net: use netdev stats in b44, sundance, via-rhine and via-velocity
[deliverable/linux.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
32#define DRV_NAME "via-rhine"
e84df485
RL
33#define DRV_VERSION "1.4.3"
34#define DRV_RELDATE "2007-03-06"
1da177e4
LT
35
36
37/* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41static int max_interrupt_work = 20;
42
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
b47157f0
DM
45#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48static int rx_copybreak = 1518;
49#else
1da177e4 50static int rx_copybreak;
b47157f0 51#endif
1da177e4 52
b933b4d9
RL
53/* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55static int avoid_D3;
56
1da177e4
LT
57/*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64static const int multicast_filter_limit = 32;
65
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74#define TX_RING_SIZE 16
75#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 76#define RX_RING_SIZE 64
1da177e4
LT
77
78/* Operational parameters that usually are not changed. */
79
80/* Time in jiffies before concluding the transmitter is hung. */
81#define TX_TIMEOUT (2*HZ)
82
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#include <linux/module.h>
86#include <linux/moduleparam.h>
87#include <linux/kernel.h>
88#include <linux/string.h>
89#include <linux/timer.h>
90#include <linux/errno.h>
91#include <linux/ioport.h>
92#include <linux/slab.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
1e7f0bd8 95#include <linux/dma-mapping.h>
1da177e4
LT
96#include <linux/netdevice.h>
97#include <linux/etherdevice.h>
98#include <linux/skbuff.h>
99#include <linux/init.h>
100#include <linux/delay.h>
101#include <linux/mii.h>
102#include <linux/ethtool.h>
103#include <linux/crc32.h>
104#include <linux/bitops.h>
105#include <asm/processor.h> /* Processor type for cache alignment. */
106#include <asm/io.h>
107#include <asm/irq.h>
108#include <asm/uaccess.h>
e84df485 109#include <linux/dmi.h>
1da177e4
LT
110
111/* These identify the driver base version and may not be removed. */
c8de1fce
SH
112static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
1da177e4
LT
115
116/* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118#ifdef CONFIG_VIA_RHINE_MMIO
119#define USE_MMIO
120#else
121#endif
122
123MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125MODULE_LICENSE("GPL");
126
127module_param(max_interrupt_work, int, 0);
128module_param(debug, int, 0);
129module_param(rx_copybreak, int, 0);
b933b4d9 130module_param(avoid_D3, bool, 0);
1da177e4
LT
131MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 134MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4
LT
135
136/*
137 Theory of Operation
138
139I. Board Compatibility
140
141This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142controller.
143
144II. Board-specific settings
145
146Boards with this chip are functional only in a bus-master PCI slot.
147
148Many operational settings are loaded from the EEPROM to the Config word at
149offset 0x78. For most of these settings, this driver assumes that they are
150correct.
151If this driver is compiled to use PCI memory space operations the EEPROM
152must be configured to enable memory ops.
153
154III. Driver operation
155
156IIIa. Ring buffers
157
158This driver uses two statically allocated fixed-size descriptor lists
159formed into rings by a branch from the final descriptor to the beginning of
160the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
161
162IIIb/c. Transmit/Receive Structure
163
164This driver attempts to use a zero-copy receive and transmit scheme.
165
166Alas, all data buffers are required to start on a 32 bit boundary, so
167the driver must often copy transmit packets into bounce buffers.
168
169The driver allocates full frame size skbuffs for the Rx ring buffers at
170open() time and passes the skb->data field to the chip as receive data
171buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172a fresh skbuff is allocated and the frame is copied to the new skbuff.
173When the incoming frame is larger, the skbuff is passed directly up the
174protocol stack. Buffers consumed this way are replaced by newly allocated
175skbuffs in the last phase of rhine_rx().
176
177The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178using a full-sized skbuff for small frames vs. the copying costs of larger
179frames. New boards are typically used in generously configured machines
180and the underfilled buffers have negligible impact compared to the benefit of
181a single allocation size, so the default value of zero results in never
182copying packets. When copying is done, the cost is usually mitigated by using
183a combined copy/checksum routine. Copying also preloads the cache, which is
184most useful with small frames.
185
186Since the VIA chips are only able to transfer data to buffers on 32 bit
187boundaries, the IP header at offset 14 in an ethernet frame isn't
188longword aligned for further processing. Copying these unaligned buffers
189has the beneficial effect of 16-byte aligning the IP header.
190
191IIId. Synchronization
192
193The driver runs as two independent, single-threaded flows of control. One
194is the send-packet routine, which enforces single-threaded use by the
b74ca3a8
WC
195netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196which is single threaded by the hardware and interrupt handling software.
1da177e4
LT
197
198The send packet thread has partial control over the Tx ring. It locks the
b74ca3a8
WC
199netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200the ring is not available it stops the transmit queue by
201calling netif_stop_queue.
1da177e4
LT
202
203The interrupt handler has exclusive control over the Rx ring and records stats
204from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205empty by incrementing the dirty_tx mark. If at least half of the entries in
206the Rx ring are available the transmit queue is woken up if it was stopped.
207
208IV. Notes
209
210IVb. References
211
212Preliminary VT86C100A manual from http://www.via.com.tw/
213http://www.scyld.com/expert/100mbps.html
214http://www.scyld.com/expert/NWay.html
215ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
217
218
219IVc. Errata
220
221The VT86C100A manual is not reliable information.
222The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223in significant performance degradation for bounce buffer copies on transmit
224and unaligned IP headers on receive.
225The chip does not pad to minimum transmit length.
226
227*/
228
229
230/* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
234*/
235
236enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
251};
252
253enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
259};
260/*
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
264 */
265
266/* Beware of PCI posted writes */
267#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
268
46009c8b
JG
269static const struct pci_device_id rhine_pci_tbl[] = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
274 { } /* terminate list */
275};
276MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
277
278
279/* Offsets to the device registers. */
280enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
294};
295
296/* Bits in ConfigD */
297enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
300};
301
302#ifdef USE_MMIO
303/* Registers we check that mmio and reg are the same. */
304static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
306 0
307};
308#endif
309
310/* Bits in the interrupt status/mask registers. */
311enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
322};
323
324/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
331};
332
333/* The Rx and Tx buffer descriptors. */
334struct rx_desc {
53c03f5c
AV
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
1da177e4
LT
339};
340struct tx_desc {
53c03f5c
AV
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
1da177e4
LT
345};
346
347/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348#define TXDESC 0x00e08000
349
350enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
352};
353
354/* Bits in *_desc.*_status */
355enum desc_status_bits {
356 DescOwn=0x80000000
357};
358
359/* Bits in ChipCmd. */
360enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
365};
366
367struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
373
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
377
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
381
4be5de25 382 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
386
387 struct pci_dev *pdev;
388 long pioaddr;
bea3348e
SH
389 struct net_device *dev;
390 struct napi_struct napi;
1da177e4
LT
391 spinlock_t lock;
392
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
400
401 u8 tx_thresh, rx_thresh;
402
403 struct mii_if_info mii_if;
404 void __iomem *base;
405};
406
407static int mdio_read(struct net_device *dev, int phy_id, int location);
408static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409static int rhine_open(struct net_device *dev);
410static void rhine_tx_timeout(struct net_device *dev);
411static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 412static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 413static void rhine_tx(struct net_device *dev);
633949a1 414static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
415static void rhine_error(struct net_device *dev, int intr_status);
416static void rhine_set_rx_mode(struct net_device *dev);
417static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 419static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 420static int rhine_close(struct net_device *dev);
d18c3db5 421static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
422
423#define RHINE_WAIT_FOR(condition) do { \
424 int i=1024; \
425 while (!(condition) && --i) \
426 ; \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
430} while(0)
431
432static inline u32 get_intr_status(struct net_device *dev)
433{
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
436 u32 intr_status;
437
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 return intr_status;
443}
444
445/*
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
448 */
449static void rhine_power_init(struct net_device *dev)
450{
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
453 u16 wolstat;
454
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
458
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
461
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
467
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
472
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
477
478 if (wolstat) {
479 char *reason;
480 switch (wolstat) {
481 case WOLmagic:
482 reason = "Magic packet";
483 break;
484 case WOLlnkon:
485 reason = "Link went up";
486 break;
487 case WOLlnkoff:
488 reason = "Link went down";
489 break;
490 case WOLucast:
491 reason = "Unicast packet";
492 break;
493 case WOLbmcast:
494 reason = "Multicast/broadcast packet";
495 break;
496 default:
497 reason = "Unknown";
498 }
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 DRV_NAME, reason);
501 }
502 }
503}
504
505static void rhine_chip_reset(struct net_device *dev)
506{
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
509
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 IOSYNC;
512
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
516
517 /* Force reset */
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
520
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
523 }
524
525 if (debug > 1)
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
529}
530
531#ifdef USE_MMIO
532static void enable_mmio(long pioaddr, u32 quirks)
533{
534 int n;
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
539 } else {
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
542 }
543}
544#endif
545
546/*
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
549 */
550static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
551{
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
554
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
557
558#ifdef USE_MMIO
559 /*
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
563 */
564 enable_mmio(pioaddr, rp->quirks);
565#endif
566
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
570
571}
572
573#ifdef CONFIG_NET_POLL_CONTROLLER
574static void rhine_poll(struct net_device *dev)
575{
576 disable_irq(dev->irq);
7d12e780 577 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
578 enable_irq(dev->irq);
579}
580#endif
581
bea3348e 582static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 583{
bea3348e
SH
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
633949a1 586 void __iomem *ioaddr = rp->base;
bea3348e 587 int work_done;
633949a1 588
bea3348e 589 work_done = rhine_rx(dev, budget);
633949a1 590
bea3348e 591 if (work_done < budget) {
288379f0 592 napi_complete(napi);
633949a1
RL
593
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
633949a1 599 }
bea3348e 600 return work_done;
633949a1 601}
633949a1 602
de4e7c88 603static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
604{
605 struct rhine_private *rp = netdev_priv(dev);
606
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
609
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
612 msleep(5);
613
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
616}
617
5d1d07d8
SH
618static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
624 .ndo_validate_addr = eth_validate_addr,
fe96aaa1 625 .ndo_set_mac_address = eth_mac_addr,
5d1d07d8
SH
626 .ndo_do_ioctl = netdev_ioctl,
627 .ndo_tx_timeout = rhine_tx_timeout,
628#ifdef CONFIG_NET_POLL_CONTROLLER
629 .ndo_poll_controller = rhine_poll,
630#endif
631};
632
1da177e4
LT
633static int __devinit rhine_init_one(struct pci_dev *pdev,
634 const struct pci_device_id *ent)
635{
636 struct net_device *dev;
637 struct rhine_private *rp;
638 int i, rc;
1da177e4
LT
639 u32 quirks;
640 long pioaddr;
641 long memaddr;
642 void __iomem *ioaddr;
643 int io_size, phy_id;
644 const char *name;
645#ifdef USE_MMIO
646 int bar = 1;
647#else
648 int bar = 0;
649#endif
650
651/* when built into the kernel, we only print version if device is found */
652#ifndef MODULE
653 static int printed_version;
654 if (!printed_version++)
655 printk(version);
656#endif
657
1da177e4
LT
658 io_size = 256;
659 phy_id = 0;
660 quirks = 0;
661 name = "Rhine";
44c10138 662 if (pdev->revision < VTunknown0) {
1da177e4
LT
663 quirks = rqRhineI;
664 io_size = 128;
665 }
44c10138 666 else if (pdev->revision >= VT6102) {
1da177e4 667 quirks = rqWOL | rqForceReset;
44c10138 668 if (pdev->revision < VT6105) {
1da177e4
LT
669 name = "Rhine II";
670 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
671 }
672 else {
673 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 674 if (pdev->revision >= VT6105_B0)
1da177e4 675 quirks |= rq6patterns;
44c10138 676 if (pdev->revision < VT6105M)
1da177e4
LT
677 name = "Rhine III";
678 else
679 name = "Rhine III (Management Adapter)";
680 }
681 }
682
683 rc = pci_enable_device(pdev);
684 if (rc)
685 goto err_out;
686
687 /* this should always be supported */
284901a9 688 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1da177e4
LT
689 if (rc) {
690 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
691 "the card!?\n");
692 goto err_out;
693 }
694
695 /* sanity check */
696 if ((pci_resource_len(pdev, 0) < io_size) ||
697 (pci_resource_len(pdev, 1) < io_size)) {
698 rc = -EIO;
699 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
700 goto err_out;
701 }
702
703 pioaddr = pci_resource_start(pdev, 0);
704 memaddr = pci_resource_start(pdev, 1);
705
706 pci_set_master(pdev);
707
708 dev = alloc_etherdev(sizeof(struct rhine_private));
709 if (!dev) {
710 rc = -ENOMEM;
711 printk(KERN_ERR "alloc_etherdev failed\n");
712 goto err_out;
713 }
1da177e4
LT
714 SET_NETDEV_DEV(dev, &pdev->dev);
715
716 rp = netdev_priv(dev);
bea3348e 717 rp->dev = dev;
1da177e4
LT
718 rp->quirks = quirks;
719 rp->pioaddr = pioaddr;
720 rp->pdev = pdev;
721
722 rc = pci_request_regions(pdev, DRV_NAME);
723 if (rc)
724 goto err_out_free_netdev;
725
726 ioaddr = pci_iomap(pdev, bar, io_size);
727 if (!ioaddr) {
728 rc = -EIO;
729 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
730 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
731 goto err_out_free_res;
732 }
733
734#ifdef USE_MMIO
735 enable_mmio(pioaddr, quirks);
736
737 /* Check that selected MMIO registers match the PIO ones */
738 i = 0;
739 while (mmio_verify_registers[i]) {
740 int reg = mmio_verify_registers[i++];
741 unsigned char a = inb(pioaddr+reg);
742 unsigned char b = readb(ioaddr+reg);
743 if (a != b) {
744 rc = -EIO;
745 printk(KERN_ERR "MMIO do not match PIO [%02x] "
746 "(%02x != %02x)\n", reg, a, b);
747 goto err_out_unmap;
748 }
749 }
750#endif /* USE_MMIO */
751
752 dev->base_addr = (unsigned long)ioaddr;
753 rp->base = ioaddr;
754
755 /* Get chip registers into a sane state */
756 rhine_power_init(dev);
757 rhine_hw_init(dev, pioaddr);
758
759 for (i = 0; i < 6; i++)
760 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 761 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 762
b81e8e1f 763 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
764 rc = -EIO;
765 printk(KERN_ERR "Invalid MAC address\n");
766 goto err_out_unmap;
767 }
768
769 /* For Rhine-I/II, phy_id is loaded from EEPROM */
770 if (!phy_id)
771 phy_id = ioread8(ioaddr + 0x6C);
772
773 dev->irq = pdev->irq;
774
775 spin_lock_init(&rp->lock);
776 rp->mii_if.dev = dev;
777 rp->mii_if.mdio_read = mdio_read;
778 rp->mii_if.mdio_write = mdio_write;
779 rp->mii_if.phy_id_mask = 0x1f;
780 rp->mii_if.reg_num_mask = 0x1f;
781
782 /* The chip-specific entries in the device structure. */
5d1d07d8
SH
783 dev->netdev_ops = &rhine_netdev_ops;
784 dev->ethtool_ops = &netdev_ethtool_ops,
1da177e4 785 dev->watchdog_timeo = TX_TIMEOUT;
5d1d07d8 786
bea3348e 787 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 788
1da177e4
LT
789 if (rp->quirks & rqRhineI)
790 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
791
792 /* dev->name not defined before register_netdev()! */
793 rc = register_netdev(dev);
794 if (rc)
795 goto err_out_unmap;
796
e174961c 797 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
1da177e4
LT
798 dev->name, name,
799#ifdef USE_MMIO
0795af57 800 memaddr,
1da177e4 801#else
0795af57 802 (long)ioaddr,
1da177e4 803#endif
e174961c 804 dev->dev_addr, pdev->irq);
1da177e4
LT
805
806 pci_set_drvdata(pdev, dev);
807
808 {
809 u16 mii_cmd;
810 int mii_status = mdio_read(dev, phy_id, 1);
811 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
812 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
813 if (mii_status != 0xffff && mii_status != 0x0000) {
814 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
815 printk(KERN_INFO "%s: MII PHY found at address "
816 "%d, status 0x%4.4x advertising %4.4x "
817 "Link %4.4x.\n", dev->name, phy_id,
818 mii_status, rp->mii_if.advertising,
819 mdio_read(dev, phy_id, 5));
820
821 /* set IFF_RUNNING */
822 if (mii_status & BMSR_LSTATUS)
823 netif_carrier_on(dev);
824 else
825 netif_carrier_off(dev);
826
827 }
828 }
829 rp->mii_if.phy_id = phy_id;
b933b4d9
RL
830 if (debug > 1 && avoid_D3)
831 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
832 dev->name);
1da177e4
LT
833
834 return 0;
835
836err_out_unmap:
837 pci_iounmap(pdev, ioaddr);
838err_out_free_res:
839 pci_release_regions(pdev);
840err_out_free_netdev:
841 free_netdev(dev);
842err_out:
843 return rc;
844}
845
846static int alloc_ring(struct net_device* dev)
847{
848 struct rhine_private *rp = netdev_priv(dev);
849 void *ring;
850 dma_addr_t ring_dma;
851
852 ring = pci_alloc_consistent(rp->pdev,
853 RX_RING_SIZE * sizeof(struct rx_desc) +
854 TX_RING_SIZE * sizeof(struct tx_desc),
855 &ring_dma);
856 if (!ring) {
857 printk(KERN_ERR "Could not allocate DMA memory.\n");
858 return -ENOMEM;
859 }
860 if (rp->quirks & rqRhineI) {
861 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
862 PKT_BUF_SZ * TX_RING_SIZE,
863 &rp->tx_bufs_dma);
864 if (rp->tx_bufs == NULL) {
865 pci_free_consistent(rp->pdev,
866 RX_RING_SIZE * sizeof(struct rx_desc) +
867 TX_RING_SIZE * sizeof(struct tx_desc),
868 ring, ring_dma);
869 return -ENOMEM;
870 }
871 }
872
873 rp->rx_ring = ring;
874 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
875 rp->rx_ring_dma = ring_dma;
876 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
877
878 return 0;
879}
880
881static void free_ring(struct net_device* dev)
882{
883 struct rhine_private *rp = netdev_priv(dev);
884
885 pci_free_consistent(rp->pdev,
886 RX_RING_SIZE * sizeof(struct rx_desc) +
887 TX_RING_SIZE * sizeof(struct tx_desc),
888 rp->rx_ring, rp->rx_ring_dma);
889 rp->tx_ring = NULL;
890
891 if (rp->tx_bufs)
892 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
893 rp->tx_bufs, rp->tx_bufs_dma);
894
895 rp->tx_bufs = NULL;
896
897}
898
899static void alloc_rbufs(struct net_device *dev)
900{
901 struct rhine_private *rp = netdev_priv(dev);
902 dma_addr_t next;
903 int i;
904
905 rp->dirty_rx = rp->cur_rx = 0;
906
907 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908 rp->rx_head_desc = &rp->rx_ring[0];
909 next = rp->rx_ring_dma;
910
911 /* Init the ring entries */
912 for (i = 0; i < RX_RING_SIZE; i++) {
913 rp->rx_ring[i].rx_status = 0;
914 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
915 next += sizeof(struct rx_desc);
916 rp->rx_ring[i].next_desc = cpu_to_le32(next);
917 rp->rx_skbuff[i] = NULL;
918 }
919 /* Mark the last entry as wrapping the ring. */
920 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
921
922 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
923 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 924 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
925 rp->rx_skbuff[i] = skb;
926 if (skb == NULL)
927 break;
928 skb->dev = dev; /* Mark as being used by this device. */
929
930 rp->rx_skbuff_dma[i] =
689be439 931 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
932 PCI_DMA_FROMDEVICE);
933
934 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
935 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
936 }
937 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
938}
939
940static void free_rbufs(struct net_device* dev)
941{
942 struct rhine_private *rp = netdev_priv(dev);
943 int i;
944
945 /* Free all the skbuffs in the Rx queue. */
946 for (i = 0; i < RX_RING_SIZE; i++) {
947 rp->rx_ring[i].rx_status = 0;
948 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
949 if (rp->rx_skbuff[i]) {
950 pci_unmap_single(rp->pdev,
951 rp->rx_skbuff_dma[i],
952 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
953 dev_kfree_skb(rp->rx_skbuff[i]);
954 }
955 rp->rx_skbuff[i] = NULL;
956 }
957}
958
959static void alloc_tbufs(struct net_device* dev)
960{
961 struct rhine_private *rp = netdev_priv(dev);
962 dma_addr_t next;
963 int i;
964
965 rp->dirty_tx = rp->cur_tx = 0;
966 next = rp->tx_ring_dma;
967 for (i = 0; i < TX_RING_SIZE; i++) {
968 rp->tx_skbuff[i] = NULL;
969 rp->tx_ring[i].tx_status = 0;
970 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
971 next += sizeof(struct tx_desc);
972 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
973 if (rp->quirks & rqRhineI)
974 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
975 }
976 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
977
978}
979
980static void free_tbufs(struct net_device* dev)
981{
982 struct rhine_private *rp = netdev_priv(dev);
983 int i;
984
985 for (i = 0; i < TX_RING_SIZE; i++) {
986 rp->tx_ring[i].tx_status = 0;
987 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
988 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
989 if (rp->tx_skbuff[i]) {
990 if (rp->tx_skbuff_dma[i]) {
991 pci_unmap_single(rp->pdev,
992 rp->tx_skbuff_dma[i],
993 rp->tx_skbuff[i]->len,
994 PCI_DMA_TODEVICE);
995 }
996 dev_kfree_skb(rp->tx_skbuff[i]);
997 }
998 rp->tx_skbuff[i] = NULL;
999 rp->tx_buf[i] = NULL;
1000 }
1001}
1002
1003static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1004{
1005 struct rhine_private *rp = netdev_priv(dev);
1006 void __iomem *ioaddr = rp->base;
1007
1008 mii_check_media(&rp->mii_if, debug, init_media);
1009
1010 if (rp->mii_if.full_duplex)
1011 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1012 ioaddr + ChipCmd1);
1013 else
1014 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1015 ioaddr + ChipCmd1);
00b428c2
RL
1016 if (debug > 1)
1017 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1018 rp->mii_if.force_media, netif_carrier_ok(dev));
1019}
1020
1021/* Called after status of force_media possibly changed */
0761be4f 1022static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1023{
1024 if (mii->force_media) {
1025 /* autoneg is off: Link is always assumed to be up */
1026 if (!netif_carrier_ok(mii->dev))
1027 netif_carrier_on(mii->dev);
1028 }
1029 else /* Let MMI library update carrier status */
1030 rhine_check_media(mii->dev, 0);
1031 if (debug > 1)
1032 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1033 mii->dev->name, mii->force_media,
1034 netif_carrier_ok(mii->dev));
1da177e4
LT
1035}
1036
1037static void init_registers(struct net_device *dev)
1038{
1039 struct rhine_private *rp = netdev_priv(dev);
1040 void __iomem *ioaddr = rp->base;
1041 int i;
1042
1043 for (i = 0; i < 6; i++)
1044 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1045
1046 /* Initialize other registers. */
1047 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1048 /* Configure initial FIFO thresholds. */
1049 iowrite8(0x20, ioaddr + TxConfig);
1050 rp->tx_thresh = 0x20;
1051 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1052
1053 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1054 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1055
1056 rhine_set_rx_mode(dev);
1057
bea3348e 1058 napi_enable(&rp->napi);
ab197668 1059
1da177e4
LT
1060 /* Enable interrupts by setting the interrupt mask. */
1061 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1062 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1063 IntrTxDone | IntrTxError | IntrTxUnderrun |
1064 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1065 ioaddr + IntrEnable);
1066
1067 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1068 ioaddr + ChipCmd);
1069 rhine_check_media(dev, 1);
1070}
1071
1072/* Enable MII link status auto-polling (required for IntrLinkChange) */
1073static void rhine_enable_linkmon(void __iomem *ioaddr)
1074{
1075 iowrite8(0, ioaddr + MIICmd);
1076 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1077 iowrite8(0x80, ioaddr + MIICmd);
1078
1079 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1080
1081 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1082}
1083
1084/* Disable MII link status auto-polling (required for MDIO access) */
1085static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1086{
1087 iowrite8(0, ioaddr + MIICmd);
1088
1089 if (quirks & rqRhineI) {
1090 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1091
38bb6b28
JL
1092 /* Can be called from ISR. Evil. */
1093 mdelay(1);
1da177e4
LT
1094
1095 /* 0x80 must be set immediately before turning it off */
1096 iowrite8(0x80, ioaddr + MIICmd);
1097
1098 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1099
1100 /* Heh. Now clear 0x80 again. */
1101 iowrite8(0, ioaddr + MIICmd);
1102 }
1103 else
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1105}
1106
1107/* Read and write over the MII Management Data I/O (MDIO) interface. */
1108
1109static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1110{
1111 struct rhine_private *rp = netdev_priv(dev);
1112 void __iomem *ioaddr = rp->base;
1113 int result;
1114
1115 rhine_disable_linkmon(ioaddr, rp->quirks);
1116
1117 /* rhine_disable_linkmon already cleared MIICmd */
1118 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1119 iowrite8(regnum, ioaddr + MIIRegAddr);
1120 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1121 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1122 result = ioread16(ioaddr + MIIData);
1123
1124 rhine_enable_linkmon(ioaddr);
1125 return result;
1126}
1127
1128static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1129{
1130 struct rhine_private *rp = netdev_priv(dev);
1131 void __iomem *ioaddr = rp->base;
1132
1133 rhine_disable_linkmon(ioaddr, rp->quirks);
1134
1135 /* rhine_disable_linkmon already cleared MIICmd */
1136 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1137 iowrite8(regnum, ioaddr + MIIRegAddr);
1138 iowrite16(value, ioaddr + MIIData);
1139 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1140 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1141
1142 rhine_enable_linkmon(ioaddr);
1143}
1144
1145static int rhine_open(struct net_device *dev)
1146{
1147 struct rhine_private *rp = netdev_priv(dev);
1148 void __iomem *ioaddr = rp->base;
1149 int rc;
1150
1fb9df5d 1151 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1152 dev);
1153 if (rc)
1154 return rc;
1155
1156 if (debug > 1)
1157 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1158 dev->name, rp->pdev->irq);
1159
1160 rc = alloc_ring(dev);
1161 if (rc) {
1162 free_irq(rp->pdev->irq, dev);
1163 return rc;
1164 }
1165 alloc_rbufs(dev);
1166 alloc_tbufs(dev);
1167 rhine_chip_reset(dev);
1168 init_registers(dev);
1169 if (debug > 2)
1170 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1171 "MII status: %4.4x.\n",
1172 dev->name, ioread16(ioaddr + ChipCmd),
1173 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1174
1175 netif_start_queue(dev);
1176
1177 return 0;
1178}
1179
1180static void rhine_tx_timeout(struct net_device *dev)
1181{
1182 struct rhine_private *rp = netdev_priv(dev);
1183 void __iomem *ioaddr = rp->base;
1184
1185 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1186 "%4.4x, resetting...\n",
1187 dev->name, ioread16(ioaddr + IntrStatus),
1188 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1189
1190 /* protect against concurrent rx interrupts */
1191 disable_irq(rp->pdev->irq);
1192
bea3348e 1193 napi_disable(&rp->napi);
bea3348e 1194
1da177e4
LT
1195 spin_lock(&rp->lock);
1196
1197 /* clear all descriptors */
1198 free_tbufs(dev);
1199 free_rbufs(dev);
1200 alloc_tbufs(dev);
1201 alloc_rbufs(dev);
1202
1203 /* Reinitialize the hardware. */
1204 rhine_chip_reset(dev);
1205 init_registers(dev);
1206
1207 spin_unlock(&rp->lock);
1208 enable_irq(rp->pdev->irq);
1209
1210 dev->trans_start = jiffies;
553e2335 1211 dev->stats.tx_errors++;
1da177e4
LT
1212 netif_wake_queue(dev);
1213}
1214
1215static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1216{
1217 struct rhine_private *rp = netdev_priv(dev);
1218 void __iomem *ioaddr = rp->base;
1219 unsigned entry;
1220
1221 /* Caution: the write order is important here, set the field
1222 with the "ownership" bits last. */
1223
1224 /* Calculate the next Tx descriptor entry. */
1225 entry = rp->cur_tx % TX_RING_SIZE;
1226
5b057c6b
HX
1227 if (skb_padto(skb, ETH_ZLEN))
1228 return 0;
1da177e4
LT
1229
1230 rp->tx_skbuff[entry] = skb;
1231
1232 if ((rp->quirks & rqRhineI) &&
84fa7933 1233 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1234 /* Must use alignment buffer. */
1235 if (skb->len > PKT_BUF_SZ) {
1236 /* packet too long, drop it */
1237 dev_kfree_skb(skb);
1238 rp->tx_skbuff[entry] = NULL;
553e2335 1239 dev->stats.tx_dropped++;
1da177e4
LT
1240 return 0;
1241 }
3e0d167a
CB
1242
1243 /* Padding is not copied and so must be redone. */
1da177e4 1244 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1245 if (skb->len < ETH_ZLEN)
1246 memset(rp->tx_buf[entry] + skb->len, 0,
1247 ETH_ZLEN - skb->len);
1da177e4
LT
1248 rp->tx_skbuff_dma[entry] = 0;
1249 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1250 (rp->tx_buf[entry] -
1251 rp->tx_bufs));
1252 } else {
1253 rp->tx_skbuff_dma[entry] =
1254 pci_map_single(rp->pdev, skb->data, skb->len,
1255 PCI_DMA_TODEVICE);
1256 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1257 }
1258
1259 rp->tx_ring[entry].desc_length =
1260 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1261
1262 /* lock eth irq */
1263 spin_lock_irq(&rp->lock);
1264 wmb();
1265 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1266 wmb();
1267
1268 rp->cur_tx++;
1269
1270 /* Non-x86 Todo: explicitly flush cache lines here. */
1271
1272 /* Wake the potentially-idle transmit channel */
1273 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1274 ioaddr + ChipCmd1);
1275 IOSYNC;
1276
1277 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1278 netif_stop_queue(dev);
1279
1280 dev->trans_start = jiffies;
1281
1282 spin_unlock_irq(&rp->lock);
1283
1284 if (debug > 4) {
1285 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1286 dev->name, rp->cur_tx-1, entry);
1287 }
1288 return 0;
1289}
1290
1291/* The interrupt handler does all of the Rx thread work and cleans up
1292 after the Tx thread. */
7d12e780 1293static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1294{
1295 struct net_device *dev = dev_instance;
1296 struct rhine_private *rp = netdev_priv(dev);
1297 void __iomem *ioaddr = rp->base;
1298 u32 intr_status;
1299 int boguscnt = max_interrupt_work;
1300 int handled = 0;
1301
1302 while ((intr_status = get_intr_status(dev))) {
1303 handled = 1;
1304
1305 /* Acknowledge all of the current interrupt sources ASAP. */
1306 if (intr_status & IntrTxDescRace)
1307 iowrite8(0x08, ioaddr + IntrStatus2);
1308 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1309 IOSYNC;
1310
1311 if (debug > 4)
1312 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1313 dev->name, intr_status);
1314
1315 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1 1316 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
633949a1
RL
1317 iowrite16(IntrTxAborted |
1318 IntrTxDone | IntrTxError | IntrTxUnderrun |
1319 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1320 ioaddr + IntrEnable);
1321
288379f0 1322 napi_schedule(&rp->napi);
633949a1 1323 }
1da177e4
LT
1324
1325 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1326 if (intr_status & IntrTxErrSummary) {
1327 /* Avoid scavenging before Tx engine turned off */
1328 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1329 if (debug > 2 &&
1330 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1331 printk(KERN_WARNING "%s: "
2450022a 1332 "rhine_interrupt() Tx engine "
1da177e4
LT
1333 "still on.\n", dev->name);
1334 }
1335 rhine_tx(dev);
1336 }
1337
1338 /* Abnormal error summary/uncommon events handlers. */
1339 if (intr_status & (IntrPCIErr | IntrLinkChange |
1340 IntrStatsMax | IntrTxError | IntrTxAborted |
1341 IntrTxUnderrun | IntrTxDescRace))
1342 rhine_error(dev, intr_status);
1343
1344 if (--boguscnt < 0) {
1345 printk(KERN_WARNING "%s: Too much work at interrupt, "
1346 "status=%#8.8x.\n",
1347 dev->name, intr_status);
1348 break;
1349 }
1350 }
1351
1352 if (debug > 3)
1353 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1354 dev->name, ioread16(ioaddr + IntrStatus));
1355 return IRQ_RETVAL(handled);
1356}
1357
1358/* This routine is logically part of the interrupt handler, but isolated
1359 for clarity. */
1360static void rhine_tx(struct net_device *dev)
1361{
1362 struct rhine_private *rp = netdev_priv(dev);
1363 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1364
1365 spin_lock(&rp->lock);
1366
1367 /* find and cleanup dirty tx descriptors */
1368 while (rp->dirty_tx != rp->cur_tx) {
1369 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1370 if (debug > 6)
ed4030d1 1371 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1372 entry, txstatus);
1373 if (txstatus & DescOwn)
1374 break;
1375 if (txstatus & 0x8000) {
1376 if (debug > 1)
1377 printk(KERN_DEBUG "%s: Transmit error, "
1378 "Tx status %8.8x.\n",
1379 dev->name, txstatus);
553e2335
ED
1380 dev->stats.tx_errors++;
1381 if (txstatus & 0x0400)
1382 dev->stats.tx_carrier_errors++;
1383 if (txstatus & 0x0200)
1384 dev->stats.tx_window_errors++;
1385 if (txstatus & 0x0100)
1386 dev->stats.tx_aborted_errors++;
1387 if (txstatus & 0x0080)
1388 dev->stats.tx_heartbeat_errors++;
1da177e4
LT
1389 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1390 (txstatus & 0x0800) || (txstatus & 0x1000)) {
553e2335 1391 dev->stats.tx_fifo_errors++;
1da177e4
LT
1392 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1393 break; /* Keep the skb - we try again */
1394 }
1395 /* Transmitter restarted in 'abnormal' handler. */
1396 } else {
1397 if (rp->quirks & rqRhineI)
553e2335 1398 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1da177e4 1399 else
553e2335 1400 dev->stats.collisions += txstatus & 0x0F;
1da177e4
LT
1401 if (debug > 6)
1402 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1403 (txstatus >> 3) & 0xF,
1404 txstatus & 0xF);
553e2335
ED
1405 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1406 dev->stats.tx_packets++;
1da177e4
LT
1407 }
1408 /* Free the original skb. */
1409 if (rp->tx_skbuff_dma[entry]) {
1410 pci_unmap_single(rp->pdev,
1411 rp->tx_skbuff_dma[entry],
1412 rp->tx_skbuff[entry]->len,
1413 PCI_DMA_TODEVICE);
1414 }
1415 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1416 rp->tx_skbuff[entry] = NULL;
1417 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1418 }
1419 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1420 netif_wake_queue(dev);
1421
1422 spin_unlock(&rp->lock);
1423}
1424
633949a1
RL
1425/* Process up to limit frames from receive ring */
1426static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1427{
1428 struct rhine_private *rp = netdev_priv(dev);
633949a1 1429 int count;
1da177e4 1430 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1431
1432 if (debug > 4) {
1433 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1434 dev->name, entry,
1435 le32_to_cpu(rp->rx_head_desc->rx_status));
1436 }
1437
1438 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1439 for (count = 0; count < limit; ++count) {
1da177e4
LT
1440 struct rx_desc *desc = rp->rx_head_desc;
1441 u32 desc_status = le32_to_cpu(desc->rx_status);
1442 int data_size = desc_status >> 16;
1443
633949a1
RL
1444 if (desc_status & DescOwn)
1445 break;
1446
1da177e4 1447 if (debug > 4)
ed4030d1 1448 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4 1449 desc_status);
633949a1 1450
1da177e4
LT
1451 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1452 if ((desc_status & RxWholePkt) != RxWholePkt) {
1453 printk(KERN_WARNING "%s: Oversized Ethernet "
1454 "frame spanned multiple buffers, entry "
1455 "%#x length %d status %8.8x!\n",
1456 dev->name, entry, data_size,
1457 desc_status);
1458 printk(KERN_WARNING "%s: Oversized Ethernet "
1459 "frame %p vs %p.\n", dev->name,
1460 rp->rx_head_desc, &rp->rx_ring[entry]);
553e2335 1461 dev->stats.rx_length_errors++;
1da177e4
LT
1462 } else if (desc_status & RxErr) {
1463 /* There was a error. */
1464 if (debug > 2)
ed4030d1 1465 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1466 "error was %8.8x.\n",
1467 desc_status);
553e2335
ED
1468 dev->stats.rx_errors++;
1469 if (desc_status & 0x0030)
1470 dev->stats.rx_length_errors++;
1471 if (desc_status & 0x0048)
1472 dev->stats.rx_fifo_errors++;
1473 if (desc_status & 0x0004)
1474 dev->stats.rx_frame_errors++;
1da177e4
LT
1475 if (desc_status & 0x0002) {
1476 /* this can also be updated outside the interrupt handler */
1477 spin_lock(&rp->lock);
553e2335 1478 dev->stats.rx_crc_errors++;
1da177e4
LT
1479 spin_unlock(&rp->lock);
1480 }
1481 }
1482 } else {
1483 struct sk_buff *skb;
1484 /* Length should omit the CRC */
1485 int pkt_len = data_size - 4;
1486
1487 /* Check if the packet is long enough to accept without
1488 copying to a minimally-sized skbuff. */
1489 if (pkt_len < rx_copybreak &&
b26b555a
KL
1490 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1491 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1da177e4
LT
1492 pci_dma_sync_single_for_cpu(rp->pdev,
1493 rp->rx_skbuff_dma[entry],
1494 rp->rx_buf_sz,
1495 PCI_DMA_FROMDEVICE);
1496
8c7b7faa 1497 skb_copy_to_linear_data(skb,
689be439 1498 rp->rx_skbuff[entry]->data,
8c7b7faa 1499 pkt_len);
1da177e4
LT
1500 skb_put(skb, pkt_len);
1501 pci_dma_sync_single_for_device(rp->pdev,
1502 rp->rx_skbuff_dma[entry],
1503 rp->rx_buf_sz,
1504 PCI_DMA_FROMDEVICE);
1505 } else {
1506 skb = rp->rx_skbuff[entry];
1507 if (skb == NULL) {
1508 printk(KERN_ERR "%s: Inconsistent Rx "
1509 "descriptor chain.\n",
1510 dev->name);
1511 break;
1512 }
1513 rp->rx_skbuff[entry] = NULL;
1514 skb_put(skb, pkt_len);
1515 pci_unmap_single(rp->pdev,
1516 rp->rx_skbuff_dma[entry],
1517 rp->rx_buf_sz,
1518 PCI_DMA_FROMDEVICE);
1519 }
1520 skb->protocol = eth_type_trans(skb, dev);
633949a1 1521 netif_receive_skb(skb);
553e2335
ED
1522 dev->stats.rx_bytes += pkt_len;
1523 dev->stats.rx_packets++;
1da177e4
LT
1524 }
1525 entry = (++rp->cur_rx) % RX_RING_SIZE;
1526 rp->rx_head_desc = &rp->rx_ring[entry];
1527 }
1528
1529 /* Refill the Rx ring buffers. */
1530 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1531 struct sk_buff *skb;
1532 entry = rp->dirty_rx % RX_RING_SIZE;
1533 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1534 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1535 rp->rx_skbuff[entry] = skb;
1536 if (skb == NULL)
1537 break; /* Better luck next round. */
1538 skb->dev = dev; /* Mark as being used by this device. */
1539 rp->rx_skbuff_dma[entry] =
689be439 1540 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1541 rp->rx_buf_sz,
1542 PCI_DMA_FROMDEVICE);
1543 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1544 }
1545 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1546 }
633949a1
RL
1547
1548 return count;
1da177e4
LT
1549}
1550
1551/*
1552 * Clears the "tally counters" for CRC errors and missed frames(?).
1553 * It has been reported that some chips need a write of 0 to clear
1554 * these, for others the counters are set to 1 when written to and
1555 * instead cleared when read. So we clear them both ways ...
1556 */
1557static inline void clear_tally_counters(void __iomem *ioaddr)
1558{
1559 iowrite32(0, ioaddr + RxMissed);
1560 ioread16(ioaddr + RxCRCErrs);
1561 ioread16(ioaddr + RxMissed);
1562}
1563
1564static void rhine_restart_tx(struct net_device *dev) {
1565 struct rhine_private *rp = netdev_priv(dev);
1566 void __iomem *ioaddr = rp->base;
1567 int entry = rp->dirty_tx % TX_RING_SIZE;
1568 u32 intr_status;
1569
1570 /*
1571 * If new errors occured, we need to sort them out before doing Tx.
1572 * In that case the ISR will be back here RSN anyway.
1573 */
1574 intr_status = get_intr_status(dev);
1575
1576 if ((intr_status & IntrTxErrSummary) == 0) {
1577
1578 /* We know better than the chip where it should continue. */
1579 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1580 ioaddr + TxRingPtr);
1581
1582 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1583 ioaddr + ChipCmd);
1584 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1585 ioaddr + ChipCmd1);
1586 IOSYNC;
1587 }
1588 else {
1589 /* This should never happen */
1590 if (debug > 1)
1591 printk(KERN_WARNING "%s: rhine_restart_tx() "
1592 "Another error occured %8.8x.\n",
1593 dev->name, intr_status);
1594 }
1595
1596}
1597
1598static void rhine_error(struct net_device *dev, int intr_status)
1599{
1600 struct rhine_private *rp = netdev_priv(dev);
1601 void __iomem *ioaddr = rp->base;
1602
1603 spin_lock(&rp->lock);
1604
1605 if (intr_status & IntrLinkChange)
38bb6b28 1606 rhine_check_media(dev, 0);
1da177e4 1607 if (intr_status & IntrStatsMax) {
553e2335
ED
1608 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1609 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1610 clear_tally_counters(ioaddr);
1611 }
1612 if (intr_status & IntrTxAborted) {
1613 if (debug > 1)
1614 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1615 dev->name, intr_status);
1616 }
1617 if (intr_status & IntrTxUnderrun) {
1618 if (rp->tx_thresh < 0xE0)
1619 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1620 if (debug > 1)
1621 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1622 "threshold now %2.2x.\n",
1623 dev->name, rp->tx_thresh);
1624 }
1625 if (intr_status & IntrTxDescRace) {
1626 if (debug > 2)
1627 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1628 dev->name);
1629 }
1630 if ((intr_status & IntrTxError) &&
1631 (intr_status & (IntrTxAborted |
1632 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1633 if (rp->tx_thresh < 0xE0) {
1634 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1635 }
1636 if (debug > 1)
1637 printk(KERN_INFO "%s: Unspecified error. Tx "
1638 "threshold now %2.2x.\n",
1639 dev->name, rp->tx_thresh);
1640 }
1641 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1642 IntrTxError))
1643 rhine_restart_tx(dev);
1644
1645 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1646 IntrTxError | IntrTxAborted | IntrNormalSummary |
1647 IntrTxDescRace)) {
1648 if (debug > 1)
1649 printk(KERN_ERR "%s: Something Wicked happened! "
1650 "%8.8x.\n", dev->name, intr_status);
1651 }
1652
1653 spin_unlock(&rp->lock);
1654}
1655
1656static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1657{
1658 struct rhine_private *rp = netdev_priv(dev);
1659 void __iomem *ioaddr = rp->base;
1660 unsigned long flags;
1661
1662 spin_lock_irqsave(&rp->lock, flags);
553e2335
ED
1663 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1664 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1da177e4
LT
1665 clear_tally_counters(ioaddr);
1666 spin_unlock_irqrestore(&rp->lock, flags);
1667
553e2335 1668 return &dev->stats;
1da177e4
LT
1669}
1670
1671static void rhine_set_rx_mode(struct net_device *dev)
1672{
1673 struct rhine_private *rp = netdev_priv(dev);
1674 void __iomem *ioaddr = rp->base;
1675 u32 mc_filter[2]; /* Multicast hash filter */
1676 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1677
1678 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1679 rx_mode = 0x1C;
1680 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1681 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1682 } else if ((dev->mc_count > multicast_filter_limit)
1683 || (dev->flags & IFF_ALLMULTI)) {
1684 /* Too many to match, or accept all multicasts. */
1685 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1686 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1687 rx_mode = 0x0C;
1688 } else {
1689 struct dev_mc_list *mclist;
1690 int i;
1691 memset(mc_filter, 0, sizeof(mc_filter));
1692 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1693 i++, mclist = mclist->next) {
1694 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1695
1696 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1697 }
1698 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1699 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1700 rx_mode = 0x0C;
1701 }
1702 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1703}
1704
1705static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1706{
1707 struct rhine_private *rp = netdev_priv(dev);
1708
1709 strcpy(info->driver, DRV_NAME);
1710 strcpy(info->version, DRV_VERSION);
1711 strcpy(info->bus_info, pci_name(rp->pdev));
1712}
1713
1714static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1715{
1716 struct rhine_private *rp = netdev_priv(dev);
1717 int rc;
1718
1719 spin_lock_irq(&rp->lock);
1720 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1721 spin_unlock_irq(&rp->lock);
1722
1723 return rc;
1724}
1725
1726static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1727{
1728 struct rhine_private *rp = netdev_priv(dev);
1729 int rc;
1730
1731 spin_lock_irq(&rp->lock);
1732 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1733 spin_unlock_irq(&rp->lock);
00b428c2 1734 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1735
1736 return rc;
1737}
1738
1739static int netdev_nway_reset(struct net_device *dev)
1740{
1741 struct rhine_private *rp = netdev_priv(dev);
1742
1743 return mii_nway_restart(&rp->mii_if);
1744}
1745
1746static u32 netdev_get_link(struct net_device *dev)
1747{
1748 struct rhine_private *rp = netdev_priv(dev);
1749
1750 return mii_link_ok(&rp->mii_if);
1751}
1752
1753static u32 netdev_get_msglevel(struct net_device *dev)
1754{
1755 return debug;
1756}
1757
1758static void netdev_set_msglevel(struct net_device *dev, u32 value)
1759{
1760 debug = value;
1761}
1762
1763static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1764{
1765 struct rhine_private *rp = netdev_priv(dev);
1766
1767 if (!(rp->quirks & rqWOL))
1768 return;
1769
1770 spin_lock_irq(&rp->lock);
1771 wol->supported = WAKE_PHY | WAKE_MAGIC |
1772 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1773 wol->wolopts = rp->wolopts;
1774 spin_unlock_irq(&rp->lock);
1775}
1776
1777static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1778{
1779 struct rhine_private *rp = netdev_priv(dev);
1780 u32 support = WAKE_PHY | WAKE_MAGIC |
1781 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1782
1783 if (!(rp->quirks & rqWOL))
1784 return -EINVAL;
1785
1786 if (wol->wolopts & ~support)
1787 return -EINVAL;
1788
1789 spin_lock_irq(&rp->lock);
1790 rp->wolopts = wol->wolopts;
1791 spin_unlock_irq(&rp->lock);
1792
1793 return 0;
1794}
1795
7282d491 1796static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1797 .get_drvinfo = netdev_get_drvinfo,
1798 .get_settings = netdev_get_settings,
1799 .set_settings = netdev_set_settings,
1800 .nway_reset = netdev_nway_reset,
1801 .get_link = netdev_get_link,
1802 .get_msglevel = netdev_get_msglevel,
1803 .set_msglevel = netdev_set_msglevel,
1804 .get_wol = rhine_get_wol,
1805 .set_wol = rhine_set_wol,
1da177e4
LT
1806};
1807
1808static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1809{
1810 struct rhine_private *rp = netdev_priv(dev);
1811 int rc;
1812
1813 if (!netif_running(dev))
1814 return -EINVAL;
1815
1816 spin_lock_irq(&rp->lock);
1817 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1818 spin_unlock_irq(&rp->lock);
00b428c2 1819 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1820
1821 return rc;
1822}
1823
1824static int rhine_close(struct net_device *dev)
1825{
1826 struct rhine_private *rp = netdev_priv(dev);
1827 void __iomem *ioaddr = rp->base;
1828
1829 spin_lock_irq(&rp->lock);
1830
1831 netif_stop_queue(dev);
bea3348e 1832 napi_disable(&rp->napi);
1da177e4
LT
1833
1834 if (debug > 1)
1835 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1836 "status was %4.4x.\n",
1837 dev->name, ioread16(ioaddr + ChipCmd));
1838
1839 /* Switch to loopback mode to avoid hardware races. */
1840 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1841
1842 /* Disable interrupts by clearing the interrupt mask. */
1843 iowrite16(0x0000, ioaddr + IntrEnable);
1844
1845 /* Stop the chip's Tx and Rx processes. */
1846 iowrite16(CmdStop, ioaddr + ChipCmd);
1847
1848 spin_unlock_irq(&rp->lock);
1849
1850 free_irq(rp->pdev->irq, dev);
1851 free_rbufs(dev);
1852 free_tbufs(dev);
1853 free_ring(dev);
1854
1855 return 0;
1856}
1857
1858
1859static void __devexit rhine_remove_one(struct pci_dev *pdev)
1860{
1861 struct net_device *dev = pci_get_drvdata(pdev);
1862 struct rhine_private *rp = netdev_priv(dev);
1863
1864 unregister_netdev(dev);
1865
1866 pci_iounmap(pdev, rp->base);
1867 pci_release_regions(pdev);
1868
1869 free_netdev(dev);
1870 pci_disable_device(pdev);
1871 pci_set_drvdata(pdev, NULL);
1872}
1873
d18c3db5 1874static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1875{
1da177e4
LT
1876 struct net_device *dev = pci_get_drvdata(pdev);
1877 struct rhine_private *rp = netdev_priv(dev);
1878 void __iomem *ioaddr = rp->base;
1879
1880 if (!(rp->quirks & rqWOL))
1881 return; /* Nothing to do for non-WOL adapters */
1882
1883 rhine_power_init(dev);
1884
1885 /* Make sure we use pattern 0, 1 and not 4, 5 */
1886 if (rp->quirks & rq6patterns)
f11cf25e 1887 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4
LT
1888
1889 if (rp->wolopts & WAKE_MAGIC) {
1890 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1891 /*
1892 * Turn EEPROM-controlled wake-up back on -- some hardware may
1893 * not cooperate otherwise.
1894 */
1895 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1896 }
1897
1898 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1899 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1900
1901 if (rp->wolopts & WAKE_PHY)
1902 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1903
1904 if (rp->wolopts & WAKE_UCAST)
1905 iowrite8(WOLucast, ioaddr + WOLcrSet);
1906
1907 if (rp->wolopts) {
1908 /* Enable legacy WOL (for old motherboards) */
1909 iowrite8(0x01, ioaddr + PwcfgSet);
1910 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1911 }
1912
1913 /* Hit power state D3 (sleep) */
b933b4d9
RL
1914 if (!avoid_D3)
1915 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
1916
1917 /* TODO: Check use of pci_enable_wake() */
1918
1919}
1920
1921#ifdef CONFIG_PM
1922static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1923{
1924 struct net_device *dev = pci_get_drvdata(pdev);
1925 struct rhine_private *rp = netdev_priv(dev);
1926 unsigned long flags;
1927
1928 if (!netif_running(dev))
1929 return 0;
1930
bea3348e 1931 napi_disable(&rp->napi);
32b0f53e 1932
1da177e4
LT
1933 netif_device_detach(dev);
1934 pci_save_state(pdev);
1935
1936 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1937 rhine_shutdown(pdev);
1da177e4
LT
1938 spin_unlock_irqrestore(&rp->lock, flags);
1939
1940 free_irq(dev->irq, dev);
1941 return 0;
1942}
1943
1944static int rhine_resume(struct pci_dev *pdev)
1945{
1946 struct net_device *dev = pci_get_drvdata(pdev);
1947 struct rhine_private *rp = netdev_priv(dev);
1948 unsigned long flags;
1949 int ret;
1950
1951 if (!netif_running(dev))
1952 return 0;
1953
1fb9df5d 1954 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
1955 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1956
1957 ret = pci_set_power_state(pdev, PCI_D0);
1958 if (debug > 1)
1959 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1960 dev->name, ret ? "failed" : "succeeded", ret);
1961
1962 pci_restore_state(pdev);
1963
1964 spin_lock_irqsave(&rp->lock, flags);
1965#ifdef USE_MMIO
1966 enable_mmio(rp->pioaddr, rp->quirks);
1967#endif
1968 rhine_power_init(dev);
1969 free_tbufs(dev);
1970 free_rbufs(dev);
1971 alloc_tbufs(dev);
1972 alloc_rbufs(dev);
1973 init_registers(dev);
1974 spin_unlock_irqrestore(&rp->lock, flags);
1975
1976 netif_device_attach(dev);
1977
1978 return 0;
1979}
1980#endif /* CONFIG_PM */
1981
1982static struct pci_driver rhine_driver = {
1983 .name = DRV_NAME,
1984 .id_table = rhine_pci_tbl,
1985 .probe = rhine_init_one,
1986 .remove = __devexit_p(rhine_remove_one),
1987#ifdef CONFIG_PM
1988 .suspend = rhine_suspend,
1989 .resume = rhine_resume,
1990#endif /* CONFIG_PM */
d18c3db5 1991 .shutdown = rhine_shutdown,
1da177e4
LT
1992};
1993
e84df485
RL
1994static struct dmi_system_id __initdata rhine_dmi_table[] = {
1995 {
1996 .ident = "EPIA-M",
1997 .matches = {
1998 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1999 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2000 },
2001 },
2002 {
2003 .ident = "KV7",
2004 .matches = {
2005 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2006 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2007 },
2008 },
2009 { NULL }
2010};
1da177e4
LT
2011
2012static int __init rhine_init(void)
2013{
2014/* when a module, this is printed whether or not devices are found in probe */
2015#ifdef MODULE
2016 printk(version);
2017#endif
e84df485
RL
2018 if (dmi_check_system(rhine_dmi_table)) {
2019 /* these BIOSes fail at PXE boot if chip is in D3 */
2020 avoid_D3 = 1;
2021 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2022 "enabled.\n",
2023 DRV_NAME);
2024 }
2025 else if (avoid_D3)
2026 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2027
29917620 2028 return pci_register_driver(&rhine_driver);
1da177e4
LT
2029}
2030
2031
2032static void __exit rhine_cleanup(void)
2033{
2034 pci_unregister_driver(&rhine_driver);
2035}
2036
2037
2038module_init(rhine_init);
2039module_exit(rhine_cleanup);
This page took 0.668535 seconds and 5 git commands to generate.