IRQ: Typedef the IRQ handler function type
[deliverable/linux.git] / drivers / net / tc35815.c
CommitLineData
1da177e4
LT
1/* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
2 *
3 * Copyright 2001 MontaVista Software Inc.
6aa20a22 4 * Author: MontaVista Software, Inc.
1da177e4
LT
5 * ahennessy@mvista.com
6 *
7 * Based on skelton.c by Donald Becker.
8 * Copyright (C) 2000-2001 Toshiba Corporation
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
16 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
21 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
22 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 * You should have received a copy of the GNU General Public License along
27 * with this program; if not, write to the Free Software Foundation, Inc.,
28 * 675 Mass Ave, Cambridge, MA 02139, USA.
29 */
30
31static const char *version =
32 "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
33
34#include <linux/module.h>
35#include <linux/kernel.h>
36#include <linux/types.h>
37#include <linux/fcntl.h>
38#include <linux/interrupt.h>
39#include <linux/ioport.h>
40#include <linux/in.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/errno.h>
44#include <linux/init.h>
45#include <linux/netdevice.h>
46#include <linux/etherdevice.h>
47#include <linux/skbuff.h>
48#include <linux/delay.h>
49#include <linux/pci.h>
50#include <linux/proc_fs.h>
51#include <linux/spinlock.h>
52#include <linux/bitops.h>
53
54#include <asm/system.h>
55#include <asm/io.h>
56#include <asm/dma.h>
57#include <asm/byteorder.h>
58
59/*
60 * The name of the card. Is used for messages and in the requests for
61 * io regions, irqs and dma channels
62 */
63static const char* cardname = "TC35815CF";
64#define TC35815_PROC_ENTRY "net/tc35815"
65
66#define TC35815_MODULE_NAME "TC35815CF"
67#define TX_TIMEOUT (4*HZ)
68
69/* First, a few definitions that the brave might change. */
70
71/* use 0 for production, 1 for verification, >2 for debug */
72#ifndef TC35815_DEBUG
73#define TC35815_DEBUG 1
74#endif
75static unsigned int tc35815_debug = TC35815_DEBUG;
76
77#define GATHER_TXINT /* On-Demand Tx Interrupt */
78
79#define vtonocache(p) KSEG1ADDR(virt_to_phys(p))
80
81/*
82 * Registers
83 */
84struct tc35815_regs {
85 volatile __u32 DMA_Ctl; /* 0x00 */
86 volatile __u32 TxFrmPtr;
87 volatile __u32 TxThrsh;
88 volatile __u32 TxPollCtr;
89 volatile __u32 BLFrmPtr;
90 volatile __u32 RxFragSize;
91 volatile __u32 Int_En;
92 volatile __u32 FDA_Bas;
93 volatile __u32 FDA_Lim; /* 0x20 */
94 volatile __u32 Int_Src;
95 volatile __u32 unused0[2];
96 volatile __u32 PauseCnt;
97 volatile __u32 RemPauCnt;
98 volatile __u32 TxCtlFrmStat;
99 volatile __u32 unused1;
100 volatile __u32 MAC_Ctl; /* 0x40 */
101 volatile __u32 CAM_Ctl;
102 volatile __u32 Tx_Ctl;
103 volatile __u32 Tx_Stat;
104 volatile __u32 Rx_Ctl;
105 volatile __u32 Rx_Stat;
106 volatile __u32 MD_Data;
107 volatile __u32 MD_CA;
108 volatile __u32 CAM_Adr; /* 0x60 */
109 volatile __u32 CAM_Data;
110 volatile __u32 CAM_Ena;
111 volatile __u32 PROM_Ctl;
112 volatile __u32 PROM_Data;
113 volatile __u32 Algn_Cnt;
114 volatile __u32 CRC_Cnt;
115 volatile __u32 Miss_Cnt;
116};
117
118/*
119 * Bit assignments
120 */
121/* DMA_Ctl bit asign ------------------------------------------------------- */
122#define DMA_IntMask 0x00040000 /* 1:Interupt mask */
123#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
124#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
125#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
126#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
127#define DMA_TestMode 0x00002000 /* 1:Test Mode */
128#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
129#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
130
131/* RxFragSize bit asign ---------------------------------------------------- */
132#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
133#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
134
135/* MAC_Ctl bit asign ------------------------------------------------------- */
136#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
137#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
138#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
139#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
140#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
141#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
142#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
143#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
144#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
145#define MAC_Reset 0x00000004 /* 1:Software Reset */
146#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
147#define MAC_HaltReq 0x00000001 /* 1:Halt request */
148
149/* PROM_Ctl bit asign ------------------------------------------------------ */
150#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
151#define PROM_Read 0x00004000 /*10:Read operation */
152#define PROM_Write 0x00002000 /*01:Write operation */
153#define PROM_Erase 0x00006000 /*11:Erase operation */
154 /*00:Enable or Disable Writting, */
155 /* as specified in PROM_Addr. */
156#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
157 /*00xxxx: disable */
158
159/* CAM_Ctl bit asign ------------------------------------------------------- */
160#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
161#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
162 /* accept other */
163#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
164#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
165#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
166
167/* CAM_Ena bit asign ------------------------------------------------------- */
168#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
169#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
170#define CAM_Ena_Bit(index) (1<<(index))
171#define CAM_ENTRY_DESTINATION 0
172#define CAM_ENTRY_SOURCE 1
173#define CAM_ENTRY_MACCTL 20
174
175/* Tx_Ctl bit asign -------------------------------------------------------- */
176#define Tx_En 0x00000001 /* 1:Transmit enable */
177#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
178#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
179#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
180#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
181#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
182#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
183#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
184#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
185#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
186#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
187#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
188
189/* Tx_Stat bit asign ------------------------------------------------------- */
190#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
191#define Tx_ExColl 0x00000010 /* Excessive Collision */
192#define Tx_TXDefer 0x00000020 /* Transmit Defered */
193#define Tx_Paused 0x00000040 /* Transmit Paused */
194#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
195#define Tx_Under 0x00000100 /* Underrun */
196#define Tx_Defer 0x00000200 /* Deferral */
197#define Tx_NCarr 0x00000400 /* No Carrier */
198#define Tx_10Stat 0x00000800 /* 10Mbps Status */
199#define Tx_LateColl 0x00001000 /* Late Collision */
200#define Tx_TxPar 0x00002000 /* Tx Parity Error */
201#define Tx_Comp 0x00004000 /* Completion */
202#define Tx_Halted 0x00008000 /* Tx Halted */
203#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
204
205/* Rx_Ctl bit asign -------------------------------------------------------- */
206#define Rx_EnGood 0x00004000 /* 1:Enable Good */
207#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
208#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
209#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
210#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
211#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
212#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
213#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
214#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
215#define Rx_LongEn 0x00000004 /* 1:Long Enable */
216#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
217#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
218
219/* Rx_Stat bit asign ------------------------------------------------------- */
220#define Rx_Halted 0x00008000 /* Rx Halted */
221#define Rx_Good 0x00004000 /* Rx Good */
222#define Rx_RxPar 0x00002000 /* Rx Parity Error */
223 /* 0x00001000 not use */
224#define Rx_LongErr 0x00000800 /* Rx Long Error */
225#define Rx_Over 0x00000400 /* Rx Overflow */
226#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
227#define Rx_Align 0x00000100 /* Rx Alignment Error */
228#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
229#define Rx_IntRx 0x00000040 /* Rx Interrupt */
230#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
231
232#define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */
233
234/* Int_En bit asign -------------------------------------------------------- */
235#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
236#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Control Complete Enable */
237#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
238#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
239#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
240#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
241#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
242#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
243#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
244#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
245#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
246#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
247 /* Exhausted Enable */
248
249/* Int_Src bit asign ------------------------------------------------------- */
250#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
251#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
252#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
253#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
254#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
255#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
256#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
257#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
258#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
259#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
260#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
261#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
262#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
263#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
264#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
265
266/* MD_CA bit asign --------------------------------------------------------- */
267#define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */
268#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
269#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
270
271
272/* MII register offsets */
273#define MII_CONTROL 0x0000
274#define MII_STATUS 0x0001
275#define MII_PHY_ID0 0x0002
276#define MII_PHY_ID1 0x0003
277#define MII_ANAR 0x0004
278#define MII_ANLPAR 0x0005
279#define MII_ANER 0x0006
280/* MII Control register bit definitions. */
281#define MIICNTL_FDX 0x0100
282#define MIICNTL_RST_AUTO 0x0200
283#define MIICNTL_ISOLATE 0x0400
284#define MIICNTL_PWRDWN 0x0800
285#define MIICNTL_AUTO 0x1000
286#define MIICNTL_SPEED 0x2000
287#define MIICNTL_LPBK 0x4000
288#define MIICNTL_RESET 0x8000
289/* MII Status register bit significance. */
290#define MIISTAT_EXT 0x0001
291#define MIISTAT_JAB 0x0002
292#define MIISTAT_LINK 0x0004
293#define MIISTAT_CAN_AUTO 0x0008
294#define MIISTAT_FAULT 0x0010
295#define MIISTAT_AUTO_DONE 0x0020
296#define MIISTAT_CAN_T 0x0800
297#define MIISTAT_CAN_T_FDX 0x1000
298#define MIISTAT_CAN_TX 0x2000
299#define MIISTAT_CAN_TX_FDX 0x4000
300#define MIISTAT_CAN_T4 0x8000
301/* MII Auto-Negotiation Expansion/RemoteEnd Register Bits */
302#define MII_AN_TX_FDX 0x0100
303#define MII_AN_TX_HDX 0x0080
304#define MII_AN_10_FDX 0x0040
305#define MII_AN_10_HDX 0x0020
306
307
308/*
309 * Descriptors
310 */
311
312/* Frame descripter */
313struct FDesc {
314 volatile __u32 FDNext;
315 volatile __u32 FDSystem;
316 volatile __u32 FDStat;
317 volatile __u32 FDCtl;
318};
319
320/* Buffer descripter */
321struct BDesc {
322 volatile __u32 BuffData;
323 volatile __u32 BDCtl;
324};
325
326#define FD_ALIGN 16
327
328/* Frame Descripter bit asign ---------------------------------------------- */
329#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
330#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
331#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
332#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
333#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
334#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
335#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
336#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
337#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
338#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
339#define FD_BDCnt_SHIFT 16
340
341/* Buffer Descripter bit asign --------------------------------------------- */
342#define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */
343#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
344#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
345#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
346#define BD_RxBDID_SHIFT 16
347#define BD_RxBDSeqN_SHIFT 24
348
349
350/* Some useful constants. */
351#undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */
352
353#ifdef NO_CHECK_CARRIER
354#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
355 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
356 Tx_En) /* maybe 0x7d01 */
357#else
358#define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \
359 Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \
360 Tx_En) /* maybe 0x7f01 */
361#endif
362#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
363 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
364
365#define INT_EN_CMD (Int_NRAbtEn | \
366 Int_DParDEn | Int_DParErrEn | \
367 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
368 Int_STargAbtEn | \
369 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
370
371/* Tuning parameters */
372#define DMA_BURST_SIZE 32
373#define TX_THRESHOLD 1024
374
375#define FD_PAGE_NUM 2
376#define FD_PAGE_ORDER 1
377/* 16 + RX_BUF_PAGES * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*2 */
378#define RX_BUF_PAGES 8 /* >= 2 */
379#define RX_FD_NUM 250 /* >= 32 */
380#define TX_FD_NUM 128
381
382struct TxFD {
383 struct FDesc fd;
384 struct BDesc bd;
385 struct BDesc unused;
386};
387
388struct RxFD {
389 struct FDesc fd;
390 struct BDesc bd[0]; /* variable length */
391};
392
393struct FrFD {
394 struct FDesc fd;
395 struct BDesc bd[RX_BUF_PAGES];
396};
397
398
399extern unsigned long tc_readl(volatile __u32 *addr);
400extern void tc_writel(unsigned long data, volatile __u32 *addr);
401
402dma_addr_t priv_dma_handle;
403
404/* Information that need to be kept for each board. */
405struct tc35815_local {
406 struct net_device *next_module;
407
408 /* statistics */
409 struct net_device_stats stats;
410 struct {
411 int max_tx_qlen;
412 int tx_ints;
413 int rx_ints;
414 } lstats;
415
416 int tbusy;
417 int option;
418#define TC35815_OPT_AUTO 0x00
419#define TC35815_OPT_10M 0x01
420#define TC35815_OPT_100M 0x02
421#define TC35815_OPT_FULLDUP 0x04
422 int linkspeed; /* 10 or 100 */
423 int fullduplex;
424
425 /*
426 * Transmitting: Batch Mode.
427 * 1 BD in 1 TxFD.
428 * Receiving: Packing Mode.
429 * 1 circular FD for Free Buffer List.
430 * RX_BUG_PAGES BD in Free Buffer FD.
431 * One Free Buffer BD has PAGE_SIZE data buffer.
432 */
433 struct pci_dev *pdev;
434 dma_addr_t fd_buf_dma_handle;
435 void * fd_buf; /* for TxFD, TxFD, FrFD */
436 struct TxFD *tfd_base;
437 int tfd_start;
438 int tfd_end;
439 struct RxFD *rfd_base;
440 struct RxFD *rfd_limit;
441 struct RxFD *rfd_cur;
442 struct FrFD *fbl_ptr;
443 unsigned char fbl_curid;
444 dma_addr_t data_buf_dma_handle[RX_BUF_PAGES];
445 void * data_buf[RX_BUF_PAGES]; /* packing */
446 spinlock_t lock;
447};
448
449/* Index to functions, as function prototypes. */
450
451static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq);
452
453static int tc35815_open(struct net_device *dev);
454static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
455static void tc35815_tx_timeout(struct net_device *dev);
456static irqreturn_t tc35815_interrupt(int irq, void *dev_id, struct pt_regs *regs);
457static void tc35815_rx(struct net_device *dev);
458static void tc35815_txdone(struct net_device *dev);
459static int tc35815_close(struct net_device *dev);
460static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
461static void tc35815_set_multicast_list(struct net_device *dev);
462
463static void tc35815_chip_reset(struct net_device *dev);
464static void tc35815_chip_init(struct net_device *dev);
465static void tc35815_phy_chip_init(struct net_device *dev);
466
467/* A list of all installed tc35815 devices. */
468static struct net_device *root_tc35815_dev = NULL;
469
470/*
471 * PCI device identifiers for "new style" Linux PCI Device Drivers
472 */
473static struct pci_device_id tc35815_pci_tbl[] = {
474 { PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
475 { 0, }
476};
477
478MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl);
479
480int
481tc35815_probe(struct pci_dev *pdev,
482 const struct pci_device_id *ent)
483{
484 int err = 0;
485 int ret;
486 unsigned long pci_memaddr;
487 unsigned int pci_irq_line;
488
489 printk(KERN_INFO "tc35815_probe: found device %#08x.%#08x\n", ent->vendor, ent->device);
490
491 err = pci_enable_device(pdev);
492 if (err)
493 return err;
494
495 pci_memaddr = pci_resource_start (pdev, 1);
496
497 printk(KERN_INFO " pci_memaddr=%#08lx resource_flags=%#08lx\n", pci_memaddr, pci_resource_flags (pdev, 0));
498
499 if (!pci_memaddr) {
500 printk(KERN_WARNING "no PCI MEM resources, aborting\n");
501 ret = -ENODEV;
502 goto err_out;
503 }
504 pci_irq_line = pdev->irq;
505 /* irq disabled. */
506 if (pci_irq_line == 0) {
507 printk(KERN_WARNING "no PCI irq, aborting\n");
508 ret = -ENODEV;
509 goto err_out;
510 }
511
512 ret = tc35815_probe1(pdev, pci_memaddr, pci_irq_line);
513 if (ret)
514 goto err_out;
515
516 pci_set_master(pdev);
517
518 return 0;
519
520err_out:
521 pci_disable_device(pdev);
522 return ret;
523}
524
525static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq)
526{
527 static unsigned version_printed = 0;
528 int i, ret;
529 struct tc35815_local *lp;
530 struct tc35815_regs *tr;
531 struct net_device *dev;
532
533 /* Allocate a new 'dev' if needed. */
534 dev = alloc_etherdev(sizeof(struct tc35815_local));
535 if (dev == NULL)
536 return -ENOMEM;
537
538 /*
539 * alloc_etherdev allocs and zeros dev->priv
540 */
541 lp = dev->priv;
542
543 if (tc35815_debug && version_printed++ == 0)
544 printk(KERN_DEBUG "%s", version);
545
546 /* Fill in the 'dev' fields. */
547 dev->irq = irq;
548 dev->base_addr = (unsigned long)ioremap(base_addr,
549 sizeof(struct tc35815_regs));
550 if (!dev->base_addr) {
551 ret = -ENOMEM;
552 goto err_out;
553 }
554 tr = (struct tc35815_regs*)dev->base_addr;
555
556 tc35815_chip_reset(dev);
557
558 /* Retrieve and print the ethernet address. */
559 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
560 ;
561 for (i = 0; i < 6; i += 2) {
562 unsigned short data;
563 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
564 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
565 ;
566 data = tc_readl(&tr->PROM_Data);
567 dev->dev_addr[i] = data & 0xff;
568 dev->dev_addr[i+1] = data >> 8;
569 }
570
571 /* Initialize the device structure. */
572 lp->pdev = pdev;
573 lp->next_module = root_tc35815_dev;
574 root_tc35815_dev = dev;
575
576 spin_lock_init(&lp->lock);
577
578 if (dev->mem_start > 0) {
579 lp->option = dev->mem_start;
580 if ((lp->option & TC35815_OPT_10M) &&
581 (lp->option & TC35815_OPT_100M)) {
582 /* if both speed speficied, auto select. */
583 lp->option &= ~(TC35815_OPT_10M | TC35815_OPT_100M);
584 }
585 }
586 //XXX fixme
587 lp->option |= TC35815_OPT_10M;
588
589 /* do auto negotiation */
590 tc35815_phy_chip_init(dev);
591
592 dev->open = tc35815_open;
593 dev->stop = tc35815_close;
594 dev->tx_timeout = tc35815_tx_timeout;
595 dev->watchdog_timeo = TX_TIMEOUT;
596 dev->hard_start_xmit = tc35815_send_packet;
597 dev->get_stats = tc35815_get_stats;
598 dev->set_multicast_list = tc35815_set_multicast_list;
599 SET_MODULE_OWNER(dev);
600 SET_NETDEV_DEV(dev, &pdev->dev);
601
602 ret = register_netdev(dev);
603 if (ret)
604 goto err_out_iounmap;
605
606 printk(KERN_INFO "%s: %s found at %#x, irq %d, MAC",
607 dev->name, cardname, base_addr, irq);
608 for (i = 0; i < 6; i++)
609 printk(" %2.2x", dev->dev_addr[i]);
610 printk("\n");
611 printk(KERN_INFO "%s: linkspeed %dMbps, %s Duplex\n",
612 dev->name, lp->linkspeed, lp->fullduplex ? "Full" : "Half");
613
614 return 0;
615
616err_out_iounmap:
617 iounmap((void *) dev->base_addr);
618err_out:
619 free_netdev(dev);
620 return ret;
621}
622
623
624static int
625tc35815_init_queues(struct net_device *dev)
626{
627 struct tc35815_local *lp = dev->priv;
628 int i;
629 unsigned long fd_addr;
630
631 if (!lp->fd_buf) {
632 if (sizeof(struct FDesc) +
633 sizeof(struct BDesc) * RX_BUF_PAGES +
634 sizeof(struct FDesc) * RX_FD_NUM +
635 sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM) {
636 printk(KERN_WARNING "%s: Invalid Queue Size.\n", dev->name);
637 return -ENOMEM;
638 }
639
640 if ((lp->fd_buf = (void *)__get_free_pages(GFP_KERNEL, FD_PAGE_ORDER)) == 0)
641 return -ENOMEM;
642 for (i = 0; i < RX_BUF_PAGES; i++) {
643 if ((lp->data_buf[i] = (void *)get_zeroed_page(GFP_KERNEL)) == 0) {
644 while (--i >= 0) {
645 free_page((unsigned long)lp->data_buf[i]);
646 lp->data_buf[i] = 0;
647 }
648 free_page((unsigned long)lp->fd_buf);
649 lp->fd_buf = 0;
650 return -ENOMEM;
651 }
652#ifdef __mips__
653 dma_cache_wback_inv((unsigned long)lp->data_buf[i], PAGE_SIZE * FD_PAGE_NUM);
654#endif
655 }
656#ifdef __mips__
657 dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM);
658#endif
659 } else {
660 clear_page(lp->fd_buf);
661#ifdef __mips__
662 dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM);
663#endif
664 }
665#ifdef __mips__
6aa20a22 666 fd_addr = (unsigned long)vtonocache(lp->fd_buf);
1da177e4
LT
667#else
668 fd_addr = (unsigned long)lp->fd_buf;
669#endif
670
671 /* Free Descriptors (for Receive) */
672 lp->rfd_base = (struct RxFD *)fd_addr;
673 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
674 for (i = 0; i < RX_FD_NUM; i++) {
675 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
676 }
677 lp->rfd_cur = lp->rfd_base;
678 lp->rfd_limit = (struct RxFD *)(fd_addr -
679 sizeof(struct FDesc) -
680 sizeof(struct BDesc) * 30);
681
682 /* Transmit Descriptors */
683 lp->tfd_base = (struct TxFD *)fd_addr;
684 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
685 for (i = 0; i < TX_FD_NUM; i++) {
686 lp->tfd_base[i].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[i+1]));
687 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
688 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
689 }
690 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[0]));
691 lp->tfd_start = 0;
692 lp->tfd_end = 0;
693
694 /* Buffer List (for Receive) */
695 lp->fbl_ptr = (struct FrFD *)fd_addr;
696 lp->fbl_ptr->fd.FDNext = cpu_to_le32(virt_to_bus(lp->fbl_ptr));
697 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_PAGES | FD_CownsFD);
698 for (i = 0; i < RX_BUF_PAGES; i++) {
699 lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(virt_to_bus(lp->data_buf[i]));
700 /* BDID is index of FrFD.bd[] */
701 lp->fbl_ptr->bd[i].BDCtl =
702 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | PAGE_SIZE);
703 }
704 lp->fbl_curid = 0;
705
706 return 0;
707}
708
709static void
710tc35815_clear_queues(struct net_device *dev)
711{
712 struct tc35815_local *lp = dev->priv;
713 int i;
714
715 for (i = 0; i < TX_FD_NUM; i++) {
716 struct sk_buff *skb = (struct sk_buff *)
717 le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
718 if (skb)
719 dev_kfree_skb_any(skb);
720 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
721 }
722
723 tc35815_init_queues(dev);
724}
725
726static void
727tc35815_free_queues(struct net_device *dev)
728{
729 struct tc35815_local *lp = dev->priv;
730 int i;
731
732 if (lp->tfd_base) {
733 for (i = 0; i < TX_FD_NUM; i++) {
734 struct sk_buff *skb = (struct sk_buff *)
735 le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
736 if (skb)
737 dev_kfree_skb_any(skb);
738 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0);
739 }
740 }
741
742 lp->rfd_base = NULL;
743 lp->rfd_base = NULL;
744 lp->rfd_limit = NULL;
745 lp->rfd_cur = NULL;
746 lp->fbl_ptr = NULL;
747
748 for (i = 0; i < RX_BUF_PAGES; i++) {
749 if (lp->data_buf[i])
750 free_page((unsigned long)lp->data_buf[i]);
751 lp->data_buf[i] = 0;
752 }
753 if (lp->fd_buf)
754 __free_pages(lp->fd_buf, FD_PAGE_ORDER);
755 lp->fd_buf = NULL;
756}
757
758static void
759dump_txfd(struct TxFD *fd)
760{
761 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
762 le32_to_cpu(fd->fd.FDNext),
763 le32_to_cpu(fd->fd.FDSystem),
764 le32_to_cpu(fd->fd.FDStat),
765 le32_to_cpu(fd->fd.FDCtl));
766 printk("BD: ");
767 printk(" %08x %08x",
768 le32_to_cpu(fd->bd.BuffData),
769 le32_to_cpu(fd->bd.BDCtl));
770 printk("\n");
771}
772
773static int
774dump_rxfd(struct RxFD *fd)
775{
776 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
777 if (bd_count > 8)
778 bd_count = 8;
779 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
780 le32_to_cpu(fd->fd.FDNext),
781 le32_to_cpu(fd->fd.FDSystem),
782 le32_to_cpu(fd->fd.FDStat),
783 le32_to_cpu(fd->fd.FDCtl));
784 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
785 return 0;
786 printk("BD: ");
787 for (i = 0; i < bd_count; i++)
788 printk(" %08x %08x",
789 le32_to_cpu(fd->bd[i].BuffData),
790 le32_to_cpu(fd->bd[i].BDCtl));
791 printk("\n");
792 return bd_count;
793}
794
795static void
796dump_frfd(struct FrFD *fd)
797{
798 int i;
799 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
800 le32_to_cpu(fd->fd.FDNext),
801 le32_to_cpu(fd->fd.FDSystem),
802 le32_to_cpu(fd->fd.FDStat),
803 le32_to_cpu(fd->fd.FDCtl));
804 printk("BD: ");
805 for (i = 0; i < RX_BUF_PAGES; i++)
806 printk(" %08x %08x",
807 le32_to_cpu(fd->bd[i].BuffData),
808 le32_to_cpu(fd->bd[i].BDCtl));
809 printk("\n");
810}
811
812static void
813panic_queues(struct net_device *dev)
814{
815 struct tc35815_local *lp = dev->priv;
816 int i;
817
818 printk("TxFD base %p, start %d, end %d\n",
819 lp->tfd_base, lp->tfd_start, lp->tfd_end);
820 printk("RxFD base %p limit %p cur %p\n",
821 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
822 printk("FrFD %p\n", lp->fbl_ptr);
823 for (i = 0; i < TX_FD_NUM; i++)
824 dump_txfd(&lp->tfd_base[i]);
825 for (i = 0; i < RX_FD_NUM; i++) {
826 int bd_count = dump_rxfd(&lp->rfd_base[i]);
827 i += (bd_count + 1) / 2; /* skip BDs */
828 }
829 dump_frfd(lp->fbl_ptr);
830 panic("%s: Illegal queue state.", dev->name);
831}
832
833#if 0
834static void print_buf(char *add, int length)
835{
836 int i;
837 int len = length;
838
839 printk("print_buf(%08x)(%x)\n", (unsigned int) add,length);
840
841 if (len > 100)
842 len = 100;
843 for (i = 0; i < len; i++) {
844 printk(" %2.2X", (unsigned char) add[i]);
845 if (!(i % 16))
846 printk("\n");
847 }
848 printk("\n");
849}
850#endif
851
852static void print_eth(char *add)
853{
854 int i;
855
856 printk("print_eth(%08x)\n", (unsigned int) add);
857 for (i = 0; i < 6; i++)
858 printk(" %2.2X", (unsigned char) add[i + 6]);
859 printk(" =>");
860 for (i = 0; i < 6; i++)
861 printk(" %2.2X", (unsigned char) add[i]);
862 printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]);
863}
864
865/*
866 * Open/initialize the board. This is called (in the current kernel)
867 * sometime after booting when the 'ifconfig' program is run.
868 *
869 * This routine should set everything up anew at each open, even
870 * registers that "should" only need to be set once at boot, so that
871 * there is non-reboot way to recover if something goes wrong.
872 */
873static int
874tc35815_open(struct net_device *dev)
875{
876 struct tc35815_local *lp = dev->priv;
877 /*
878 * This is used if the interrupt line can turned off (shared).
879 * See 3c503.c for an example of selecting the IRQ at config-time.
880 */
881
882 if (dev->irq == 0 ||
1fb9df5d 883 request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, cardname, dev)) {
1da177e4
LT
884 return -EAGAIN;
885 }
886
887 tc35815_chip_reset(dev);
888
889 if (tc35815_init_queues(dev) != 0) {
890 free_irq(dev->irq, dev);
891 return -EAGAIN;
892 }
893
894 /* Reset the hardware here. Don't forget to set the station address. */
895 tc35815_chip_init(dev);
896
897 lp->tbusy = 0;
898 netif_start_queue(dev);
899
900 return 0;
901}
902
903static void tc35815_tx_timeout(struct net_device *dev)
904{
905 struct tc35815_local *lp = dev->priv;
906 struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr;
907 unsigned long flags;
908
909 spin_lock_irqsave(&lp->lock, flags);
910 printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
911 dev->name, tc_readl(&tr->Tx_Stat));
912 /* Try to restart the adaptor. */
913 tc35815_chip_reset(dev);
914 tc35815_clear_queues(dev);
915 tc35815_chip_init(dev);
916 lp->tbusy=0;
917 spin_unlock_irqrestore(&lp->lock, flags);
918 dev->trans_start = jiffies;
919 netif_wake_queue(dev);
920}
921
922static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
923{
924 struct tc35815_local *lp = dev->priv;
925 struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr;
926
927 if (netif_queue_stopped(dev)) {
928 /*
929 * If we get here, some higher level has decided we are broken.
930 * There should really be a "kick me" function call instead.
931 */
932 int tickssofar = jiffies - dev->trans_start;
933 if (tickssofar < 5)
934 return 1;
935 printk(KERN_WARNING "%s: transmit timed out, status %#lx\n",
936 dev->name, tc_readl(&tr->Tx_Stat));
937 /* Try to restart the adaptor. */
938 tc35815_chip_reset(dev);
939 tc35815_clear_queues(dev);
940 tc35815_chip_init(dev);
941 lp->tbusy=0;
942 dev->trans_start = jiffies;
943 netif_wake_queue(dev);
944 }
945
946 /*
947 * Block a timer-based transmit from overlapping. This could better be
948 * done with atomic_swap(1, lp->tbusy), but set_bit() works as well.
949 */
950 if (test_and_set_bit(0, (void*)&lp->tbusy) != 0) {
951 printk(KERN_WARNING "%s: Transmitter access conflict.\n", dev->name);
952 dev_kfree_skb_any(skb);
953 } else {
954 short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
955 unsigned char *buf = skb->data;
956 struct TxFD *txfd = &lp->tfd_base[lp->tfd_start];
957 unsigned long flags;
958 lp->stats.tx_bytes += skb->len;
959
960
961#ifdef __mips__
962 dma_cache_wback_inv((unsigned long)buf, length);
963#endif
964
965 spin_lock_irqsave(&lp->lock, flags);
966
967 /* failsafe... */
968 if (lp->tfd_start != lp->tfd_end)
969 tc35815_txdone(dev);
970
971
972 txfd->bd.BuffData = cpu_to_le32(virt_to_bus(buf));
973
974 txfd->bd.BDCtl = cpu_to_le32(length);
975 txfd->fd.FDSystem = cpu_to_le32((__u32)skb);
976 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
977
978 if (lp->tfd_start == lp->tfd_end) {
979 /* Start DMA Transmitter. */
980 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
981#ifdef GATHER_TXINT
982 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
983#endif
984 if (tc35815_debug > 2) {
985 printk("%s: starting TxFD.\n", dev->name);
986 dump_txfd(txfd);
987 if (tc35815_debug > 3)
988 print_eth(buf);
989 }
990 tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr);
991 } else {
992 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
993 if (tc35815_debug > 2) {
994 printk("%s: queueing TxFD.\n", dev->name);
995 dump_txfd(txfd);
996 if (tc35815_debug > 3)
997 print_eth(buf);
998 }
999 }
1000 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1001
1002 dev->trans_start = jiffies;
1003
1004 if ((lp->tfd_start + 1) % TX_FD_NUM != lp->tfd_end) {
1005 /* we can send another packet */
1006 lp->tbusy = 0;
1007 netif_start_queue(dev);
1008 } else {
1009 netif_stop_queue(dev);
1010 if (tc35815_debug > 1)
1011 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1012 }
1013 spin_unlock_irqrestore(&lp->lock, flags);
1014 }
1015
1016 return 0;
1017}
1018
1019#define FATAL_ERROR_INT \
1020 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1021static void tc35815_fatal_error_interrupt(struct net_device *dev, int status)
1022{
1023 static int count;
1024 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1025 dev->name, status);
1026
1027 if (status & Int_IntPCI)
1028 printk(" IntPCI");
1029 if (status & Int_DmParErr)
1030 printk(" DmParErr");
1031 if (status & Int_IntNRAbt)
1032 printk(" IntNRAbt");
1033 printk("\n");
1034 if (count++ > 100)
1035 panic("%s: Too many fatal errors.", dev->name);
1036 printk(KERN_WARNING "%s: Resetting %s...\n", dev->name, cardname);
1037 /* Try to restart the adaptor. */
1038 tc35815_chip_reset(dev);
1039 tc35815_clear_queues(dev);
1040 tc35815_chip_init(dev);
1041}
1042
1043/*
1044 * The typical workload of the driver:
1045 * Handle the network interface interrupts.
1046 */
1047static irqreturn_t tc35815_interrupt(int irq, void *dev_id, struct pt_regs * regs)
1048{
1049 struct net_device *dev = dev_id;
1050 struct tc35815_regs *tr;
1051 struct tc35815_local *lp;
1052 int status, boguscount = 0;
1053 int handled = 0;
1054
1055 if (dev == NULL) {
1056 printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq);
1057 return IRQ_NONE;
1058 }
1059
1060 tr = (struct tc35815_regs*)dev->base_addr;
1061 lp = dev->priv;
1062
1063 do {
1064 status = tc_readl(&tr->Int_Src);
1065 if (status == 0)
1066 break;
1067 handled = 1;
1068 tc_writel(status, &tr->Int_Src); /* write to clear */
1069
1070 /* Fatal errors... */
1071 if (status & FATAL_ERROR_INT) {
1072 tc35815_fatal_error_interrupt(dev, status);
1073 break;
1074 }
1075 /* recoverable errors */
1076 if (status & Int_IntFDAEx) {
1077 /* disable FDAEx int. (until we make rooms...) */
1078 tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En);
1079 printk(KERN_WARNING
1080 "%s: Free Descriptor Area Exhausted (%#x).\n",
1081 dev->name, status);
1082 lp->stats.rx_dropped++;
1083 }
1084 if (status & Int_IntBLEx) {
1085 /* disable BLEx int. (until we make rooms...) */
1086 tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En);
1087 printk(KERN_WARNING
1088 "%s: Buffer List Exhausted (%#x).\n",
1089 dev->name, status);
1090 lp->stats.rx_dropped++;
1091 }
1092 if (status & Int_IntExBD) {
1093 printk(KERN_WARNING
1094 "%s: Excessive Buffer Descriptiors (%#x).\n",
1095 dev->name, status);
1096 lp->stats.rx_length_errors++;
1097 }
1098 /* normal notification */
1099 if (status & Int_IntMacRx) {
1100 /* Got a packet(s). */
1101 lp->lstats.rx_ints++;
1102 tc35815_rx(dev);
1103 }
1104 if (status & Int_IntMacTx) {
1105 lp->lstats.tx_ints++;
1106 tc35815_txdone(dev);
1107 }
1108 } while (++boguscount < 20) ;
1109
1110 return IRQ_RETVAL(handled);
1111}
1112
1113/* We have a good packet(s), get it/them out of the buffers. */
1114static void
1115tc35815_rx(struct net_device *dev)
1116{
1117 struct tc35815_local *lp = dev->priv;
1118 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1119 unsigned int fdctl;
1120 int i;
1121 int buf_free_count = 0;
1122 int fd_free_count = 0;
1123
1124 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1125 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1126 int pkt_len = fdctl & FD_FDLength_MASK;
1127 struct RxFD *next_rfd;
1128 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1129
1130 if (tc35815_debug > 2)
1131 dump_rxfd(lp->rfd_cur);
1132 if (status & Rx_Good) {
1133 /* Malloc up new buffer. */
1134 struct sk_buff *skb;
1135 unsigned char *data;
1136 int cur_bd, offset;
1137
1138 lp->stats.rx_bytes += pkt_len;
6aa20a22 1139
1da177e4
LT
1140 skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */
1141 if (skb == NULL) {
1142 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
1143 dev->name);
1144 lp->stats.rx_dropped++;
1145 break;
1146 }
1147 skb_reserve(skb, 2); /* 16 bit alignment */
1148 skb->dev = dev;
1149
1150 data = skb_put(skb, pkt_len);
1151
1152 /* copy from receive buffer */
1153 cur_bd = 0;
1154 offset = 0;
1155 while (offset < pkt_len && cur_bd < bd_count) {
1156 int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) &
1157 BD_BuffLength_MASK;
1158 void *rxbuf =
1159 bus_to_virt(le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData));
1160#ifdef __mips__
1161 dma_cache_inv((unsigned long)rxbuf, len);
1162#endif
1163 memcpy(data + offset, rxbuf, len);
1164 offset += len;
1165 cur_bd++;
1166 }
1167#if 0
1168 print_buf(data,pkt_len);
1169#endif
1170 if (tc35815_debug > 3)
1171 print_eth(data);
1172 skb->protocol = eth_type_trans(skb, dev);
1173 netif_rx(skb);
1174 lp->stats.rx_packets++;
1175 } else {
1176 lp->stats.rx_errors++;
1177 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1178 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1179 status &= ~(Rx_LongErr|Rx_CRCErr);
1180 status |= Rx_Over;
1181 }
1182 if (status & Rx_LongErr) lp->stats.rx_length_errors++;
1183 if (status & Rx_Over) lp->stats.rx_fifo_errors++;
1184 if (status & Rx_CRCErr) lp->stats.rx_crc_errors++;
1185 if (status & Rx_Align) lp->stats.rx_frame_errors++;
1186 }
1187
1188 if (bd_count > 0) {
1189 /* put Free Buffer back to controller */
1190 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1191 unsigned char id =
1192 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1193 if (id >= RX_BUF_PAGES) {
1194 printk("%s: invalid BDID.\n", dev->name);
1195 panic_queues(dev);
1196 }
1197 /* free old buffers */
1198 while (lp->fbl_curid != id) {
1199 bdctl = le32_to_cpu(lp->fbl_ptr->bd[lp->fbl_curid].BDCtl);
1200 if (bdctl & BD_CownsBD) {
1201 printk("%s: Freeing invalid BD.\n",
1202 dev->name);
1203 panic_queues(dev);
1204 }
1205 /* pass BD to controler */
1206 /* Note: BDLength was modified by chip. */
1207 lp->fbl_ptr->bd[lp->fbl_curid].BDCtl =
1208 cpu_to_le32(BD_CownsBD |
1209 (lp->fbl_curid << BD_RxBDID_SHIFT) |
1210 PAGE_SIZE);
1211 lp->fbl_curid =
1212 (lp->fbl_curid + 1) % RX_BUF_PAGES;
1213 if (tc35815_debug > 2) {
1214 printk("%s: Entering new FBD %d\n",
1215 dev->name, lp->fbl_curid);
1216 dump_frfd(lp->fbl_ptr);
1217 }
1218 buf_free_count++;
1219 }
1220 }
1221
1222 /* put RxFD back to controller */
1223 next_rfd = bus_to_virt(le32_to_cpu(lp->rfd_cur->fd.FDNext));
1224#ifdef __mips__
1225 next_rfd = (struct RxFD *)vtonocache(next_rfd);
1226#endif
1227 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1228 printk("%s: RxFD FDNext invalid.\n", dev->name);
1229 panic_queues(dev);
1230 }
1231 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1232 /* pass FD to controler */
1233 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); /* for debug */
1234 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1235 lp->rfd_cur++;
1236 fd_free_count++;
1237 }
1238
1239 lp->rfd_cur = next_rfd;
1240 }
1241
1242 /* re-enable BL/FDA Exhaust interrupts. */
1243 if (fd_free_count) {
1244 tc_writel(tc_readl(&tr->Int_En) | Int_FDAExEn, &tr->Int_En);
1245 if (buf_free_count)
1246 tc_writel(tc_readl(&tr->Int_En) | Int_BLExEn, &tr->Int_En);
1247 }
1248}
1249
1250#ifdef NO_CHECK_CARRIER
1251#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1252#else
1253#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1254#endif
1255
1256static void
1257tc35815_check_tx_stat(struct net_device *dev, int status)
1258{
1259 struct tc35815_local *lp = dev->priv;
1260 const char *msg = NULL;
1261
1262 /* count collisions */
1263 if (status & Tx_ExColl)
1264 lp->stats.collisions += 16;
1265 if (status & Tx_TxColl_MASK)
1266 lp->stats.collisions += status & Tx_TxColl_MASK;
1267
1268 /* WORKAROUND: ignore LostCrS in full duplex operation */
1269 if (lp->fullduplex)
1270 status &= ~Tx_NCarr;
1271
1272 if (!(status & TX_STA_ERR)) {
1273 /* no error. */
1274 lp->stats.tx_packets++;
1275 return;
1276 }
1277
1278 lp->stats.tx_errors++;
1279 if (status & Tx_ExColl) {
1280 lp->stats.tx_aborted_errors++;
1281 msg = "Excessive Collision.";
1282 }
1283 if (status & Tx_Under) {
1284 lp->stats.tx_fifo_errors++;
1285 msg = "Tx FIFO Underrun.";
1286 }
1287 if (status & Tx_Defer) {
1288 lp->stats.tx_fifo_errors++;
1289 msg = "Excessive Deferral.";
1290 }
1291#ifndef NO_CHECK_CARRIER
1292 if (status & Tx_NCarr) {
1293 lp->stats.tx_carrier_errors++;
1294 msg = "Lost Carrier Sense.";
1295 }
1296#endif
1297 if (status & Tx_LateColl) {
1298 lp->stats.tx_aborted_errors++;
1299 msg = "Late Collision.";
1300 }
1301 if (status & Tx_TxPar) {
1302 lp->stats.tx_fifo_errors++;
1303 msg = "Transmit Parity Error.";
1304 }
1305 if (status & Tx_SQErr) {
1306 lp->stats.tx_heartbeat_errors++;
1307 msg = "Signal Quality Error.";
1308 }
1309 if (msg)
1310 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1311}
1312
1313static void
1314tc35815_txdone(struct net_device *dev)
1315{
1316 struct tc35815_local *lp = dev->priv;
1317 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1318 struct TxFD *txfd;
1319 unsigned int fdctl;
1320 int num_done = 0;
1321
1322 txfd = &lp->tfd_base[lp->tfd_end];
1323 while (lp->tfd_start != lp->tfd_end &&
1324 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1325 int status = le32_to_cpu(txfd->fd.FDStat);
1326 struct sk_buff *skb;
1327 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1328
1329 if (tc35815_debug > 2) {
1330 printk("%s: complete TxFD.\n", dev->name);
1331 dump_txfd(txfd);
1332 }
1333 tc35815_check_tx_stat(dev, status);
1334
1335 skb = (struct sk_buff *)le32_to_cpu(txfd->fd.FDSystem);
1336 if (skb) {
1337 dev_kfree_skb_any(skb);
1338 }
1339 txfd->fd.FDSystem = cpu_to_le32(0);
1340
1341 num_done++;
1342 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1343 txfd = &lp->tfd_base[lp->tfd_end];
1344 if ((fdnext & ~FD_Next_EOL) != virt_to_bus(txfd)) {
1345 printk("%s: TxFD FDNext invalid.\n", dev->name);
1346 panic_queues(dev);
1347 }
1348 if (fdnext & FD_Next_EOL) {
1349 /* DMA Transmitter has been stopping... */
1350 if (lp->tfd_end != lp->tfd_start) {
1351 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1352 struct TxFD* txhead = &lp->tfd_base[head];
1353 int qlen = (lp->tfd_start + TX_FD_NUM
1354 - lp->tfd_end) % TX_FD_NUM;
1355
1356 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1357 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1358 panic_queues(dev);
1359 }
1360 /* log max queue length */
1361 if (lp->lstats.max_tx_qlen < qlen)
1362 lp->lstats.max_tx_qlen = qlen;
1363
1364
1365 /* start DMA Transmitter again */
1366 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1367#ifdef GATHER_TXINT
1368 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1369#endif
1370 if (tc35815_debug > 2) {
1371 printk("%s: start TxFD on queue.\n",
1372 dev->name);
1373 dump_txfd(txfd);
1374 }
1375 tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr);
1376 }
1377 break;
1378 }
1379 }
1380
1381 if (num_done > 0 && lp->tbusy) {
1382 lp->tbusy = 0;
1383 netif_start_queue(dev);
1384 }
1385}
1386
1387/* The inverse routine to tc35815_open(). */
1388static int
1389tc35815_close(struct net_device *dev)
1390{
1391 struct tc35815_local *lp = dev->priv;
1392
1393 lp->tbusy = 1;
1394 netif_stop_queue(dev);
1395
1396 /* Flush the Tx and disable Rx here. */
1397
1398 tc35815_chip_reset(dev);
1399 free_irq(dev->irq, dev);
1400
1401 tc35815_free_queues(dev);
1402
1403 return 0;
1404}
1405
1406/*
1407 * Get the current statistics.
1408 * This may be called with the card open or closed.
1409 */
1410static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1411{
1412 struct tc35815_local *lp = dev->priv;
1413 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1414 unsigned long flags;
1415
1416 if (netif_running(dev)) {
1417 spin_lock_irqsave(&lp->lock, flags);
1418 /* Update the statistics from the device registers. */
1419 lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt);
1420 spin_unlock_irqrestore(&lp->lock, flags);
1421 }
1422
1423 return &lp->stats;
1424}
1425
1426static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned char *addr)
1427{
1428 int cam_index = index * 6;
1429 unsigned long cam_data;
1430 unsigned long saved_addr;
1431 saved_addr = tc_readl(&tr->CAM_Adr);
1432
1433 if (tc35815_debug > 1) {
1434 int i;
1435 printk(KERN_DEBUG "%s: CAM %d:", cardname, index);
1436 for (i = 0; i < 6; i++)
1437 printk(" %02x", addr[i]);
1438 printk("\n");
1439 }
1440 if (index & 1) {
1441 /* read modify write */
1442 tc_writel(cam_index - 2, &tr->CAM_Adr);
1443 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1444 cam_data |= addr[0] << 8 | addr[1];
1445 tc_writel(cam_data, &tr->CAM_Data);
1446 /* write whole word */
1447 tc_writel(cam_index + 2, &tr->CAM_Adr);
1448 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1449 tc_writel(cam_data, &tr->CAM_Data);
1450 } else {
1451 /* write whole word */
1452 tc_writel(cam_index, &tr->CAM_Adr);
1453 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1454 tc_writel(cam_data, &tr->CAM_Data);
1455 /* read modify write */
1456 tc_writel(cam_index + 4, &tr->CAM_Adr);
1457 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1458 cam_data |= addr[4] << 24 | (addr[5] << 16);
1459 tc_writel(cam_data, &tr->CAM_Data);
1460 }
1461
1462 if (tc35815_debug > 2) {
1463 int i;
1464 for (i = cam_index / 4; i < cam_index / 4 + 2; i++) {
1465 tc_writel(i * 4, &tr->CAM_Adr);
1466 printk("CAM 0x%x: %08lx",
1467 i * 4, tc_readl(&tr->CAM_Data));
1468 }
1469 }
1470 tc_writel(saved_addr, &tr->CAM_Adr);
1471}
1472
1473
1474/*
1475 * Set or clear the multicast filter for this adaptor.
1476 * num_addrs == -1 Promiscuous mode, receive all packets
1477 * num_addrs == 0 Normal mode, clear multicast list
1478 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1479 * and do best-effort filtering.
1480 */
1481static void
1482tc35815_set_multicast_list(struct net_device *dev)
1483{
1484 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1485
1486 if (dev->flags&IFF_PROMISC)
1487 {
1488 /* Enable promiscuous mode */
1489 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1490 }
1491 else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > CAM_ENTRY_MAX - 3)
1492 {
1493 /* CAM 0, 1, 20 are reserved. */
1494 /* Disable promiscuous mode, use normal mode. */
1495 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1496 }
1497 else if(dev->mc_count)
1498 {
1499 struct dev_mc_list* cur_addr = dev->mc_list;
1500 int i;
1501 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1502
1503 tc_writel(0, &tr->CAM_Ctl);
1504 /* Walk the address list, and load the filter */
1505 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1506 if (!cur_addr)
1507 break;
1508 /* entry 0,1 is reserved. */
1509 tc35815_set_cam_entry(tr, i + 2, cur_addr->dmi_addr);
1510 ena_bits |= CAM_Ena_Bit(i + 2);
1511 }
1512 tc_writel(ena_bits, &tr->CAM_Ena);
1513 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1514 }
1515 else {
1516 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1517 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1518 }
1519}
1520
1521static unsigned long tc_phy_read(struct net_device *dev, struct tc35815_regs *tr, int phy, int phy_reg)
1522{
1523 struct tc35815_local *lp = dev->priv;
1524 unsigned long data;
1525 unsigned long flags;
6aa20a22 1526
1da177e4
LT
1527 spin_lock_irqsave(&lp->lock, flags);
1528
1529 tc_writel(MD_CA_Busy | (phy << 5) | phy_reg, &tr->MD_CA);
1530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
1531 ;
1532 data = tc_readl(&tr->MD_Data);
1533 spin_unlock_irqrestore(&lp->lock, flags);
1534 return data;
1535}
1536
1537static void tc_phy_write(struct net_device *dev, unsigned long d, struct tc35815_regs *tr, int phy, int phy_reg)
1538{
1539 struct tc35815_local *lp = dev->priv;
1540 unsigned long flags;
1541
1542 spin_lock_irqsave(&lp->lock, flags);
1543
1544 tc_writel(d, &tr->MD_Data);
1545 tc_writel(MD_CA_Busy | MD_CA_Wr | (phy << 5) | phy_reg, &tr->MD_CA);
1546 while (tc_readl(&tr->MD_CA) & MD_CA_Busy)
1547 ;
1548 spin_unlock_irqrestore(&lp->lock, flags);
1549}
1550
1551static void tc35815_phy_chip_init(struct net_device *dev)
1552{
1553 struct tc35815_local *lp = dev->priv;
1554 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1555 static int first = 1;
1556 unsigned short ctl;
1557
1558 if (first) {
1559 unsigned short id0, id1;
1560 int count;
1561 first = 0;
1562
1563 /* first data written to the PHY will be an ID number */
1564 tc_phy_write(dev, 0, tr, 0, MII_CONTROL); /* ID:0 */
1565#if 0
1566 tc_phy_write(dev, MIICNTL_RESET, tr, 0, MII_CONTROL);
1567 printk(KERN_INFO "%s: Resetting PHY...", dev->name);
1568 while (tc_phy_read(dev, tr, 0, MII_CONTROL) & MIICNTL_RESET)
1569 ;
1570 printk("\n");
1571 tc_phy_write(dev, MIICNTL_AUTO|MIICNTL_SPEED|MIICNTL_FDX, tr, 0,
1572 MII_CONTROL);
1573#endif
1574 id0 = tc_phy_read(dev, tr, 0, MII_PHY_ID0);
1575 id1 = tc_phy_read(dev, tr, 0, MII_PHY_ID1);
1576 printk(KERN_DEBUG "%s: PHY ID %04x %04x\n", dev->name,
1577 id0, id1);
1578 if (lp->option & TC35815_OPT_10M) {
1579 lp->linkspeed = 10;
1580 lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0;
1581 } else if (lp->option & TC35815_OPT_100M) {
1582 lp->linkspeed = 100;
1583 lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0;
1584 } else {
1585 /* auto negotiation */
1586 unsigned long neg_result;
1587 tc_phy_write(dev, MIICNTL_AUTO | MIICNTL_RST_AUTO, tr, 0, MII_CONTROL);
1588 printk(KERN_INFO "%s: Auto Negotiation...", dev->name);
1589 count = 0;
1590 while (!(tc_phy_read(dev, tr, 0, MII_STATUS) & MIISTAT_AUTO_DONE)) {
1591 if (count++ > 5000) {
1592 printk(" failed. Assume 10Mbps\n");
1593 lp->linkspeed = 10;
1594 lp->fullduplex = 0;
1595 goto done;
1596 }
1597 if (count % 512 == 0)
1598 printk(".");
1599 mdelay(1);
1600 }
1601 printk(" done.\n");
1602 neg_result = tc_phy_read(dev, tr, 0, MII_ANLPAR);
1603 if (neg_result & (MII_AN_TX_FDX | MII_AN_TX_HDX))
1604 lp->linkspeed = 100;
1605 else
1606 lp->linkspeed = 10;
1607 if (neg_result & (MII_AN_TX_FDX | MII_AN_10_FDX))
1608 lp->fullduplex = 1;
1609 else
1610 lp->fullduplex = 0;
1611 done:
1612 ;
1613 }
1614 }
1615
1616 ctl = 0;
1617 if (lp->linkspeed == 100)
1618 ctl |= MIICNTL_SPEED;
1619 if (lp->fullduplex)
1620 ctl |= MIICNTL_FDX;
1621 tc_phy_write(dev, ctl, tr, 0, MII_CONTROL);
1622
1623 if (lp->fullduplex) {
1624 tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl);
1625 }
1626}
1627
1628static void tc35815_chip_reset(struct net_device *dev)
1629{
1630 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1631
1632 /* reset the controller */
1633 tc_writel(MAC_Reset, &tr->MAC_Ctl);
1634 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset)
1635 ;
1636
1637 tc_writel(0, &tr->MAC_Ctl);
1638
1639 /* initialize registers to default value */
1640 tc_writel(0, &tr->DMA_Ctl);
1641 tc_writel(0, &tr->TxThrsh);
1642 tc_writel(0, &tr->TxPollCtr);
1643 tc_writel(0, &tr->RxFragSize);
1644 tc_writel(0, &tr->Int_En);
1645 tc_writel(0, &tr->FDA_Bas);
1646 tc_writel(0, &tr->FDA_Lim);
1647 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
1648 tc_writel(0, &tr->CAM_Ctl);
1649 tc_writel(0, &tr->Tx_Ctl);
1650 tc_writel(0, &tr->Rx_Ctl);
1651 tc_writel(0, &tr->CAM_Ena);
1652 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
1653
1654}
1655
1656static void tc35815_chip_init(struct net_device *dev)
1657{
1658 struct tc35815_local *lp = dev->priv;
1659 struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr;
1660 unsigned long flags;
1661 unsigned long txctl = TX_CTL_CMD;
1662
1663 tc35815_phy_chip_init(dev);
1664
1665 /* load station address to CAM */
1666 tc35815_set_cam_entry(tr, CAM_ENTRY_SOURCE, dev->dev_addr);
1667
1668 /* Enable CAM (broadcast and unicast) */
1669 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1670 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1671
1672 spin_lock_irqsave(&lp->lock, flags);
1673
1674 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
1675
1676 tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */
1677 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
1678 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
1679 tc_writel(INT_EN_CMD, &tr->Int_En);
1680
1681 /* set queues */
1682 tc_writel(virt_to_bus(lp->rfd_base), &tr->FDA_Bas);
1683 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
1684 &tr->FDA_Lim);
1685 /*
1686 * Activation method:
1687 * First, enable eht MAC Transmitter and the DMA Receive circuits.
1688 * Then enable the DMA Transmitter and the MAC Receive circuits.
1689 */
1690 tc_writel(virt_to_bus(lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
1691 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
1692 /* start MAC transmitter */
1693 /* WORKAROUND: ignore LostCrS in full duplex operation */
1694 if (lp->fullduplex)
1695 txctl = TX_CTL_CMD & ~Tx_EnLCarr;
1696#ifdef GATHER_TXINT
1697 txctl &= ~Tx_EnComp; /* disable global tx completion int. */
1698#endif
1699 tc_writel(txctl, &tr->Tx_Ctl);
1700#if 0 /* No need to polling */
1701 tc_writel(virt_to_bus(lp->tfd_base), &tr->TxFrmPtr); /* start DMA transmitter */
1702#endif
1703 spin_unlock_irqrestore(&lp->lock, flags);
1704}
1705
1706/* XXX */
1707void
1708tc35815_killall(void)
1709{
1710 struct net_device *dev;
1711
1712 for (dev = root_tc35815_dev; dev; dev = ((struct tc35815_local *)dev->priv)->next_module) {
1713 if (dev->flags&IFF_UP){
1714 dev->stop(dev);
1715 }
1716 }
1717}
1718
1719static struct pci_driver tc35815_driver = {
1720 .name = TC35815_MODULE_NAME,
1721 .probe = tc35815_probe,
1722 .remove = NULL,
1723 .id_table = tc35815_pci_tbl,
1724};
1725
1726static int __init tc35815_init_module(void)
1727{
29917620 1728 return pci_register_driver(&tc35815_driver);
1da177e4
LT
1729}
1730
1731static void __exit tc35815_cleanup_module(void)
1732{
1733 struct net_device *next_dev;
1734
1735 while (root_tc35815_dev) {
1736 struct net_device *dev = root_tc35815_dev;
1737 next_dev = ((struct tc35815_local *)dev->priv)->next_module;
1738 iounmap((void *)(dev->base_addr));
1739 unregister_netdev(dev);
1740 free_netdev(dev);
1741 root_tc35815_dev = next_dev;
1742 }
1743}
1744module_init(tc35815_init_module);
1745module_exit(tc35815_cleanup_module);
This page took 0.301661 seconds and 5 git commands to generate.