[SK_BUFF]: Introduce skb_transport_offset()
[deliverable/linux.git] / drivers / net / sungem.c
CommitLineData
1da177e4
LT
1/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
3 *
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6aa20a22 5 *
1da177e4
LT
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9 *
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
6aa20a22
JG
12 *
13 * TODO:
1da177e4
LT
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
6aa20a22 19 *
1da177e4
LT
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
28 *
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
32 */
33
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/types.h>
37#include <linux/fcntl.h>
38#include <linux/interrupt.h>
39#include <linux/ioport.h>
40#include <linux/in.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/delay.h>
44#include <linux/init.h>
45#include <linux/errno.h>
46#include <linux/pci.h>
1e7f0bd8 47#include <linux/dma-mapping.h>
1da177e4
LT
48#include <linux/netdevice.h>
49#include <linux/etherdevice.h>
50#include <linux/skbuff.h>
51#include <linux/mii.h>
52#include <linux/ethtool.h>
53#include <linux/crc32.h>
54#include <linux/random.h>
55#include <linux/workqueue.h>
56#include <linux/if_vlan.h>
57#include <linux/bitops.h>
e3968fc0 58#include <linux/mutex.h>
d7fe0f24 59#include <linux/mm.h>
1da177e4
LT
60
61#include <asm/system.h>
62#include <asm/io.h>
63#include <asm/byteorder.h>
64#include <asm/uaccess.h>
65#include <asm/irq.h>
66
67#ifdef __sparc__
68#include <asm/idprom.h>
69#include <asm/openprom.h>
70#include <asm/oplib.h>
71#include <asm/pbm.h>
72#endif
73
74#ifdef CONFIG_PPC_PMAC
75#include <asm/pci-bridge.h>
76#include <asm/prom.h>
77#include <asm/machdep.h>
78#include <asm/pmac_feature.h>
79#endif
80
81#include "sungem_phy.h"
82#include "sungem.h"
83
84/* Stripping FCS is causing problems, disabled for now */
85#undef STRIP_FCS
86
87#define DEFAULT_MSG (NETIF_MSG_DRV | \
88 NETIF_MSG_PROBE | \
89 NETIF_MSG_LINK)
90
91#define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
92 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
63ea998a
BH
93 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
94 SUPPORTED_Pause | SUPPORTED_Autoneg)
1da177e4
LT
95
96#define DRV_NAME "sungem"
97#define DRV_VERSION "0.98"
98#define DRV_RELDATE "8/24/03"
99#define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
100
101static char version[] __devinitdata =
102 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
103
104MODULE_AUTHOR(DRV_AUTHOR);
105MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
106MODULE_LICENSE("GPL");
107
108#define GEM_MODULE_NAME "gem"
109#define PFX GEM_MODULE_NAME ": "
110
111static struct pci_device_id gem_pci_tbl[] = {
112 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
6aa20a22 118 *
1da177e4
LT
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
121 */
122 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
7fce260a
OJ
134 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
135 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
1da177e4
LT
136 {0, }
137};
138
139MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
140
141static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
142{
143 u32 cmd;
144 int limit = 10000;
145
146 cmd = (1 << 30);
147 cmd |= (2 << 28);
148 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
149 cmd |= (reg << 18) & MIF_FRAME_REGAD;
150 cmd |= (MIF_FRAME_TAMSB);
151 writel(cmd, gp->regs + MIF_FRAME);
152
153 while (limit--) {
154 cmd = readl(gp->regs + MIF_FRAME);
155 if (cmd & MIF_FRAME_TALSB)
156 break;
157
158 udelay(10);
159 }
160
161 if (!limit)
162 cmd = 0xffff;
163
164 return cmd & MIF_FRAME_DATA;
165}
166
167static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
168{
169 struct gem *gp = dev->priv;
170 return __phy_read(gp, mii_id, reg);
171}
172
173static inline u16 phy_read(struct gem *gp, int reg)
174{
175 return __phy_read(gp, gp->mii_phy_addr, reg);
176}
177
178static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
179{
180 u32 cmd;
181 int limit = 10000;
182
183 cmd = (1 << 30);
184 cmd |= (1 << 28);
185 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
186 cmd |= (reg << 18) & MIF_FRAME_REGAD;
187 cmd |= (MIF_FRAME_TAMSB);
188 cmd |= (val & MIF_FRAME_DATA);
189 writel(cmd, gp->regs + MIF_FRAME);
190
191 while (limit--) {
192 cmd = readl(gp->regs + MIF_FRAME);
193 if (cmd & MIF_FRAME_TALSB)
194 break;
195
196 udelay(10);
197 }
198}
199
200static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
201{
202 struct gem *gp = dev->priv;
203 __phy_write(gp, mii_id, reg, val & 0xffff);
204}
205
206static inline void phy_write(struct gem *gp, int reg, u16 val)
207{
208 __phy_write(gp, gp->mii_phy_addr, reg, val);
209}
210
211static inline void gem_enable_ints(struct gem *gp)
212{
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215}
216
217static inline void gem_disable_ints(struct gem *gp)
218{
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221}
222
223static void gem_get_cell(struct gem *gp)
224{
225 BUG_ON(gp->cell_enabled < 0);
226 gp->cell_enabled++;
227#ifdef CONFIG_PPC_PMAC
228 if (gp->cell_enabled == 1) {
229 mb();
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
231 udelay(10);
232 }
233#endif /* CONFIG_PPC_PMAC */
234}
235
236/* Turn off the chip's clock */
237static void gem_put_cell(struct gem *gp)
238{
239 BUG_ON(gp->cell_enabled <= 0);
240 gp->cell_enabled--;
241#ifdef CONFIG_PPC_PMAC
242 if (gp->cell_enabled == 0) {
243 mb();
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
245 udelay(10);
246 }
247#endif /* CONFIG_PPC_PMAC */
248}
249
250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251{
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254}
255
256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257{
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 u32 pcs_miistat;
260
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
264
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
267 dev->name);
268 return 0;
269 }
270
271 /* The link status bit latches on zero, so you must
272 * read it twice in such a case to see a transition
273 * to the link being up.
274 */
275 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
276 if (!(pcs_miistat & PCS_MIISTAT_LS))
277 pcs_miistat |=
278 (readl(gp->regs + PCS_MIISTAT) &
279 PCS_MIISTAT_LS);
280
281 if (pcs_miistat & PCS_MIISTAT_ANC) {
282 /* The remote-fault indication is only valid
283 * when autoneg has completed.
284 */
285 if (pcs_miistat & PCS_MIISTAT_RF)
286 printk(KERN_INFO "%s: PCS AutoNEG complete, "
287 "RemoteFault\n", dev->name);
288 else
289 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
290 dev->name);
291 }
292
293 if (pcs_miistat & PCS_MIISTAT_LS) {
294 printk(KERN_INFO "%s: PCS link is now up.\n",
295 dev->name);
296 netif_carrier_on(gp->dev);
297 } else {
298 printk(KERN_INFO "%s: PCS link is now down.\n",
299 dev->name);
300 netif_carrier_off(gp->dev);
301 /* If this happens and the link timer is not running,
302 * reset so we re-negotiate.
303 */
304 if (!timer_pending(&gp->link_timer))
305 return 1;
306 }
307
308 return 0;
309}
310
311static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
312{
313 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
314
315 if (netif_msg_intr(gp))
316 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
317 gp->dev->name, txmac_stat);
318
319 /* Defer timer expiration is quite normal,
320 * don't even log the event.
321 */
322 if ((txmac_stat & MAC_TXSTAT_DTE) &&
323 !(txmac_stat & ~MAC_TXSTAT_DTE))
324 return 0;
325
326 if (txmac_stat & MAC_TXSTAT_URUN) {
327 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
328 dev->name);
329 gp->net_stats.tx_fifo_errors++;
330 }
331
332 if (txmac_stat & MAC_TXSTAT_MPE) {
333 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
334 dev->name);
335 gp->net_stats.tx_errors++;
336 }
337
338 /* The rest are all cases of one of the 16-bit TX
339 * counters expiring.
340 */
341 if (txmac_stat & MAC_TXSTAT_NCE)
342 gp->net_stats.collisions += 0x10000;
343
344 if (txmac_stat & MAC_TXSTAT_ECE) {
345 gp->net_stats.tx_aborted_errors += 0x10000;
346 gp->net_stats.collisions += 0x10000;
347 }
348
349 if (txmac_stat & MAC_TXSTAT_LCE) {
350 gp->net_stats.tx_aborted_errors += 0x10000;
351 gp->net_stats.collisions += 0x10000;
352 }
353
354 /* We do not keep track of MAC_TXSTAT_FCE and
355 * MAC_TXSTAT_PCE events.
356 */
357 return 0;
358}
359
360/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
361 * so we do the following.
362 *
363 * If any part of the reset goes wrong, we return 1 and that causes the
364 * whole chip to be reset.
365 */
366static int gem_rxmac_reset(struct gem *gp)
367{
368 struct net_device *dev = gp->dev;
369 int limit, i;
370 u64 desc_dma;
371 u32 val;
372
373 /* First, reset & disable MAC RX. */
374 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
375 for (limit = 0; limit < 5000; limit++) {
376 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
377 break;
378 udelay(10);
379 }
380 if (limit == 5000) {
381 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
382 "chip.\n", dev->name);
383 return 1;
384 }
385
386 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
387 gp->regs + MAC_RXCFG);
388 for (limit = 0; limit < 5000; limit++) {
389 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
390 break;
391 udelay(10);
392 }
393 if (limit == 5000) {
394 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
395 "chip.\n", dev->name);
396 return 1;
397 }
398
399 /* Second, disable RX DMA. */
400 writel(0, gp->regs + RXDMA_CFG);
401 for (limit = 0; limit < 5000; limit++) {
402 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
403 break;
404 udelay(10);
405 }
406 if (limit == 5000) {
407 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
408 "chip.\n", dev->name);
409 return 1;
410 }
411
412 udelay(5000);
413
414 /* Execute RX reset command. */
415 writel(gp->swrst_base | GREG_SWRST_RXRST,
416 gp->regs + GREG_SWRST);
417 for (limit = 0; limit < 5000; limit++) {
418 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
419 break;
420 udelay(10);
421 }
422 if (limit == 5000) {
423 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
424 "whole chip.\n", dev->name);
425 return 1;
426 }
427
428 /* Refresh the RX ring. */
429 for (i = 0; i < RX_RING_SIZE; i++) {
430 struct gem_rxd *rxd = &gp->init_block->rxd[i];
431
432 if (gp->rx_skbs[i] == NULL) {
433 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
434 "whole chip.\n", dev->name);
435 return 1;
436 }
437
438 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
439 }
440 gp->rx_new = gp->rx_old = 0;
441
442 /* Now we must reprogram the rest of RX unit. */
443 desc_dma = (u64) gp->gblock_dvma;
444 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
445 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
446 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
447 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
448 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
449 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
450 writel(val, gp->regs + RXDMA_CFG);
451 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
452 writel(((5 & RXDMA_BLANK_IPKTS) |
453 ((8 << 12) & RXDMA_BLANK_ITIME)),
454 gp->regs + RXDMA_BLANK);
455 else
456 writel(((5 & RXDMA_BLANK_IPKTS) |
457 ((4 << 12) & RXDMA_BLANK_ITIME)),
458 gp->regs + RXDMA_BLANK);
459 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
460 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
461 writel(val, gp->regs + RXDMA_PTHRESH);
462 val = readl(gp->regs + RXDMA_CFG);
463 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
464 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
465 val = readl(gp->regs + MAC_RXCFG);
466 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
467
468 return 0;
469}
470
471static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
472{
473 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
474 int ret = 0;
475
476 if (netif_msg_intr(gp))
477 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
478 gp->dev->name, rxmac_stat);
479
480 if (rxmac_stat & MAC_RXSTAT_OFLW) {
481 u32 smac = readl(gp->regs + MAC_SMACHINE);
482
483 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
484 dev->name, smac);
485 gp->net_stats.rx_over_errors++;
486 gp->net_stats.rx_fifo_errors++;
487
488 ret = gem_rxmac_reset(gp);
489 }
490
491 if (rxmac_stat & MAC_RXSTAT_ACE)
492 gp->net_stats.rx_frame_errors += 0x10000;
493
494 if (rxmac_stat & MAC_RXSTAT_CCE)
495 gp->net_stats.rx_crc_errors += 0x10000;
496
497 if (rxmac_stat & MAC_RXSTAT_LCE)
498 gp->net_stats.rx_length_errors += 0x10000;
499
500 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
501 * events.
502 */
503 return ret;
504}
505
506static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
507{
508 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
509
510 if (netif_msg_intr(gp))
511 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
512 gp->dev->name, mac_cstat);
513
514 /* This interrupt is just for pause frame and pause
515 * tracking. It is useful for diagnostics and debug
516 * but probably by default we will mask these events.
517 */
518 if (mac_cstat & MAC_CSTAT_PS)
519 gp->pause_entered++;
520
521 if (mac_cstat & MAC_CSTAT_PRCV)
522 gp->pause_last_time_recvd = (mac_cstat >> 16);
523
524 return 0;
525}
526
527static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528{
529 u32 mif_status = readl(gp->regs + MIF_STATUS);
530 u32 reg_val, changed_bits;
531
532 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
533 changed_bits = (mif_status & MIF_STATUS_STAT);
534
535 gem_handle_mif_event(gp, reg_val, changed_bits);
536
537 return 0;
538}
539
540static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
541{
542 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
543
544 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
545 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
546 printk(KERN_ERR "%s: PCI error [%04x] ",
547 dev->name, pci_estat);
548
549 if (pci_estat & GREG_PCIESTAT_BADACK)
550 printk("<No ACK64# during ABS64 cycle> ");
551 if (pci_estat & GREG_PCIESTAT_DTRTO)
552 printk("<Delayed transaction timeout> ");
553 if (pci_estat & GREG_PCIESTAT_OTHER)
554 printk("<other>");
555 printk("\n");
556 } else {
557 pci_estat |= GREG_PCIESTAT_OTHER;
558 printk(KERN_ERR "%s: PCI error\n", dev->name);
559 }
560
561 if (pci_estat & GREG_PCIESTAT_OTHER) {
562 u16 pci_cfg_stat;
563
564 /* Interrogate PCI config space for the
565 * true cause.
566 */
567 pci_read_config_word(gp->pdev, PCI_STATUS,
568 &pci_cfg_stat);
569 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
570 dev->name, pci_cfg_stat);
571 if (pci_cfg_stat & PCI_STATUS_PARITY)
572 printk(KERN_ERR "%s: PCI parity error detected.\n",
573 dev->name);
574 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
575 printk(KERN_ERR "%s: PCI target abort.\n",
576 dev->name);
577 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
578 printk(KERN_ERR "%s: PCI master acks target abort.\n",
579 dev->name);
580 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
581 printk(KERN_ERR "%s: PCI master abort.\n",
582 dev->name);
583 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
584 printk(KERN_ERR "%s: PCI system error SERR#.\n",
585 dev->name);
586 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
587 printk(KERN_ERR "%s: PCI parity error.\n",
588 dev->name);
589
590 /* Write the error bits back to clear them. */
591 pci_cfg_stat &= (PCI_STATUS_PARITY |
592 PCI_STATUS_SIG_TARGET_ABORT |
593 PCI_STATUS_REC_TARGET_ABORT |
594 PCI_STATUS_REC_MASTER_ABORT |
595 PCI_STATUS_SIG_SYSTEM_ERROR |
596 PCI_STATUS_DETECTED_PARITY);
597 pci_write_config_word(gp->pdev,
598 PCI_STATUS, pci_cfg_stat);
599 }
600
601 /* For all PCI errors, we should reset the chip. */
602 return 1;
603}
604
605/* All non-normal interrupt conditions get serviced here.
606 * Returns non-zero if we should just exit the interrupt
607 * handler right now (ie. if we reset the card which invalidates
608 * all of the other original irq status bits).
609 */
610static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
611{
612 if (gem_status & GREG_STAT_RXNOBUF) {
613 /* Frame arrived, no free RX buffers available. */
614 if (netif_msg_rx_err(gp))
615 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
616 gp->dev->name);
617 gp->net_stats.rx_dropped++;
618 }
619
620 if (gem_status & GREG_STAT_RXTAGERR) {
621 /* corrupt RX tag framing */
622 if (netif_msg_rx_err(gp))
623 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
624 gp->dev->name);
625 gp->net_stats.rx_errors++;
626
627 goto do_reset;
628 }
629
630 if (gem_status & GREG_STAT_PCS) {
631 if (gem_pcs_interrupt(dev, gp, gem_status))
632 goto do_reset;
633 }
634
635 if (gem_status & GREG_STAT_TXMAC) {
636 if (gem_txmac_interrupt(dev, gp, gem_status))
637 goto do_reset;
638 }
639
640 if (gem_status & GREG_STAT_RXMAC) {
641 if (gem_rxmac_interrupt(dev, gp, gem_status))
642 goto do_reset;
643 }
644
645 if (gem_status & GREG_STAT_MAC) {
646 if (gem_mac_interrupt(dev, gp, gem_status))
647 goto do_reset;
648 }
649
650 if (gem_status & GREG_STAT_MIF) {
651 if (gem_mif_interrupt(dev, gp, gem_status))
652 goto do_reset;
653 }
654
655 if (gem_status & GREG_STAT_PCIERR) {
656 if (gem_pci_interrupt(dev, gp, gem_status))
657 goto do_reset;
658 }
659
660 return 0;
661
662do_reset:
663 gp->reset_task_pending = 1;
664 schedule_work(&gp->reset_task);
665
666 return 1;
667}
668
669static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
670{
671 int entry, limit;
672
673 if (netif_msg_intr(gp))
674 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
675 gp->dev->name, gem_status);
676
677 entry = gp->tx_old;
678 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
679 while (entry != limit) {
680 struct sk_buff *skb;
681 struct gem_txd *txd;
682 dma_addr_t dma_addr;
683 u32 dma_len;
684 int frag;
685
686 if (netif_msg_tx_done(gp))
687 printk(KERN_DEBUG "%s: tx done, slot %d\n",
688 gp->dev->name, entry);
689 skb = gp->tx_skbs[entry];
690 if (skb_shinfo(skb)->nr_frags) {
691 int last = entry + skb_shinfo(skb)->nr_frags;
692 int walk = entry;
693 int incomplete = 0;
694
695 last &= (TX_RING_SIZE - 1);
696 for (;;) {
697 walk = NEXT_TX(walk);
698 if (walk == limit)
699 incomplete = 1;
700 if (walk == last)
701 break;
702 }
703 if (incomplete)
704 break;
705 }
706 gp->tx_skbs[entry] = NULL;
707 gp->net_stats.tx_bytes += skb->len;
708
709 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
710 txd = &gp->init_block->txd[entry];
711
712 dma_addr = le64_to_cpu(txd->buffer);
713 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
714
715 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
716 entry = NEXT_TX(entry);
717 }
718
719 gp->net_stats.tx_packets++;
720 dev_kfree_skb_irq(skb);
721 }
722 gp->tx_old = entry;
723
724 if (netif_queue_stopped(dev) &&
725 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
726 netif_wake_queue(dev);
727}
728
729static __inline__ void gem_post_rxds(struct gem *gp, int limit)
730{
731 int cluster_start, curr, count, kick;
732
733 cluster_start = curr = (gp->rx_new & ~(4 - 1));
734 count = 0;
735 kick = -1;
736 wmb();
737 while (curr != limit) {
738 curr = NEXT_RX(curr);
739 if (++count == 4) {
740 struct gem_rxd *rxd =
741 &gp->init_block->rxd[cluster_start];
742 for (;;) {
743 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
744 rxd++;
745 cluster_start = NEXT_RX(cluster_start);
746 if (cluster_start == curr)
747 break;
748 }
749 kick = curr;
750 count = 0;
751 }
752 }
753 if (kick >= 0) {
754 mb();
755 writel(kick, gp->regs + RXDMA_KICK);
756 }
757}
758
759static int gem_rx(struct gem *gp, int work_to_do)
760{
761 int entry, drops, work_done = 0;
762 u32 done;
763
764 if (netif_msg_rx_status(gp))
765 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
766 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767
768 entry = gp->rx_new;
769 drops = 0;
770 done = readl(gp->regs + RXDMA_DONE);
771 for (;;) {
772 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
773 struct sk_buff *skb;
774 u64 status = cpu_to_le64(rxd->status_word);
775 dma_addr_t dma_addr;
776 int len;
777
778 if ((status & RXDCTRL_OWN) != 0)
779 break;
780
781 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
782 break;
783
784 /* When writing back RX descriptor, GEM writes status
785 * then buffer address, possibly in seperate transactions.
786 * If we don't wait for the chip to write both, we could
787 * post a new buffer to this descriptor then have GEM spam
788 * on the buffer address. We sync on the RX completion
789 * register to prevent this from happening.
790 */
791 if (entry == done) {
792 done = readl(gp->regs + RXDMA_DONE);
793 if (entry == done)
794 break;
795 }
796
797 /* We can now account for the work we're about to do */
798 work_done++;
799
800 skb = gp->rx_skbs[entry];
801
802 len = (status & RXDCTRL_BUFSZ) >> 16;
803 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
804 gp->net_stats.rx_errors++;
805 if (len < ETH_ZLEN)
806 gp->net_stats.rx_length_errors++;
807 if (len & RXDCTRL_BAD)
808 gp->net_stats.rx_crc_errors++;
809
810 /* We'll just return it to GEM. */
811 drop_it:
812 gp->net_stats.rx_dropped++;
813 goto next;
814 }
815
816 dma_addr = cpu_to_le64(rxd->buffer);
817 if (len > RX_COPY_THRESHOLD) {
818 struct sk_buff *new_skb;
819
820 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
821 if (new_skb == NULL) {
822 drops++;
823 goto drop_it;
824 }
825 pci_unmap_page(gp->pdev, dma_addr,
826 RX_BUF_ALLOC_SIZE(gp),
827 PCI_DMA_FROMDEVICE);
828 gp->rx_skbs[entry] = new_skb;
829 new_skb->dev = gp->dev;
830 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
831 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
832 virt_to_page(new_skb->data),
833 offset_in_page(new_skb->data),
834 RX_BUF_ALLOC_SIZE(gp),
835 PCI_DMA_FROMDEVICE));
836 skb_reserve(new_skb, RX_OFFSET);
837
838 /* Trim the original skb for the netif. */
839 skb_trim(skb, len);
840 } else {
841 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
842
843 if (copy_skb == NULL) {
844 drops++;
845 goto drop_it;
846 }
847
1da177e4
LT
848 skb_reserve(copy_skb, 2);
849 skb_put(copy_skb, len);
850 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
851 memcpy(copy_skb->data, skb->data, len);
852 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853
854 /* We'll reuse the original ring buffer. */
855 skb = copy_skb;
856 }
857
858 skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
84fa7933 859 skb->ip_summed = CHECKSUM_COMPLETE;
1da177e4
LT
860 skb->protocol = eth_type_trans(skb, gp->dev);
861
862 netif_receive_skb(skb);
863
864 gp->net_stats.rx_packets++;
865 gp->net_stats.rx_bytes += len;
866 gp->dev->last_rx = jiffies;
867
868 next:
869 entry = NEXT_RX(entry);
870 }
871
872 gem_post_rxds(gp, entry);
873
874 gp->rx_new = entry;
875
876 if (drops)
877 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
878 gp->dev->name);
879
880 return work_done;
881}
882
883static int gem_poll(struct net_device *dev, int *budget)
884{
885 struct gem *gp = dev->priv;
886 unsigned long flags;
887
888 /*
6aa20a22 889 * NAPI locking nightmare: See comment at head of driver
1da177e4
LT
890 */
891 spin_lock_irqsave(&gp->lock, flags);
892
893 do {
894 int work_to_do, work_done;
895
896 /* Handle anomalies */
897 if (gp->status & GREG_STAT_ABNORMAL) {
898 if (gem_abnormal_irq(dev, gp, gp->status))
899 break;
900 }
901
902 /* Run TX completion thread */
903 spin_lock(&gp->tx_lock);
904 gem_tx(dev, gp, gp->status);
905 spin_unlock(&gp->tx_lock);
906
907 spin_unlock_irqrestore(&gp->lock, flags);
908
6aa20a22
JG
909 /* Run RX thread. We don't use any locking here,
910 * code willing to do bad things - like cleaning the
1da177e4
LT
911 * rx ring - must call netif_poll_disable(), which
912 * schedule_timeout()'s if polling is already disabled.
913 */
914 work_to_do = min(*budget, dev->quota);
915
916 work_done = gem_rx(gp, work_to_do);
917
918 *budget -= work_done;
919 dev->quota -= work_done;
920
921 if (work_done >= work_to_do)
922 return 1;
923
924 spin_lock_irqsave(&gp->lock, flags);
6aa20a22 925
1da177e4
LT
926 gp->status = readl(gp->regs + GREG_STAT);
927 } while (gp->status & GREG_STAT_NAPI);
928
929 __netif_rx_complete(dev);
930 gem_enable_ints(gp);
931
932 spin_unlock_irqrestore(&gp->lock, flags);
933 return 0;
934}
935
7d12e780 936static irqreturn_t gem_interrupt(int irq, void *dev_id)
1da177e4
LT
937{
938 struct net_device *dev = dev_id;
939 struct gem *gp = dev->priv;
940 unsigned long flags;
941
942 /* Swallow interrupts when shutting the chip down, though
943 * that shouldn't happen, we should have done free_irq() at
944 * this point...
945 */
946 if (!gp->running)
947 return IRQ_HANDLED;
948
949 spin_lock_irqsave(&gp->lock, flags);
6aa20a22 950
1da177e4
LT
951 if (netif_rx_schedule_prep(dev)) {
952 u32 gem_status = readl(gp->regs + GREG_STAT);
953
954 if (gem_status == 0) {
86d9f7f0 955 netif_poll_enable(dev);
1da177e4
LT
956 spin_unlock_irqrestore(&gp->lock, flags);
957 return IRQ_NONE;
958 }
959 gp->status = gem_status;
960 gem_disable_ints(gp);
961 __netif_rx_schedule(dev);
962 }
963
964 spin_unlock_irqrestore(&gp->lock, flags);
6aa20a22 965
1da177e4 966 /* If polling was disabled at the time we received that
6aa20a22 967 * interrupt, we may return IRQ_HANDLED here while we
1da177e4
LT
968 * should return IRQ_NONE. No big deal...
969 */
970 return IRQ_HANDLED;
971}
972
973#ifdef CONFIG_NET_POLL_CONTROLLER
974static void gem_poll_controller(struct net_device *dev)
975{
976 /* gem_interrupt is safe to reentrance so no need
977 * to disable_irq here.
978 */
7d12e780 979 gem_interrupt(dev->irq, dev);
1da177e4
LT
980}
981#endif
982
983static void gem_tx_timeout(struct net_device *dev)
984{
985 struct gem *gp = dev->priv;
986
987 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
988 if (!gp->running) {
989 printk("%s: hrm.. hw not running !\n", dev->name);
990 return;
991 }
992 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
993 dev->name,
994 readl(gp->regs + TXDMA_CFG),
995 readl(gp->regs + MAC_TXSTAT),
996 readl(gp->regs + MAC_TXCFG));
997 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
998 dev->name,
999 readl(gp->regs + RXDMA_CFG),
1000 readl(gp->regs + MAC_RXSTAT),
1001 readl(gp->regs + MAC_RXCFG));
1002
1003 spin_lock_irq(&gp->lock);
1004 spin_lock(&gp->tx_lock);
1005
1006 gp->reset_task_pending = 1;
1007 schedule_work(&gp->reset_task);
1008
1009 spin_unlock(&gp->tx_lock);
1010 spin_unlock_irq(&gp->lock);
1011}
1012
1013static __inline__ int gem_intme(int entry)
1014{
1015 /* Algorithm: IRQ every 1/2 of descriptors. */
1016 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1017 return 1;
1018
1019 return 0;
1020}
1021
1022static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1023{
1024 struct gem *gp = dev->priv;
1025 int entry;
1026 u64 ctrl;
1027 unsigned long flags;
1028
1029 ctrl = 0;
84fa7933 1030 if (skb->ip_summed == CHECKSUM_PARTIAL) {
ea2ae17d
ACM
1031 const u64 csum_start_off = skb_transport_offset(skb);
1032 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1da177e4
LT
1033
1034 ctrl = (TXDCTRL_CENAB |
1035 (csum_start_off << 15) |
1036 (csum_stuff_off << 21));
1037 }
1038
1039 local_irq_save(flags);
1040 if (!spin_trylock(&gp->tx_lock)) {
1041 /* Tell upper layer to requeue */
1042 local_irq_restore(flags);
1043 return NETDEV_TX_LOCKED;
1044 }
1045 /* We raced with gem_do_stop() */
1046 if (!gp->running) {
1047 spin_unlock_irqrestore(&gp->tx_lock, flags);
1048 return NETDEV_TX_BUSY;
1049 }
1050
1051 /* This is a hard error, log it. */
1052 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1053 netif_stop_queue(dev);
1054 spin_unlock_irqrestore(&gp->tx_lock, flags);
1055 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1056 dev->name);
1057 return NETDEV_TX_BUSY;
1058 }
1059
1060 entry = gp->tx_new;
1061 gp->tx_skbs[entry] = skb;
1062
1063 if (skb_shinfo(skb)->nr_frags == 0) {
1064 struct gem_txd *txd = &gp->init_block->txd[entry];
1065 dma_addr_t mapping;
1066 u32 len;
1067
1068 len = skb->len;
1069 mapping = pci_map_page(gp->pdev,
1070 virt_to_page(skb->data),
1071 offset_in_page(skb->data),
1072 len, PCI_DMA_TODEVICE);
1073 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1074 if (gem_intme(entry))
1075 ctrl |= TXDCTRL_INTME;
1076 txd->buffer = cpu_to_le64(mapping);
1077 wmb();
1078 txd->control_word = cpu_to_le64(ctrl);
1079 entry = NEXT_TX(entry);
1080 } else {
1081 struct gem_txd *txd;
1082 u32 first_len;
1083 u64 intme;
1084 dma_addr_t first_mapping;
1085 int frag, first_entry = entry;
1086
1087 intme = 0;
1088 if (gem_intme(entry))
1089 intme |= TXDCTRL_INTME;
1090
1091 /* We must give this initial chunk to the device last.
1092 * Otherwise we could race with the device.
1093 */
1094 first_len = skb_headlen(skb);
1095 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1096 offset_in_page(skb->data),
1097 first_len, PCI_DMA_TODEVICE);
1098 entry = NEXT_TX(entry);
1099
1100 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1101 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1102 u32 len;
1103 dma_addr_t mapping;
1104 u64 this_ctrl;
1105
1106 len = this_frag->size;
1107 mapping = pci_map_page(gp->pdev,
1108 this_frag->page,
1109 this_frag->page_offset,
1110 len, PCI_DMA_TODEVICE);
1111 this_ctrl = ctrl;
1112 if (frag == skb_shinfo(skb)->nr_frags - 1)
1113 this_ctrl |= TXDCTRL_EOF;
6aa20a22 1114
1da177e4
LT
1115 txd = &gp->init_block->txd[entry];
1116 txd->buffer = cpu_to_le64(mapping);
1117 wmb();
1118 txd->control_word = cpu_to_le64(this_ctrl | len);
1119
1120 if (gem_intme(entry))
1121 intme |= TXDCTRL_INTME;
1122
1123 entry = NEXT_TX(entry);
1124 }
1125 txd = &gp->init_block->txd[first_entry];
1126 txd->buffer = cpu_to_le64(first_mapping);
1127 wmb();
1128 txd->control_word =
1129 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1130 }
1131
1132 gp->tx_new = entry;
1133 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1134 netif_stop_queue(dev);
1135
1136 if (netif_msg_tx_queued(gp))
1137 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1138 dev->name, entry, skb->len);
1139 mb();
1140 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1141 spin_unlock_irqrestore(&gp->tx_lock, flags);
1142
1143 dev->trans_start = jiffies;
1144
1145 return NETDEV_TX_OK;
1146}
1147
1148#define STOP_TRIES 32
1149
1150/* Must be invoked under gp->lock and gp->tx_lock. */
1151static void gem_reset(struct gem *gp)
1152{
1153 int limit;
1154 u32 val;
1155
1156 /* Make sure we won't get any more interrupts */
1157 writel(0xffffffff, gp->regs + GREG_IMASK);
1158
1159 /* Reset the chip */
1160 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1161 gp->regs + GREG_SWRST);
1162
1163 limit = STOP_TRIES;
1164
1165 do {
1166 udelay(20);
1167 val = readl(gp->regs + GREG_SWRST);
1168 if (limit-- <= 0)
1169 break;
1170 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1171
1172 if (limit <= 0)
1173 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1174}
1175
1176/* Must be invoked under gp->lock and gp->tx_lock. */
1177static void gem_start_dma(struct gem *gp)
1178{
1179 u32 val;
6aa20a22 1180
1da177e4
LT
1181 /* We are ready to rock, turn everything on. */
1182 val = readl(gp->regs + TXDMA_CFG);
1183 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1184 val = readl(gp->regs + RXDMA_CFG);
1185 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1186 val = readl(gp->regs + MAC_TXCFG);
1187 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1188 val = readl(gp->regs + MAC_RXCFG);
1189 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1190
1191 (void) readl(gp->regs + MAC_RXCFG);
1192 udelay(100);
1193
1194 gem_enable_ints(gp);
1195
1196 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1197}
1198
1199/* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1200 * actually stopped before about 4ms tho ...
1201 */
1202static void gem_stop_dma(struct gem *gp)
1203{
1204 u32 val;
1205
1206 /* We are done rocking, turn everything off. */
1207 val = readl(gp->regs + TXDMA_CFG);
1208 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209 val = readl(gp->regs + RXDMA_CFG);
1210 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211 val = readl(gp->regs + MAC_TXCFG);
1212 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213 val = readl(gp->regs + MAC_RXCFG);
1214 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1215
1216 (void) readl(gp->regs + MAC_RXCFG);
1217
1218 /* Need to wait a bit ... done by the caller */
1219}
1220
1221
1222/* Must be invoked under gp->lock and gp->tx_lock. */
1223// XXX dbl check what that function should do when called on PCS PHY
1224static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1225{
1226 u32 advertise, features;
1227 int autoneg;
1228 int speed;
1229 int duplex;
1230
1231 if (gp->phy_type != phy_mii_mdio0 &&
1232 gp->phy_type != phy_mii_mdio1)
1233 goto non_mii;
1234
1235 /* Setup advertise */
1236 if (found_mii_phy(gp))
1237 features = gp->phy_mii.def->features;
1238 else
1239 features = 0;
1240
1241 advertise = features & ADVERTISE_MASK;
1242 if (gp->phy_mii.advertising != 0)
1243 advertise &= gp->phy_mii.advertising;
1244
1245 autoneg = gp->want_autoneg;
1246 speed = gp->phy_mii.speed;
1247 duplex = gp->phy_mii.duplex;
6aa20a22 1248
1da177e4
LT
1249 /* Setup link parameters */
1250 if (!ep)
1251 goto start_aneg;
1252 if (ep->autoneg == AUTONEG_ENABLE) {
1253 advertise = ep->advertising;
1254 autoneg = 1;
1255 } else {
1256 autoneg = 0;
1257 speed = ep->speed;
1258 duplex = ep->duplex;
1259 }
1260
1261start_aneg:
1262 /* Sanitize settings based on PHY capabilities */
1263 if ((features & SUPPORTED_Autoneg) == 0)
1264 autoneg = 0;
1265 if (speed == SPEED_1000 &&
1266 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1267 speed = SPEED_100;
1268 if (speed == SPEED_100 &&
1269 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1270 speed = SPEED_10;
1271 if (duplex == DUPLEX_FULL &&
1272 !(features & (SUPPORTED_1000baseT_Full |
1273 SUPPORTED_100baseT_Full |
1274 SUPPORTED_10baseT_Full)))
1275 duplex = DUPLEX_HALF;
1276 if (speed == 0)
1277 speed = SPEED_10;
6aa20a22 1278
1da177e4
LT
1279 /* If we are asleep, we don't try to actually setup the PHY, we
1280 * just store the settings
1281 */
1282 if (gp->asleep) {
1283 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1284 gp->phy_mii.speed = speed;
1285 gp->phy_mii.duplex = duplex;
1286 return;
1287 }
1288
1289 /* Configure PHY & start aneg */
1290 gp->want_autoneg = autoneg;
1291 if (autoneg) {
1292 if (found_mii_phy(gp))
1293 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1294 gp->lstate = link_aneg;
1295 } else {
1296 if (found_mii_phy(gp))
1297 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1298 gp->lstate = link_force_ok;
1299 }
1300
1301non_mii:
1302 gp->timer_ticks = 0;
1303 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1304}
1305
1306/* A link-up condition has occurred, initialize and enable the
1307 * rest of the chip.
1308 *
1309 * Must be invoked under gp->lock and gp->tx_lock.
1310 */
1311static int gem_set_link_modes(struct gem *gp)
1312{
1313 u32 val;
1314 int full_duplex, speed, pause;
1315
1316 full_duplex = 0;
1317 speed = SPEED_10;
1318 pause = 0;
1319
1320 if (found_mii_phy(gp)) {
1321 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1322 return 1;
1323 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1324 speed = gp->phy_mii.speed;
1325 pause = gp->phy_mii.pause;
1326 } else if (gp->phy_type == phy_serialink ||
1327 gp->phy_type == phy_serdes) {
1328 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1329
1330 if (pcs_lpa & PCS_MIIADV_FD)
1331 full_duplex = 1;
1332 speed = SPEED_1000;
1333 }
1334
1335 if (netif_msg_link(gp))
1336 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1337 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1338
1339 if (!gp->running)
1340 return 0;
1341
1342 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1343 if (full_duplex) {
1344 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1345 } else {
1346 /* MAC_TXCFG_NBO must be zero. */
6aa20a22 1347 }
1da177e4
LT
1348 writel(val, gp->regs + MAC_TXCFG);
1349
1350 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1351 if (!full_duplex &&
1352 (gp->phy_type == phy_mii_mdio0 ||
1353 gp->phy_type == phy_mii_mdio1)) {
1354 val |= MAC_XIFCFG_DISE;
1355 } else if (full_duplex) {
1356 val |= MAC_XIFCFG_FLED;
1357 }
1358
1359 if (speed == SPEED_1000)
1360 val |= (MAC_XIFCFG_GMII);
1361
1362 writel(val, gp->regs + MAC_XIFCFG);
1363
1364 /* If gigabit and half-duplex, enable carrier extension
1365 * mode. Else, disable it.
1366 */
1367 if (speed == SPEED_1000 && !full_duplex) {
1368 val = readl(gp->regs + MAC_TXCFG);
1369 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1370
1371 val = readl(gp->regs + MAC_RXCFG);
1372 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1373 } else {
1374 val = readl(gp->regs + MAC_TXCFG);
1375 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1376
1377 val = readl(gp->regs + MAC_RXCFG);
1378 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1379 }
1380
1381 if (gp->phy_type == phy_serialink ||
1382 gp->phy_type == phy_serdes) {
1383 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1384
1385 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1386 pause = 1;
1387 }
1388
1389 if (netif_msg_link(gp)) {
1390 if (pause) {
1391 printk(KERN_INFO "%s: Pause is enabled "
1392 "(rxfifo: %d off: %d on: %d)\n",
1393 gp->dev->name,
1394 gp->rx_fifo_sz,
1395 gp->rx_pause_off,
1396 gp->rx_pause_on);
1397 } else {
1398 printk(KERN_INFO "%s: Pause is disabled\n",
1399 gp->dev->name);
1400 }
1401 }
1402
1403 if (!full_duplex)
1404 writel(512, gp->regs + MAC_STIME);
1405 else
1406 writel(64, gp->regs + MAC_STIME);
1407 val = readl(gp->regs + MAC_MCCFG);
1408 if (pause)
1409 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1410 else
1411 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1412 writel(val, gp->regs + MAC_MCCFG);
1413
1414 gem_start_dma(gp);
1415
1416 return 0;
1417}
1418
1419/* Must be invoked under gp->lock and gp->tx_lock. */
1420static int gem_mdio_link_not_up(struct gem *gp)
1421{
1422 switch (gp->lstate) {
1423 case link_force_ret:
1424 if (netif_msg_link(gp))
1425 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1426 " forced mode\n", gp->dev->name);
1427 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1428 gp->last_forced_speed, DUPLEX_HALF);
1429 gp->timer_ticks = 5;
1430 gp->lstate = link_force_ok;
1431 return 0;
1432 case link_aneg:
1433 /* We try forced modes after a failed aneg only on PHYs that don't
1434 * have "magic_aneg" bit set, which means they internally do the
1435 * while forced-mode thingy. On these, we just restart aneg
1436 */
1437 if (gp->phy_mii.def->magic_aneg)
1438 return 1;
1439 if (netif_msg_link(gp))
1440 printk(KERN_INFO "%s: switching to forced 100bt\n",
1441 gp->dev->name);
1442 /* Try forced modes. */
1443 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1444 DUPLEX_HALF);
1445 gp->timer_ticks = 5;
1446 gp->lstate = link_force_try;
1447 return 0;
1448 case link_force_try:
1449 /* Downgrade from 100 to 10 Mbps if necessary.
1450 * If already at 10Mbps, warn user about the
1451 * situation every 10 ticks.
1452 */
1453 if (gp->phy_mii.speed == SPEED_100) {
1454 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1455 DUPLEX_HALF);
1456 gp->timer_ticks = 5;
1457 if (netif_msg_link(gp))
1458 printk(KERN_INFO "%s: switching to forced 10bt\n",
1459 gp->dev->name);
1460 return 0;
1461 } else
1462 return 1;
1463 default:
1464 return 0;
1465 }
1466}
1467
1468static void gem_link_timer(unsigned long data)
1469{
1470 struct gem *gp = (struct gem *) data;
1471 int restart_aneg = 0;
6aa20a22 1472
1da177e4
LT
1473 if (gp->asleep)
1474 return;
1475
1476 spin_lock_irq(&gp->lock);
1477 spin_lock(&gp->tx_lock);
1478 gem_get_cell(gp);
1479
1480 /* If the reset task is still pending, we just
1481 * reschedule the link timer
1482 */
1483 if (gp->reset_task_pending)
1484 goto restart;
6aa20a22 1485
1da177e4
LT
1486 if (gp->phy_type == phy_serialink ||
1487 gp->phy_type == phy_serdes) {
1488 u32 val = readl(gp->regs + PCS_MIISTAT);
1489
1490 if (!(val & PCS_MIISTAT_LS))
1491 val = readl(gp->regs + PCS_MIISTAT);
1492
1493 if ((val & PCS_MIISTAT_LS) != 0) {
1494 gp->lstate = link_up;
1495 netif_carrier_on(gp->dev);
1496 (void)gem_set_link_modes(gp);
1497 }
1498 goto restart;
1499 }
1500 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1501 /* Ok, here we got a link. If we had it due to a forced
1502 * fallback, and we were configured for autoneg, we do
1503 * retry a short autoneg pass. If you know your hub is
1504 * broken, use ethtool ;)
1505 */
1506 if (gp->lstate == link_force_try && gp->want_autoneg) {
1507 gp->lstate = link_force_ret;
1508 gp->last_forced_speed = gp->phy_mii.speed;
1509 gp->timer_ticks = 5;
1510 if (netif_msg_link(gp))
1511 printk(KERN_INFO "%s: Got link after fallback, retrying"
1512 " autoneg once...\n", gp->dev->name);
1513 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1514 } else if (gp->lstate != link_up) {
1515 gp->lstate = link_up;
1516 netif_carrier_on(gp->dev);
1517 if (gem_set_link_modes(gp))
1518 restart_aneg = 1;
1519 }
1520 } else {
1521 /* If the link was previously up, we restart the
1522 * whole process
1523 */
1524 if (gp->lstate == link_up) {
1525 gp->lstate = link_down;
1526 if (netif_msg_link(gp))
1527 printk(KERN_INFO "%s: Link down\n",
1528 gp->dev->name);
1529 netif_carrier_off(gp->dev);
1530 gp->reset_task_pending = 1;
1531 schedule_work(&gp->reset_task);
1532 restart_aneg = 1;
1533 } else if (++gp->timer_ticks > 10) {
1534 if (found_mii_phy(gp))
1535 restart_aneg = gem_mdio_link_not_up(gp);
1536 else
1537 restart_aneg = 1;
1538 }
1539 }
1540 if (restart_aneg) {
1541 gem_begin_auto_negotiation(gp, NULL);
1542 goto out_unlock;
1543 }
1544restart:
1545 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1546out_unlock:
1547 gem_put_cell(gp);
1548 spin_unlock(&gp->tx_lock);
1549 spin_unlock_irq(&gp->lock);
1550}
1551
1552/* Must be invoked under gp->lock and gp->tx_lock. */
1553static void gem_clean_rings(struct gem *gp)
1554{
1555 struct gem_init_block *gb = gp->init_block;
1556 struct sk_buff *skb;
1557 int i;
1558 dma_addr_t dma_addr;
1559
1560 for (i = 0; i < RX_RING_SIZE; i++) {
1561 struct gem_rxd *rxd;
1562
1563 rxd = &gb->rxd[i];
1564 if (gp->rx_skbs[i] != NULL) {
1565 skb = gp->rx_skbs[i];
1566 dma_addr = le64_to_cpu(rxd->buffer);
1567 pci_unmap_page(gp->pdev, dma_addr,
1568 RX_BUF_ALLOC_SIZE(gp),
1569 PCI_DMA_FROMDEVICE);
1570 dev_kfree_skb_any(skb);
1571 gp->rx_skbs[i] = NULL;
1572 }
1573 rxd->status_word = 0;
1574 wmb();
1575 rxd->buffer = 0;
1576 }
1577
1578 for (i = 0; i < TX_RING_SIZE; i++) {
1579 if (gp->tx_skbs[i] != NULL) {
1580 struct gem_txd *txd;
1581 int frag;
1582
1583 skb = gp->tx_skbs[i];
1584 gp->tx_skbs[i] = NULL;
1585
1586 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1587 int ent = i & (TX_RING_SIZE - 1);
1588
1589 txd = &gb->txd[ent];
1590 dma_addr = le64_to_cpu(txd->buffer);
1591 pci_unmap_page(gp->pdev, dma_addr,
1592 le64_to_cpu(txd->control_word) &
1593 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1594
1595 if (frag != skb_shinfo(skb)->nr_frags)
1596 i++;
1597 }
1598 dev_kfree_skb_any(skb);
1599 }
1600 }
1601}
1602
1603/* Must be invoked under gp->lock and gp->tx_lock. */
1604static void gem_init_rings(struct gem *gp)
1605{
1606 struct gem_init_block *gb = gp->init_block;
1607 struct net_device *dev = gp->dev;
1608 int i;
1609 dma_addr_t dma_addr;
1610
1611 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1612
1613 gem_clean_rings(gp);
1614
1615 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1616 (unsigned)VLAN_ETH_FRAME_LEN);
1617
1618 for (i = 0; i < RX_RING_SIZE; i++) {
1619 struct sk_buff *skb;
1620 struct gem_rxd *rxd = &gb->rxd[i];
1621
1622 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1623 if (!skb) {
1624 rxd->buffer = 0;
1625 rxd->status_word = 0;
1626 continue;
1627 }
1628
1629 gp->rx_skbs[i] = skb;
1630 skb->dev = dev;
1631 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1632 dma_addr = pci_map_page(gp->pdev,
1633 virt_to_page(skb->data),
1634 offset_in_page(skb->data),
1635 RX_BUF_ALLOC_SIZE(gp),
1636 PCI_DMA_FROMDEVICE);
1637 rxd->buffer = cpu_to_le64(dma_addr);
1638 wmb();
1639 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1640 skb_reserve(skb, RX_OFFSET);
1641 }
1642
1643 for (i = 0; i < TX_RING_SIZE; i++) {
1644 struct gem_txd *txd = &gb->txd[i];
1645
1646 txd->control_word = 0;
1647 wmb();
1648 txd->buffer = 0;
1649 }
1650 wmb();
1651}
1652
1653/* Init PHY interface and start link poll state machine */
1654static void gem_init_phy(struct gem *gp)
1655{
7fb76aa0 1656 u32 mifcfg;
1da177e4
LT
1657
1658 /* Revert MIF CFG setting done on stop_phy */
7fb76aa0
DM
1659 mifcfg = readl(gp->regs + MIF_CFG);
1660 mifcfg &= ~MIF_CFG_BBMODE;
1661 writel(mifcfg, gp->regs + MIF_CFG);
6aa20a22 1662
1da177e4
LT
1663 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1664 int i;
1665
7fb76aa0
DM
1666 /* Those delay sucks, the HW seem to love them though, I'll
1667 * serisouly consider breaking some locks here to be able
1668 * to schedule instead
1669 */
1670 for (i = 0; i < 3; i++) {
1da177e4 1671#ifdef CONFIG_PPC_PMAC
7fb76aa0
DM
1672 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1673 msleep(20);
1da177e4 1674#endif
7fb76aa0
DM
1675 /* Some PHYs used by apple have problem getting back to us,
1676 * we do an additional reset here
1677 */
1678 phy_write(gp, MII_BMCR, BMCR_RESET);
1679 msleep(20);
1680 if (phy_read(gp, MII_BMCR) != 0xffff)
1da177e4 1681 break;
7fb76aa0
DM
1682 if (i == 2)
1683 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1684 gp->dev->name);
1da177e4
LT
1685 }
1686 }
1687
1688 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1689 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1690 u32 val;
1691
1692 /* Init datapath mode register. */
1693 if (gp->phy_type == phy_mii_mdio0 ||
1694 gp->phy_type == phy_mii_mdio1) {
1695 val = PCS_DMODE_MGM;
1696 } else if (gp->phy_type == phy_serialink) {
1697 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1698 } else {
1699 val = PCS_DMODE_ESM;
1700 }
1701
1702 writel(val, gp->regs + PCS_DMODE);
1703 }
1704
1705 if (gp->phy_type == phy_mii_mdio0 ||
1706 gp->phy_type == phy_mii_mdio1) {
1707 // XXX check for errors
1708 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1709
1710 /* Init PHY */
1711 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1712 gp->phy_mii.def->ops->init(&gp->phy_mii);
1713 } else {
1714 u32 val;
1715 int limit;
1716
1717 /* Reset PCS unit. */
1718 val = readl(gp->regs + PCS_MIICTRL);
1719 val |= PCS_MIICTRL_RST;
1720 writeb(val, gp->regs + PCS_MIICTRL);
1721
1722 limit = 32;
1723 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1724 udelay(100);
1725 if (limit-- <= 0)
1726 break;
1727 }
1728 if (limit <= 0)
1729 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1730 gp->dev->name);
1731
1732 /* Make sure PCS is disabled while changing advertisement
1733 * configuration.
1734 */
1735 val = readl(gp->regs + PCS_CFG);
1736 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1737 writel(val, gp->regs + PCS_CFG);
1738
1739 /* Advertise all capabilities except assymetric
1740 * pause.
1741 */
1742 val = readl(gp->regs + PCS_MIIADV);
1743 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1744 PCS_MIIADV_SP | PCS_MIIADV_AP);
1745 writel(val, gp->regs + PCS_MIIADV);
1746
1747 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1748 * and re-enable PCS.
1749 */
1750 val = readl(gp->regs + PCS_MIICTRL);
1751 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1752 val &= ~PCS_MIICTRL_WB;
1753 writel(val, gp->regs + PCS_MIICTRL);
1754
1755 val = readl(gp->regs + PCS_CFG);
1756 val |= PCS_CFG_ENABLE;
1757 writel(val, gp->regs + PCS_CFG);
1758
1759 /* Make sure serialink loopback is off. The meaning
1760 * of this bit is logically inverted based upon whether
1761 * you are in Serialink or SERDES mode.
1762 */
1763 val = readl(gp->regs + PCS_SCTRL);
1764 if (gp->phy_type == phy_serialink)
1765 val &= ~PCS_SCTRL_LOOP;
1766 else
1767 val |= PCS_SCTRL_LOOP;
1768 writel(val, gp->regs + PCS_SCTRL);
1769 }
1770
1771 /* Default aneg parameters */
1772 gp->timer_ticks = 0;
1773 gp->lstate = link_down;
1774 netif_carrier_off(gp->dev);
1775
1776 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1777 spin_lock_irq(&gp->lock);
1778 gem_begin_auto_negotiation(gp, NULL);
1779 spin_unlock_irq(&gp->lock);
1780}
1781
1782/* Must be invoked under gp->lock and gp->tx_lock. */
1783static void gem_init_dma(struct gem *gp)
1784{
1785 u64 desc_dma = (u64) gp->gblock_dvma;
1786 u32 val;
1787
1788 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1789 writel(val, gp->regs + TXDMA_CFG);
1790
1791 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1792 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1793 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1794
1795 writel(0, gp->regs + TXDMA_KICK);
1796
1797 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1798 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1799 writel(val, gp->regs + RXDMA_CFG);
1800
1801 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1802 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1803
1804 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1805
1806 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1807 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1808 writel(val, gp->regs + RXDMA_PTHRESH);
1809
1810 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1811 writel(((5 & RXDMA_BLANK_IPKTS) |
1812 ((8 << 12) & RXDMA_BLANK_ITIME)),
1813 gp->regs + RXDMA_BLANK);
1814 else
1815 writel(((5 & RXDMA_BLANK_IPKTS) |
1816 ((4 << 12) & RXDMA_BLANK_ITIME)),
1817 gp->regs + RXDMA_BLANK);
1818}
1819
1820/* Must be invoked under gp->lock and gp->tx_lock. */
1821static u32 gem_setup_multicast(struct gem *gp)
1822{
1823 u32 rxcfg = 0;
1824 int i;
6aa20a22 1825
1da177e4
LT
1826 if ((gp->dev->flags & IFF_ALLMULTI) ||
1827 (gp->dev->mc_count > 256)) {
1828 for (i=0; i<16; i++)
1829 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1830 rxcfg |= MAC_RXCFG_HFE;
1831 } else if (gp->dev->flags & IFF_PROMISC) {
1832 rxcfg |= MAC_RXCFG_PROM;
1833 } else {
1834 u16 hash_table[16];
1835 u32 crc;
1836 struct dev_mc_list *dmi = gp->dev->mc_list;
1837 int i;
1838
1839 for (i = 0; i < 16; i++)
1840 hash_table[i] = 0;
1841
1842 for (i = 0; i < gp->dev->mc_count; i++) {
1843 char *addrs = dmi->dmi_addr;
1844
1845 dmi = dmi->next;
1846
1847 if (!(*addrs & 1))
1848 continue;
1849
1850 crc = ether_crc_le(6, addrs);
1851 crc >>= 24;
1852 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1853 }
1854 for (i=0; i<16; i++)
1855 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1856 rxcfg |= MAC_RXCFG_HFE;
1857 }
1858
1859 return rxcfg;
1860}
1861
1862/* Must be invoked under gp->lock and gp->tx_lock. */
1863static void gem_init_mac(struct gem *gp)
1864{
1865 unsigned char *e = &gp->dev->dev_addr[0];
1866
1867 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1868
1869 writel(0x00, gp->regs + MAC_IPG0);
1870 writel(0x08, gp->regs + MAC_IPG1);
1871 writel(0x04, gp->regs + MAC_IPG2);
1872 writel(0x40, gp->regs + MAC_STIME);
1873 writel(0x40, gp->regs + MAC_MINFSZ);
1874
1875 /* Ethernet payload + header + FCS + optional VLAN tag. */
1876 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1877
1878 writel(0x07, gp->regs + MAC_PASIZE);
1879 writel(0x04, gp->regs + MAC_JAMSIZE);
1880 writel(0x10, gp->regs + MAC_ATTLIM);
1881 writel(0x8808, gp->regs + MAC_MCTYPE);
1882
1883 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1884
1885 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1886 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1887 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1888
1889 writel(0, gp->regs + MAC_ADDR3);
1890 writel(0, gp->regs + MAC_ADDR4);
1891 writel(0, gp->regs + MAC_ADDR5);
1892
1893 writel(0x0001, gp->regs + MAC_ADDR6);
1894 writel(0xc200, gp->regs + MAC_ADDR7);
1895 writel(0x0180, gp->regs + MAC_ADDR8);
1896
1897 writel(0, gp->regs + MAC_AFILT0);
1898 writel(0, gp->regs + MAC_AFILT1);
1899 writel(0, gp->regs + MAC_AFILT2);
1900 writel(0, gp->regs + MAC_AF21MSK);
1901 writel(0, gp->regs + MAC_AF0MSK);
1902
1903 gp->mac_rx_cfg = gem_setup_multicast(gp);
1904#ifdef STRIP_FCS
1905 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1906#endif
1907 writel(0, gp->regs + MAC_NCOLL);
1908 writel(0, gp->regs + MAC_FASUCC);
1909 writel(0, gp->regs + MAC_ECOLL);
1910 writel(0, gp->regs + MAC_LCOLL);
1911 writel(0, gp->regs + MAC_DTIMER);
1912 writel(0, gp->regs + MAC_PATMPS);
1913 writel(0, gp->regs + MAC_RFCTR);
1914 writel(0, gp->regs + MAC_LERR);
1915 writel(0, gp->regs + MAC_AERR);
1916 writel(0, gp->regs + MAC_FCSERR);
1917 writel(0, gp->regs + MAC_RXCVERR);
1918
1919 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1920 * them once a link is established.
1921 */
1922 writel(0, gp->regs + MAC_TXCFG);
1923 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1924 writel(0, gp->regs + MAC_MCCFG);
1925 writel(0, gp->regs + MAC_XIFCFG);
1926
1927 /* Setup MAC interrupts. We want to get all of the interesting
1928 * counter expiration events, but we do not want to hear about
1929 * normal rx/tx as the DMA engine tells us that.
1930 */
1931 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1932 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1933
1934 /* Don't enable even the PAUSE interrupts for now, we
1935 * make no use of those events other than to record them.
1936 */
1937 writel(0xffffffff, gp->regs + MAC_MCMASK);
1938
1939 /* Don't enable GEM's WOL in normal operations
1940 */
1941 if (gp->has_wol)
1942 writel(0, gp->regs + WOL_WAKECSR);
1943}
1944
1945/* Must be invoked under gp->lock and gp->tx_lock. */
1946static void gem_init_pause_thresholds(struct gem *gp)
1947{
1948 u32 cfg;
1949
1950 /* Calculate pause thresholds. Setting the OFF threshold to the
1951 * full RX fifo size effectively disables PAUSE generation which
1952 * is what we do for 10/100 only GEMs which have FIFOs too small
1953 * to make real gains from PAUSE.
1954 */
1955 if (gp->rx_fifo_sz <= (2 * 1024)) {
1956 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1957 } else {
1958 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1959 int off = (gp->rx_fifo_sz - (max_frame * 2));
1960 int on = off - max_frame;
1961
1962 gp->rx_pause_off = off;
1963 gp->rx_pause_on = on;
1964 }
1965
1966
1967 /* Configure the chip "burst" DMA mode & enable some
1968 * HW bug fixes on Apple version
1969 */
1970 cfg = 0;
1971 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1972 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1973#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1974 cfg |= GREG_CFG_IBURST;
1975#endif
1976 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1977 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1978 writel(cfg, gp->regs + GREG_CFG);
1979
1980 /* If Infinite Burst didn't stick, then use different
1981 * thresholds (and Apple bug fixes don't exist)
1982 */
1983 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1984 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1985 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1986 writel(cfg, gp->regs + GREG_CFG);
6aa20a22 1987 }
1da177e4
LT
1988}
1989
1990static int gem_check_invariants(struct gem *gp)
1991{
1992 struct pci_dev *pdev = gp->pdev;
1993 u32 mif_cfg;
1994
1995 /* On Apple's sungem, we can't rely on registers as the chip
1996 * was been powered down by the firmware. The PHY is looked
1997 * up later on.
1998 */
1999 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
2000 gp->phy_type = phy_mii_mdio0;
2001 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2002 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2003 gp->swrst_base = 0;
2004
2005 mif_cfg = readl(gp->regs + MIF_CFG);
2006 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2007 mif_cfg |= MIF_CFG_MDI0;
2008 writel(mif_cfg, gp->regs + MIF_CFG);
2009 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2010 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2011
2012 /* We hard-code the PHY address so we can properly bring it out of
2013 * reset later on, we can't really probe it at this point, though
2014 * that isn't an issue.
2015 */
2016 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2017 gp->mii_phy_addr = 1;
2018 else
2019 gp->mii_phy_addr = 0;
2020
2021 return 0;
2022 }
2023
2024 mif_cfg = readl(gp->regs + MIF_CFG);
2025
2026 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2027 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2028 /* One of the MII PHYs _must_ be present
2029 * as this chip has no gigabit PHY.
2030 */
2031 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2032 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2033 mif_cfg);
2034 return -1;
2035 }
2036 }
2037
2038 /* Determine initial PHY interface type guess. MDIO1 is the
2039 * external PHY and thus takes precedence over MDIO0.
2040 */
6aa20a22 2041
1da177e4
LT
2042 if (mif_cfg & MIF_CFG_MDI1) {
2043 gp->phy_type = phy_mii_mdio1;
2044 mif_cfg |= MIF_CFG_PSELECT;
2045 writel(mif_cfg, gp->regs + MIF_CFG);
2046 } else if (mif_cfg & MIF_CFG_MDI0) {
2047 gp->phy_type = phy_mii_mdio0;
2048 mif_cfg &= ~MIF_CFG_PSELECT;
2049 writel(mif_cfg, gp->regs + MIF_CFG);
2050 } else {
2051 gp->phy_type = phy_serialink;
2052 }
2053 if (gp->phy_type == phy_mii_mdio1 ||
2054 gp->phy_type == phy_mii_mdio0) {
2055 int i;
2056
2057 for (i = 0; i < 32; i++) {
2058 gp->mii_phy_addr = i;
2059 if (phy_read(gp, MII_BMCR) != 0xffff)
2060 break;
2061 }
2062 if (i == 32) {
2063 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2064 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2065 return -1;
2066 }
2067 gp->phy_type = phy_serdes;
2068 }
2069 }
2070
2071 /* Fetch the FIFO configurations now too. */
2072 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2073 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2074
2075 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2076 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2077 if (gp->tx_fifo_sz != (9 * 1024) ||
2078 gp->rx_fifo_sz != (20 * 1024)) {
2079 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2080 gp->tx_fifo_sz, gp->rx_fifo_sz);
2081 return -1;
2082 }
2083 gp->swrst_base = 0;
2084 } else {
2085 if (gp->tx_fifo_sz != (2 * 1024) ||
2086 gp->rx_fifo_sz != (2 * 1024)) {
2087 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2088 gp->tx_fifo_sz, gp->rx_fifo_sz);
2089 return -1;
2090 }
2091 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2092 }
2093 }
2094
2095 return 0;
2096}
2097
2098/* Must be invoked under gp->lock and gp->tx_lock. */
2099static void gem_reinit_chip(struct gem *gp)
2100{
2101 /* Reset the chip */
2102 gem_reset(gp);
2103
2104 /* Make sure ints are disabled */
2105 gem_disable_ints(gp);
2106
2107 /* Allocate & setup ring buffers */
2108 gem_init_rings(gp);
2109
2110 /* Configure pause thresholds */
2111 gem_init_pause_thresholds(gp);
2112
2113 /* Init DMA & MAC engines */
2114 gem_init_dma(gp);
2115 gem_init_mac(gp);
2116}
2117
2118
2119/* Must be invoked with no lock held. */
2120static void gem_stop_phy(struct gem *gp, int wol)
2121{
7fb76aa0 2122 u32 mifcfg;
1da177e4
LT
2123 unsigned long flags;
2124
2125 /* Let the chip settle down a bit, it seems that helps
2126 * for sleep mode on some models
2127 */
2128 msleep(10);
2129
2130 /* Make sure we aren't polling PHY status change. We
2131 * don't currently use that feature though
2132 */
7fb76aa0
DM
2133 mifcfg = readl(gp->regs + MIF_CFG);
2134 mifcfg &= ~MIF_CFG_POLL;
2135 writel(mifcfg, gp->regs + MIF_CFG);
1da177e4
LT
2136
2137 if (wol && gp->has_wol) {
2138 unsigned char *e = &gp->dev->dev_addr[0];
2139 u32 csr;
2140
2141 /* Setup wake-on-lan for MAGIC packet */
2142 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
6aa20a22 2143 gp->regs + MAC_RXCFG);
1da177e4
LT
2144 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2145 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2146 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2147
2148 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2149 csr = WOL_WAKECSR_ENABLE;
2150 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2151 csr |= WOL_WAKECSR_MII;
2152 writel(csr, gp->regs + WOL_WAKECSR);
2153 } else {
2154 writel(0, gp->regs + MAC_RXCFG);
2155 (void)readl(gp->regs + MAC_RXCFG);
2156 /* Machine sleep will die in strange ways if we
2157 * dont wait a bit here, looks like the chip takes
2158 * some time to really shut down
2159 */
2160 msleep(10);
2161 }
2162
2163 writel(0, gp->regs + MAC_TXCFG);
2164 writel(0, gp->regs + MAC_XIFCFG);
2165 writel(0, gp->regs + TXDMA_CFG);
2166 writel(0, gp->regs + RXDMA_CFG);
2167
2168 if (!wol) {
2169 spin_lock_irqsave(&gp->lock, flags);
2170 spin_lock(&gp->tx_lock);
2171 gem_reset(gp);
2172 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2173 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2174 spin_unlock(&gp->tx_lock);
2175 spin_unlock_irqrestore(&gp->lock, flags);
2176
2177 /* No need to take the lock here */
2178
2179 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2180 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2181
2182 /* According to Apple, we must set the MDIO pins to this begnign
2183 * state or we may 1) eat more current, 2) damage some PHYs
2184 */
7fb76aa0 2185 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
1da177e4
LT
2186 writel(0, gp->regs + MIF_BBCLK);
2187 writel(0, gp->regs + MIF_BBDATA);
2188 writel(0, gp->regs + MIF_BBOENAB);
2189 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2190 (void) readl(gp->regs + MAC_XIFCFG);
2191 }
2192}
2193
2194
2195static int gem_do_start(struct net_device *dev)
2196{
2197 struct gem *gp = dev->priv;
2198 unsigned long flags;
2199
2200 spin_lock_irqsave(&gp->lock, flags);
2201 spin_lock(&gp->tx_lock);
2202
2203 /* Enable the cell */
2204 gem_get_cell(gp);
2205
2206 /* Init & setup chip hardware */
2207 gem_reinit_chip(gp);
2208
2209 gp->running = 1;
2210
2211 if (gp->lstate == link_up) {
2212 netif_carrier_on(gp->dev);
2213 gem_set_link_modes(gp);
2214 }
2215
2216 netif_wake_queue(gp->dev);
2217
2218 spin_unlock(&gp->tx_lock);
2219 spin_unlock_irqrestore(&gp->lock, flags);
2220
2221 if (request_irq(gp->pdev->irq, gem_interrupt,
1fb9df5d 2222 IRQF_SHARED, dev->name, (void *)dev)) {
1da177e4
LT
2223 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2224
2225 spin_lock_irqsave(&gp->lock, flags);
2226 spin_lock(&gp->tx_lock);
2227
2228 gp->running = 0;
2229 gem_reset(gp);
2230 gem_clean_rings(gp);
2231 gem_put_cell(gp);
6aa20a22 2232
1da177e4
LT
2233 spin_unlock(&gp->tx_lock);
2234 spin_unlock_irqrestore(&gp->lock, flags);
2235
2236 return -EAGAIN;
2237 }
2238
2239 return 0;
2240}
2241
2242static void gem_do_stop(struct net_device *dev, int wol)
2243{
2244 struct gem *gp = dev->priv;
2245 unsigned long flags;
2246
2247 spin_lock_irqsave(&gp->lock, flags);
2248 spin_lock(&gp->tx_lock);
2249
2250 gp->running = 0;
2251
2252 /* Stop netif queue */
2253 netif_stop_queue(dev);
2254
2255 /* Make sure ints are disabled */
2256 gem_disable_ints(gp);
2257
2258 /* We can drop the lock now */
2259 spin_unlock(&gp->tx_lock);
2260 spin_unlock_irqrestore(&gp->lock, flags);
2261
2262 /* If we are going to sleep with WOL */
2263 gem_stop_dma(gp);
2264 msleep(10);
2265 if (!wol)
2266 gem_reset(gp);
2267 msleep(10);
2268
2269 /* Get rid of rings */
2270 gem_clean_rings(gp);
2271
2272 /* No irq needed anymore */
2273 free_irq(gp->pdev->irq, (void *) dev);
2274
2275 /* Cell not needed neither if no WOL */
2276 if (!wol) {
2277 spin_lock_irqsave(&gp->lock, flags);
2278 gem_put_cell(gp);
2279 spin_unlock_irqrestore(&gp->lock, flags);
2280 }
2281}
2282
c4028958 2283static void gem_reset_task(struct work_struct *work)
1da177e4 2284{
c4028958 2285 struct gem *gp = container_of(work, struct gem, reset_task);
1da177e4 2286
e3968fc0 2287 mutex_lock(&gp->pm_mutex);
1da177e4
LT
2288
2289 netif_poll_disable(gp->dev);
2290
2291 spin_lock_irq(&gp->lock);
2292 spin_lock(&gp->tx_lock);
2293
2294 if (gp->running == 0)
2295 goto not_running;
2296
2297 if (gp->running) {
2298 netif_stop_queue(gp->dev);
2299
2300 /* Reset the chip & rings */
2301 gem_reinit_chip(gp);
2302 if (gp->lstate == link_up)
2303 gem_set_link_modes(gp);
2304 netif_wake_queue(gp->dev);
2305 }
2306 not_running:
2307 gp->reset_task_pending = 0;
2308
2309 spin_unlock(&gp->tx_lock);
2310 spin_unlock_irq(&gp->lock);
2311
2312 netif_poll_enable(gp->dev);
2313
e3968fc0 2314 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2315}
2316
2317
2318static int gem_open(struct net_device *dev)
2319{
2320 struct gem *gp = dev->priv;
2321 int rc = 0;
2322
e3968fc0 2323 mutex_lock(&gp->pm_mutex);
1da177e4
LT
2324
2325 /* We need the cell enabled */
2326 if (!gp->asleep)
2327 rc = gem_do_start(dev);
2328 gp->opened = (rc == 0);
2329
e3968fc0 2330 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2331
2332 return rc;
2333}
2334
2335static int gem_close(struct net_device *dev)
2336{
2337 struct gem *gp = dev->priv;
2338
2339 /* Note: we don't need to call netif_poll_disable() here because
2340 * our caller (dev_close) already did it for us
2341 */
2342
e3968fc0 2343 mutex_lock(&gp->pm_mutex);
1da177e4 2344
6aa20a22 2345 gp->opened = 0;
1da177e4
LT
2346 if (!gp->asleep)
2347 gem_do_stop(dev, 0);
2348
e3968fc0 2349 mutex_unlock(&gp->pm_mutex);
6aa20a22 2350
1da177e4
LT
2351 return 0;
2352}
2353
2354#ifdef CONFIG_PM
2355static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2356{
2357 struct net_device *dev = pci_get_drvdata(pdev);
2358 struct gem *gp = dev->priv;
2359 unsigned long flags;
2360
e3968fc0 2361 mutex_lock(&gp->pm_mutex);
1da177e4
LT
2362
2363 netif_poll_disable(dev);
2364
2365 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2366 dev->name,
2367 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
6aa20a22 2368
1da177e4
LT
2369 /* Keep the cell enabled during the entire operation */
2370 spin_lock_irqsave(&gp->lock, flags);
2371 spin_lock(&gp->tx_lock);
2372 gem_get_cell(gp);
2373 spin_unlock(&gp->tx_lock);
2374 spin_unlock_irqrestore(&gp->lock, flags);
2375
2376 /* If the driver is opened, we stop the MAC */
2377 if (gp->opened) {
2378 /* Stop traffic, mark us closed */
2379 netif_device_detach(dev);
2380
2381 /* Switch off MAC, remember WOL setting */
2382 gp->asleep_wol = gp->wake_on_lan;
2383 gem_do_stop(dev, gp->asleep_wol);
2384 } else
2385 gp->asleep_wol = 0;
2386
2387 /* Mark us asleep */
2388 gp->asleep = 1;
2389 wmb();
2390
2391 /* Stop the link timer */
2392 del_timer_sync(&gp->link_timer);
2393
e3968fc0 2394 /* Now we release the mutex to not block the reset task who
1da177e4
LT
2395 * can take it too. We are marked asleep, so there will be no
2396 * conflict here
2397 */
e3968fc0 2398 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2399
2400 /* Wait for a pending reset task to complete */
2401 while (gp->reset_task_pending)
2402 yield();
2403 flush_scheduled_work();
2404
2405 /* Shut the PHY down eventually and setup WOL */
2406 gem_stop_phy(gp, gp->asleep_wol);
2407
2408 /* Make sure bus master is disabled */
2409 pci_disable_device(gp->pdev);
2410
2411 /* Release the cell, no need to take a lock at this point since
2412 * nothing else can happen now
2413 */
2414 gem_put_cell(gp);
2415
2416 return 0;
2417}
2418
2419static int gem_resume(struct pci_dev *pdev)
2420{
2421 struct net_device *dev = pci_get_drvdata(pdev);
2422 struct gem *gp = dev->priv;
2423 unsigned long flags;
2424
2425 printk(KERN_INFO "%s: resuming\n", dev->name);
2426
e3968fc0 2427 mutex_lock(&gp->pm_mutex);
1da177e4
LT
2428
2429 /* Keep the cell enabled during the entire operation, no need to
2430 * take a lock here tho since nothing else can happen while we are
2431 * marked asleep
2432 */
2433 gem_get_cell(gp);
2434
2435 /* Make sure PCI access and bus master are enabled */
2436 if (pci_enable_device(gp->pdev)) {
2437 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2438 dev->name);
2439 /* Put cell and forget it for now, it will be considered as
2440 * still asleep, a new sleep cycle may bring it back
2441 */
2442 gem_put_cell(gp);
e3968fc0 2443 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2444 return 0;
2445 }
2446 pci_set_master(gp->pdev);
2447
2448 /* Reset everything */
2449 gem_reset(gp);
2450
2451 /* Mark us woken up */
2452 gp->asleep = 0;
2453 wmb();
2454
2455 /* Bring the PHY back. Again, lock is useless at this point as
2456 * nothing can be happening until we restart the whole thing
2457 */
2458 gem_init_phy(gp);
2459
2460 /* If we were opened, bring everything back */
2461 if (gp->opened) {
2462 /* Restart MAC */
2463 gem_do_start(dev);
2464
2465 /* Re-attach net device */
2466 netif_device_attach(dev);
2467
2468 }
2469
2470 spin_lock_irqsave(&gp->lock, flags);
2471 spin_lock(&gp->tx_lock);
2472
2473 /* If we had WOL enabled, the cell clock was never turned off during
2474 * sleep, so we end up beeing unbalanced. Fix that here
2475 */
2476 if (gp->asleep_wol)
2477 gem_put_cell(gp);
2478
2479 /* This function doesn't need to hold the cell, it will be held if the
2480 * driver is open by gem_do_start().
2481 */
2482 gem_put_cell(gp);
2483
2484 spin_unlock(&gp->tx_lock);
2485 spin_unlock_irqrestore(&gp->lock, flags);
2486
2487 netif_poll_enable(dev);
6aa20a22 2488
e3968fc0 2489 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2490
2491 return 0;
2492}
2493#endif /* CONFIG_PM */
2494
2495static struct net_device_stats *gem_get_stats(struct net_device *dev)
2496{
2497 struct gem *gp = dev->priv;
2498 struct net_device_stats *stats = &gp->net_stats;
2499
2500 spin_lock_irq(&gp->lock);
2501 spin_lock(&gp->tx_lock);
2502
2503 /* I have seen this being called while the PM was in progress,
2504 * so we shield against this
2505 */
2506 if (gp->running) {
2507 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2508 writel(0, gp->regs + MAC_FCSERR);
2509
2510 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2511 writel(0, gp->regs + MAC_AERR);
2512
2513 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2514 writel(0, gp->regs + MAC_LERR);
2515
2516 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2517 stats->collisions +=
2518 (readl(gp->regs + MAC_ECOLL) +
2519 readl(gp->regs + MAC_LCOLL));
2520 writel(0, gp->regs + MAC_ECOLL);
2521 writel(0, gp->regs + MAC_LCOLL);
2522 }
2523
2524 spin_unlock(&gp->tx_lock);
2525 spin_unlock_irq(&gp->lock);
2526
2527 return &gp->net_stats;
2528}
2529
09c72ec8
RV
2530static int gem_set_mac_address(struct net_device *dev, void *addr)
2531{
2532 struct sockaddr *macaddr = (struct sockaddr *) addr;
2533 struct gem *gp = dev->priv;
2534 unsigned char *e = &dev->dev_addr[0];
2535
2536 if (!is_valid_ether_addr(macaddr->sa_data))
2537 return -EADDRNOTAVAIL;
2538
2539 if (!netif_running(dev) || !netif_device_present(dev)) {
2540 /* We'll just catch it later when the
2541 * device is up'd or resumed.
2542 */
2543 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2544 return 0;
2545 }
2546
2547 mutex_lock(&gp->pm_mutex);
2548 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2549 if (gp->running) {
2550 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2551 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2552 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2553 }
2554 mutex_unlock(&gp->pm_mutex);
2555
2556 return 0;
2557}
2558
1da177e4
LT
2559static void gem_set_multicast(struct net_device *dev)
2560{
2561 struct gem *gp = dev->priv;
2562 u32 rxcfg, rxcfg_new;
2563 int limit = 10000;
6aa20a22 2564
1da177e4
LT
2565
2566 spin_lock_irq(&gp->lock);
2567 spin_lock(&gp->tx_lock);
2568
2569 if (!gp->running)
2570 goto bail;
2571
2572 netif_stop_queue(dev);
2573
2574 rxcfg = readl(gp->regs + MAC_RXCFG);
2575 rxcfg_new = gem_setup_multicast(gp);
2576#ifdef STRIP_FCS
2577 rxcfg_new |= MAC_RXCFG_SFCS;
2578#endif
2579 gp->mac_rx_cfg = rxcfg_new;
6aa20a22 2580
1da177e4
LT
2581 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2582 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2583 if (!limit--)
2584 break;
2585 udelay(10);
2586 }
2587
2588 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2589 rxcfg |= rxcfg_new;
2590
2591 writel(rxcfg, gp->regs + MAC_RXCFG);
2592
2593 netif_wake_queue(dev);
2594
2595 bail:
2596 spin_unlock(&gp->tx_lock);
2597 spin_unlock_irq(&gp->lock);
2598}
2599
2600/* Jumbo-grams don't seem to work :-( */
2601#define GEM_MIN_MTU 68
2602#if 1
2603#define GEM_MAX_MTU 1500
2604#else
2605#define GEM_MAX_MTU 9000
2606#endif
2607
2608static int gem_change_mtu(struct net_device *dev, int new_mtu)
2609{
2610 struct gem *gp = dev->priv;
2611
2612 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2613 return -EINVAL;
2614
2615 if (!netif_running(dev) || !netif_device_present(dev)) {
2616 /* We'll just catch it later when the
2617 * device is up'd or resumed.
2618 */
2619 dev->mtu = new_mtu;
2620 return 0;
2621 }
2622
e3968fc0 2623 mutex_lock(&gp->pm_mutex);
1da177e4
LT
2624 spin_lock_irq(&gp->lock);
2625 spin_lock(&gp->tx_lock);
2626 dev->mtu = new_mtu;
2627 if (gp->running) {
2628 gem_reinit_chip(gp);
2629 if (gp->lstate == link_up)
2630 gem_set_link_modes(gp);
2631 }
2632 spin_unlock(&gp->tx_lock);
2633 spin_unlock_irq(&gp->lock);
e3968fc0 2634 mutex_unlock(&gp->pm_mutex);
1da177e4
LT
2635
2636 return 0;
2637}
2638
2639static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2640{
2641 struct gem *gp = dev->priv;
6aa20a22 2642
1da177e4
LT
2643 strcpy(info->driver, DRV_NAME);
2644 strcpy(info->version, DRV_VERSION);
2645 strcpy(info->bus_info, pci_name(gp->pdev));
2646}
6aa20a22 2647
1da177e4
LT
2648static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2649{
2650 struct gem *gp = dev->priv;
2651
2652 if (gp->phy_type == phy_mii_mdio0 ||
2653 gp->phy_type == phy_mii_mdio1) {
2654 if (gp->phy_mii.def)
2655 cmd->supported = gp->phy_mii.def->features;
2656 else
2657 cmd->supported = (SUPPORTED_10baseT_Half |
2658 SUPPORTED_10baseT_Full);
2659
2660 /* XXX hardcoded stuff for now */
2661 cmd->port = PORT_MII;
2662 cmd->transceiver = XCVR_EXTERNAL;
2663 cmd->phy_address = 0; /* XXX fixed PHYAD */
2664
2665 /* Return current PHY settings */
2666 spin_lock_irq(&gp->lock);
2667 cmd->autoneg = gp->want_autoneg;
2668 cmd->speed = gp->phy_mii.speed;
6aa20a22 2669 cmd->duplex = gp->phy_mii.duplex;
1da177e4
LT
2670 cmd->advertising = gp->phy_mii.advertising;
2671
2672 /* If we started with a forced mode, we don't have a default
2673 * advertise set, we need to return something sensible so
2674 * userland can re-enable autoneg properly.
2675 */
2676 if (cmd->advertising == 0)
2677 cmd->advertising = cmd->supported;
2678 spin_unlock_irq(&gp->lock);
2679 } else { // XXX PCS ?
2680 cmd->supported =
2681 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2682 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2683 SUPPORTED_Autoneg);
2684 cmd->advertising = cmd->supported;
2685 cmd->speed = 0;
2686 cmd->duplex = cmd->port = cmd->phy_address =
2687 cmd->transceiver = cmd->autoneg = 0;
2688 }
2689 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2690
2691 return 0;
2692}
2693
2694static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2695{
2696 struct gem *gp = dev->priv;
2697
2698 /* Verify the settings we care about. */
2699 if (cmd->autoneg != AUTONEG_ENABLE &&
2700 cmd->autoneg != AUTONEG_DISABLE)
2701 return -EINVAL;
2702
2703 if (cmd->autoneg == AUTONEG_ENABLE &&
2704 cmd->advertising == 0)
2705 return -EINVAL;
2706
2707 if (cmd->autoneg == AUTONEG_DISABLE &&
2708 ((cmd->speed != SPEED_1000 &&
2709 cmd->speed != SPEED_100 &&
2710 cmd->speed != SPEED_10) ||
2711 (cmd->duplex != DUPLEX_HALF &&
2712 cmd->duplex != DUPLEX_FULL)))
2713 return -EINVAL;
6aa20a22 2714
1da177e4
LT
2715 /* Apply settings and restart link process. */
2716 spin_lock_irq(&gp->lock);
2717 gem_get_cell(gp);
2718 gem_begin_auto_negotiation(gp, cmd);
2719 gem_put_cell(gp);
2720 spin_unlock_irq(&gp->lock);
2721
2722 return 0;
2723}
2724
2725static int gem_nway_reset(struct net_device *dev)
2726{
2727 struct gem *gp = dev->priv;
2728
2729 if (!gp->want_autoneg)
2730 return -EINVAL;
2731
2732 /* Restart link process. */
2733 spin_lock_irq(&gp->lock);
2734 gem_get_cell(gp);
2735 gem_begin_auto_negotiation(gp, NULL);
2736 gem_put_cell(gp);
2737 spin_unlock_irq(&gp->lock);
2738
2739 return 0;
2740}
2741
2742static u32 gem_get_msglevel(struct net_device *dev)
2743{
2744 struct gem *gp = dev->priv;
2745 return gp->msg_enable;
2746}
6aa20a22 2747
1da177e4
LT
2748static void gem_set_msglevel(struct net_device *dev, u32 value)
2749{
2750 struct gem *gp = dev->priv;
2751 gp->msg_enable = value;
2752}
2753
2754
2755/* Add more when I understand how to program the chip */
2756/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2757
2758#define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2759
2760static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2761{
2762 struct gem *gp = dev->priv;
2763
2764 /* Add more when I understand how to program the chip */
2765 if (gp->has_wol) {
2766 wol->supported = WOL_SUPPORTED_MASK;
2767 wol->wolopts = gp->wake_on_lan;
2768 } else {
2769 wol->supported = 0;
2770 wol->wolopts = 0;
2771 }
2772}
2773
2774static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2775{
2776 struct gem *gp = dev->priv;
2777
2778 if (!gp->has_wol)
2779 return -EOPNOTSUPP;
2780 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2781 return 0;
2782}
2783
7282d491 2784static const struct ethtool_ops gem_ethtool_ops = {
1da177e4
LT
2785 .get_drvinfo = gem_get_drvinfo,
2786 .get_link = ethtool_op_get_link,
2787 .get_settings = gem_get_settings,
2788 .set_settings = gem_set_settings,
2789 .nway_reset = gem_nway_reset,
2790 .get_msglevel = gem_get_msglevel,
2791 .set_msglevel = gem_set_msglevel,
2792 .get_wol = gem_get_wol,
2793 .set_wol = gem_set_wol,
2794};
2795
2796static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2797{
2798 struct gem *gp = dev->priv;
2799 struct mii_ioctl_data *data = if_mii(ifr);
2800 int rc = -EOPNOTSUPP;
2801 unsigned long flags;
2802
e3968fc0 2803 /* Hold the PM mutex while doing ioctl's or we may collide
1da177e4
LT
2804 * with power management.
2805 */
e3968fc0 2806 mutex_lock(&gp->pm_mutex);
6aa20a22 2807
1da177e4
LT
2808 spin_lock_irqsave(&gp->lock, flags);
2809 gem_get_cell(gp);
2810 spin_unlock_irqrestore(&gp->lock, flags);
2811
2812 switch (cmd) {
2813 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2814 data->phy_id = gp->mii_phy_addr;
2815 /* Fallthrough... */
2816
2817 case SIOCGMIIREG: /* Read MII PHY register. */
2818 if (!gp->running)
2819 rc = -EAGAIN;
2820 else {
2821 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2822 data->reg_num & 0x1f);
2823 rc = 0;
2824 }
2825 break;
2826
2827 case SIOCSMIIREG: /* Write MII PHY register. */
2828 if (!capable(CAP_NET_ADMIN))
2829 rc = -EPERM;
2830 else if (!gp->running)
2831 rc = -EAGAIN;
2832 else {
2833 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2834 data->val_in);
2835 rc = 0;
2836 }
2837 break;
2838 };
6aa20a22 2839
1da177e4
LT
2840 spin_lock_irqsave(&gp->lock, flags);
2841 gem_put_cell(gp);
2842 spin_unlock_irqrestore(&gp->lock, flags);
2843
e3968fc0 2844 mutex_unlock(&gp->pm_mutex);
6aa20a22 2845
1da177e4
LT
2846 return rc;
2847}
2848
2849#if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2850/* Fetch MAC address from vital product data of PCI ROM. */
4120b028 2851static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
1da177e4
LT
2852{
2853 int this_offset;
2854
2855 for (this_offset = 0x20; this_offset < len; this_offset++) {
2856 void __iomem *p = rom_base + this_offset;
2857 int i;
2858
2859 if (readb(p + 0) != 0x90 ||
2860 readb(p + 1) != 0x00 ||
2861 readb(p + 2) != 0x09 ||
2862 readb(p + 3) != 0x4e ||
2863 readb(p + 4) != 0x41 ||
2864 readb(p + 5) != 0x06)
2865 continue;
2866
2867 this_offset += 6;
2868 p += 6;
2869
2870 for (i = 0; i < 6; i++)
2871 dev_addr[i] = readb(p + i);
4120b028 2872 return 1;
1da177e4 2873 }
4120b028 2874 return 0;
1da177e4
LT
2875}
2876
2877static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2878{
4120b028
LT
2879 size_t size;
2880 void __iomem *p = pci_map_rom(pdev, &size);
1da177e4 2881
4120b028
LT
2882 if (p) {
2883 int found;
1da177e4 2884
4120b028
LT
2885 found = readb(p) == 0x55 &&
2886 readb(p + 1) == 0xaa &&
2887 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2888 pci_unmap_rom(pdev, p);
2889 if (found)
2890 return;
2891 }
1da177e4 2892
1da177e4
LT
2893 /* Sun MAC prefix then 3 random bytes. */
2894 dev_addr[0] = 0x08;
2895 dev_addr[1] = 0x00;
2896 dev_addr[2] = 0x20;
2897 get_random_bytes(dev_addr + 3, 3);
2898 return;
2899}
2900#endif /* not Sparc and not PPC */
2901
2902static int __devinit gem_get_device_address(struct gem *gp)
2903{
2904#if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2905 struct net_device *dev = gp->dev;
2906#endif
2907
2908#if defined(__sparc__)
2909 struct pci_dev *pdev = gp->pdev;
2910 struct pcidev_cookie *pcp = pdev->sysdata;
de8d28b1 2911 int use_idprom = 1;
1da177e4
LT
2912
2913 if (pcp != NULL) {
de8d28b1
DM
2914 unsigned char *addr;
2915 int len;
2916
2917 addr = of_get_property(pcp->prom_node, "local-mac-address",
2918 &len);
2919 if (addr && len == 6) {
2920 use_idprom = 0;
2921 memcpy(dev->dev_addr, addr, 6);
2922 }
1da177e4 2923 }
de8d28b1 2924 if (use_idprom)
1da177e4
LT
2925 memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2926#elif defined(CONFIG_PPC_PMAC)
1a2509c9 2927 const unsigned char *addr;
1da177e4
LT
2928
2929 addr = get_property(gp->of_node, "local-mac-address", NULL);
2930 if (addr == NULL) {
2931 printk("\n");
2932 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2933 return -1;
2934 }
2935 memcpy(dev->dev_addr, addr, 6);
2936#else
2937 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2938#endif
2939 return 0;
2940}
2941
14904398 2942static void gem_remove_one(struct pci_dev *pdev)
1da177e4
LT
2943{
2944 struct net_device *dev = pci_get_drvdata(pdev);
2945
2946 if (dev) {
2947 struct gem *gp = dev->priv;
2948
2949 unregister_netdev(dev);
2950
2951 /* Stop the link timer */
2952 del_timer_sync(&gp->link_timer);
2953
2954 /* We shouldn't need any locking here */
2955 gem_get_cell(gp);
2956
2957 /* Wait for a pending reset task to complete */
2958 while (gp->reset_task_pending)
2959 yield();
2960 flush_scheduled_work();
2961
2962 /* Shut the PHY down */
2963 gem_stop_phy(gp, 0);
2964
2965 gem_put_cell(gp);
2966
2967 /* Make sure bus master is disabled */
2968 pci_disable_device(gp->pdev);
2969
2970 /* Free resources */
2971 pci_free_consistent(pdev,
2972 sizeof(struct gem_init_block),
2973 gp->init_block,
2974 gp->gblock_dvma);
2975 iounmap(gp->regs);
2976 pci_release_regions(pdev);
2977 free_netdev(dev);
2978
2979 pci_set_drvdata(pdev, NULL);
2980 }
2981}
2982
2983static int __devinit gem_init_one(struct pci_dev *pdev,
2984 const struct pci_device_id *ent)
2985{
2986 static int gem_version_printed = 0;
2987 unsigned long gemreg_base, gemreg_len;
2988 struct net_device *dev;
2989 struct gem *gp;
2990 int i, err, pci_using_dac;
2991
2992 if (gem_version_printed++ == 0)
2993 printk(KERN_INFO "%s", version);
2994
2995 /* Apple gmac note: during probe, the chip is powered up by
2996 * the arch code to allow the code below to work (and to let
2997 * the chip be probed on the config space. It won't stay powered
2998 * up until the interface is brought up however, so we can't rely
2999 * on register configuration done at this point.
3000 */
3001 err = pci_enable_device(pdev);
3002 if (err) {
3003 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
3004 "aborting.\n");
3005 return err;
3006 }
3007 pci_set_master(pdev);
3008
3009 /* Configure DMA attributes. */
3010
3011 /* All of the GEM documentation states that 64-bit DMA addressing
3012 * is fully supported and should work just fine. However the
3013 * front end for RIO based GEMs is different and only supports
3014 * 32-bit addressing.
3015 *
3016 * For now we assume the various PPC GEMs are 32-bit only as well.
3017 */
3018 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3019 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
1e7f0bd8 3020 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
3021 pci_using_dac = 1;
3022 } else {
1e7f0bd8 3023 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1da177e4
LT
3024 if (err) {
3025 printk(KERN_ERR PFX "No usable DMA configuration, "
3026 "aborting.\n");
3027 goto err_disable_device;
3028 }
3029 pci_using_dac = 0;
3030 }
6aa20a22 3031
1da177e4
LT
3032 gemreg_base = pci_resource_start(pdev, 0);
3033 gemreg_len = pci_resource_len(pdev, 0);
3034
3035 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3036 printk(KERN_ERR PFX "Cannot find proper PCI device "
3037 "base address, aborting.\n");
3038 err = -ENODEV;
3039 goto err_disable_device;
3040 }
3041
3042 dev = alloc_etherdev(sizeof(*gp));
3043 if (!dev) {
3044 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3045 err = -ENOMEM;
3046 goto err_disable_device;
3047 }
3048 SET_MODULE_OWNER(dev);
3049 SET_NETDEV_DEV(dev, &pdev->dev);
3050
3051 gp = dev->priv;
3052
3053 err = pci_request_regions(pdev, DRV_NAME);
3054 if (err) {
3055 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3056 "aborting.\n");
3057 goto err_out_free_netdev;
3058 }
3059
3060 gp->pdev = pdev;
3061 dev->base_addr = (long) pdev;
3062 gp->dev = dev;
3063
3064 gp->msg_enable = DEFAULT_MSG;
3065
3066 spin_lock_init(&gp->lock);
3067 spin_lock_init(&gp->tx_lock);
e3968fc0 3068 mutex_init(&gp->pm_mutex);
1da177e4
LT
3069
3070 init_timer(&gp->link_timer);
3071 gp->link_timer.function = gem_link_timer;
3072 gp->link_timer.data = (unsigned long) gp;
3073
c4028958 3074 INIT_WORK(&gp->reset_task, gem_reset_task);
6aa20a22 3075
1da177e4
LT
3076 gp->lstate = link_down;
3077 gp->timer_ticks = 0;
3078 netif_carrier_off(dev);
3079
3080 gp->regs = ioremap(gemreg_base, gemreg_len);
3081 if (gp->regs == 0UL) {
3082 printk(KERN_ERR PFX "Cannot map device registers, "
3083 "aborting.\n");
3084 err = -EIO;
3085 goto err_out_free_res;
3086 }
3087
3088 /* On Apple, we want a reference to the Open Firmware device-tree
3089 * node. We use it for clock control.
3090 */
3091#ifdef CONFIG_PPC_PMAC
3092 gp->of_node = pci_device_to_OF_node(pdev);
3093#endif
3094
3095 /* Only Apple version supports WOL afaik */
3096 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3097 gp->has_wol = 1;
3098
3099 /* Make sure cell is enabled */
3100 gem_get_cell(gp);
3101
3102 /* Make sure everything is stopped and in init state */
3103 gem_reset(gp);
3104
3105 /* Fill up the mii_phy structure (even if we won't use it) */
3106 gp->phy_mii.dev = dev;
3107 gp->phy_mii.mdio_read = _phy_read;
3108 gp->phy_mii.mdio_write = _phy_write;
3c326fe9
BH
3109#ifdef CONFIG_PPC_PMAC
3110 gp->phy_mii.platform_data = gp->of_node;
3111#endif
1da177e4
LT
3112 /* By default, we start with autoneg */
3113 gp->want_autoneg = 1;
3114
3115 /* Check fifo sizes, PHY type, etc... */
3116 if (gem_check_invariants(gp)) {
3117 err = -ENODEV;
3118 goto err_out_iounmap;
3119 }
3120
3121 /* It is guaranteed that the returned buffer will be at least
3122 * PAGE_SIZE aligned.
3123 */
3124 gp->init_block = (struct gem_init_block *)
3125 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3126 &gp->gblock_dvma);
3127 if (!gp->init_block) {
3128 printk(KERN_ERR PFX "Cannot allocate init block, "
3129 "aborting.\n");
3130 err = -ENOMEM;
3131 goto err_out_iounmap;
3132 }
3133
3134 if (gem_get_device_address(gp))
3135 goto err_out_free_consistent;
3136
3137 dev->open = gem_open;
3138 dev->stop = gem_close;
3139 dev->hard_start_xmit = gem_start_xmit;
3140 dev->get_stats = gem_get_stats;
3141 dev->set_multicast_list = gem_set_multicast;
3142 dev->do_ioctl = gem_ioctl;
3143 dev->poll = gem_poll;
3144 dev->weight = 64;
3145 dev->ethtool_ops = &gem_ethtool_ops;
3146 dev->tx_timeout = gem_tx_timeout;
3147 dev->watchdog_timeo = 5 * HZ;
3148 dev->change_mtu = gem_change_mtu;
3149 dev->irq = pdev->irq;
3150 dev->dma = 0;
09c72ec8 3151 dev->set_mac_address = gem_set_mac_address;
1da177e4
LT
3152#ifdef CONFIG_NET_POLL_CONTROLLER
3153 dev->poll_controller = gem_poll_controller;
3154#endif
3155
3156 /* Set that now, in case PM kicks in now */
3157 pci_set_drvdata(pdev, dev);
3158
3159 /* Detect & init PHY, start autoneg, we release the cell now
3160 * too, it will be managed by whoever needs it
3161 */
3162 gem_init_phy(gp);
3163
3164 spin_lock_irq(&gp->lock);
3165 gem_put_cell(gp);
3166 spin_unlock_irq(&gp->lock);
3167
3168 /* Register with kernel */
3169 if (register_netdev(dev)) {
3170 printk(KERN_ERR PFX "Cannot register net device, "
3171 "aborting.\n");
3172 err = -ENOMEM;
3173 goto err_out_free_consistent;
3174 }
3175
3176 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3177 dev->name);
3178 for (i = 0; i < 6; i++)
3179 printk("%2.2x%c", dev->dev_addr[i],
3180 i == 5 ? ' ' : ':');
3181 printk("\n");
3182
3183 if (gp->phy_type == phy_mii_mdio0 ||
3184 gp->phy_type == phy_mii_mdio1)
6aa20a22 3185 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
1da177e4
LT
3186 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3187
3188 /* GEM can do it all... */
3189 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3190 if (pci_using_dac)
3191 dev->features |= NETIF_F_HIGHDMA;
3192
3193 return 0;
3194
3195err_out_free_consistent:
3196 gem_remove_one(pdev);
3197err_out_iounmap:
3198 gem_put_cell(gp);
3199 iounmap(gp->regs);
3200
3201err_out_free_res:
3202 pci_release_regions(pdev);
3203
3204err_out_free_netdev:
3205 free_netdev(dev);
3206err_disable_device:
3207 pci_disable_device(pdev);
3208 return err;
3209
3210}
3211
3212
3213static struct pci_driver gem_driver = {
3214 .name = GEM_MODULE_NAME,
3215 .id_table = gem_pci_tbl,
3216 .probe = gem_init_one,
14904398 3217 .remove = gem_remove_one,
1da177e4
LT
3218#ifdef CONFIG_PM
3219 .suspend = gem_suspend,
3220 .resume = gem_resume,
3221#endif /* CONFIG_PM */
3222};
3223
3224static int __init gem_init(void)
3225{
29917620 3226 return pci_register_driver(&gem_driver);
1da177e4
LT
3227}
3228
3229static void __exit gem_cleanup(void)
3230{
3231 pci_unregister_driver(&gem_driver);
3232}
3233
3234module_init(gem_init);
3235module_exit(gem_cleanup);
This page took 0.554113 seconds and 5 git commands to generate.