[RT2x00]: add driver for Ralink wireless hardware
[deliverable/linux.git] / drivers / net / sundance.c
CommitLineData
1da177e4
LT
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
03a8c661 19 [link no longer provides useful info -jgarzik]
e714d99c
PDM
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
1da177e4 22
1da177e4
LT
23*/
24
25#define DRV_NAME "sundance"
d5b20697
AG
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
1da177e4
LT
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
f71e1309 35static const int multicast_filter_limit = 32;
1da177e4
LT
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
87#include <linux/slab.h>
88#include <linux/interrupt.h>
89#include <linux/pci.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/skbuff.h>
93#include <linux/init.h>
94#include <linux/bitops.h>
95#include <asm/uaccess.h>
96#include <asm/processor.h> /* Processor type for cache alignment. */
97#include <asm/io.h>
98#include <linux/delay.h>
99#include <linux/spinlock.h>
100#ifndef _COMPAT_WITH_OLD_KERNEL
101#include <linux/crc32.h>
102#include <linux/ethtool.h>
103#include <linux/mii.h>
104#else
105#include "crc32.h"
106#include "ethtool.h"
107#include "mii.h"
108#include "compat.h"
109#endif
110
111/* These identify the driver base version and may not be removed. */
3418e469 112static char version[] =
2c2a8c53 113KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
1da177e4
LT
114
115MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
116MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
117MODULE_LICENSE("GPL");
118
119module_param(debug, int, 0);
120module_param(rx_copybreak, int, 0);
121module_param_array(media, charp, NULL, 0);
122module_param(flowctrl, int, 0);
123MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
124MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
125MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
126
127/*
128 Theory of Operation
129
130I. Board Compatibility
131
132This driver is designed for the Sundance Technologies "Alta" ST201 chip.
133
134II. Board-specific settings
135
136III. Driver operation
137
138IIIa. Ring buffers
139
140This driver uses two statically allocated fixed-size descriptor lists
141formed into rings by a branch from the final descriptor to the beginning of
142the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
143Some chips explicitly use only 2^N sized rings, while others use a
144'next descriptor' pointer that the driver forms into rings.
145
146IIIb/c. Transmit/Receive Structure
147
148This driver uses a zero-copy receive and transmit scheme.
149The driver allocates full frame size skbuffs for the Rx ring buffers at
150open() time and passes the skb->data field to the chip as receive data
151buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
152a fresh skbuff is allocated and the frame is copied to the new skbuff.
153When the incoming frame is larger, the skbuff is passed directly up the
154protocol stack. Buffers consumed this way are replaced by newly allocated
155skbuffs in a later phase of receives.
156
157The RX_COPYBREAK value is chosen to trade-off the memory wasted by
158using a full-sized skbuff for small frames vs. the copying costs of larger
159frames. New boards are typically used in generously configured machines
160and the underfilled buffers have negligible impact compared to the benefit of
161a single allocation size, so the default value of zero results in never
162copying packets. When copying is done, the cost is usually mitigated by using
163a combined copy/checksum routine. Copying also preloads the cache, which is
164most useful with small frames.
165
166A subtle aspect of the operation is that the IP header at offset 14 in an
167ethernet frame isn't longword aligned for further processing.
168Unaligned buffers are permitted by the Sundance hardware, so
169frames are received into the skbuff at an offset of "+2", 16-byte aligning
170the IP header.
171
172IIId. Synchronization
173
174The driver runs as two independent, single-threaded flows of control. One
175is the send-packet routine, which enforces single-threaded use by the
176dev->tbusy flag. The other thread is the interrupt handler, which is single
177threaded by the hardware and interrupt handling software.
178
179The send packet thread has partial control over the Tx ring and 'dev->tbusy'
180flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
181queue slot is empty, it clears the tbusy flag when finished otherwise it sets
182the 'lp->tx_full' flag.
183
184The interrupt handler has exclusive control over the Rx ring and records stats
185from the Tx ring. After reaping the stats, it marks the Tx queue entry as
186empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
187clears both the tx_full and tbusy flags.
188
189IV. Notes
190
191IVb. References
192
193The Sundance ST201 datasheet, preliminary version.
b71b95ef
PDM
194The Kendin KS8723 datasheet, preliminary version.
195The ICplus IP100 datasheet, preliminary version.
196http://www.scyld.com/expert/100mbps.html
197http://www.scyld.com/expert/NWay.html
1da177e4
LT
198
199IVc. Errata
200
201*/
202
203/* Work-around for Kendin chip bugs. */
204#ifndef CONFIG_SUNDANCE_MMIO
205#define USE_IO_OPS 1
206#endif
207
46009c8b
JG
208static const struct pci_device_id sundance_pci_tbl[] = {
209 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
210 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
211 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
212 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
213 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
214 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
215 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
216 { }
1da177e4
LT
217};
218MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
219
220enum {
221 netdev_io_size = 128
222};
223
224struct pci_id_info {
225 const char *name;
226};
46009c8b 227static const struct pci_id_info pci_id_tbl[] __devinitdata = {
1da177e4
LT
228 {"D-Link DFE-550TX FAST Ethernet Adapter"},
229 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
230 {"D-Link DFE-580TX 4 port Server Adapter"},
231 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
232 {"D-Link DL10050-based FAST Ethernet Adapter"},
233 {"Sundance Technology Alta"},
1668b19f 234 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
46009c8b 235 { } /* terminate list. */
1da177e4
LT
236};
237
238/* This driver was written to use PCI memory space, however x86-oriented
239 hardware often uses I/O space accesses. */
240
241/* Offsets to the device registers.
242 Unlike software-only systems, device drivers interact with complex hardware.
243 It's not useful to define symbolic names for every register bit in the
244 device. The name can only partially document the semantics and make
245 the driver longer and more difficult to read.
246 In general, only the important configuration values or bits changed
247 multiple times should be defined symbolically.
248*/
249enum alta_offsets {
250 DMACtrl = 0x00,
251 TxListPtr = 0x04,
252 TxDMABurstThresh = 0x08,
253 TxDMAUrgentThresh = 0x09,
254 TxDMAPollPeriod = 0x0a,
255 RxDMAStatus = 0x0c,
256 RxListPtr = 0x10,
257 DebugCtrl0 = 0x1a,
258 DebugCtrl1 = 0x1c,
259 RxDMABurstThresh = 0x14,
260 RxDMAUrgentThresh = 0x15,
261 RxDMAPollPeriod = 0x16,
262 LEDCtrl = 0x1a,
263 ASICCtrl = 0x30,
264 EEData = 0x34,
265 EECtrl = 0x36,
1da177e4
LT
266 FlashAddr = 0x40,
267 FlashData = 0x44,
268 TxStatus = 0x46,
269 TxFrameId = 0x47,
270 DownCounter = 0x18,
271 IntrClear = 0x4a,
272 IntrEnable = 0x4c,
273 IntrStatus = 0x4e,
274 MACCtrl0 = 0x50,
275 MACCtrl1 = 0x52,
276 StationAddr = 0x54,
277 MaxFrameSize = 0x5A,
278 RxMode = 0x5c,
279 MIICtrl = 0x5e,
280 MulticastFilter0 = 0x60,
281 MulticastFilter1 = 0x64,
282 RxOctetsLow = 0x68,
283 RxOctetsHigh = 0x6a,
284 TxOctetsLow = 0x6c,
285 TxOctetsHigh = 0x6e,
286 TxFramesOK = 0x70,
287 RxFramesOK = 0x72,
288 StatsCarrierError = 0x74,
289 StatsLateColl = 0x75,
290 StatsMultiColl = 0x76,
291 StatsOneColl = 0x77,
292 StatsTxDefer = 0x78,
293 RxMissed = 0x79,
294 StatsTxXSDefer = 0x7a,
295 StatsTxAbort = 0x7b,
296 StatsBcastTx = 0x7c,
297 StatsBcastRx = 0x7d,
298 StatsMcastTx = 0x7e,
299 StatsMcastRx = 0x7f,
300 /* Aliased and bogus values! */
301 RxStatus = 0x0c,
302};
303enum ASICCtrl_HiWord_bit {
304 GlobalReset = 0x0001,
305 RxReset = 0x0002,
306 TxReset = 0x0004,
307 DMAReset = 0x0008,
308 FIFOReset = 0x0010,
309 NetworkReset = 0x0020,
310 HostReset = 0x0040,
311 ResetBusy = 0x0400,
312};
313
314/* Bits in the interrupt status/mask registers. */
315enum intr_status_bits {
316 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
317 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
318 IntrDrvRqst=0x0040,
319 StatsMax=0x0080, LinkChange=0x0100,
320 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
321};
322
323/* Bits in the RxMode register. */
324enum rx_mode_bits {
325 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
326 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
327};
328/* Bits in MACCtrl. */
329enum mac_ctrl0_bits {
330 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
331 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
332};
333enum mac_ctrl1_bits {
334 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
335 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
336 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
337};
338
339/* The Rx and Tx buffer descriptors. */
340/* Note that using only 32 bit fields simplifies conversion to big-endian
341 architectures. */
342struct netdev_desc {
343 u32 next_desc;
344 u32 status;
345 struct desc_frag { u32 addr, length; } frag[1];
346};
347
348/* Bits in netdev_desc.status */
349enum desc_status_bits {
350 DescOwn=0x8000,
351 DescEndPacket=0x4000,
352 DescEndRing=0x2000,
353 LastFrag=0x80000000,
354 DescIntrOnTx=0x8000,
355 DescIntrOnDMADone=0x80000000,
356 DisableAlign = 0x00000001,
357};
358
359#define PRIV_ALIGN 15 /* Required alignment mask */
360/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
361 within the structure. */
362#define MII_CNT 4
363struct netdev_private {
364 /* Descriptor rings first for alignment. */
365 struct netdev_desc *rx_ring;
366 struct netdev_desc *tx_ring;
367 struct sk_buff* rx_skbuff[RX_RING_SIZE];
368 struct sk_buff* tx_skbuff[TX_RING_SIZE];
369 dma_addr_t tx_ring_dma;
370 dma_addr_t rx_ring_dma;
371 struct net_device_stats stats;
372 struct timer_list timer; /* Media monitoring timer. */
373 /* Frequently used values: keep some adjacent for cache effect. */
374 spinlock_t lock;
375 spinlock_t rx_lock; /* Group with Tx control cache line. */
376 int msg_enable;
377 int chip_id;
378 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
379 unsigned int rx_buf_sz; /* Based on MTU+slack. */
380 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
381 unsigned int cur_tx, dirty_tx;
382 /* These values are keep track of the transceiver/media in use. */
383 unsigned int flowctrl:1;
384 unsigned int default_port:4; /* Last dev->if_port value. */
385 unsigned int an_enable:1;
386 unsigned int speed;
387 struct tasklet_struct rx_tasklet;
388 struct tasklet_struct tx_tasklet;
389 int budget;
390 int cur_task;
391 /* Multicast and receive mode. */
392 spinlock_t mcastlock; /* SMP lock multicast updates. */
393 u16 mcast_filter[4];
394 /* MII transceiver section. */
395 struct mii_if_info mii_if;
396 int mii_preamble_required;
397 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
398 struct pci_dev *pci_dev;
399 void __iomem *base;
1da177e4
LT
400};
401
402/* The station address location in the EEPROM. */
403#define EEPROM_SA_OFFSET 0x10
404#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
405 IntrDrvRqst | IntrTxDone | StatsMax | \
406 LinkChange)
407
408static int change_mtu(struct net_device *dev, int new_mtu);
409static int eeprom_read(void __iomem *ioaddr, int location);
410static int mdio_read(struct net_device *dev, int phy_id, int location);
411static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
412static int netdev_open(struct net_device *dev);
413static void check_duplex(struct net_device *dev);
414static void netdev_timer(unsigned long data);
415static void tx_timeout(struct net_device *dev);
416static void init_ring(struct net_device *dev);
417static int start_tx(struct sk_buff *skb, struct net_device *dev);
418static int reset_tx (struct net_device *dev);
7d12e780 419static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
420static void rx_poll(unsigned long data);
421static void tx_poll(unsigned long data);
422static void refill_rx (struct net_device *dev);
423static void netdev_error(struct net_device *dev, int intr_status);
424static void netdev_error(struct net_device *dev, int intr_status);
425static void set_rx_mode(struct net_device *dev);
426static int __set_mac_addr(struct net_device *dev);
427static struct net_device_stats *get_stats(struct net_device *dev);
428static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
429static int netdev_close(struct net_device *dev);
7282d491 430static const struct ethtool_ops ethtool_ops;
1da177e4 431
b71b95ef
PDM
432static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
433{
434 struct netdev_private *np = netdev_priv(dev);
435 void __iomem *ioaddr = np->base + ASICCtrl;
436 int countdown;
437
438 /* ST201 documentation states ASICCtrl is a 32bit register */
439 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
440 /* ST201 documentation states reset can take up to 1 ms */
441 countdown = 10 + 1;
442 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
443 if (--countdown == 0) {
444 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
445 break;
446 }
447 udelay(100);
448 }
449}
450
1da177e4
LT
451static int __devinit sundance_probe1 (struct pci_dev *pdev,
452 const struct pci_device_id *ent)
453{
454 struct net_device *dev;
455 struct netdev_private *np;
456 static int card_idx;
457 int chip_idx = ent->driver_data;
458 int irq;
459 int i;
460 void __iomem *ioaddr;
461 u16 mii_ctl;
462 void *ring_space;
463 dma_addr_t ring_dma;
464#ifdef USE_IO_OPS
465 int bar = 0;
466#else
467 int bar = 1;
468#endif
67ec2f80 469 int phy, phy_idx = 0;
1da177e4
LT
470
471
472/* when built into the kernel, we only print version if device is found */
473#ifndef MODULE
474 static int printed_version;
475 if (!printed_version++)
476 printk(version);
477#endif
478
479 if (pci_enable_device(pdev))
480 return -EIO;
481 pci_set_master(pdev);
482
483 irq = pdev->irq;
484
485 dev = alloc_etherdev(sizeof(*np));
486 if (!dev)
487 return -ENOMEM;
1da177e4
LT
488 SET_NETDEV_DEV(dev, &pdev->dev);
489
490 if (pci_request_regions(pdev, DRV_NAME))
491 goto err_out_netdev;
492
493 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
494 if (!ioaddr)
495 goto err_out_res;
496
497 for (i = 0; i < 3; i++)
498 ((u16 *)dev->dev_addr)[i] =
499 le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
30d60a82 500 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4
LT
501
502 dev->base_addr = (unsigned long)ioaddr;
503 dev->irq = irq;
504
505 np = netdev_priv(dev);
506 np->base = ioaddr;
507 np->pci_dev = pdev;
508 np->chip_id = chip_idx;
509 np->msg_enable = (1 << debug) - 1;
510 spin_lock_init(&np->lock);
511 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
512 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
513
514 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
515 if (!ring_space)
516 goto err_out_cleardev;
517 np->tx_ring = (struct netdev_desc *)ring_space;
518 np->tx_ring_dma = ring_dma;
519
520 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
521 if (!ring_space)
522 goto err_out_unmap_tx;
523 np->rx_ring = (struct netdev_desc *)ring_space;
524 np->rx_ring_dma = ring_dma;
525
526 np->mii_if.dev = dev;
527 np->mii_if.mdio_read = mdio_read;
528 np->mii_if.mdio_write = mdio_write;
529 np->mii_if.phy_id_mask = 0x1f;
530 np->mii_if.reg_num_mask = 0x1f;
531
532 /* The chip-specific entries in the device structure. */
533 dev->open = &netdev_open;
534 dev->hard_start_xmit = &start_tx;
535 dev->stop = &netdev_close;
536 dev->get_stats = &get_stats;
537 dev->set_multicast_list = &set_rx_mode;
538 dev->do_ioctl = &netdev_ioctl;
539 SET_ETHTOOL_OPS(dev, &ethtool_ops);
540 dev->tx_timeout = &tx_timeout;
541 dev->watchdog_timeo = TX_TIMEOUT;
542 dev->change_mtu = &change_mtu;
543 pci_set_drvdata(pdev, dev);
544
1da177e4
LT
545 i = register_netdev(dev);
546 if (i)
547 goto err_out_unmap_rx;
548
549 printk(KERN_INFO "%s: %s at %p, ",
550 dev->name, pci_id_tbl[chip_idx].name, ioaddr);
551 for (i = 0; i < 5; i++)
552 printk("%2.2x:", dev->dev_addr[i]);
553 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
554
67ec2f80
JL
555 np->phys[0] = 1; /* Default setting */
556 np->mii_preamble_required++;
0d615ec2
ACM
557 /*
558 * It seems some phys doesn't deal well with address 0 being accessed
559 * first, so leave address zero to the end of the loop (32 & 31).
560 */
b06c093e 561 for (phy = 1; phy <= 32 && phy_idx < MII_CNT; phy++) {
b06c093e 562 int phyx = phy & 0x1f;
0d615ec2 563 int mii_status = mdio_read(dev, phyx, MII_BMSR);
67ec2f80 564 if (mii_status != 0xffff && mii_status != 0x0000) {
b06c093e
JL
565 np->phys[phy_idx++] = phyx;
566 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
67ec2f80
JL
567 if ((mii_status & 0x0040) == 0)
568 np->mii_preamble_required++;
569 printk(KERN_INFO "%s: MII PHY found at address %d, status "
570 "0x%4.4x advertising %4.4x.\n",
b06c093e 571 dev->name, phyx, mii_status, np->mii_if.advertising);
1da177e4 572 }
67ec2f80
JL
573 }
574 np->mii_preamble_required--;
1da177e4 575
67ec2f80
JL
576 if (phy_idx == 0) {
577 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
578 dev->name, ioread32(ioaddr + ASICCtrl));
579 goto err_out_unregister;
1da177e4
LT
580 }
581
67ec2f80
JL
582 np->mii_if.phy_id = np->phys[0];
583
1da177e4
LT
584 /* Parse override configuration */
585 np->an_enable = 1;
586 if (card_idx < MAX_UNITS) {
587 if (media[card_idx] != NULL) {
588 np->an_enable = 0;
589 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
590 strcmp (media[card_idx], "4") == 0) {
591 np->speed = 100;
592 np->mii_if.full_duplex = 1;
593 } else if (strcmp (media[card_idx], "100mbps_hd") == 0
594 || strcmp (media[card_idx], "3") == 0) {
595 np->speed = 100;
596 np->mii_if.full_duplex = 0;
597 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
598 strcmp (media[card_idx], "2") == 0) {
599 np->speed = 10;
600 np->mii_if.full_duplex = 1;
601 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
602 strcmp (media[card_idx], "1") == 0) {
603 np->speed = 10;
604 np->mii_if.full_duplex = 0;
605 } else {
606 np->an_enable = 1;
607 }
608 }
609 if (flowctrl == 1)
610 np->flowctrl = 1;
611 }
612
613 /* Fibre PHY? */
614 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
615 /* Default 100Mbps Full */
616 if (np->an_enable) {
617 np->speed = 100;
618 np->mii_if.full_duplex = 1;
619 np->an_enable = 0;
620 }
621 }
622 /* Reset PHY */
623 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
624 mdelay (300);
625 /* If flow control enabled, we need to advertise it.*/
626 if (np->flowctrl)
627 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
628 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
629 /* Force media type */
630 if (!np->an_enable) {
631 mii_ctl = 0;
632 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
633 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
634 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
635 printk (KERN_INFO "Override speed=%d, %s duplex\n",
636 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
637
638 }
639
640 /* Perhaps move the reset here? */
641 /* Reset the chip to erase previous misconfiguration. */
642 if (netif_msg_hw(np))
643 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
e714d99c 644 sundance_reset(dev, 0x00ff << 16);
1da177e4
LT
645 if (netif_msg_hw(np))
646 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
647
648 card_idx++;
649 return 0;
650
651err_out_unregister:
652 unregister_netdev(dev);
653err_out_unmap_rx:
654 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
655err_out_unmap_tx:
656 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
657err_out_cleardev:
658 pci_set_drvdata(pdev, NULL);
659 pci_iounmap(pdev, ioaddr);
660err_out_res:
661 pci_release_regions(pdev);
662err_out_netdev:
663 free_netdev (dev);
664 return -ENODEV;
665}
666
667static int change_mtu(struct net_device *dev, int new_mtu)
668{
669 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
670 return -EINVAL;
671 if (netif_running(dev))
672 return -EBUSY;
673 dev->mtu = new_mtu;
674 return 0;
675}
676
677#define eeprom_delay(ee_addr) ioread32(ee_addr)
678/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
679static int __devinit eeprom_read(void __iomem *ioaddr, int location)
680{
681 int boguscnt = 10000; /* Typical 1900 ticks. */
682 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
683 do {
684 eeprom_delay(ioaddr + EECtrl);
685 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
686 return ioread16(ioaddr + EEData);
687 }
688 } while (--boguscnt > 0);
689 return 0;
690}
691
692/* MII transceiver control section.
693 Read and write the MII registers using software-generated serial
694 MDIO protocol. See the MII specifications or DP83840A data sheet
695 for details.
696
697 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
698 met by back-to-back 33Mhz PCI cycles. */
699#define mdio_delay() ioread8(mdio_addr)
700
701enum mii_reg_bits {
702 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
703};
704#define MDIO_EnbIn (0)
705#define MDIO_WRITE0 (MDIO_EnbOutput)
706#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
707
708/* Generate the preamble required for initial synchronization and
709 a few older transceivers. */
710static void mdio_sync(void __iomem *mdio_addr)
711{
712 int bits = 32;
713
714 /* Establish sync by sending at least 32 logic ones. */
715 while (--bits >= 0) {
716 iowrite8(MDIO_WRITE1, mdio_addr);
717 mdio_delay();
718 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
719 mdio_delay();
720 }
721}
722
723static int mdio_read(struct net_device *dev, int phy_id, int location)
724{
725 struct netdev_private *np = netdev_priv(dev);
726 void __iomem *mdio_addr = np->base + MIICtrl;
727 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
728 int i, retval = 0;
729
730 if (np->mii_preamble_required)
731 mdio_sync(mdio_addr);
732
733 /* Shift the read command bits out. */
734 for (i = 15; i >= 0; i--) {
735 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
736
737 iowrite8(dataval, mdio_addr);
738 mdio_delay();
739 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
740 mdio_delay();
741 }
742 /* Read the two transition, 16 data, and wire-idle bits. */
743 for (i = 19; i > 0; i--) {
744 iowrite8(MDIO_EnbIn, mdio_addr);
745 mdio_delay();
746 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
747 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
748 mdio_delay();
749 }
750 return (retval>>1) & 0xffff;
751}
752
753static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
754{
755 struct netdev_private *np = netdev_priv(dev);
756 void __iomem *mdio_addr = np->base + MIICtrl;
757 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
758 int i;
759
760 if (np->mii_preamble_required)
761 mdio_sync(mdio_addr);
762
763 /* Shift the command bits out. */
764 for (i = 31; i >= 0; i--) {
765 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
766
767 iowrite8(dataval, mdio_addr);
768 mdio_delay();
769 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
770 mdio_delay();
771 }
772 /* Clear out extra bits. */
773 for (i = 2; i > 0; i--) {
774 iowrite8(MDIO_EnbIn, mdio_addr);
775 mdio_delay();
776 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
777 mdio_delay();
778 }
779 return;
780}
781
782static int netdev_open(struct net_device *dev)
783{
784 struct netdev_private *np = netdev_priv(dev);
785 void __iomem *ioaddr = np->base;
acd70c2b 786 unsigned long flags;
1da177e4
LT
787 int i;
788
789 /* Do we need to reset the chip??? */
790
1fb9df5d 791 i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
792 if (i)
793 return i;
794
795 if (netif_msg_ifup(np))
796 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
797 dev->name, dev->irq);
798 init_ring(dev);
799
800 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
801 /* The Tx list pointer is written as packets are queued. */
802
803 /* Initialize other registers. */
804 __set_mac_addr(dev);
805#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
806 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
807#else
808 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
809#endif
810 if (dev->mtu > 2047)
811 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
812
813 /* Configure the PCI bus bursts and FIFO thresholds. */
814
815 if (dev->if_port == 0)
816 dev->if_port = np->default_port;
817
818 spin_lock_init(&np->mcastlock);
819
820 set_rx_mode(dev);
821 iowrite16(0, ioaddr + IntrEnable);
822 iowrite16(0, ioaddr + DownCounter);
823 /* Set the chip to poll every N*320nsec. */
824 iowrite8(100, ioaddr + RxDMAPollPeriod);
825 iowrite8(127, ioaddr + TxDMAPollPeriod);
826 /* Fix DFE-580TX packet drop issue */
44c10138 827 if (np->pci_dev->revision >= 0x14)
1da177e4
LT
828 iowrite8(0x01, ioaddr + DebugCtrl1);
829 netif_start_queue(dev);
830
acd70c2b
JH
831 spin_lock_irqsave(&np->lock, flags);
832 reset_tx(dev);
833 spin_unlock_irqrestore(&np->lock, flags);
834
1da177e4
LT
835 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
836
837 if (netif_msg_ifup(np))
838 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
839 "MAC Control %x, %4.4x %4.4x.\n",
840 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
841 ioread32(ioaddr + MACCtrl0),
842 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
843
844 /* Set the timer to check for link beat. */
845 init_timer(&np->timer);
846 np->timer.expires = jiffies + 3*HZ;
847 np->timer.data = (unsigned long)dev;
848 np->timer.function = &netdev_timer; /* timer handler */
849 add_timer(&np->timer);
850
851 /* Enable interrupts by setting the interrupt mask. */
852 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
853
854 return 0;
855}
856
857static void check_duplex(struct net_device *dev)
858{
859 struct netdev_private *np = netdev_priv(dev);
860 void __iomem *ioaddr = np->base;
861 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
862 int negotiated = mii_lpa & np->mii_if.advertising;
863 int duplex;
864
865 /* Force media */
866 if (!np->an_enable || mii_lpa == 0xffff) {
867 if (np->mii_if.full_duplex)
868 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
869 ioaddr + MACCtrl0);
870 return;
871 }
872
873 /* Autonegotiation */
874 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
875 if (np->mii_if.full_duplex != duplex) {
876 np->mii_if.full_duplex = duplex;
877 if (netif_msg_link(np))
878 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
879 "negotiated capability %4.4x.\n", dev->name,
880 duplex ? "full" : "half", np->phys[0], negotiated);
881 iowrite16(ioread16(ioaddr + MACCtrl0) | duplex ? 0x20 : 0, ioaddr + MACCtrl0);
882 }
883}
884
885static void netdev_timer(unsigned long data)
886{
887 struct net_device *dev = (struct net_device *)data;
888 struct netdev_private *np = netdev_priv(dev);
889 void __iomem *ioaddr = np->base;
890 int next_tick = 10*HZ;
891
892 if (netif_msg_timer(np)) {
893 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
894 "Tx %x Rx %x.\n",
895 dev->name, ioread16(ioaddr + IntrEnable),
896 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
897 }
898 check_duplex(dev);
899 np->timer.expires = jiffies + next_tick;
900 add_timer(&np->timer);
901}
902
903static void tx_timeout(struct net_device *dev)
904{
905 struct netdev_private *np = netdev_priv(dev);
906 void __iomem *ioaddr = np->base;
907 unsigned long flag;
6aa20a22 908
1da177e4
LT
909 netif_stop_queue(dev);
910 tasklet_disable(&np->tx_tasklet);
911 iowrite16(0, ioaddr + IntrEnable);
912 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
913 "TxFrameId %2.2x,"
914 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
915 ioread8(ioaddr + TxFrameId));
916
917 {
918 int i;
919 for (i=0; i<TX_RING_SIZE; i++) {
920 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
921 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
922 le32_to_cpu(np->tx_ring[i].next_desc),
923 le32_to_cpu(np->tx_ring[i].status),
924 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
6aa20a22 925 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
926 le32_to_cpu(np->tx_ring[i].frag[0].length));
927 }
6aa20a22
JG
928 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
929 ioread32(np->base + TxListPtr),
1da177e4 930 netif_queue_stopped(dev));
6aa20a22 931 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
932 np->cur_tx, np->cur_tx % TX_RING_SIZE,
933 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
934 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
935 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
936 }
937 spin_lock_irqsave(&np->lock, flag);
938
939 /* Stop and restart the chip's Tx processes . */
940 reset_tx(dev);
941 spin_unlock_irqrestore(&np->lock, flag);
942
943 dev->if_port = 0;
944
945 dev->trans_start = jiffies;
946 np->stats.tx_errors++;
947 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
948 netif_wake_queue(dev);
949 }
950 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
951 tasklet_enable(&np->tx_tasklet);
952}
953
954
955/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
956static void init_ring(struct net_device *dev)
957{
958 struct netdev_private *np = netdev_priv(dev);
959 int i;
960
961 np->cur_rx = np->cur_tx = 0;
962 np->dirty_rx = np->dirty_tx = 0;
963 np->cur_task = 0;
964
965 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
966
967 /* Initialize all Rx descriptors. */
968 for (i = 0; i < RX_RING_SIZE; i++) {
969 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
970 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
971 np->rx_ring[i].status = 0;
972 np->rx_ring[i].frag[0].length = 0;
973 np->rx_skbuff[i] = NULL;
974 }
975
976 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
977 for (i = 0; i < RX_RING_SIZE; i++) {
978 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
979 np->rx_skbuff[i] = skb;
980 if (skb == NULL)
981 break;
982 skb->dev = dev; /* Mark as being used by this device. */
983 skb_reserve(skb, 2); /* 16 byte align the IP header. */
984 np->rx_ring[i].frag[0].addr = cpu_to_le32(
689be439 985 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz,
1da177e4
LT
986 PCI_DMA_FROMDEVICE));
987 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
988 }
989 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
990
991 for (i = 0; i < TX_RING_SIZE; i++) {
992 np->tx_skbuff[i] = NULL;
993 np->tx_ring[i].status = 0;
994 }
995 return;
996}
997
998static void tx_poll (unsigned long data)
999{
1000 struct net_device *dev = (struct net_device *)data;
1001 struct netdev_private *np = netdev_priv(dev);
1002 unsigned head = np->cur_task % TX_RING_SIZE;
6aa20a22 1003 struct netdev_desc *txdesc =
1da177e4 1004 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
6aa20a22 1005
1da177e4
LT
1006 /* Chain the next pointer */
1007 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1008 int entry = np->cur_task % TX_RING_SIZE;
1009 txdesc = &np->tx_ring[entry];
1010 if (np->last_tx) {
1011 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1012 entry*sizeof(struct netdev_desc));
1013 }
1014 np->last_tx = txdesc;
1015 }
1016 /* Indicate the latest descriptor of tx ring */
1017 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1018
1019 if (ioread32 (np->base + TxListPtr) == 0)
1020 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1021 np->base + TxListPtr);
1022 return;
1023}
1024
1025static int
1026start_tx (struct sk_buff *skb, struct net_device *dev)
1027{
1028 struct netdev_private *np = netdev_priv(dev);
1029 struct netdev_desc *txdesc;
1030 unsigned entry;
1031
1032 /* Calculate the next Tx descriptor entry. */
1033 entry = np->cur_tx % TX_RING_SIZE;
1034 np->tx_skbuff[entry] = skb;
1035 txdesc = &np->tx_ring[entry];
1036
1037 txdesc->next_desc = 0;
1038 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1039 txdesc->frag[0].addr = cpu_to_le32 (pci_map_single (np->pci_dev, skb->data,
1040 skb->len,
1041 PCI_DMA_TODEVICE));
1042 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1043
1044 /* Increment cur_tx before tasklet_schedule() */
1045 np->cur_tx++;
1046 mb();
1047 /* Schedule a tx_poll() task */
1048 tasklet_schedule(&np->tx_tasklet);
1049
1050 /* On some architectures: explicitly flush cache lines here. */
1051 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1
1052 && !netif_queue_stopped(dev)) {
1053 /* do nothing */
1054 } else {
1055 netif_stop_queue (dev);
1056 }
1057 dev->trans_start = jiffies;
1058 if (netif_msg_tx_queued(np)) {
1059 printk (KERN_DEBUG
1060 "%s: Transmit frame #%d queued in slot %d.\n",
1061 dev->name, np->cur_tx, entry);
1062 }
1063 return 0;
1064}
1065
1066/* Reset hardware tx and free all of tx buffers */
1067static int
1068reset_tx (struct net_device *dev)
1069{
1070 struct netdev_private *np = netdev_priv(dev);
1071 void __iomem *ioaddr = np->base;
1072 struct sk_buff *skb;
1073 int i;
1074 int irq = in_interrupt();
6aa20a22 1075
1da177e4
LT
1076 /* Reset tx logic, TxListPtr will be cleaned */
1077 iowrite16 (TxDisable, ioaddr + MACCtrl1);
e714d99c
PDM
1078 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1079
1da177e4
LT
1080 /* free all tx skbuff */
1081 for (i = 0; i < TX_RING_SIZE; i++) {
2109f89f
JH
1082 np->tx_ring[i].next_desc = 0;
1083
1da177e4
LT
1084 skb = np->tx_skbuff[i];
1085 if (skb) {
6aa20a22 1086 pci_unmap_single(np->pci_dev,
1da177e4
LT
1087 np->tx_ring[i].frag[0].addr, skb->len,
1088 PCI_DMA_TODEVICE);
1089 if (irq)
1090 dev_kfree_skb_irq (skb);
1091 else
1092 dev_kfree_skb (skb);
1093 np->tx_skbuff[i] = NULL;
1094 np->stats.tx_dropped++;
1095 }
1096 }
1097 np->cur_tx = np->dirty_tx = 0;
1098 np->cur_task = 0;
2109f89f 1099
bca79eb7 1100 np->last_tx = NULL;
2109f89f
JH
1101 iowrite8(127, ioaddr + TxDMAPollPeriod);
1102
1da177e4
LT
1103 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1104 return 0;
1105}
1106
6aa20a22 1107/* The interrupt handler cleans up after the Tx thread,
1da177e4 1108 and schedule a Rx thread work */
7d12e780 1109static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1110{
1111 struct net_device *dev = (struct net_device *)dev_instance;
1112 struct netdev_private *np = netdev_priv(dev);
1113 void __iomem *ioaddr = np->base;
1114 int hw_frame_id;
1115 int tx_cnt;
1116 int tx_status;
1117 int handled = 0;
e242040d 1118 int i;
1da177e4
LT
1119
1120
1121 do {
1122 int intr_status = ioread16(ioaddr + IntrStatus);
1123 iowrite16(intr_status, ioaddr + IntrStatus);
1124
1125 if (netif_msg_intr(np))
1126 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1127 dev->name, intr_status);
1128
1129 if (!(intr_status & DEFAULT_INTR))
1130 break;
1131
1132 handled = 1;
1133
1134 if (intr_status & (IntrRxDMADone)) {
1135 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1136 ioaddr + IntrEnable);
1137 if (np->budget < 0)
1138 np->budget = RX_BUDGET;
1139 tasklet_schedule(&np->rx_tasklet);
1140 }
1141 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1142 tx_status = ioread16 (ioaddr + TxStatus);
1143 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1144 if (netif_msg_tx_done(np))
1145 printk
1146 ("%s: Transmit status is %2.2x.\n",
1147 dev->name, tx_status);
1148 if (tx_status & 0x1e) {
b71b95ef
PDM
1149 if (netif_msg_tx_err(np))
1150 printk("%s: Transmit error status %4.4x.\n",
1151 dev->name, tx_status);
1da177e4
LT
1152 np->stats.tx_errors++;
1153 if (tx_status & 0x10)
1154 np->stats.tx_fifo_errors++;
1155 if (tx_status & 0x08)
1156 np->stats.collisions++;
b71b95ef
PDM
1157 if (tx_status & 0x04)
1158 np->stats.tx_fifo_errors++;
1da177e4
LT
1159 if (tx_status & 0x02)
1160 np->stats.tx_window_errors++;
e242040d 1161
b71b95ef
PDM
1162 /*
1163 ** This reset has been verified on
1164 ** DFE-580TX boards ! phdm@macqel.be.
1165 */
1166 if (tx_status & 0x10) { /* TxUnderrun */
b71b95ef
PDM
1167 /* Restart Tx FIFO and transmitter */
1168 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
b71b95ef 1169 /* No need to reset the Tx pointer here */
1da177e4 1170 }
2109f89f
JH
1171 /* Restart the Tx. Need to make sure tx enabled */
1172 i = 10;
1173 do {
1174 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1175 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1176 break;
1177 mdelay(1);
1178 } while (--i);
1da177e4
LT
1179 }
1180 /* Yup, this is a documentation bug. It cost me *hours*. */
1181 iowrite16 (0, ioaddr + TxStatus);
1182 if (tx_cnt < 0) {
1183 iowrite32(5000, ioaddr + DownCounter);
1184 break;
1185 }
1186 tx_status = ioread16 (ioaddr + TxStatus);
1187 }
1188 hw_frame_id = (tx_status >> 8) & 0xff;
1189 } else {
1190 hw_frame_id = ioread8(ioaddr + TxFrameId);
1191 }
6aa20a22 1192
44c10138 1193 if (np->pci_dev->revision >= 0x14) {
1da177e4
LT
1194 spin_lock(&np->lock);
1195 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1196 int entry = np->dirty_tx % TX_RING_SIZE;
1197 struct sk_buff *skb;
1198 int sw_frame_id;
1199 sw_frame_id = (le32_to_cpu(
1200 np->tx_ring[entry].status) >> 2) & 0xff;
1201 if (sw_frame_id == hw_frame_id &&
1202 !(le32_to_cpu(np->tx_ring[entry].status)
1203 & 0x00010000))
1204 break;
6aa20a22 1205 if (sw_frame_id == (hw_frame_id + 1) %
1da177e4
LT
1206 TX_RING_SIZE)
1207 break;
1208 skb = np->tx_skbuff[entry];
1209 /* Free the original skb. */
1210 pci_unmap_single(np->pci_dev,
1211 np->tx_ring[entry].frag[0].addr,
1212 skb->len, PCI_DMA_TODEVICE);
1213 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1214 np->tx_skbuff[entry] = NULL;
1215 np->tx_ring[entry].frag[0].addr = 0;
1216 np->tx_ring[entry].frag[0].length = 0;
1217 }
1218 spin_unlock(&np->lock);
1219 } else {
1220 spin_lock(&np->lock);
1221 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1222 int entry = np->dirty_tx % TX_RING_SIZE;
1223 struct sk_buff *skb;
6aa20a22 1224 if (!(le32_to_cpu(np->tx_ring[entry].status)
1da177e4
LT
1225 & 0x00010000))
1226 break;
1227 skb = np->tx_skbuff[entry];
1228 /* Free the original skb. */
1229 pci_unmap_single(np->pci_dev,
1230 np->tx_ring[entry].frag[0].addr,
1231 skb->len, PCI_DMA_TODEVICE);
1232 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1233 np->tx_skbuff[entry] = NULL;
1234 np->tx_ring[entry].frag[0].addr = 0;
1235 np->tx_ring[entry].frag[0].length = 0;
1236 }
1237 spin_unlock(&np->lock);
1238 }
6aa20a22 1239
1da177e4
LT
1240 if (netif_queue_stopped(dev) &&
1241 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1242 /* The ring is no longer full, clear busy flag. */
1243 netif_wake_queue (dev);
1244 }
1245 /* Abnormal error summary/uncommon events handlers. */
1246 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1247 netdev_error(dev, intr_status);
1248 } while (0);
1249 if (netif_msg_intr(np))
1250 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1251 dev->name, ioread16(ioaddr + IntrStatus));
1252 return IRQ_RETVAL(handled);
1253}
1254
1255static void rx_poll(unsigned long data)
1256{
1257 struct net_device *dev = (struct net_device *)data;
1258 struct netdev_private *np = netdev_priv(dev);
1259 int entry = np->cur_rx % RX_RING_SIZE;
1260 int boguscnt = np->budget;
1261 void __iomem *ioaddr = np->base;
1262 int received = 0;
1263
1264 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1265 while (1) {
1266 struct netdev_desc *desc = &(np->rx_ring[entry]);
1267 u32 frame_status = le32_to_cpu(desc->status);
1268 int pkt_len;
1269
1270 if (--boguscnt < 0) {
1271 goto not_done;
1272 }
1273 if (!(frame_status & DescOwn))
1274 break;
1275 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1276 if (netif_msg_rx_status(np))
1277 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1278 frame_status);
1279 if (frame_status & 0x001f4000) {
1280 /* There was a error. */
1281 if (netif_msg_rx_err(np))
1282 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1283 frame_status);
1284 np->stats.rx_errors++;
1285 if (frame_status & 0x00100000) np->stats.rx_length_errors++;
1286 if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
1287 if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
1288 if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
1289 if (frame_status & 0x00100000) {
1290 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1291 " status %8.8x.\n",
1292 dev->name, frame_status);
1293 }
1294 } else {
1295 struct sk_buff *skb;
1296#ifndef final_version
1297 if (netif_msg_rx_status(np))
1298 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1299 ", bogus_cnt %d.\n",
1300 pkt_len, boguscnt);
1301#endif
1302 /* Check if the packet is long enough to accept without copying
1303 to a minimally-sized skbuff. */
1304 if (pkt_len < rx_copybreak
1305 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1da177e4
LT
1306 skb_reserve(skb, 2); /* 16 byte align the IP header */
1307 pci_dma_sync_single_for_cpu(np->pci_dev,
1308 desc->frag[0].addr,
1309 np->rx_buf_sz,
1310 PCI_DMA_FROMDEVICE);
1311
8c7b7faa 1312 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1da177e4
LT
1313 pci_dma_sync_single_for_device(np->pci_dev,
1314 desc->frag[0].addr,
1315 np->rx_buf_sz,
1316 PCI_DMA_FROMDEVICE);
1317 skb_put(skb, pkt_len);
1318 } else {
1319 pci_unmap_single(np->pci_dev,
1320 desc->frag[0].addr,
1321 np->rx_buf_sz,
1322 PCI_DMA_FROMDEVICE);
1323 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1324 np->rx_skbuff[entry] = NULL;
1325 }
1326 skb->protocol = eth_type_trans(skb, dev);
1327 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1328 netif_rx(skb);
1329 dev->last_rx = jiffies;
1330 }
1331 entry = (entry + 1) % RX_RING_SIZE;
1332 received++;
1333 }
1334 np->cur_rx = entry;
1335 refill_rx (dev);
1336 np->budget -= received;
1337 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1338 return;
1339
1340not_done:
1341 np->cur_rx = entry;
1342 refill_rx (dev);
1343 if (!received)
1344 received = 1;
1345 np->budget -= received;
1346 if (np->budget <= 0)
1347 np->budget = RX_BUDGET;
1348 tasklet_schedule(&np->rx_tasklet);
1349 return;
1350}
1351
1352static void refill_rx (struct net_device *dev)
1353{
1354 struct netdev_private *np = netdev_priv(dev);
1355 int entry;
1356 int cnt = 0;
1357
1358 /* Refill the Rx ring buffers. */
1359 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1360 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1361 struct sk_buff *skb;
1362 entry = np->dirty_rx % RX_RING_SIZE;
1363 if (np->rx_skbuff[entry] == NULL) {
1364 skb = dev_alloc_skb(np->rx_buf_sz);
1365 np->rx_skbuff[entry] = skb;
1366 if (skb == NULL)
1367 break; /* Better luck next round. */
1368 skb->dev = dev; /* Mark as being used by this device. */
1369 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1370 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
689be439 1371 pci_map_single(np->pci_dev, skb->data,
1da177e4
LT
1372 np->rx_buf_sz, PCI_DMA_FROMDEVICE));
1373 }
1374 /* Perhaps we need not reset this field. */
1375 np->rx_ring[entry].frag[0].length =
1376 cpu_to_le32(np->rx_buf_sz | LastFrag);
1377 np->rx_ring[entry].status = 0;
1378 cnt++;
1379 }
1380 return;
1381}
1382static void netdev_error(struct net_device *dev, int intr_status)
1383{
1384 struct netdev_private *np = netdev_priv(dev);
1385 void __iomem *ioaddr = np->base;
1386 u16 mii_ctl, mii_advertise, mii_lpa;
1387 int speed;
1388
1389 if (intr_status & LinkChange) {
1390 if (np->an_enable) {
1391 mii_advertise = mdio_read (dev, np->phys[0], MII_ADVERTISE);
1392 mii_lpa= mdio_read (dev, np->phys[0], MII_LPA);
1393 mii_advertise &= mii_lpa;
1394 printk (KERN_INFO "%s: Link changed: ", dev->name);
1395 if (mii_advertise & ADVERTISE_100FULL) {
1396 np->speed = 100;
1397 printk ("100Mbps, full duplex\n");
1398 } else if (mii_advertise & ADVERTISE_100HALF) {
1399 np->speed = 100;
1400 printk ("100Mbps, half duplex\n");
1401 } else if (mii_advertise & ADVERTISE_10FULL) {
1402 np->speed = 10;
1403 printk ("10Mbps, full duplex\n");
1404 } else if (mii_advertise & ADVERTISE_10HALF) {
1405 np->speed = 10;
1406 printk ("10Mbps, half duplex\n");
1407 } else
1408 printk ("\n");
1409
1410 } else {
1411 mii_ctl = mdio_read (dev, np->phys[0], MII_BMCR);
1412 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1413 np->speed = speed;
1414 printk (KERN_INFO "%s: Link changed: %dMbps ,",
1415 dev->name, speed);
1416 printk ("%s duplex.\n", (mii_ctl & BMCR_FULLDPLX) ?
1417 "full" : "half");
1418 }
1419 check_duplex (dev);
1420 if (np->flowctrl && np->mii_if.full_duplex) {
1421 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1422 ioaddr + MulticastFilter1+2);
1423 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1424 ioaddr + MACCtrl0);
1425 }
1426 }
1427 if (intr_status & StatsMax) {
1428 get_stats(dev);
1429 }
1430 if (intr_status & IntrPCIErr) {
1431 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1432 dev->name, intr_status);
1433 /* We must do a global reset of DMA to continue. */
1434 }
1435}
1436
1437static struct net_device_stats *get_stats(struct net_device *dev)
1438{
1439 struct netdev_private *np = netdev_priv(dev);
1440 void __iomem *ioaddr = np->base;
1441 int i;
1442
1443 /* We should lock this segment of code for SMP eventually, although
1444 the vulnerability window is very small and statistics are
1445 non-critical. */
1446 /* The chip only need report frame silently dropped. */
1447 np->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1448 np->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1449 np->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1450 np->stats.collisions += ioread8(ioaddr + StatsLateColl);
1451 np->stats.collisions += ioread8(ioaddr + StatsMultiColl);
1452 np->stats.collisions += ioread8(ioaddr + StatsOneColl);
1453 np->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1454 ioread8(ioaddr + StatsTxDefer);
1455 for (i = StatsTxDefer; i <= StatsMcastRx; i++)
1456 ioread8(ioaddr + i);
1457 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1458 np->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1459 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1460 np->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1461
1462 return &np->stats;
1463}
1464
1465static void set_rx_mode(struct net_device *dev)
1466{
1467 struct netdev_private *np = netdev_priv(dev);
1468 void __iomem *ioaddr = np->base;
1469 u16 mc_filter[4]; /* Multicast hash filter */
1470 u32 rx_mode;
1471 int i;
1472
1473 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1474 memset(mc_filter, 0xff, sizeof(mc_filter));
1475 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1476 } else if ((dev->mc_count > multicast_filter_limit)
1477 || (dev->flags & IFF_ALLMULTI)) {
1478 /* Too many to match, or accept all multicasts. */
1479 memset(mc_filter, 0xff, sizeof(mc_filter));
1480 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1481 } else if (dev->mc_count) {
1482 struct dev_mc_list *mclist;
1483 int bit;
1484 int index;
1485 int crc;
1486 memset (mc_filter, 0, sizeof (mc_filter));
1487 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1488 i++, mclist = mclist->next) {
1489 crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
1490 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1491 if (crc & 0x80000000) index |= 1 << bit;
1492 mc_filter[index/16] |= (1 << (index % 16));
1493 }
1494 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1495 } else {
1496 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1497 return;
1498 }
1499 if (np->mii_if.full_duplex && np->flowctrl)
1500 mc_filter[3] |= 0x0200;
1501
1502 for (i = 0; i < 4; i++)
1503 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1504 iowrite8(rx_mode, ioaddr + RxMode);
1505}
1506
1507static int __set_mac_addr(struct net_device *dev)
1508{
1509 struct netdev_private *np = netdev_priv(dev);
1510 u16 addr16;
1511
1512 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1513 iowrite16(addr16, np->base + StationAddr);
1514 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1515 iowrite16(addr16, np->base + StationAddr+2);
1516 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1517 iowrite16(addr16, np->base + StationAddr+4);
1518 return 0;
1519}
1520
1521static int check_if_running(struct net_device *dev)
1522{
1523 if (!netif_running(dev))
1524 return -EINVAL;
1525 return 0;
1526}
1527
1528static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1529{
1530 struct netdev_private *np = netdev_priv(dev);
1531 strcpy(info->driver, DRV_NAME);
1532 strcpy(info->version, DRV_VERSION);
1533 strcpy(info->bus_info, pci_name(np->pci_dev));
1534}
1535
1536static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1537{
1538 struct netdev_private *np = netdev_priv(dev);
1539 spin_lock_irq(&np->lock);
1540 mii_ethtool_gset(&np->mii_if, ecmd);
1541 spin_unlock_irq(&np->lock);
1542 return 0;
1543}
1544
1545static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1546{
1547 struct netdev_private *np = netdev_priv(dev);
1548 int res;
1549 spin_lock_irq(&np->lock);
1550 res = mii_ethtool_sset(&np->mii_if, ecmd);
1551 spin_unlock_irq(&np->lock);
1552 return res;
1553}
1554
1555static int nway_reset(struct net_device *dev)
1556{
1557 struct netdev_private *np = netdev_priv(dev);
1558 return mii_nway_restart(&np->mii_if);
1559}
1560
1561static u32 get_link(struct net_device *dev)
1562{
1563 struct netdev_private *np = netdev_priv(dev);
1564 return mii_link_ok(&np->mii_if);
1565}
1566
1567static u32 get_msglevel(struct net_device *dev)
1568{
1569 struct netdev_private *np = netdev_priv(dev);
1570 return np->msg_enable;
1571}
1572
1573static void set_msglevel(struct net_device *dev, u32 val)
1574{
1575 struct netdev_private *np = netdev_priv(dev);
1576 np->msg_enable = val;
1577}
1578
7282d491 1579static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1580 .begin = check_if_running,
1581 .get_drvinfo = get_drvinfo,
1582 .get_settings = get_settings,
1583 .set_settings = set_settings,
1584 .nway_reset = nway_reset,
1585 .get_link = get_link,
1586 .get_msglevel = get_msglevel,
1587 .set_msglevel = set_msglevel,
1588};
1589
1590static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1591{
1592 struct netdev_private *np = netdev_priv(dev);
1593 void __iomem *ioaddr = np->base;
1594 int rc;
1595 int i;
1596
1597 if (!netif_running(dev))
1598 return -EINVAL;
1599
1600 spin_lock_irq(&np->lock);
1601 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1602 spin_unlock_irq(&np->lock);
1603 switch (cmd) {
1604 case SIOCDEVPRIVATE:
1605 for (i=0; i<TX_RING_SIZE; i++) {
1606 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
6aa20a22 1607 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
1da177e4
LT
1608 le32_to_cpu(np->tx_ring[i].next_desc),
1609 le32_to_cpu(np->tx_ring[i].status),
6aa20a22 1610 (le32_to_cpu(np->tx_ring[i].status) >> 2)
1da177e4 1611 & 0xff,
6aa20a22 1612 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
1613 le32_to_cpu(np->tx_ring[i].frag[0].length));
1614 }
6aa20a22
JG
1615 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
1616 ioread32(np->base + TxListPtr),
1da177e4 1617 netif_queue_stopped(dev));
6aa20a22 1618 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
1619 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1620 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1621 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1622 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1623 printk(KERN_DEBUG "TxStatus=%04x\n", ioread16(ioaddr + TxStatus));
1624 return 0;
1625 }
6aa20a22 1626
1da177e4
LT
1627
1628 return rc;
1629}
1630
1631static int netdev_close(struct net_device *dev)
1632{
1633 struct netdev_private *np = netdev_priv(dev);
1634 void __iomem *ioaddr = np->base;
1635 struct sk_buff *skb;
1636 int i;
1637
31f817e9
JH
1638 /* Wait and kill tasklet */
1639 tasklet_kill(&np->rx_tasklet);
1640 tasklet_kill(&np->tx_tasklet);
1641 np->cur_tx = 0;
1642 np->dirty_tx = 0;
1643 np->cur_task = 0;
bca79eb7 1644 np->last_tx = NULL;
31f817e9 1645
1da177e4
LT
1646 netif_stop_queue(dev);
1647
1648 if (netif_msg_ifdown(np)) {
1649 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1650 "Rx %4.4x Int %2.2x.\n",
1651 dev->name, ioread8(ioaddr + TxStatus),
1652 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1653 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1654 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1655 }
1656
1657 /* Disable interrupts by clearing the interrupt mask. */
1658 iowrite16(0x0000, ioaddr + IntrEnable);
1659
acd70c2b
JH
1660 /* Disable Rx and Tx DMA for safely release resource */
1661 iowrite32(0x500, ioaddr + DMACtrl);
1662
1da177e4
LT
1663 /* Stop the chip's Tx and Rx processes. */
1664 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1665
31f817e9
JH
1666 for (i = 2000; i > 0; i--) {
1667 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1668 break;
1669 mdelay(1);
1670 }
1671
1672 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1673 ioaddr +ASICCtrl + 2);
1674
1675 for (i = 2000; i > 0; i--) {
1676 if ((ioread16(ioaddr + ASICCtrl +2) & ResetBusy) == 0)
1677 break;
1678 mdelay(1);
1679 }
1da177e4
LT
1680
1681#ifdef __i386__
1682 if (netif_msg_hw(np)) {
1683 printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
1684 (int)(np->tx_ring_dma));
1685 for (i = 0; i < TX_RING_SIZE; i++)
1686 printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
1687 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1688 np->tx_ring[i].frag[0].length);
1689 printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
1690 (int)(np->rx_ring_dma));
1691 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1692 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1693 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1694 np->rx_ring[i].frag[0].length);
1695 }
1696 }
1697#endif /* __i386__ debugging only */
1698
1699 free_irq(dev->irq, dev);
1700
1701 del_timer_sync(&np->timer);
1702
1703 /* Free all the skbuffs in the Rx queue. */
1704 for (i = 0; i < RX_RING_SIZE; i++) {
1705 np->rx_ring[i].status = 0;
1706 np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
1707 skb = np->rx_skbuff[i];
1708 if (skb) {
1709 pci_unmap_single(np->pci_dev,
1710 np->rx_ring[i].frag[0].addr, np->rx_buf_sz,
1711 PCI_DMA_FROMDEVICE);
1712 dev_kfree_skb(skb);
1713 np->rx_skbuff[i] = NULL;
1714 }
1715 }
1716 for (i = 0; i < TX_RING_SIZE; i++) {
31f817e9 1717 np->tx_ring[i].next_desc = 0;
1da177e4
LT
1718 skb = np->tx_skbuff[i];
1719 if (skb) {
1720 pci_unmap_single(np->pci_dev,
1721 np->tx_ring[i].frag[0].addr, skb->len,
1722 PCI_DMA_TODEVICE);
1723 dev_kfree_skb(skb);
1724 np->tx_skbuff[i] = NULL;
1725 }
1726 }
1727
1728 return 0;
1729}
1730
1731static void __devexit sundance_remove1 (struct pci_dev *pdev)
1732{
1733 struct net_device *dev = pci_get_drvdata(pdev);
1734
1735 if (dev) {
1736 struct netdev_private *np = netdev_priv(dev);
1737
1738 unregister_netdev(dev);
1739 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
1740 np->rx_ring_dma);
1741 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
1742 np->tx_ring_dma);
1743 pci_iounmap(pdev, np->base);
1744 pci_release_regions(pdev);
1745 free_netdev(dev);
1746 pci_set_drvdata(pdev, NULL);
1747 }
1748}
1749
1750static struct pci_driver sundance_driver = {
1751 .name = DRV_NAME,
1752 .id_table = sundance_pci_tbl,
1753 .probe = sundance_probe1,
1754 .remove = __devexit_p(sundance_remove1),
1755};
1756
1757static int __init sundance_init(void)
1758{
1759/* when a module, this is printed whether or not devices are found in probe */
1760#ifdef MODULE
1761 printk(version);
1762#endif
29917620 1763 return pci_register_driver(&sundance_driver);
1da177e4
LT
1764}
1765
1766static void __exit sundance_exit(void)
1767{
1768 pci_unregister_driver(&sundance_driver);
1769}
1770
1771module_init(sundance_init);
1772module_exit(sundance_exit);
1773
1774
This page took 0.382787 seconds and 5 git commands to generate.