net: trans_start cleanups
[deliverable/linux.git] / drivers / net / starfire.c
CommitLineData
1da177e4
LT
1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3 Written 1998-2000 by Donald Becker.
4
fdecea66 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
1da177e4
LT
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
03a8c661 25 [link no longer provides useful info -jgarzik]
1da177e4 26
1da177e4
LT
27*/
28
29#define DRV_NAME "starfire"
a6676019
FR
30#define DRV_VERSION "2.1"
31#define DRV_RELDATE "July 6, 2008"
1da177e4 32
1da177e4
LT
33#include <linux/module.h>
34#include <linux/kernel.h>
35#include <linux/pci.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/init.h>
39#include <linux/delay.h>
fdecea66
JG
40#include <linux/crc32.h>
41#include <linux/ethtool.h>
42#include <linux/mii.h>
43#include <linux/if_vlan.h>
d7fe0f24 44#include <linux/mm.h>
cfc3a44c 45#include <linux/firmware.h>
1da177e4
LT
46#include <asm/processor.h> /* Processor type for cache alignment. */
47#include <asm/uaccess.h>
48#include <asm/io.h>
49
1da177e4
LT
50/*
51 * The current frame processor firmware fails to checksum a fragment
52 * of length 1. If and when this is fixed, the #define below can be removed.
53 */
54#define HAS_BROKEN_FIRMWARE
67974231
IB
55
56/*
57 * If using the broken firmware, data must be padded to the next 32-bit boundary.
58 */
59#ifdef HAS_BROKEN_FIRMWARE
60#define PADDING_MASK 3
61#endif
62
1da177e4
LT
63/*
64 * Define this if using the driver with the zero-copy patch
65 */
1da177e4 66#define ZEROCOPY
1da177e4
LT
67
68#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
69#define VLAN_SUPPORT
70#endif
71
1da177e4
LT
72/* The user-configurable values.
73 These may be modified when a driver module is loaded.*/
74
75/* Used for tuning interrupt latency vs. overhead. */
76static int intr_latency;
77static int small_frames;
78
79static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
80static int max_interrupt_work = 20;
81static int mtu;
82/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
83 The Starfire has a 512 element hash table based on the Ethernet CRC. */
f71e1309 84static const int multicast_filter_limit = 512;
1da177e4 85/* Whether to do TCP/UDP checksums in hardware */
1da177e4 86static int enable_hw_cksum = 1;
1da177e4
LT
87
88#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
89/*
90 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
91 * Setting to > 1518 effectively disables this feature.
92 *
93 * NOTE:
94 * The ia64 doesn't allow for unaligned loads even of integers being
95 * misaligned on a 2 byte boundary. Thus always force copying of
96 * packets as the starfire doesn't allow for misaligned DMAs ;-(
97 * 23/10/2000 - Jes
98 *
99 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
100 * at least, having unaligned frames leads to a rather serious performance
101 * penalty. -Ion
102 */
103#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
104static int rx_copybreak = PKT_BUF_SZ;
105#else
106static int rx_copybreak /* = 0 */;
107#endif
108
109/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
110#ifdef __sparc__
111#define DMA_BURST_SIZE 64
112#else
113#define DMA_BURST_SIZE 128
114#endif
115
116/* Used to pass the media type, etc.
117 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
118 The media type is usually passed in 'options[]'.
119 These variables are deprecated, use ethtool instead. -Ion
120*/
121#define MAX_UNITS 8 /* More are supported, limit only on options */
122static int options[MAX_UNITS] = {0, };
123static int full_duplex[MAX_UNITS] = {0, };
124
125/* Operational parameters that are set at compile time. */
126
127/* The "native" ring sizes are either 256 or 2048.
128 However in some modes a descriptor may be marked to wrap the ring earlier.
129*/
130#define RX_RING_SIZE 256
131#define TX_RING_SIZE 32
132/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
133#define DONE_Q_SIZE 1024
134/* All queues must be aligned on a 256-byte boundary */
135#define QUEUE_ALIGN 256
136
137#if RX_RING_SIZE > 256
138#define RX_Q_ENTRIES Rx2048QEntries
139#else
140#define RX_Q_ENTRIES Rx256QEntries
141#endif
142
143/* Operational parameters that usually are not changed. */
144/* Time in jiffies before concluding the transmitter is hung. */
145#define TX_TIMEOUT (2 * HZ)
146
147/*
148 * This SUCKS.
149 * We need a much better method to determine if dma_addr_t is 64-bit.
150 */
983b7dc0 151#if (defined(__i386__) && defined(CONFIG_HIGHMEM64G)) || defined(__x86_64__) || defined (__ia64__) || defined(__alpha__) || defined(__mips64__) || (defined(__mips__) && defined(CONFIG_HIGHMEM) && defined(CONFIG_64BIT_PHYS_ADDR))
1da177e4
LT
152/* 64-bit dma_addr_t */
153#define ADDR_64BITS /* This chip uses 64 bit addresses. */
88b1943b 154#define netdrv_addr_t __le64
1da177e4
LT
155#define cpu_to_dma(x) cpu_to_le64(x)
156#define dma_to_cpu(x) le64_to_cpu(x)
157#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
158#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
159#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
160#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
161#define RX_DESC_ADDR_SIZE RxDescAddr64bit
162#else /* 32-bit dma_addr_t */
88b1943b 163#define netdrv_addr_t __le32
1da177e4
LT
164#define cpu_to_dma(x) cpu_to_le32(x)
165#define dma_to_cpu(x) le32_to_cpu(x)
166#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
167#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
168#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
169#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
170#define RX_DESC_ADDR_SIZE RxDescAddr32bit
171#endif
172
1da177e4
LT
173#define skb_first_frag_len(skb) skb_headlen(skb)
174#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
1da177e4 175
cfc3a44c
JSR
176/* Firmware names */
177#define FIRMWARE_RX "adaptec/starfire_rx.bin"
178#define FIRMWARE_TX "adaptec/starfire_tx.bin"
179
1da177e4 180/* These identify the driver base version and may not be removed. */
b5defaa5 181static const char version[] __devinitconst =
1da177e4 182KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
ad361c98 183" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
1da177e4
LT
184
185MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
186MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
187MODULE_LICENSE("GPL");
fdecea66 188MODULE_VERSION(DRV_VERSION);
cfc3a44c
JSR
189MODULE_FIRMWARE(FIRMWARE_RX);
190MODULE_FIRMWARE(FIRMWARE_TX);
1da177e4
LT
191
192module_param(max_interrupt_work, int, 0);
193module_param(mtu, int, 0);
194module_param(debug, int, 0);
195module_param(rx_copybreak, int, 0);
196module_param(intr_latency, int, 0);
197module_param(small_frames, int, 0);
198module_param_array(options, int, NULL, 0);
199module_param_array(full_duplex, int, NULL, 0);
200module_param(enable_hw_cksum, int, 0);
201MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
202MODULE_PARM_DESC(mtu, "MTU (all boards)");
203MODULE_PARM_DESC(debug, "Debug level (0-6)");
204MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
205MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
206MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
207MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
208MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
209MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
210
211/*
212 Theory of Operation
213
214I. Board Compatibility
215
216This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
217
218II. Board-specific settings
219
220III. Driver operation
221
222IIIa. Ring buffers
223
224The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
225ring sizes are set fixed by the hardware, but may optionally be wrapped
226earlier by the END bit in the descriptor.
227This driver uses that hardware queue size for the Rx ring, where a large
228number of entries has no ill effect beyond increases the potential backlog.
229The Tx ring is wrapped with the END bit, since a large hardware Tx queue
230disables the queue layer priority ordering and we have no mechanism to
231utilize the hardware two-level priority queue. When modifying the
232RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
233levels.
234
235IIIb/c. Transmit/Receive Structure
236
237See the Adaptec manual for the many possible structures, and options for
238each structure. There are far too many to document all of them here.
239
240For transmit this driver uses type 0/1 transmit descriptors (depending
241on the 32/64 bitness of the architecture), and relies on automatic
242minimum-length padding. It does not use the completion queue
243consumer index, but instead checks for non-zero status entries.
244
fdecea66 245For receive this driver uses type 2/3 receive descriptors. The driver
1da177e4
LT
246allocates full frame size skbuffs for the Rx ring buffers, so all frames
247should fit in a single descriptor. The driver does not use the completion
248queue consumer index, but instead checks for non-zero status entries.
249
250When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
251is allocated and the frame is copied to the new skbuff. When the incoming
252frame is larger, the skbuff is passed directly up the protocol stack.
253Buffers consumed this way are replaced by newly allocated skbuffs in a later
254phase of receive.
255
256A notable aspect of operation is that unaligned buffers are not permitted by
257the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
258isn't longword aligned, which may cause problems on some machine
259e.g. Alphas and IA64. For these architectures, the driver is forced to copy
260the frame into a new skbuff unconditionally. Copied frames are put into the
261skbuff at an offset of "+2", thus 16-byte aligning the IP header.
262
263IIId. Synchronization
264
265The driver runs as two independent, single-threaded flows of control. One
266is the send-packet routine, which enforces single-threaded use by the
267dev->tbusy flag. The other thread is the interrupt handler, which is single
268threaded by the hardware and interrupt handling software.
269
270The send packet thread has partial control over the Tx ring and the netif_queue
271status. If the number of free Tx slots in the ring falls below a certain number
272(currently hardcoded to 4), it signals the upper layer to stop the queue.
273
274The interrupt handler has exclusive control over the Rx ring and records stats
275from the Tx ring. After reaping the stats, it marks the Tx queue entry as
276empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
277number of free Tx slow is above the threshold, it signals the upper layer to
278restart the queue.
279
280IV. Notes
281
282IVb. References
283
284The Adaptec Starfire manuals, available only from Adaptec.
285http://www.scyld.com/expert/100mbps.html
286http://www.scyld.com/expert/NWay.html
287
288IVc. Errata
289
290- StopOnPerr is broken, don't enable
291- Hardware ethernet padding exposes random data, perform software padding
292 instead (unverified -- works correctly for all the hardware I have)
293
294*/
295
fdecea66 296
1da177e4
LT
297
298enum chip_capability_flags {CanHaveMII=1, };
299
300enum chipset {
301 CH_6915 = 0,
302};
303
a3aa1884 304static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
1da177e4
LT
305 { 0x9004, 0x6915, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_6915 },
306 { 0, }
307};
308MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
309
310/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
f71e1309 311static const struct chip_info {
1da177e4
LT
312 const char *name;
313 int drv_flags;
314} netdrv_tbl[] __devinitdata = {
315 { "Adaptec Starfire 6915", CanHaveMII },
316};
317
318
319/* Offsets to the device registers.
320 Unlike software-only systems, device drivers interact with complex hardware.
321 It's not useful to define symbolic names for every register bit in the
322 device. The name can only partially document the semantics and make
323 the driver longer and more difficult to read.
324 In general, only the important configuration values or bits changed
325 multiple times should be defined symbolically.
326*/
327enum register_offsets {
328 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
329 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
330 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
331 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
332 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
333 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
334 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
335 TxThreshold=0x500B0,
336 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
337 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
338 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
339 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
340 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
341 TxMode=0x55000, VlanType=0x55064,
342 PerfFilterTable=0x56000, HashTable=0x56100,
343 TxGfpMem=0x58000, RxGfpMem=0x5a000,
344};
345
346/*
347 * Bits in the interrupt status/mask registers.
348 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
349 * enables all the interrupt sources that are or'ed into those status bits.
350 */
351enum intr_status_bits {
352 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
353 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
354 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
355 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
356 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
357 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
358 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
359 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
360 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
361 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
362 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
363 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
364 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
365 IntrTxGfp=0x02, IntrPCIPad=0x01,
366 /* not quite bits */
367 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
368 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
369 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
370};
371
372/* Bits in the RxFilterMode register. */
373enum rx_mode_bits {
374 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
375 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
376 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
377 WakeupOnGFP=0x0800,
378};
379
380/* Bits in the TxMode register */
381enum tx_mode_bits {
382 MiiSoftReset=0x8000, MIILoopback=0x4000,
383 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
384 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
385};
386
387/* Bits in the TxDescCtrl register. */
388enum tx_ctrl_bits {
389 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
390 TxDescSpace128=0x30, TxDescSpace256=0x40,
391 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
392 TxDescType3=0x03, TxDescType4=0x04,
393 TxNoDMACompletion=0x08,
394 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
395 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
396 TxDMABurstSizeShift=8,
397};
398
399/* Bits in the RxDescQCtrl register. */
400enum rx_ctrl_bits {
401 RxBufferLenShift=16, RxMinDescrThreshShift=0,
402 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
403 Rx2048QEntries=0x4000, Rx256QEntries=0,
404 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
405 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
406 RxDescSpace4=0x000, RxDescSpace8=0x100,
407 RxDescSpace16=0x200, RxDescSpace32=0x300,
408 RxDescSpace64=0x400, RxDescSpace128=0x500,
409 RxConsumerWrEn=0x80,
410};
411
412/* Bits in the RxDMACtrl register. */
413enum rx_dmactrl_bits {
414 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
415 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
416 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
417 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
418 RxChecksumRejectTCPOnly=0x01000000,
419 RxCompletionQ2Enable=0x800000,
420 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
421 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
422 RxDMAQ2NonIP=0x400000,
423 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
424 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
425 RxBurstSizeShift=0,
426};
427
428/* Bits in the RxCompletionAddr register */
429enum rx_compl_bits {
430 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
431 RxComplProducerWrEn=0x40,
432 RxComplType0=0x00, RxComplType1=0x10,
433 RxComplType2=0x20, RxComplType3=0x30,
434 RxComplThreshShift=0,
435};
436
437/* Bits in the TxCompletionAddr register */
438enum tx_compl_bits {
439 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
440 TxComplProducerWrEn=0x40,
441 TxComplIntrStatus=0x20,
442 CommonQueueMode=0x10,
443 TxComplThreshShift=0,
444};
445
446/* Bits in the GenCtrl register */
447enum gen_ctrl_bits {
448 RxEnable=0x05, TxEnable=0x0a,
449 RxGFPEnable=0x10, TxGFPEnable=0x20,
450};
451
452/* Bits in the IntrTimerCtrl register */
453enum intr_ctrl_bits {
454 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
455 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
456 IntrLatencyMask=0x1f,
457};
458
459/* The Rx and Tx buffer descriptors. */
460struct starfire_rx_desc {
88b1943b 461 netdrv_addr_t rxaddr;
1da177e4
LT
462};
463enum rx_desc_bits {
464 RxDescValid=1, RxDescEndRing=2,
465};
466
467/* Completion queue entry. */
468struct short_rx_done_desc {
88b1943b 469 __le32 status; /* Low 16 bits is length. */
1da177e4
LT
470};
471struct basic_rx_done_desc {
88b1943b
AV
472 __le32 status; /* Low 16 bits is length. */
473 __le16 vlanid;
474 __le16 status2;
1da177e4
LT
475};
476struct csum_rx_done_desc {
88b1943b
AV
477 __le32 status; /* Low 16 bits is length. */
478 __le16 csum; /* Partial checksum */
479 __le16 status2;
1da177e4
LT
480};
481struct full_rx_done_desc {
88b1943b
AV
482 __le32 status; /* Low 16 bits is length. */
483 __le16 status3;
484 __le16 status2;
485 __le16 vlanid;
486 __le16 csum; /* partial checksum */
487 __le32 timestamp;
1da177e4
LT
488};
489/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
1da177e4
LT
490#ifdef VLAN_SUPPORT
491typedef struct full_rx_done_desc rx_done_desc;
492#define RxComplType RxComplType3
493#else /* not VLAN_SUPPORT */
494typedef struct csum_rx_done_desc rx_done_desc;
495#define RxComplType RxComplType2
496#endif /* not VLAN_SUPPORT */
1da177e4
LT
497
498enum rx_done_bits {
499 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
500};
501
502/* Type 1 Tx descriptor. */
503struct starfire_tx_desc_1 {
88b1943b
AV
504 __le32 status; /* Upper bits are status, lower 16 length. */
505 __le32 addr;
1da177e4
LT
506};
507
508/* Type 2 Tx descriptor. */
509struct starfire_tx_desc_2 {
88b1943b
AV
510 __le32 status; /* Upper bits are status, lower 16 length. */
511 __le32 reserved;
512 __le64 addr;
1da177e4
LT
513};
514
515#ifdef ADDR_64BITS
516typedef struct starfire_tx_desc_2 starfire_tx_desc;
517#define TX_DESC_TYPE TxDescType2
518#else /* not ADDR_64BITS */
519typedef struct starfire_tx_desc_1 starfire_tx_desc;
520#define TX_DESC_TYPE TxDescType1
521#endif /* not ADDR_64BITS */
522#define TX_DESC_SPACING TxDescSpaceUnlim
523
524enum tx_desc_bits {
525 TxDescID=0xB0000000,
526 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
527 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
528};
529struct tx_done_desc {
88b1943b 530 __le32 status; /* timestamp, index. */
1da177e4 531#if 0
88b1943b 532 __le32 intrstatus; /* interrupt status */
1da177e4
LT
533#endif
534};
535
536struct rx_ring_info {
537 struct sk_buff *skb;
538 dma_addr_t mapping;
539};
540struct tx_ring_info {
541 struct sk_buff *skb;
542 dma_addr_t mapping;
543 unsigned int used_slots;
544};
545
546#define PHY_CNT 2
547struct netdev_private {
548 /* Descriptor rings first for alignment. */
549 struct starfire_rx_desc *rx_ring;
550 starfire_tx_desc *tx_ring;
551 dma_addr_t rx_ring_dma;
552 dma_addr_t tx_ring_dma;
553 /* The addresses of rx/tx-in-place skbuffs. */
554 struct rx_ring_info rx_info[RX_RING_SIZE];
555 struct tx_ring_info tx_info[TX_RING_SIZE];
556 /* Pointers to completion queues (full pages). */
557 rx_done_desc *rx_done_q;
558 dma_addr_t rx_done_q_dma;
559 unsigned int rx_done;
560 struct tx_done_desc *tx_done_q;
561 dma_addr_t tx_done_q_dma;
562 unsigned int tx_done;
bea3348e
SH
563 struct napi_struct napi;
564 struct net_device *dev;
1da177e4
LT
565 struct net_device_stats stats;
566 struct pci_dev *pci_dev;
567#ifdef VLAN_SUPPORT
568 struct vlan_group *vlgrp;
569#endif
570 void *queue_mem;
571 dma_addr_t queue_mem_dma;
572 size_t queue_mem_size;
573
574 /* Frequently used values: keep some adjacent for cache effect. */
575 spinlock_t lock;
576 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
577 unsigned int cur_tx, dirty_tx, reap_tx;
578 unsigned int rx_buf_sz; /* Based on MTU+slack. */
579 /* These values keep track of the transceiver/media in use. */
580 int speed100; /* Set if speed == 100MBit. */
581 u32 tx_mode;
582 u32 intr_timer_ctrl;
583 u8 tx_threshold;
584 /* MII transceiver section. */
585 struct mii_if_info mii_if; /* MII lib hooks/info */
586 int phy_cnt; /* MII device addresses. */
587 unsigned char phys[PHY_CNT]; /* MII device addresses. */
588 void __iomem *base;
589};
590
591
592static int mdio_read(struct net_device *dev, int phy_id, int location);
593static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
594static int netdev_open(struct net_device *dev);
595static void check_duplex(struct net_device *dev);
596static void tx_timeout(struct net_device *dev);
597static void init_ring(struct net_device *dev);
61357325 598static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 599static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
600static void netdev_error(struct net_device *dev, int intr_status);
601static int __netdev_rx(struct net_device *dev, int *quota);
a6676019 602static int netdev_poll(struct napi_struct *napi, int budget);
1da177e4
LT
603static void refill_rx_ring(struct net_device *dev);
604static void netdev_error(struct net_device *dev, int intr_status);
605static void set_rx_mode(struct net_device *dev);
606static struct net_device_stats *get_stats(struct net_device *dev);
607static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
608static int netdev_close(struct net_device *dev);
609static void netdev_media_change(struct net_device *dev);
7282d491 610static const struct ethtool_ops ethtool_ops;
1da177e4
LT
611
612
613#ifdef VLAN_SUPPORT
614static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
615{
616 struct netdev_private *np = netdev_priv(dev);
617
618 spin_lock(&np->lock);
619 if (debug > 2)
620 printk("%s: Setting vlgrp to %p\n", dev->name, grp);
621 np->vlgrp = grp;
622 set_rx_mode(dev);
623 spin_unlock(&np->lock);
624}
625
626static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
627{
628 struct netdev_private *np = netdev_priv(dev);
629
630 spin_lock(&np->lock);
631 if (debug > 1)
632 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
633 set_rx_mode(dev);
634 spin_unlock(&np->lock);
635}
636
637static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
638{
639 struct netdev_private *np = netdev_priv(dev);
640
641 spin_lock(&np->lock);
642 if (debug > 1)
643 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
5c15bdec 644 vlan_group_set_device(np->vlgrp, vid, NULL);
1da177e4
LT
645 set_rx_mode(dev);
646 spin_unlock(&np->lock);
647}
648#endif /* VLAN_SUPPORT */
649
650
4fc8006e
SH
651static const struct net_device_ops netdev_ops = {
652 .ndo_open = netdev_open,
653 .ndo_stop = netdev_close,
654 .ndo_start_xmit = start_tx,
655 .ndo_tx_timeout = tx_timeout,
656 .ndo_get_stats = get_stats,
657 .ndo_set_multicast_list = &set_rx_mode,
658 .ndo_do_ioctl = netdev_ioctl,
659 .ndo_change_mtu = eth_change_mtu,
660 .ndo_set_mac_address = eth_mac_addr,
661 .ndo_validate_addr = eth_validate_addr,
662#ifdef VLAN_SUPPORT
663 .ndo_vlan_rx_register = netdev_vlan_rx_register,
664 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
665 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
666#endif
667};
668
1da177e4
LT
669static int __devinit starfire_init_one(struct pci_dev *pdev,
670 const struct pci_device_id *ent)
671{
672 struct netdev_private *np;
673 int i, irq, option, chip_idx = ent->driver_data;
674 struct net_device *dev;
675 static int card_idx = -1;
676 long ioaddr;
677 void __iomem *base;
678 int drv_flags, io_size;
679 int boguscnt;
680
681/* when built into the kernel, we only print version if device is found */
682#ifndef MODULE
683 static int printed_version;
684 if (!printed_version++)
685 printk(version);
686#endif
687
688 card_idx++;
689
690 if (pci_enable_device (pdev))
691 return -EIO;
692
693 ioaddr = pci_resource_start(pdev, 0);
694 io_size = pci_resource_len(pdev, 0);
695 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
696 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
697 return -ENODEV;
698 }
699
700 dev = alloc_etherdev(sizeof(*np));
701 if (!dev) {
702 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
703 return -ENOMEM;
704 }
1da177e4
LT
705 SET_NETDEV_DEV(dev, &pdev->dev);
706
707 irq = pdev->irq;
708
709 if (pci_request_regions (pdev, DRV_NAME)) {
710 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
711 goto err_out_free_netdev;
712 }
713
1da177e4
LT
714 base = ioremap(ioaddr, io_size);
715 if (!base) {
716 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
717 card_idx, io_size, ioaddr);
718 goto err_out_free_res;
719 }
720
721 pci_set_master(pdev);
722
723 /* enable MWI -- it vastly improves Rx performance on sparc64 */
694625c0 724 pci_try_set_mwi(pdev);
1da177e4 725
1da177e4
LT
726#ifdef ZEROCOPY
727 /* Starfire can do TCP/UDP checksumming */
728 if (enable_hw_cksum)
fdecea66 729 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1da177e4 730#endif /* ZEROCOPY */
4fc8006e 731
1da177e4
LT
732#ifdef VLAN_SUPPORT
733 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
1da177e4
LT
734#endif /* VLAN_RX_KILL_VID */
735#ifdef ADDR_64BITS
736 dev->features |= NETIF_F_HIGHDMA;
737#endif /* ADDR_64BITS */
738
739 /* Serial EEPROM reads are hidden by the hardware. */
740 for (i = 0; i < 6; i++)
741 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
742
743#if ! defined(final_version) /* Dump the EEPROM contents during development. */
744 if (debug > 4)
745 for (i = 0; i < 0x20; i++)
746 printk("%2.2x%s",
747 (unsigned int)readb(base + EEPROMCtrl + i),
748 i % 16 != 15 ? " " : "\n");
749#endif
750
751 /* Issue soft reset */
752 writel(MiiSoftReset, base + TxMode);
753 udelay(1000);
754 writel(0, base + TxMode);
755
756 /* Reset the chip to erase previous misconfiguration. */
757 writel(1, base + PCIDeviceConfig);
758 boguscnt = 1000;
759 while (--boguscnt > 0) {
760 udelay(10);
761 if ((readl(base + PCIDeviceConfig) & 1) == 0)
762 break;
763 }
764 if (boguscnt == 0)
765 printk("%s: chipset reset never completed!\n", dev->name);
766 /* wait a little longer */
767 udelay(1000);
768
769 dev->base_addr = (unsigned long)base;
770 dev->irq = irq;
771
772 np = netdev_priv(dev);
bea3348e 773 np->dev = dev;
1da177e4
LT
774 np->base = base;
775 spin_lock_init(&np->lock);
776 pci_set_drvdata(pdev, dev);
777
778 np->pci_dev = pdev;
779
780 np->mii_if.dev = dev;
781 np->mii_if.mdio_read = mdio_read;
782 np->mii_if.mdio_write = mdio_write;
783 np->mii_if.phy_id_mask = 0x1f;
784 np->mii_if.reg_num_mask = 0x1f;
785
786 drv_flags = netdrv_tbl[chip_idx].drv_flags;
787
788 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
789 if (dev->mem_start)
790 option = dev->mem_start;
791
792 /* The lower four bits are the media type. */
793 if (option & 0x200)
794 np->mii_if.full_duplex = 1;
795
796 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
797 np->mii_if.full_duplex = 1;
798
799 if (np->mii_if.full_duplex)
800 np->mii_if.force_media = 1;
801 else
802 np->mii_if.force_media = 0;
803 np->speed100 = 1;
804
805 /* timer resolution is 128 * 0.8us */
806 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
807 Timer10X | EnableIntrMasking;
808
809 if (small_frames > 0) {
810 np->intr_timer_ctrl |= SmallFrameBypass;
811 switch (small_frames) {
812 case 1 ... 64:
813 np->intr_timer_ctrl |= SmallFrame64;
814 break;
815 case 65 ... 128:
816 np->intr_timer_ctrl |= SmallFrame128;
817 break;
818 case 129 ... 256:
819 np->intr_timer_ctrl |= SmallFrame256;
820 break;
821 default:
822 np->intr_timer_ctrl |= SmallFrame512;
823 if (small_frames > 512)
824 printk("Adjusting small_frames down to 512\n");
825 break;
826 }
827 }
828
4fc8006e 829 dev->netdev_ops = &netdev_ops;
fdecea66 830 dev->watchdog_timeo = TX_TIMEOUT;
1da177e4
LT
831 SET_ETHTOOL_OPS(dev, &ethtool_ops);
832
4fc8006e
SH
833 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
834
1da177e4
LT
835 if (mtu)
836 dev->mtu = mtu;
837
838 if (register_netdev(dev))
839 goto err_out_cleardev;
840
e174961c 841 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 842 dev->name, netdrv_tbl[chip_idx].name, base,
e174961c 843 dev->dev_addr, irq);
1da177e4
LT
844
845 if (drv_flags & CanHaveMII) {
846 int phy, phy_idx = 0;
847 int mii_status;
848 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
849 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
850 mdelay(100);
851 boguscnt = 1000;
852 while (--boguscnt > 0)
853 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
854 break;
855 if (boguscnt == 0) {
fdecea66 856 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
1da177e4
LT
857 continue;
858 }
859 mii_status = mdio_read(dev, phy, MII_BMSR);
860 if (mii_status != 0) {
861 np->phys[phy_idx++] = phy;
862 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
863 printk(KERN_INFO "%s: MII PHY found at address %d, status "
864 "%#4.4x advertising %#4.4x.\n",
865 dev->name, phy, mii_status, np->mii_if.advertising);
866 /* there can be only one PHY on-board */
867 break;
868 }
869 }
870 np->phy_cnt = phy_idx;
871 if (np->phy_cnt > 0)
872 np->mii_if.phy_id = np->phys[0];
873 else
874 memset(&np->mii_if, 0, sizeof(np->mii_if));
875 }
876
877 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
878 dev->name, enable_hw_cksum ? "enabled" : "disabled");
879 return 0;
880
881err_out_cleardev:
882 pci_set_drvdata(pdev, NULL);
883 iounmap(base);
884err_out_free_res:
885 pci_release_regions (pdev);
886err_out_free_netdev:
887 free_netdev(dev);
888 return -ENODEV;
889}
890
891
892/* Read the MII Management Data I/O (MDIO) interfaces. */
893static int mdio_read(struct net_device *dev, int phy_id, int location)
894{
895 struct netdev_private *np = netdev_priv(dev);
896 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
897 int result, boguscnt=1000;
898 /* ??? Should we add a busy-wait here? */
e4c3c13c 899 do {
1da177e4 900 result = readl(mdio_addr);
e4c3c13c 901 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
1da177e4
LT
902 if (boguscnt == 0)
903 return 0;
904 if ((result & 0xffff) == 0xffff)
905 return 0;
906 return result & 0xffff;
907}
908
909
910static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
911{
912 struct netdev_private *np = netdev_priv(dev);
913 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
914 writel(value, mdio_addr);
915 /* The busy-wait will occur before a read. */
916}
917
918
919static int netdev_open(struct net_device *dev)
920{
cfc3a44c
JSR
921 const struct firmware *fw_rx, *fw_tx;
922 const __be32 *fw_rx_data, *fw_tx_data;
1da177e4
LT
923 struct netdev_private *np = netdev_priv(dev);
924 void __iomem *ioaddr = np->base;
925 int i, retval;
cfc3a44c 926 size_t tx_size, rx_size;
1da177e4
LT
927 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
928
929 /* Do we ever need to reset the chip??? */
fdecea66 930
a0607fd3 931 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
932 if (retval)
933 return retval;
934
935 /* Disable the Rx and Tx, and reset the chip. */
936 writel(0, ioaddr + GenCtrl);
937 writel(1, ioaddr + PCIDeviceConfig);
938 if (debug > 1)
939 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
940 dev->name, dev->irq);
941
942 /* Allocate the various queues. */
88b1943b 943 if (!np->queue_mem) {
1da177e4
LT
944 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
945 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
946 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
947 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
948 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
949 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
d8840ac9
AD
950 if (np->queue_mem == NULL) {
951 free_irq(dev->irq, dev);
1da177e4 952 return -ENOMEM;
d8840ac9 953 }
1da177e4
LT
954
955 np->tx_done_q = np->queue_mem;
956 np->tx_done_q_dma = np->queue_mem_dma;
957 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
958 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
959 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
960 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
961 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
962 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
963 }
964
965 /* Start with no carrier, it gets adjusted later */
966 netif_carrier_off(dev);
967 init_ring(dev);
968 /* Set the size of the Rx buffers. */
969 writel((np->rx_buf_sz << RxBufferLenShift) |
970 (0 << RxMinDescrThreshShift) |
971 RxPrefetchMode | RxVariableQ |
972 RX_Q_ENTRIES |
973 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
974 RxDescSpace4,
975 ioaddr + RxDescQCtrl);
976
977 /* Set up the Rx DMA controller. */
978 writel(RxChecksumIgnore |
979 (0 << RxEarlyIntThreshShift) |
980 (6 << RxHighPrioThreshShift) |
981 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
982 ioaddr + RxDMACtrl);
983
984 /* Set Tx descriptor */
985 writel((2 << TxHiPriFIFOThreshShift) |
986 (0 << TxPadLenShift) |
987 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
988 TX_DESC_Q_ADDR_SIZE |
989 TX_DESC_SPACING | TX_DESC_TYPE,
990 ioaddr + TxDescCtrl);
991
992 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
993 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
994 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
995 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
996 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
997
998 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
999 writel(np->rx_done_q_dma |
1000 RxComplType |
1001 (0 << RxComplThreshShift),
1002 ioaddr + RxCompletionAddr);
1003
1004 if (debug > 1)
1005 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
1006
1007 /* Fill both the Tx SA register and the Rx perfect filter. */
1008 for (i = 0; i < 6; i++)
1009 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
1010 /* The first entry is special because it bypasses the VLAN filter.
1011 Don't use it. */
1012 writew(0, ioaddr + PerfFilterTable);
1013 writew(0, ioaddr + PerfFilterTable + 4);
1014 writew(0, ioaddr + PerfFilterTable + 8);
1015 for (i = 1; i < 16; i++) {
88b1943b 1016 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1017 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
88b1943b
AV
1018 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1019 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1020 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1da177e4
LT
1021 }
1022
1023 /* Initialize other registers. */
1024 /* Configure the PCI bus bursts and FIFO thresholds. */
1025 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1026 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1027 udelay(1000);
1028 writel(np->tx_mode, ioaddr + TxMode);
1029 np->tx_threshold = 4;
1030 writel(np->tx_threshold, ioaddr + TxThreshold);
1031
1032 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1033
bea3348e 1034 napi_enable(&np->napi);
a6676019 1035
1da177e4
LT
1036 netif_start_queue(dev);
1037
1038 if (debug > 1)
1039 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1040 set_rx_mode(dev);
1041
1042 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1043 check_duplex(dev);
1044
1045 /* Enable GPIO interrupts on link change */
1046 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1047
1048 /* Set the interrupt mask */
1049 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1050 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1051 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1052 ioaddr + IntrEnable);
1053 /* Enable PCI interrupts. */
1054 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1055 ioaddr + PCIDeviceConfig);
1056
1057#ifdef VLAN_SUPPORT
1058 /* Set VLAN type to 802.1q */
1059 writel(ETH_P_8021Q, ioaddr + VlanType);
1060#endif /* VLAN_SUPPORT */
1061
cfc3a44c
JSR
1062 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1063 if (retval) {
1064 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1065 FIRMWARE_RX);
c928febf 1066 goto out_init;
cfc3a44c
JSR
1067 }
1068 if (fw_rx->size % 4) {
1069 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1070 fw_rx->size, FIRMWARE_RX);
1071 retval = -EINVAL;
1072 goto out_rx;
1073 }
1074 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1075 if (retval) {
1076 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1077 FIRMWARE_TX);
1078 goto out_rx;
1079 }
1080 if (fw_tx->size % 4) {
1081 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1082 fw_tx->size, FIRMWARE_TX);
1083 retval = -EINVAL;
1084 goto out_tx;
1085 }
1086 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1087 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1088 rx_size = fw_rx->size / 4;
1089 tx_size = fw_tx->size / 4;
1090
1da177e4 1091 /* Load Rx/Tx firmware into the frame processors */
cfc3a44c
JSR
1092 for (i = 0; i < rx_size; i++)
1093 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1094 for (i = 0; i < tx_size; i++)
1095 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1da177e4
LT
1096 if (enable_hw_cksum)
1097 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1098 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1099 else
1100 /* Enable the Rx and Tx units only. */
1101 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1102
1103 if (debug > 1)
1104 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1105 dev->name);
1106
cfc3a44c
JSR
1107out_tx:
1108 release_firmware(fw_tx);
1109out_rx:
1110 release_firmware(fw_rx);
c928febf
BH
1111out_init:
1112 if (retval)
1113 netdev_close(dev);
cfc3a44c 1114 return retval;
1da177e4
LT
1115}
1116
1117
1118static void check_duplex(struct net_device *dev)
1119{
1120 struct netdev_private *np = netdev_priv(dev);
1121 u16 reg0;
1122 int silly_count = 1000;
1123
1124 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1125 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1126 udelay(500);
1127 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1128 /* do nothing */;
1129 if (!silly_count) {
1130 printk("%s: MII reset failed!\n", dev->name);
1131 return;
1132 }
1133
1134 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1135
1136 if (!np->mii_if.force_media) {
1137 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1138 } else {
1139 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1140 if (np->speed100)
1141 reg0 |= BMCR_SPEED100;
1142 if (np->mii_if.full_duplex)
1143 reg0 |= BMCR_FULLDPLX;
1144 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1145 dev->name,
1146 np->speed100 ? "100" : "10",
1147 np->mii_if.full_duplex ? "full" : "half");
1148 }
1149 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1150}
1151
1152
1153static void tx_timeout(struct net_device *dev)
1154{
1155 struct netdev_private *np = netdev_priv(dev);
1156 void __iomem *ioaddr = np->base;
1157 int old_debug;
1158
1159 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1160 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1161
1162 /* Perhaps we should reinitialize the hardware here. */
1163
1164 /*
1165 * Stop and restart the interface.
1166 * Cheat and increase the debug level temporarily.
1167 */
1168 old_debug = debug;
1169 debug = 2;
1170 netdev_close(dev);
1171 netdev_open(dev);
1172 debug = old_debug;
1173
1174 /* Trigger an immediate transmit demand. */
1175
1ae5dc34 1176 dev->trans_start = jiffies; /* prevent tx timeout */
1da177e4
LT
1177 np->stats.tx_errors++;
1178 netif_wake_queue(dev);
1179}
1180
1181
1182/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1183static void init_ring(struct net_device *dev)
1184{
1185 struct netdev_private *np = netdev_priv(dev);
1186 int i;
1187
1188 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1189 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1190
1191 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1192
1193 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1194 for (i = 0; i < RX_RING_SIZE; i++) {
1195 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1196 np->rx_info[i].skb = skb;
1197 if (skb == NULL)
1198 break;
689be439 1199 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1200 skb->dev = dev; /* Mark as being used by this device. */
1201 /* Grrr, we cannot offset to correctly align the IP header. */
1202 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1203 }
1204 writew(i - 1, np->base + RxDescQIdx);
1205 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1206
1207 /* Clear the remainder of the Rx buffer ring. */
1208 for ( ; i < RX_RING_SIZE; i++) {
1209 np->rx_ring[i].rxaddr = 0;
1210 np->rx_info[i].skb = NULL;
1211 np->rx_info[i].mapping = 0;
1212 }
1213 /* Mark the last entry as wrapping the ring. */
1214 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1215
1216 /* Clear the completion rings. */
1217 for (i = 0; i < DONE_Q_SIZE; i++) {
1218 np->rx_done_q[i].status = 0;
1219 np->tx_done_q[i].status = 0;
1220 }
1221
1222 for (i = 0; i < TX_RING_SIZE; i++)
1223 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1224
1225 return;
1226}
1227
1228
61357325 1229static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1230{
1231 struct netdev_private *np = netdev_priv(dev);
1232 unsigned int entry;
1233 u32 status;
1234 int i;
1235
1da177e4
LT
1236 /*
1237 * be cautious here, wrapping the queue has weird semantics
1238 * and we may not have enough slots even when it seems we do.
1239 */
1240 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1241 netif_stop_queue(dev);
5b548140 1242 return NETDEV_TX_BUSY;
1da177e4
LT
1243 }
1244
1245#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
84fa7933 1246 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5b057c6b 1247 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
67974231 1248 return NETDEV_TX_OK;
1da177e4
LT
1249 }
1250#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1251
1252 entry = np->cur_tx % TX_RING_SIZE;
1253 for (i = 0; i < skb_num_frags(skb); i++) {
1254 int wrap_ring = 0;
1255 status = TxDescID;
1256
1257 if (i == 0) {
1258 np->tx_info[entry].skb = skb;
1259 status |= TxCRCEn;
1260 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1261 status |= TxRingWrap;
1262 wrap_ring = 1;
1263 }
1264 if (np->reap_tx) {
1265 status |= TxDescIntr;
1266 np->reap_tx = 0;
1267 }
84fa7933 1268 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
1269 status |= TxCalTCP;
1270 np->stats.tx_compressed++;
1271 }
1272 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1273
1274 np->tx_info[entry].mapping =
1275 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1276 } else {
1da177e4
LT
1277 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1278 status |= this_frag->size;
1279 np->tx_info[entry].mapping =
1280 pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
1da177e4
LT
1281 }
1282
1283 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1284 np->tx_ring[entry].status = cpu_to_le32(status);
1285 if (debug > 3)
1286 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1287 dev->name, np->cur_tx, np->dirty_tx,
1288 entry, status);
1289 if (wrap_ring) {
1290 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1291 np->cur_tx += np->tx_info[entry].used_slots;
1292 entry = 0;
1293 } else {
1294 np->tx_info[entry].used_slots = 1;
1295 np->cur_tx += np->tx_info[entry].used_slots;
1296 entry++;
1297 }
1298 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1299 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1300 np->reap_tx = 1;
1301 }
1302
1303 /* Non-x86: explicitly flush descriptor cache lines here. */
1304 /* Ensure all descriptors are written back before the transmit is
1305 initiated. - Jes */
1306 wmb();
1307
1308 /* Update the producer index. */
1309 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1310
1311 /* 4 is arbitrary, but should be ok */
1312 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1313 netif_stop_queue(dev);
1314
6ed10654 1315 return NETDEV_TX_OK;
1da177e4
LT
1316}
1317
1318
1319/* The interrupt handler does all of the Rx thread work and cleans up
1320 after the Tx thread. */
7d12e780 1321static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1322{
1323 struct net_device *dev = dev_instance;
1324 struct netdev_private *np = netdev_priv(dev);
1325 void __iomem *ioaddr = np->base;
1326 int boguscnt = max_interrupt_work;
1327 int consumer;
1328 int tx_status;
1329 int handled = 0;
1330
1331 do {
1332 u32 intr_status = readl(ioaddr + IntrClear);
1333
1334 if (debug > 4)
1335 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1336 dev->name, intr_status);
1337
1338 if (intr_status == 0 || intr_status == (u32) -1)
1339 break;
1340
1341 handled = 1;
1342
a6676019
FR
1343 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1344 u32 enable;
1345
288379f0
BH
1346 if (likely(napi_schedule_prep(&np->napi))) {
1347 __napi_schedule(&np->napi);
a6676019
FR
1348 enable = readl(ioaddr + IntrEnable);
1349 enable &= ~(IntrRxDone | IntrRxEmpty);
1350 writel(enable, ioaddr + IntrEnable);
1351 /* flush PCI posting buffers */
1352 readl(ioaddr + IntrEnable);
1353 } else {
1354 /* Paranoia check */
1355 enable = readl(ioaddr + IntrEnable);
1356 if (enable & (IntrRxDone | IntrRxEmpty)) {
1357 printk(KERN_INFO
1358 "%s: interrupt while in poll!\n",
1359 dev->name);
1360 enable &= ~(IntrRxDone | IntrRxEmpty);
1361 writel(enable, ioaddr + IntrEnable);
1362 }
1363 }
1364 }
1da177e4
LT
1365
1366 /* Scavenge the skbuff list based on the Tx-done queue.
1367 There are redundant checks here that may be cleaned up
1368 after the driver has proven to be reliable. */
1369 consumer = readl(ioaddr + TxConsumerIdx);
1370 if (debug > 3)
1371 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1372 dev->name, consumer);
1373
1374 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1375 if (debug > 3)
1376 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1377 dev->name, np->dirty_tx, np->tx_done, tx_status);
1378 if ((tx_status & 0xe0000000) == 0xa0000000) {
1379 np->stats.tx_packets++;
1380 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1381 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1382 struct sk_buff *skb = np->tx_info[entry].skb;
1383 np->tx_info[entry].skb = NULL;
1384 pci_unmap_single(np->pci_dev,
1385 np->tx_info[entry].mapping,
1386 skb_first_frag_len(skb),
1387 PCI_DMA_TODEVICE);
1388 np->tx_info[entry].mapping = 0;
1389 np->dirty_tx += np->tx_info[entry].used_slots;
1390 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1da177e4
LT
1391 {
1392 int i;
1393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1394 pci_unmap_single(np->pci_dev,
1395 np->tx_info[entry].mapping,
1396 skb_shinfo(skb)->frags[i].size,
1397 PCI_DMA_TODEVICE);
1398 np->dirty_tx++;
1399 entry++;
1400 }
1401 }
fdecea66 1402
1da177e4
LT
1403 dev_kfree_skb_irq(skb);
1404 }
1405 np->tx_done_q[np->tx_done].status = 0;
1406 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1407 }
1408 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1409
1410 if (netif_queue_stopped(dev) &&
1411 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1412 /* The ring is no longer full, wake the queue. */
1413 netif_wake_queue(dev);
1414 }
1415
1416 /* Stats overflow */
1417 if (intr_status & IntrStatsMax)
1418 get_stats(dev);
1419
1420 /* Media change interrupt. */
1421 if (intr_status & IntrLinkChange)
1422 netdev_media_change(dev);
1423
1424 /* Abnormal error summary/uncommon events handlers. */
1425 if (intr_status & IntrAbnormalSummary)
1426 netdev_error(dev, intr_status);
1427
1428 if (--boguscnt < 0) {
1429 if (debug > 1)
1430 printk(KERN_WARNING "%s: Too much work at interrupt, "
1431 "status=%#8.8x.\n",
1432 dev->name, intr_status);
1433 break;
1434 }
1435 } while (1);
1436
1437 if (debug > 4)
1438 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1439 dev->name, (int) readl(ioaddr + IntrStatus));
1440 return IRQ_RETVAL(handled);
1441}
1442
1443
a6676019
FR
1444/*
1445 * This routine is logically part of the interrupt/poll handler, but separated
1446 * for clarity and better register allocation.
1447 */
1da177e4
LT
1448static int __netdev_rx(struct net_device *dev, int *quota)
1449{
1450 struct netdev_private *np = netdev_priv(dev);
1451 u32 desc_status;
1452 int retcode = 0;
1453
1454 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1455 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1456 struct sk_buff *skb;
1457 u16 pkt_len;
1458 int entry;
1459 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1460
1461 if (debug > 4)
1462 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1463 if (!(desc_status & RxOK)) {
fdecea66 1464 /* There was an error. */
1da177e4
LT
1465 if (debug > 2)
1466 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1467 np->stats.rx_errors++;
1468 if (desc_status & RxFIFOErr)
1469 np->stats.rx_fifo_errors++;
1470 goto next_rx;
1471 }
1472
1473 if (*quota <= 0) { /* out of rx quota */
1474 retcode = 1;
1475 goto out;
1476 }
1477 (*quota)--;
1478
1479 pkt_len = desc_status; /* Implicitly Truncate */
1480 entry = (desc_status >> 16) & 0x7ff;
1481
1482 if (debug > 4)
1483 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1484 /* Check if the packet is long enough to accept without copying
1485 to a minimally-sized skbuff. */
8e95a202
JP
1486 if (pkt_len < rx_copybreak &&
1487 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1488 skb_reserve(skb, 2); /* 16 byte align the IP header */
1489 pci_dma_sync_single_for_cpu(np->pci_dev,
1490 np->rx_info[entry].mapping,
1491 pkt_len, PCI_DMA_FROMDEVICE);
8c7b7faa 1492 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1da177e4
LT
1493 pci_dma_sync_single_for_device(np->pci_dev,
1494 np->rx_info[entry].mapping,
1495 pkt_len, PCI_DMA_FROMDEVICE);
1496 skb_put(skb, pkt_len);
1497 } else {
1498 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1499 skb = np->rx_info[entry].skb;
1500 skb_put(skb, pkt_len);
1501 np->rx_info[entry].skb = NULL;
1502 np->rx_info[entry].mapping = 0;
1503 }
1504#ifndef final_version /* Remove after testing. */
1505 /* You will want this info for the initial debug. */
0795af57 1506 if (debug > 5) {
e174961c
JB
1507 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1508 skb->data, skb->data + 6,
0795af57
JP
1509 skb->data[12], skb->data[13]);
1510 }
1da177e4
LT
1511#endif
1512
1513 skb->protocol = eth_type_trans(skb, dev);
fdecea66 1514#ifdef VLAN_SUPPORT
1da177e4
LT
1515 if (debug > 4)
1516 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1517#endif
1da177e4
LT
1518 if (le16_to_cpu(desc->status2) & 0x0100) {
1519 skb->ip_summed = CHECKSUM_UNNECESSARY;
1520 np->stats.rx_compressed++;
1521 }
1522 /*
1523 * This feature doesn't seem to be working, at least
1524 * with the two firmware versions I have. If the GFP sees
1525 * an IP fragment, it either ignores it completely, or reports
1526 * "bad checksum" on it.
1527 *
1528 * Maybe I missed something -- corrections are welcome.
1529 * Until then, the printk stays. :-) -Ion
1530 */
1531 else if (le16_to_cpu(desc->status2) & 0x0040) {
84fa7933 1532 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
1533 skb->csum = le16_to_cpu(desc->csum);
1534 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1535 }
1da177e4
LT
1536#ifdef VLAN_SUPPORT
1537 if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
a6676019
FR
1538 u16 vlid = le16_to_cpu(desc->vlanid);
1539
1540 if (debug > 4) {
1541 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1542 vlid);
1543 }
1544 /*
1545 * vlan_hwaccel_rx expects a packet with the VLAN tag
1546 * stripped out.
1547 */
1548 vlan_hwaccel_rx(skb, np->vlgrp, vlid);
1da177e4
LT
1549 } else
1550#endif /* VLAN_SUPPORT */
a6676019 1551 netif_receive_skb(skb);
1da177e4
LT
1552 np->stats.rx_packets++;
1553
1554 next_rx:
1555 np->cur_rx++;
1556 desc->status = 0;
1557 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1558 }
9a3de255
JP
1559
1560 if (*quota == 0) { /* out of rx quota */
1561 retcode = 1;
1562 goto out;
1563 }
1da177e4
LT
1564 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1565
1566 out:
1567 refill_rx_ring(dev);
1568 if (debug > 5)
1569 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1570 retcode, np->rx_done, desc_status);
1571 return retcode;
1572}
1573
bea3348e 1574static int netdev_poll(struct napi_struct *napi, int budget)
1da177e4 1575{
bea3348e
SH
1576 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1577 struct net_device *dev = np->dev;
1da177e4 1578 u32 intr_status;
1da177e4 1579 void __iomem *ioaddr = np->base;
bea3348e 1580 int quota = budget;
1da177e4
LT
1581
1582 do {
1583 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1584
bea3348e 1585 if (__netdev_rx(dev, &quota))
1da177e4
LT
1586 goto out;
1587
1588 intr_status = readl(ioaddr + IntrStatus);
1589 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1590
288379f0 1591 napi_complete(napi);
1da177e4
LT
1592 intr_status = readl(ioaddr + IntrEnable);
1593 intr_status |= IntrRxDone | IntrRxEmpty;
1594 writel(intr_status, ioaddr + IntrEnable);
1595
1596 out:
1597 if (debug > 5)
bea3348e
SH
1598 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1599 budget - quota);
1da177e4
LT
1600
1601 /* Restart Rx engine if stopped. */
bea3348e 1602 return budget - quota;
1da177e4 1603}
1da177e4
LT
1604
1605static void refill_rx_ring(struct net_device *dev)
1606{
1607 struct netdev_private *np = netdev_priv(dev);
1608 struct sk_buff *skb;
1609 int entry = -1;
1610
1611 /* Refill the Rx ring buffers. */
1612 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1613 entry = np->dirty_rx % RX_RING_SIZE;
1614 if (np->rx_info[entry].skb == NULL) {
1615 skb = dev_alloc_skb(np->rx_buf_sz);
1616 np->rx_info[entry].skb = skb;
1617 if (skb == NULL)
1618 break; /* Better luck next round. */
1619 np->rx_info[entry].mapping =
689be439 1620 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1621 skb->dev = dev; /* Mark as being used by this device. */
1622 np->rx_ring[entry].rxaddr =
1623 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1624 }
1625 if (entry == RX_RING_SIZE - 1)
1626 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1627 }
1628 if (entry >= 0)
1629 writew(entry, np->base + RxDescQIdx);
1630}
1631
1632
1633static void netdev_media_change(struct net_device *dev)
1634{
1635 struct netdev_private *np = netdev_priv(dev);
1636 void __iomem *ioaddr = np->base;
1637 u16 reg0, reg1, reg4, reg5;
1638 u32 new_tx_mode;
1639 u32 new_intr_timer_ctrl;
1640
1641 /* reset status first */
1642 mdio_read(dev, np->phys[0], MII_BMCR);
1643 mdio_read(dev, np->phys[0], MII_BMSR);
1644
1645 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1646 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1647
1648 if (reg1 & BMSR_LSTATUS) {
1649 /* link is up */
1650 if (reg0 & BMCR_ANENABLE) {
1651 /* autonegotiation is enabled */
1652 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1653 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1654 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1655 np->speed100 = 1;
1656 np->mii_if.full_duplex = 1;
1657 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1658 np->speed100 = 1;
1659 np->mii_if.full_duplex = 0;
1660 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1661 np->speed100 = 0;
1662 np->mii_if.full_duplex = 1;
1663 } else {
1664 np->speed100 = 0;
1665 np->mii_if.full_duplex = 0;
1666 }
1667 } else {
1668 /* autonegotiation is disabled */
1669 if (reg0 & BMCR_SPEED100)
1670 np->speed100 = 1;
1671 else
1672 np->speed100 = 0;
1673 if (reg0 & BMCR_FULLDPLX)
1674 np->mii_if.full_duplex = 1;
1675 else
1676 np->mii_if.full_duplex = 0;
1677 }
1678 netif_carrier_on(dev);
1679 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1680 dev->name,
1681 np->speed100 ? "100" : "10",
1682 np->mii_if.full_duplex ? "full" : "half");
1683
1684 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1685 if (np->mii_if.full_duplex)
1686 new_tx_mode |= FullDuplex;
1687 if (np->tx_mode != new_tx_mode) {
1688 np->tx_mode = new_tx_mode;
1689 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1690 udelay(1000);
1691 writel(np->tx_mode, ioaddr + TxMode);
1692 }
1693
1694 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1695 if (np->speed100)
1696 new_intr_timer_ctrl |= Timer10X;
1697 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1698 np->intr_timer_ctrl = new_intr_timer_ctrl;
1699 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1700 }
1701 } else {
1702 netif_carrier_off(dev);
1703 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1704 }
1705}
1706
1707
1708static void netdev_error(struct net_device *dev, int intr_status)
1709{
1710 struct netdev_private *np = netdev_priv(dev);
1711
1712 /* Came close to underrunning the Tx FIFO, increase threshold. */
1713 if (intr_status & IntrTxDataLow) {
1714 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1715 writel(++np->tx_threshold, np->base + TxThreshold);
1716 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1717 dev->name, np->tx_threshold * 16);
1718 } else
1719 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1720 }
1721 if (intr_status & IntrRxGFPDead) {
1722 np->stats.rx_fifo_errors++;
1723 np->stats.rx_errors++;
1724 }
1725 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1726 np->stats.tx_fifo_errors++;
1727 np->stats.tx_errors++;
1728 }
1729 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1730 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1731 dev->name, intr_status);
1732}
1733
1734
1735static struct net_device_stats *get_stats(struct net_device *dev)
1736{
1737 struct netdev_private *np = netdev_priv(dev);
1738 void __iomem *ioaddr = np->base;
1739
1740 /* This adapter architecture needs no SMP locks. */
1741 np->stats.tx_bytes = readl(ioaddr + 0x57010);
1742 np->stats.rx_bytes = readl(ioaddr + 0x57044);
1743 np->stats.tx_packets = readl(ioaddr + 0x57000);
1744 np->stats.tx_aborted_errors =
1745 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1746 np->stats.tx_window_errors = readl(ioaddr + 0x57018);
1747 np->stats.collisions =
1748 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1749
1750 /* The chip only need report frame silently dropped. */
1751 np->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1752 writew(0, ioaddr + RxDMAStatus);
1753 np->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1754 np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1755 np->stats.rx_length_errors = readl(ioaddr + 0x57058);
1756 np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1757
1758 return &np->stats;
1759}
1760
1761
1da177e4
LT
1762static void set_rx_mode(struct net_device *dev)
1763{
1764 struct netdev_private *np = netdev_priv(dev);
1765 void __iomem *ioaddr = np->base;
1766 u32 rx_mode = MinVLANPrio;
22bedad3 1767 struct netdev_hw_addr *ha;
1da177e4
LT
1768 int i;
1769#ifdef VLAN_SUPPORT
1770
1771 rx_mode |= VlanMode;
1772 if (np->vlgrp) {
1773 int vlan_count = 0;
1774 void __iomem *filter_addr = ioaddr + HashTable + 8;
1775 for (i = 0; i < VLAN_VID_MASK; i++) {
5c15bdec 1776 if (vlan_group_get_device(np->vlgrp, i)) {
1da177e4
LT
1777 if (vlan_count >= 32)
1778 break;
813820b9 1779 writew(i, filter_addr);
1da177e4
LT
1780 filter_addr += 16;
1781 vlan_count++;
1782 }
1783 }
1784 if (i == VLAN_VID_MASK) {
1785 rx_mode |= PerfectFilterVlan;
1786 while (vlan_count < 32) {
1787 writew(0, filter_addr);
1788 filter_addr += 16;
1789 vlan_count++;
1790 }
1791 }
1792 }
1793#endif /* VLAN_SUPPORT */
1794
1795 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1796 rx_mode |= AcceptAll;
4cd24eaf 1797 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1798 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1799 /* Too many to match, or accept all multicasts. */
1800 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
4cd24eaf 1801 } else if (netdev_mc_count(dev) <= 14) {
1da177e4
LT
1802 /* Use the 16 element perfect filter, skip first two entries. */
1803 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1804 __be16 *eaddrs;
22bedad3
JP
1805 netdev_for_each_mc_addr(ha, dev) {
1806 eaddrs = (__be16 *) ha->addr;
88b1943b
AV
1807 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1808 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1809 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1da177e4 1810 }
88b1943b 1811 eaddrs = (__be16 *)dev->dev_addr;
5508590c 1812 i = netdev_mc_count(dev) + 2;
1da177e4 1813 while (i++ < 16) {
88b1943b
AV
1814 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1815 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1816 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1817 }
1818 rx_mode |= AcceptBroadcast|PerfectFilter;
1819 } else {
1820 /* Must use a multicast hash table. */
1821 void __iomem *filter_addr;
88b1943b
AV
1822 __be16 *eaddrs;
1823 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1da177e4
LT
1824
1825 memset(mc_filter, 0, sizeof(mc_filter));
22bedad3 1826 netdev_for_each_mc_addr(ha, dev) {
fdecea66
JG
1827 /* The chip uses the upper 9 CRC bits
1828 as index into the hash table */
22bedad3 1829 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
88b1943b 1830 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1da177e4
LT
1831
1832 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1833 }
1834 /* Clear the perfect filter list, skip first two entries. */
1835 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
88b1943b 1836 eaddrs = (__be16 *)dev->dev_addr;
1da177e4 1837 for (i = 2; i < 16; i++) {
88b1943b
AV
1838 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1839 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1840 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1da177e4
LT
1841 }
1842 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1843 writew(mc_filter[i], filter_addr);
1844 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1845 }
1846 writel(rx_mode, ioaddr + RxFilterMode);
1847}
1848
1849static int check_if_running(struct net_device *dev)
1850{
1851 if (!netif_running(dev))
1852 return -EINVAL;
1853 return 0;
1854}
1855
1856static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1857{
1858 struct netdev_private *np = netdev_priv(dev);
1859 strcpy(info->driver, DRV_NAME);
1860 strcpy(info->version, DRV_VERSION);
fdecea66 1861 strcpy(info->bus_info, pci_name(np->pci_dev));
1da177e4
LT
1862}
1863
1864static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1865{
1866 struct netdev_private *np = netdev_priv(dev);
1867 spin_lock_irq(&np->lock);
1868 mii_ethtool_gset(&np->mii_if, ecmd);
1869 spin_unlock_irq(&np->lock);
1870 return 0;
1871}
1872
1873static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1874{
1875 struct netdev_private *np = netdev_priv(dev);
1876 int res;
1877 spin_lock_irq(&np->lock);
1878 res = mii_ethtool_sset(&np->mii_if, ecmd);
1879 spin_unlock_irq(&np->lock);
1880 check_duplex(dev);
1881 return res;
1882}
1883
1884static int nway_reset(struct net_device *dev)
1885{
1886 struct netdev_private *np = netdev_priv(dev);
1887 return mii_nway_restart(&np->mii_if);
1888}
1889
1890static u32 get_link(struct net_device *dev)
1891{
1892 struct netdev_private *np = netdev_priv(dev);
1893 return mii_link_ok(&np->mii_if);
1894}
1895
1896static u32 get_msglevel(struct net_device *dev)
1897{
1898 return debug;
1899}
1900
1901static void set_msglevel(struct net_device *dev, u32 val)
1902{
1903 debug = val;
1904}
1905
7282d491 1906static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1907 .begin = check_if_running,
1908 .get_drvinfo = get_drvinfo,
1909 .get_settings = get_settings,
1910 .set_settings = set_settings,
1911 .nway_reset = nway_reset,
1912 .get_link = get_link,
1913 .get_msglevel = get_msglevel,
1914 .set_msglevel = set_msglevel,
1915};
1916
1917static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1918{
1919 struct netdev_private *np = netdev_priv(dev);
1920 struct mii_ioctl_data *data = if_mii(rq);
1921 int rc;
1922
1923 if (!netif_running(dev))
1924 return -EINVAL;
1925
1926 spin_lock_irq(&np->lock);
1927 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1928 spin_unlock_irq(&np->lock);
1929
1930 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1931 check_duplex(dev);
1932
1933 return rc;
1934}
1935
1936static int netdev_close(struct net_device *dev)
1937{
1938 struct netdev_private *np = netdev_priv(dev);
1939 void __iomem *ioaddr = np->base;
1940 int i;
1941
1942 netif_stop_queue(dev);
a6676019 1943
bea3348e 1944 napi_disable(&np->napi);
1da177e4
LT
1945
1946 if (debug > 1) {
1947 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1948 dev->name, (int) readl(ioaddr + IntrStatus));
1949 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1950 dev->name, np->cur_tx, np->dirty_tx,
1951 np->cur_rx, np->dirty_rx);
1952 }
1953
1954 /* Disable interrupts by clearing the interrupt mask. */
1955 writel(0, ioaddr + IntrEnable);
1956
1957 /* Stop the chip's Tx and Rx processes. */
1958 writel(0, ioaddr + GenCtrl);
1959 readl(ioaddr + GenCtrl);
1960
1961 if (debug > 5) {
1962 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1963 (long long) np->tx_ring_dma);
1964 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1965 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1966 i, le32_to_cpu(np->tx_ring[i].status),
1967 (long long) dma_to_cpu(np->tx_ring[i].addr),
1968 le32_to_cpu(np->tx_done_q[i].status));
1969 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1970 (long long) np->rx_ring_dma, np->rx_done_q);
1971 if (np->rx_done_q)
1972 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1973 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1974 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1975 }
1976 }
1977
1978 free_irq(dev->irq, dev);
1979
1980 /* Free all the skbuffs in the Rx queue. */
1981 for (i = 0; i < RX_RING_SIZE; i++) {
1982 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1983 if (np->rx_info[i].skb != NULL) {
1984 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1985 dev_kfree_skb(np->rx_info[i].skb);
1986 }
1987 np->rx_info[i].skb = NULL;
1988 np->rx_info[i].mapping = 0;
1989 }
1990 for (i = 0; i < TX_RING_SIZE; i++) {
1991 struct sk_buff *skb = np->tx_info[i].skb;
1992 if (skb == NULL)
1993 continue;
1994 pci_unmap_single(np->pci_dev,
1995 np->tx_info[i].mapping,
1996 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1997 np->tx_info[i].mapping = 0;
1998 dev_kfree_skb(skb);
1999 np->tx_info[i].skb = NULL;
2000 }
2001
2002 return 0;
2003}
2004
d4fbeabb
SR
2005#ifdef CONFIG_PM
2006static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2007{
2008 struct net_device *dev = pci_get_drvdata(pdev);
2009
2010 if (netif_running(dev)) {
2011 netif_device_detach(dev);
2012 netdev_close(dev);
2013 }
2014
2015 pci_save_state(pdev);
2016 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2017
2018 return 0;
2019}
2020
2021static int starfire_resume(struct pci_dev *pdev)
2022{
2023 struct net_device *dev = pci_get_drvdata(pdev);
6aa20a22 2024
d4fbeabb
SR
2025 pci_set_power_state(pdev, PCI_D0);
2026 pci_restore_state(pdev);
2027
2028 if (netif_running(dev)) {
2029 netdev_open(dev);
2030 netif_device_attach(dev);
2031 }
2032
2033 return 0;
2034}
2035#endif /* CONFIG_PM */
2036
1da177e4
LT
2037
2038static void __devexit starfire_remove_one (struct pci_dev *pdev)
2039{
2040 struct net_device *dev = pci_get_drvdata(pdev);
2041 struct netdev_private *np = netdev_priv(dev);
2042
5d9428de 2043 BUG_ON(!dev);
1da177e4
LT
2044
2045 unregister_netdev(dev);
2046
2047 if (np->queue_mem)
2048 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2049
2050
2051 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2052 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2053 pci_disable_device(pdev);
2054
2055 iounmap(np->base);
2056 pci_release_regions(pdev);
2057
2058 pci_set_drvdata(pdev, NULL);
2059 free_netdev(dev); /* Will also free np!! */
2060}
2061
2062
2063static struct pci_driver starfire_driver = {
2064 .name = DRV_NAME,
2065 .probe = starfire_init_one,
2066 .remove = __devexit_p(starfire_remove_one),
d4fbeabb
SR
2067#ifdef CONFIG_PM
2068 .suspend = starfire_suspend,
2069 .resume = starfire_resume,
2070#endif /* CONFIG_PM */
1da177e4
LT
2071 .id_table = starfire_pci_tbl,
2072};
2073
2074
2075static int __init starfire_init (void)
2076{
2077/* when a module, this is printed whether or not devices are found in probe */
2078#ifdef MODULE
2079 printk(version);
a6676019 2080
fdecea66 2081 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
fdecea66
JG
2082#endif
2083
1da177e4 2084 /* we can do this test only at run-time... sigh */
67974231
IB
2085 if (sizeof(dma_addr_t) != sizeof(netdrv_addr_t)) {
2086 printk("This driver has dma_addr_t issues, please send email to maintainer\n");
1da177e4
LT
2087 return -ENODEV;
2088 }
67974231 2089
29917620 2090 return pci_register_driver(&starfire_driver);
1da177e4
LT
2091}
2092
2093
2094static void __exit starfire_cleanup (void)
2095{
2096 pci_unregister_driver (&starfire_driver);
2097}
2098
2099
2100module_init(starfire_init);
2101module_exit(starfire_cleanup);
2102
2103
2104/*
2105 * Local variables:
2106 * c-basic-offset: 8
2107 * tab-width: 8
2108 * End:
2109 */
This page took 0.841533 seconds and 5 git commands to generate.