);
1335 void __iomem *ioaddr = lp->base;
8de90115 1336 int status, mask, eph_st, meminfo, fifo;
1da177e4 1337
b39d66a8 1338 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1339
1340 spin_lock_irq(&lp->lock);
cfdfa865
MD
1341 status = SMC_GET_INT(lp);
1342 mask = SMC_GET_INT_MASK(lp);
1343 fifo = SMC_GET_FIFO(lp);
1344 SMC_SELECT_BANK(lp, 0);
1345 eph_st = SMC_GET_EPH_STATUS(lp);
1346 meminfo = SMC_GET_MIR(lp);
1347 SMC_SELECT_BANK(lp, 2);
1da177e4 1348 spin_unlock_irq(&lp->lock);
8de90115
NP
1349 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1350 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1351 dev->name, status, mask, meminfo, fifo, eph_st );
1da177e4
LT
1352
1353 smc_reset(dev);
1354 smc_enable(dev);
1355
1356 /*
1357 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1358 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1359 * which calls schedule(). Hence we use a work queue.
1360 */
4bb073c0
DM
1361 if (lp->phy_type != 0)
1362 schedule_work(&lp->phy_configure);
1da177e4
LT
1363
1364 /* We can accept TX packets again */
1ae5dc34 1365 dev->trans_start = jiffies; /* prevent tx timeout */
1da177e4
LT
1366 netif_wake_queue(dev);
1367}
1368
1369/*
1370 * This routine will, depending on the values passed to it,
1371 * either make it accept multicast packets, go into
1372 * promiscuous mode (for TCPDUMP and cousins) or accept
1373 * a select set of multicast packets
1374 */
1375static void smc_set_multicast_list(struct net_device *dev)
1376{
1377 struct smc_local *lp = netdev_priv(dev);
1378 void __iomem *ioaddr = lp->base;
1379 unsigned char multicast_table[8];
1380 int update_multicast = 0;
1381
b39d66a8 1382 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1383
1384 if (dev->flags & IFF_PROMISC) {
1385 DBG(2, "%s: RCR_PRMS\n", dev->name);
1386 lp->rcr_cur_mode |= RCR_PRMS;
1387 }
1388
1389/* BUG? I never disable promiscuous mode if multicasting was turned on.
1390 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1391 when promiscuous mode is turned on.
1392*/
1393
1394 /*
1395 * Here, I am setting this to accept all multicast packets.
1396 * I don't need to zero the multicast table, because the flag is
1397 * checked before the table is
1398 */
4cd24eaf 1399 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1da177e4
LT
1400 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1401 lp->rcr_cur_mode |= RCR_ALMUL;
1402 }
1403
1404 /*
1405 * This sets the internal hardware table to filter out unwanted
1406 * multicast packets before they take up memory.
1407 *
1408 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1409 * address are the offset into the table. If that bit is 1, then the
1410 * multicast packet is accepted. Otherwise, it's dropped silently.
1411 *
1412 * To use the 6 bits as an offset into the table, the high 3 bits are
1413 * the number of the 8 bit register, while the low 3 bits are the bit
1414 * within that register.
1415 */
4cd24eaf 1416 else if (!netdev_mc_empty(dev)) {
22bedad3 1417 struct netdev_hw_addr *ha;
1da177e4
LT
1418
1419 /* table for flipping the order of 3 bits */
1420 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1421
1422 /* start with a table of all zeros: reject all */
1423 memset(multicast_table, 0, sizeof(multicast_table));
1424
22bedad3 1425 netdev_for_each_mc_addr(ha, dev) {
1da177e4
LT
1426 int position;
1427
1da177e4 1428 /* only use the low order bits */
22bedad3 1429 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1da177e4
LT
1430
1431 /* do some messy swapping to put the bit in the right spot */
1432 multicast_table[invert3[position&7]] |=
1433 (1<<invert3[(position>>3)&7]);
1434 }
1435
1436 /* be sure I get rid of flags I might have set */
1437 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1438
1439 /* now, the table can be loaded into the chipset */
1440 update_multicast = 1;
1441 } else {
1442 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1443 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1444
1445 /*
1446 * since I'm disabling all multicast entirely, I need to
1447 * clear the multicast list
1448 */
1449 memset(multicast_table, 0, sizeof(multicast_table));
1450 update_multicast = 1;
1451 }
1452
1453 spin_lock_irq(&lp->lock);
cfdfa865
MD
1454 SMC_SELECT_BANK(lp, 0);
1455 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1da177e4 1456 if (update_multicast) {
cfdfa865
MD
1457 SMC_SELECT_BANK(lp, 3);
1458 SMC_SET_MCAST(lp, multicast_table);
1da177e4 1459 }
cfdfa865 1460 SMC_SELECT_BANK(lp, 2);
1da177e4
LT
1461 spin_unlock_irq(&lp->lock);
1462}
1463
1464
1465/*
1466 * Open and Initialize the board
1467 *
1468 * Set up everything, reset the card, etc..
1469 */
1470static int
1471smc_open(struct net_device *dev)
1472{
1473 struct smc_local *lp = netdev_priv(dev);
1474
b39d66a8 1475 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1476
1477 /*
1478 * Check that the address is valid. If its not, refuse
1479 * to bring the device up. The user must specify an
1480 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1481 */
1482 if (!is_valid_ether_addr(dev->dev_addr)) {
b39d66a8 1483 PRINTK("%s: no valid ethernet hw addr\n", __func__);
1da177e4
LT
1484 return -EINVAL;
1485 }
1486
1487 /* Setup the default Register Modes */
1488 lp->tcr_cur_mode = TCR_DEFAULT;
1489 lp->rcr_cur_mode = RCR_DEFAULT;
b0dbcf51
RK
1490 lp->rpc_cur_mode = RPC_DEFAULT |
1491 lp->cfg.leda << RPC_LSXA_SHFT |
1492 lp->cfg.ledb << RPC_LSXB_SHFT;
1da177e4
LT
1493
1494 /*
1495 * If we are not using a MII interface, we need to
1496 * monitor our own carrier signal to detect faults.
1497 */
1498 if (lp->phy_type == 0)
1499 lp->tcr_cur_mode |= TCR_MON_CSN;
1500
1501 /* reset the hardware */
1502 smc_reset(dev);
1503 smc_enable(dev);
1504
1505 /* Configure the PHY, initialize the link state */
1506 if (lp->phy_type != 0)
6d5aefb8 1507 smc_phy_configure(&lp->phy_configure);
1da177e4
LT
1508 else {
1509 spin_lock_irq(&lp->lock);
1510 smc_10bt_check_media(dev, 1);
1511 spin_unlock_irq(&lp->lock);
1512 }
1513
1514 netif_start_queue(dev);
1515 return 0;
1516}
1517
1518/*
1519 * smc_close
1520 *
1521 * this makes the board clean up everything that it can
1522 * and not talk to the outside world. Caused by
1523 * an 'ifconfig ethX down'
1524 */
1525static int smc_close(struct net_device *dev)
1526{
1527 struct smc_local *lp = netdev_priv(dev);
1528
b39d66a8 1529 DBG(2, "%s: %s\n", dev->name, __func__);
1da177e4
LT
1530
1531 netif_stop_queue(dev);
1532 netif_carrier_off(dev);
1533
1534 /* clear everything */
1535 smc_shutdown(dev);
be83668a 1536 tasklet_kill(&lp->tx_task);
1da177e4 1537 smc_phy_powerdown(dev);
1da177e4
LT
1538 return 0;
1539}
1540
1da177e4
LT
1541/*
1542 * Ethtool support
1543 */
1544static int
1545smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1546{
1547 struct smc_local *lp = netdev_priv(dev);
1548 int ret;
1549
1550 cmd->maxtxpkt = 1;
1551 cmd->maxrxpkt = 1;
1552
1553 if (lp->phy_type != 0) {
1554 spin_lock_irq(&lp->lock);
1555 ret = mii_ethtool_gset(&lp->mii, cmd);
1556 spin_unlock_irq(&lp->lock);
1557 } else {
1558 cmd->supported = SUPPORTED_10baseT_Half |
1559 SUPPORTED_10baseT_Full |
1560 SUPPORTED_TP | SUPPORTED_AUI;
1561
1562 if (lp->ctl_rspeed == 10)
70739497 1563 ethtool_cmd_speed_set(cmd, SPEED_10);
1da177e4 1564 else if (lp->ctl_rspeed == 100)
70739497 1565 ethtool_cmd_speed_set(cmd, SPEED_100);
1da177e4
LT
1566
1567 cmd->autoneg = AUTONEG_DISABLE;
1568 cmd->transceiver = XCVR_INTERNAL;
1569 cmd->port = 0;
1570 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1571
1572 ret = 0;
1573 }
1574
1575 return ret;
1576}
1577
1578static int
1579smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1580{
1581 struct smc_local *lp = netdev_priv(dev);
1582 int ret;
1583
1584 if (lp->phy_type != 0) {
1585 spin_lock_irq(&lp->lock);
1586 ret = mii_ethtool_sset(&lp->mii, cmd);
1587 spin_unlock_irq(&lp->lock);
1588 } else {
1589 if (cmd->autoneg != AUTONEG_DISABLE ||
1590 cmd->speed != SPEED_10 ||
1591 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1592 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1593 return -EINVAL;
1594
1595// lp->port = cmd->port;
1596 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1597
1598// if (netif_running(dev))
1599// smc_set_port(dev);
1600
1601 ret = 0;
1602 }
1603
1604 return ret;
1605}
1606
1607static void
1608smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1609{
1610 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1611 strncpy(info->version, version, sizeof(info->version));
db1d7bf7 1612 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1da177e4
LT
1613}
1614
1615static int smc_ethtool_nwayreset(struct net_device *dev)
1616{
1617 struct smc_local *lp = netdev_priv(dev);
1618 int ret = -EINVAL;
1619
1620 if (lp->phy_type != 0) {
1621 spin_lock_irq(&lp->lock);
1622 ret = mii_nway_restart(&lp->mii);
1623 spin_unlock_irq(&lp->lock);
1624 }
1625
1626 return ret;
1627}
1628
1629static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1630{
1631 struct smc_local *lp = netdev_priv(dev);
1632 return lp->msg_enable;
1633}
1634
1635static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1636{
1637 struct smc_local *lp = netdev_priv(dev);
1638 lp->msg_enable = level;
1639}
1640
357fe2c6
VS
1641static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1642{
1643 u16 ctl;
1644 struct smc_local *lp = netdev_priv(dev);
1645 void __iomem *ioaddr = lp->base;
1646
1647 spin_lock_irq(&lp->lock);
1648 /* load word into GP register */
1649 SMC_SELECT_BANK(lp, 1);
1650 SMC_SET_GP(lp, word);
1651 /* set the address to put the data in EEPROM */
1652 SMC_SELECT_BANK(lp, 2);
1653 SMC_SET_PTR(lp, addr);
1654 /* tell it to write */
1655 SMC_SELECT_BANK(lp, 1);
1656 ctl = SMC_GET_CTL(lp);
1657 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1658 /* wait for it to finish */
1659 do {
1660 udelay(1);
1661 } while (SMC_GET_CTL(lp) & CTL_STORE);
1662 /* clean up */
1663 SMC_SET_CTL(lp, ctl);
1664 SMC_SELECT_BANK(lp, 2);
1665 spin_unlock_irq(&lp->lock);
1666 return 0;
1667}
1668
1669static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1670{
1671 u16 ctl;
1672 struct smc_local *lp = netdev_priv(dev);
1673 void __iomem *ioaddr = lp->base;
1674
1675 spin_lock_irq(&lp->lock);
1676 /* set the EEPROM address to get the data from */
1677 SMC_SELECT_BANK(lp, 2);
1678 SMC_SET_PTR(lp, addr | PTR_READ);
1679 /* tell it to load */
1680 SMC_SELECT_BANK(lp, 1);
1681 SMC_SET_GP(lp, 0xffff); /* init to known */
1682 ctl = SMC_GET_CTL(lp);
1683 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1684 /* wait for it to finish */
1685 do {
1686 udelay(1);
1687 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1688 /* read word from GP register */
1689 *word = SMC_GET_GP(lp);
1690 /* clean up */
1691 SMC_SET_CTL(lp, ctl);
1692 SMC_SELECT_BANK(lp, 2);
1693 spin_unlock_irq(&lp->lock);
1694 return 0;
1695}
1696
1697static int smc_ethtool_geteeprom_len(struct net_device *dev)
1698{
1699 return 0x23 * 2;
1700}
1701
1702static int smc_ethtool_geteeprom(struct net_device *dev,
1703 struct ethtool_eeprom *eeprom, u8 *data)
1704{
1705 int i;
1706 int imax;
1707
1708 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1709 eeprom->len, eeprom->offset, eeprom->offset);
1710 imax = smc_ethtool_geteeprom_len(dev);
1711 for (i = 0; i < eeprom->len; i += 2) {
1712 int ret;
1713 u16 wbuf;
1714 int offset = i + eeprom->offset;
1715 if (offset > imax)
1716 break;
1717 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1718 if (ret != 0)
1719 return ret;
1720 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1721 data[i] = (wbuf >> 8) & 0xff;
1722 data[i+1] = wbuf & 0xff;
1723 }
1724 return 0;
1725}
1726
1727static int smc_ethtool_seteeprom(struct net_device *dev,
1728 struct ethtool_eeprom *eeprom, u8 *data)
1729{
1730 int i;
1731 int imax;
1732
1733 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1734 eeprom->len, eeprom->offset, eeprom->offset);
1735 imax = smc_ethtool_geteeprom_len(dev);
1736 for (i = 0; i < eeprom->len; i += 2) {
1737 int ret;
1738 u16 wbuf;
1739 int offset = i + eeprom->offset;
1740 if (offset > imax)
1741 break;
1742 wbuf = (data[i] << 8) | data[i + 1];
1743 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1744 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1745 if (ret != 0)
1746 return ret;
1747 }
1748 return 0;
1749}
1750
1751
7282d491 1752static const struct ethtool_ops smc_ethtool_ops = {
1da177e4
LT
1753 .get_settings = smc_ethtool_getsettings,
1754 .set_settings = smc_ethtool_setsettings,
1755 .get_drvinfo = smc_ethtool_getdrvinfo,
1756
1757 .get_msglevel = smc_ethtool_getmsglevel,
1758 .set_msglevel = smc_ethtool_setmsglevel,
1759 .nway_reset = smc_ethtool_nwayreset,
1760 .get_link = ethtool_op_get_link,
357fe2c6
VS
1761 .get_eeprom_len = smc_ethtool_geteeprom_len,
1762 .get_eeprom = smc_ethtool_geteeprom,
1763 .set_eeprom = smc_ethtool_seteeprom,
1da177e4
LT
1764};
1765
a528079e
MD
1766static const struct net_device_ops smc_netdev_ops = {
1767 .ndo_open = smc_open,
1768 .ndo_stop = smc_close,
1769 .ndo_start_xmit = smc_hard_start_xmit,
1770 .ndo_tx_timeout = smc_timeout,
1771 .ndo_set_multicast_list = smc_set_multicast_list,
635ecaa7 1772 .ndo_change_mtu = eth_change_mtu,
a528079e
MD
1773 .ndo_validate_addr = eth_validate_addr,
1774 .ndo_set_mac_address = eth_mac_addr,
1775#ifdef CONFIG_NET_POLL_CONTROLLER
1776 .ndo_poll_controller = smc_poll_controller,
1777#endif
1778};
1779
1da177e4
LT
1780/*
1781 * smc_findirq
1782 *
1783 * This routine has a simple purpose -- make the SMC chip generate an
1784 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1785 */
1786/*
1787 * does this still work?
1788 *
1789 * I just deleted auto_irq.c, since it was never built...
1790 * --jgarzik
1791 */
f57628d7 1792static int __devinit smc_findirq(struct smc_local *lp)
1da177e4 1793{
cfdfa865 1794 void __iomem *ioaddr = lp->base;
1da177e4
LT
1795 int timeout = 20;
1796 unsigned long cookie;
1797
b39d66a8 1798 DBG(2, "%s: %s\n", CARDNAME, __func__);
1da177e4
LT
1799
1800 cookie = probe_irq_on();
1801
1802 /*
1803 * What I try to do here is trigger an ALLOC_INT. This is done
1804 * by allocating a small chunk of memory, which will give an interrupt
1805 * when done.
1806 */
1807 /* enable ALLOCation interrupts ONLY */
cfdfa865
MD
1808 SMC_SELECT_BANK(lp, 2);
1809 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1da177e4
LT
1810
1811 /*
1812 * Allocate 512 bytes of memory. Note that the chip was just
1813 * reset so all the memory is available
1814 */
cfdfa865 1815 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1da177e4
LT
1816
1817 /*
1818 * Wait until positive that the interrupt has been generated
1819 */
1820 do {
1821 int int_status;
1822 udelay(10);
cfdfa865 1823 int_status = SMC_GET_INT(lp);
1da177e4
LT
1824 if (int_status & IM_ALLOC_INT)
1825 break; /* got the interrupt */
1826 } while (--timeout);
1827
1828 /*
1829 * there is really nothing that I can do here if timeout fails,
1830 * as autoirq_report will return a 0 anyway, which is what I
1831 * want in this case. Plus, the clean up is needed in both
1832 * cases.
1833 */
1834
1835 /* and disable all interrupts again */
cfdfa865 1836 SMC_SET_INT_MASK(lp, 0);
1da177e4
LT
1837
1838 /* and return what I found */
1839 return probe_irq_off(cookie);
1840}
1841
1842/*
1843 * Function: smc_probe(unsigned long ioaddr)
1844 *
1845 * Purpose:
1846 * Tests to see if a given ioaddr points to an SMC91x chip.
1847 * Returns a 0 on success
1848 *
1849 * Algorithm:
1850 * (1) see if the high byte of BANK_SELECT is 0x33
1851 * (2) compare the ioaddr with the base register's address
1852 * (3) see if I recognize the chip ID in the appropriate register
1853 *
1854 * Here I do typical initialization tasks.
1855 *
1856 * o Initialize the structure if needed
1857 * o print out my vanity message if not done so already
1858 * o print out what type of hardware is detected
1859 * o print out the ethernet address
1860 * o find the IRQ
1861 * o set up my private data
1862 * o configure the dev structure with my subroutines
1863 * o actually GRAB the irq.
1864 * o GRAB the region
1865 */
f57628d7 1866static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
e7b3dc7e 1867 unsigned long irq_flags)
1da177e4
LT
1868{
1869 struct smc_local *lp = netdev_priv(dev);
1870 static int version_printed = 0;
0795af57 1871 int retval;
1da177e4
LT
1872 unsigned int val, revision_register;
1873 const char *version_string;
1874
b39d66a8 1875 DBG(2, "%s: %s\n", CARDNAME, __func__);
1da177e4
LT
1876
1877 /* First, see if the high byte is 0x33 */
cfdfa865 1878 val = SMC_CURRENT_BANK(lp);
1da177e4
LT
1879 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1880 if ((val & 0xFF00) != 0x3300) {
1881 if ((val & 0xFF) == 0x33) {
1882 printk(KERN_WARNING
1883 "%s: Detected possible byte-swapped interface"
1884 " at IOADDR %p\n", CARDNAME, ioaddr);
1885 }
1886 retval = -ENODEV;
1887 goto err_out;
1888 }
1889
1890 /*
1891 * The above MIGHT indicate a device, but I need to write to
1892 * further test this.
1893 */
cfdfa865
MD
1894 SMC_SELECT_BANK(lp, 0);
1895 val = SMC_CURRENT_BANK(lp);
1da177e4
LT
1896 if ((val & 0xFF00) != 0x3300) {
1897 retval = -ENODEV;
1898 goto err_out;
1899 }
1900
1901 /*
1902 * well, we've already written once, so hopefully another
1903 * time won't hurt. This time, I need to switch the bank
1904 * register to bank 1, so I can access the base address
1905 * register
1906 */
cfdfa865
MD
1907 SMC_SELECT_BANK(lp, 1);
1908 val = SMC_GET_BASE(lp);
1da177e4 1909 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
53155109 1910 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1da177e4
LT
1911 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1912 CARDNAME, ioaddr, val);
1913 }
1914
1915 /*
1916 * check if the revision register is something that I
1917 * recognize. These might need to be added to later,
1918 * as future revisions could be added.
1919 */
cfdfa865
MD
1920 SMC_SELECT_BANK(lp, 3);
1921 revision_register = SMC_GET_REV(lp);
1da177e4
LT
1922 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1923 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1924 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1925 /* I don't recognize this chip, so... */
1926 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1927 ", Contact author.\n", CARDNAME,
1928 ioaddr, revision_register);
1929
1930 retval = -ENODEV;
1931 goto err_out;
1932 }
1933
1934 /* At this point I'll assume that the chip is an SMC91x. */
1935 if (version_printed++ == 0)
1936 printk("%s", version);
1937
1938 /* fill in some of the fields */
1939 dev->base_addr = (unsigned long)ioaddr;
1940 lp->base = ioaddr;
1941 lp->version = revision_register & 0xff;
1942 spin_lock_init(&lp->lock);
1943
1944 /* Get the MAC address */
cfdfa865
MD
1945 SMC_SELECT_BANK(lp, 1);
1946 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1da177e4
LT
1947
1948 /* now, reset the chip, and put it into a known state */
1949 smc_reset(dev);
1950
1951 /*
1952 * If dev->irq is 0, then the device has to be banged on to see
1953 * what the IRQ is.
1954 *
1955 * This banging doesn't always detect the IRQ, for unknown reasons.
1956 * a workaround is to reset the chip and try again.
1957 *
1958 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1959 * be what is requested on the command line. I don't do that, mostly
1960 * because the card that I have uses a non-standard method of accessing
1961 * the IRQs, and because this _should_ work in most configurations.
1962 *
1963 * Specifying an IRQ is done with the assumption that the user knows
1964 * what (s)he is doing. No checking is done!!!!
1965 */
1966 if (dev->irq < 1) {
1967 int trials;
1968
1969 trials = 3;
1970 while (trials--) {
cfdfa865 1971 dev->irq = smc_findirq(lp);
1da177e4
LT
1972 if (dev->irq)
1973 break;
1974 /* kick the card and try again */
1975 smc_reset(dev);
1976 }
1977 }
1978 if (dev->irq == 0) {
1979 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1980 dev->name);
1981 retval = -ENODEV;
1982 goto err_out;
1983 }
1984 dev->irq = irq_canonicalize(dev->irq);
1985
1986 /* Fill in the fields of the device structure with ethernet values. */
1987 ether_setup(dev);
1988
1da177e4 1989 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
a528079e 1990 dev->netdev_ops = &smc_netdev_ops;
1da177e4 1991 dev->ethtool_ops = &smc_ethtool_ops;
1da177e4
LT
1992
1993 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
6d5aefb8
DH
1994 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1995 lp->dev = dev;
1da177e4
LT
1996 lp->mii.phy_id_mask = 0x1f;
1997 lp->mii.reg_num_mask = 0x1f;
1998 lp->mii.force_media = 0;
1999 lp->mii.full_duplex = 0;
2000 lp->mii.dev = dev;
2001 lp->mii.mdio_read = smc_phy_read;
2002 lp->mii.mdio_write = smc_phy_write;
2003
2004 /*
2005 * Locate the phy, if any.
2006 */
2007 if (lp->version >= (CHIP_91100 << 4))
2008 smc_phy_detect(dev);
2009
99e1baf8
NP
2010 /* then shut everything down to save power */
2011 smc_shutdown(dev);
2012 smc_phy_powerdown(dev);
2013
1da177e4
LT
2014 /* Set default parameters */
2015 lp->msg_enable = NETIF_MSG_LINK;
2016 lp->ctl_rfduplx = 0;
2017 lp->ctl_rspeed = 10;
2018
2019 if (lp->version >= (CHIP_91100 << 4)) {
2020 lp->ctl_rfduplx = 1;
2021 lp->ctl_rspeed = 100;
2022 }
2023
2024 /* Grab the IRQ */
a0607fd3 2025 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
1da177e4
LT
2026 if (retval)
2027 goto err_out;
2028
52256c0e
EM
2029#ifdef CONFIG_ARCH_PXA
2030# ifdef SMC_USE_PXA_DMA
2031 lp->cfg.flags |= SMC91X_USE_DMA;
2032# endif
2033 if (lp->cfg.flags & SMC91X_USE_DMA) {
1da177e4
LT
2034 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2035 smc_pxa_dma_irq, NULL);
2036 if (dma >= 0)
2037 dev->dma = dma;
2038 }
2039#endif
2040
2041 retval = register_netdev(dev);
2042 if (retval == 0) {
2043 /* now, print out the card info, in a short format.. */
2044 printk("%s: %s (rev %d) at %p IRQ %d",
2045 dev->name, version_string, revision_register & 0x0f,
2046 lp->base, dev->irq);
2047
2048 if (dev->dma != (unsigned char)-1)
2049 printk(" DMA %d", dev->dma);
2050
d6bc372e
MD
2051 printk("%s%s\n",
2052 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
1da177e4
LT
2053 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2054
2055 if (!is_valid_ether_addr(dev->dev_addr)) {
2056 printk("%s: Invalid ethernet MAC address. Please "
2057 "set using ifconfig\n", dev->name);
2058 } else {
2059 /* Print the Ethernet address */
e174961c
JB
2060 printk("%s: Ethernet addr: %pM\n",
2061 dev->name, dev->dev_addr);
1da177e4
LT
2062 }
2063
2064 if (lp->phy_type == 0) {
2065 PRINTK("%s: No PHY found\n", dev->name);
2066 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2067 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2068 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2069 PRINTK("%s: PHY LAN83C180\n", dev->name);
2070 }
2071 }
2072
2073err_out:
52256c0e 2074#ifdef CONFIG_ARCH_PXA
1da177e4
LT
2075 if (retval && dev->dma != (unsigned char)-1)
2076 pxa_free_dma(dev->dma);
2077#endif
2078 return retval;
2079}
2080
2081static int smc_enable_device(struct platform_device *pdev)
2082{
3e947943
MD
2083 struct net_device *ndev = platform_get_drvdata(pdev);
2084 struct smc_local *lp = netdev_priv(ndev);
1da177e4
LT
2085 unsigned long flags;
2086 unsigned char ecor, ecsr;
2087 void __iomem *addr;
2088 struct resource * res;
2089
2090 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2091 if (!res)
2092 return 0;
2093
2094 /*
2095 * Map the attribute space. This is overkill, but clean.
2096 */
2097 addr = ioremap(res->start, ATTRIB_SIZE);
2098 if (!addr)
2099 return -ENOMEM;
2100
2101 /*
2102 * Reset the device. We must disable IRQs around this
2103 * since a reset causes the IRQ line become active.
2104 */
2105 local_irq_save(flags);
2106 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2107 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2108 readb(addr + (ECOR << SMC_IO_SHIFT));
2109
2110 /*
2111 * Wait 100us for the chip to reset.
2112 */
2113 udelay(100);
2114
2115 /*
2116 * The device will ignore all writes to the enable bit while
2117 * reset is asserted, even if the reset bit is cleared in the
2118 * same write. Must clear reset first, then enable the device.
2119 */
2120 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2121 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2122
2123 /*
2124 * Set the appropriate byte/word mode.
2125 */
2126 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
3e947943 2127 if (!SMC_16BIT(lp))
09779c6d 2128 ecsr |= ECSR_IOIS8;
1da177e4
LT
2129 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2130 local_irq_restore(flags);
2131
2132 iounmap(addr);
2133
2134 /*
2135 * Wait for the chip to wake up. We could poll the control
2136 * register in the main register space, but that isn't mapped
2137 * yet. We know this is going to take 750us.
2138 */
2139 msleep(1);
2140
2141 return 0;
2142}
2143
15919886
EM
2144static int smc_request_attrib(struct platform_device *pdev,
2145 struct net_device *ndev)
1da177e4
LT
2146{
2147 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
55c8eb6c 2148 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
1da177e4
LT
2149
2150 if (!res)
2151 return 0;
2152
2153 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2154 return -EBUSY;
2155
2156 return 0;
2157}
2158
15919886
EM
2159static void smc_release_attrib(struct platform_device *pdev,
2160 struct net_device *ndev)
1da177e4
LT
2161{
2162 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
55c8eb6c 2163 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
1da177e4
LT
2164
2165 if (res)
2166 release_mem_region(res->start, ATTRIB_SIZE);
2167}
2168
09779c6d 2169static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
1da177e4 2170{
09779c6d
NP
2171 if (SMC_CAN_USE_DATACS) {
2172 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2173 struct smc_local *lp = netdev_priv(ndev);
1da177e4 2174
09779c6d
NP
2175 if (!res)
2176 return;
1da177e4 2177
09779c6d
NP
2178 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2179 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2180 return;
2181 }
1da177e4 2182
09779c6d
NP
2183 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2184 }
1da177e4
LT
2185}
2186
2187static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2188{
09779c6d
NP
2189 if (SMC_CAN_USE_DATACS) {
2190 struct smc_local *lp = netdev_priv(ndev);
2191 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
1da177e4 2192
09779c6d
NP
2193 if (lp->datacs)
2194 iounmap(lp->datacs);
1da177e4 2195
09779c6d 2196 lp->datacs = NULL;
1da177e4 2197
09779c6d
NP
2198 if (res)
2199 release_mem_region(res->start, SMC_DATA_EXTENT);
2200 }
1da177e4 2201}
1da177e4
LT
2202
2203/*
2204 * smc_init(void)
2205 * Input parameters:
2206 * dev->base_addr == 0, try to find all possible locations
2207 * dev->base_addr > 0x1ff, this is the address to check
2208 * dev->base_addr == <anything else>, return failure code
2209 *
2210 * Output:
2211 * 0 --> there is a device
2212 * anything else, error
2213 */
f57628d7 2214static int __devinit smc_drv_probe(struct platform_device *pdev)
1da177e4 2215{
3e947943
MD
2216 struct smc91x_platdata *pd = pdev->dev.platform_data;
2217 struct smc_local *lp;
1da177e4 2218 struct net_device *ndev;
e7b3dc7e 2219 struct resource *res, *ires;
1da177e4 2220 unsigned int __iomem *addr;
d280eadc 2221 unsigned long irq_flags = SMC_IRQ_FLAGS;
1da177e4
LT
2222 int ret;
2223
1da177e4
LT
2224 ndev = alloc_etherdev(sizeof(struct smc_local));
2225 if (!ndev) {
2226 printk("%s: could not allocate device.\n", CARDNAME);
2227 ret = -ENOMEM;
15919886 2228 goto out;
1da177e4 2229 }
3ae5eaec 2230 SET_NETDEV_DEV(ndev, &pdev->dev);
1da177e4 2231
3e947943
MD
2232 /* get configuration from platform data, only allow use of
2233 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2234 */
2235
2236 lp = netdev_priv(ndev);
3e947943 2237
15919886 2238 if (pd) {
3e947943 2239 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
15919886
EM
2240 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2241 } else {
fa6d3be0
EM
2242 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2243 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2244 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
c4f0e767 2245 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
3e947943
MD
2246 }
2247
b0dbcf51
RK
2248 if (!lp->cfg.leda && !lp->cfg.ledb) {
2249 lp->cfg.leda = RPC_LSA_DEFAULT;
2250 lp->cfg.ledb = RPC_LSB_DEFAULT;
2251 }
2252
1da177e4 2253 ndev->dma = (unsigned char)-1;
e7b3dc7e 2254
15919886
EM
2255 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2256 if (!res)
2257 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258 if (!res) {
2259 ret = -ENODEV;
2260 goto out_free_netdev;
2261 }
2262
2263
2264 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2265 ret = -EBUSY;
2266 goto out_free_netdev;
2267 }
2268
e7b3dc7e
RK
2269 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2270 if (!ires) {
48944738 2271 ret = -ENODEV;
15919886 2272 goto out_release_io;
48944738 2273 }
1da177e4 2274
e7b3dc7e 2275 ndev->irq = ires->start;
d280eadc 2276
d5ccd67b 2277 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
d280eadc 2278 irq_flags = ires->flags & IRQF_TRIGGER_MASK;
e7b3dc7e 2279
15919886 2280 ret = smc_request_attrib(pdev, ndev);
1da177e4 2281 if (ret)
15919886 2282 goto out_release_io;
1da177e4
LT
2283#if defined(CONFIG_SA1100_ASSABET)
2284 NCR_0 |= NCR_ENET_OSC_EN;
2285#endif
3e947943 2286 platform_set_drvdata(pdev, ndev);
1da177e4
LT
2287 ret = smc_enable_device(pdev);
2288 if (ret)
2289 goto out_release_attrib;
2290
2291 addr = ioremap(res->start, SMC_IO_EXTENT);
2292 if (!addr) {
2293 ret = -ENOMEM;
2294 goto out_release_attrib;
2295 }
2296
52256c0e 2297#ifdef CONFIG_ARCH_PXA
073ac8fd 2298 {
1da177e4 2299 struct smc_local *lp = netdev_priv(ndev);
073ac8fd 2300 lp->device = &pdev->dev;
1da177e4
LT
2301 lp->physaddr = res->start;
2302 }
2303#endif
2304
d280eadc 2305 ret = smc_probe(ndev, addr, irq_flags);
073ac8fd
RK
2306 if (ret != 0)
2307 goto out_iounmap;
2308
1da177e4
LT
2309 smc_request_datacs(pdev, ndev);
2310
2311 return 0;
2312
2313 out_iounmap:
3ae5eaec 2314 platform_set_drvdata(pdev, NULL);
1da177e4
LT
2315 iounmap(addr);
2316 out_release_attrib:
15919886 2317 smc_release_attrib(pdev, ndev);
1da177e4
LT
2318 out_release_io:
2319 release_mem_region(res->start, SMC_IO_EXTENT);
15919886
EM
2320 out_free_netdev:
2321 free_netdev(ndev);
1da177e4
LT
2322 out:
2323 printk("%s: not found (%d).\n", CARDNAME, ret);
2324
2325 return ret;
2326}
2327
f57628d7 2328static int __devexit smc_drv_remove(struct platform_device *pdev)
1da177e4 2329{
3ae5eaec 2330 struct net_device *ndev = platform_get_drvdata(pdev);
1da177e4
LT
2331 struct smc_local *lp = netdev_priv(ndev);
2332 struct resource *res;
2333
3ae5eaec 2334 platform_set_drvdata(pdev, NULL);
1da177e4
LT
2335
2336 unregister_netdev(ndev);
2337
2338 free_irq(ndev->irq, ndev);
2339
52256c0e 2340#ifdef CONFIG_ARCH_PXA
1da177e4
LT
2341 if (ndev->dma != (unsigned char)-1)
2342 pxa_free_dma(ndev->dma);
2343#endif
2344 iounmap(lp->base);
2345
2346 smc_release_datacs(pdev,ndev);
15919886 2347 smc_release_attrib(pdev,ndev);
1da177e4
LT
2348
2349 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2350 if (!res)
6fc30db5 2351 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1da177e4
LT
2352 release_mem_region(res->start, SMC_IO_EXTENT);
2353
2354 free_netdev(ndev);
2355
2356 return 0;
2357}
2358
9f950f72 2359static int smc_drv_suspend(struct device *dev)
1da177e4 2360{
9f950f72
KH
2361 struct platform_device *pdev = to_platform_device(dev);
2362 struct net_device *ndev = platform_get_drvdata(pdev);
1da177e4 2363
9480e307 2364 if (ndev) {
1da177e4
LT
2365 if (netif_running(ndev)) {
2366 netif_device_detach(ndev);
2367 smc_shutdown(ndev);
2368 smc_phy_powerdown(ndev);
2369 }
2370 }
2371 return 0;
2372}
2373
9f950f72 2374static int smc_drv_resume(struct device *dev)
1da177e4 2375{
9f950f72
KH
2376 struct platform_device *pdev = to_platform_device(dev);
2377 struct net_device *ndev = platform_get_drvdata(pdev);
1da177e4 2378
9480e307 2379 if (ndev) {
1da177e4 2380 struct smc_local *lp = netdev_priv(ndev);
5fc34413 2381 smc_enable_device(pdev);
1da177e4
LT
2382 if (netif_running(ndev)) {
2383 smc_reset(ndev);
2384 smc_enable(ndev);
2385 if (lp->phy_type != 0)
6d5aefb8 2386 smc_phy_configure(&lp->phy_configure);
1da177e4
LT
2387 netif_device_attach(ndev);
2388 }
2389 }
2390 return 0;
2391}
2392
682a1694
TC
2393#ifdef CONFIG_OF
2394static const struct of_device_id smc91x_match[] = {
2395 { .compatible = "smsc,lan91c94", },
2396 { .compatible = "smsc,lan91c111", },
2397 {},
5fb9fb13 2398};
682a1694 2399MODULE_DEVICE_TABLE(of, smc91x_match);
5fb9fb13
GL
2400#else
2401#define smc91x_match NULL
682a1694
TC
2402#endif
2403
9f950f72
KH
2404static struct dev_pm_ops smc_drv_pm_ops = {
2405 .suspend = smc_drv_suspend,
2406 .resume = smc_drv_resume,
2407};
2408
3ae5eaec 2409static struct platform_driver smc_driver = {
1da177e4 2410 .probe = smc_drv_probe,
f57628d7 2411 .remove = __devexit_p(smc_drv_remove),
3ae5eaec
RK
2412 .driver = {
2413 .name = CARDNAME,
72abb461 2414 .owner = THIS_MODULE,
9f950f72 2415 .pm = &smc_drv_pm_ops,
682a1694 2416 .of_match_table = smc91x_match,
3ae5eaec 2417 },
1da177e4
LT
2418};
2419
2420static int __init smc_init(void)
2421{
3ae5eaec 2422 return platform_driver_register(&smc_driver);
1da177e4
LT
2423}
2424
2425static void __exit smc_cleanup(void)
2426{
3ae5eaec 2427 platform_driver_unregister(&smc_driver);
1da177e4
LT
2428}
2429
2430module_init(smc_init);
2431module_exit(smc_cleanup);
This page took 1.163126 seconds and 5 git commands to generate.