[PATCH] s2io: netpoll support
[deliverable/linux.git] / drivers / net / via-velocity.c
CommitLineData
1da177e4
LT
1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * Big-endian support
12 * rx_copybreak/alignment
13 * Scatter gather
14 * More testing
15 *
16 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
17 * Additional fixes and clean up: Francois Romieu
18 *
19 * This source has not been verified for use in safety critical systems.
20 *
21 * Please direct queries about the revamped driver to the linux-kernel
22 * list not VIA.
23 *
24 * Original code:
25 *
26 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
27 * All rights reserved.
28 *
29 * This software may be redistributed and/or modified under
30 * the terms of the GNU General Public License as published by the Free
31 * Software Foundation; either version 2 of the License, or
32 * any later version.
33 *
34 * This program is distributed in the hope that it will be useful, but
35 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
36 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
37 * for more details.
38 *
39 * Author: Chuang Liang-Shing, AJ Jiang
40 *
41 * Date: Jan 24, 2003
42 *
43 * MODULE_LICENSE("GPL");
44 *
45 */
46
47
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/config.h>
51#include <linux/init.h>
52#include <linux/mm.h>
53#include <linux/errno.h>
54#include <linux/ioport.h>
55#include <linux/pci.h>
56#include <linux/kernel.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/delay.h>
61#include <linux/timer.h>
62#include <linux/slab.h>
63#include <linux/interrupt.h>
1da177e4
LT
64#include <linux/string.h>
65#include <linux/wait.h>
66#include <asm/io.h>
67#include <linux/if.h>
68#include <linux/config.h>
69#include <asm/uaccess.h>
70#include <linux/proc_fs.h>
71#include <linux/inetdevice.h>
72#include <linux/reboot.h>
73#include <linux/ethtool.h>
74#include <linux/mii.h>
75#include <linux/in.h>
76#include <linux/if_arp.h>
77#include <linux/ip.h>
78#include <linux/tcp.h>
79#include <linux/udp.h>
80#include <linux/crc-ccitt.h>
81#include <linux/crc32.h>
82
83#include "via-velocity.h"
84
85
86static int velocity_nics = 0;
87static int msglevel = MSG_LEVEL_INFO;
88
89
90static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
91static struct ethtool_ops velocity_ethtool_ops;
92
93/*
94 Define module options
95*/
96
97MODULE_AUTHOR("VIA Networking Technologies, Inc.");
98MODULE_LICENSE("GPL");
99MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
100
101#define VELOCITY_PARAM(N,D) \
102 static int N[MAX_UNITS]=OPTION_DEFAULT;\
103 module_param_array(N, int, NULL, 0); \
104 MODULE_PARM_DESC(N, D);
105
106#define RX_DESC_MIN 64
107#define RX_DESC_MAX 255
108#define RX_DESC_DEF 64
109VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
110
111#define TX_DESC_MIN 16
112#define TX_DESC_MAX 256
113#define TX_DESC_DEF 64
114VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
115
116#define VLAN_ID_MIN 0
117#define VLAN_ID_MAX 4095
118#define VLAN_ID_DEF 0
119/* VID_setting[] is used for setting the VID of NIC.
120 0: default VID.
121 1-4094: other VIDs.
122*/
123VELOCITY_PARAM(VID_setting, "802.1Q VLAN ID");
124
125#define RX_THRESH_MIN 0
126#define RX_THRESH_MAX 3
127#define RX_THRESH_DEF 0
128/* rx_thresh[] is used for controlling the receive fifo threshold.
129 0: indicate the rxfifo threshold is 128 bytes.
130 1: indicate the rxfifo threshold is 512 bytes.
131 2: indicate the rxfifo threshold is 1024 bytes.
132 3: indicate the rxfifo threshold is store & forward.
133*/
134VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
135
136#define DMA_LENGTH_MIN 0
137#define DMA_LENGTH_MAX 7
138#define DMA_LENGTH_DEF 0
139
140/* DMA_length[] is used for controlling the DMA length
141 0: 8 DWORDs
142 1: 16 DWORDs
143 2: 32 DWORDs
144 3: 64 DWORDs
145 4: 128 DWORDs
146 5: 256 DWORDs
147 6: SF(flush till emply)
148 7: SF(flush till emply)
149*/
150VELOCITY_PARAM(DMA_length, "DMA length");
151
152#define TAGGING_DEF 0
153/* enable_tagging[] is used for enabling 802.1Q VID tagging.
154 0: disable VID seeting(default).
155 1: enable VID setting.
156*/
157VELOCITY_PARAM(enable_tagging, "Enable 802.1Q tagging");
158
159#define IP_ALIG_DEF 0
160/* IP_byte_align[] is used for IP header DWORD byte aligned
161 0: indicate the IP header won't be DWORD byte aligned.(Default) .
162 1: indicate the IP header will be DWORD byte aligned.
163 In some enviroment, the IP header should be DWORD byte aligned,
164 or the packet will be droped when we receive it. (eg: IPVS)
165*/
166VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
167
168#define TX_CSUM_DEF 1
169/* txcsum_offload[] is used for setting the checksum offload ability of NIC.
170 (We only support RX checksum offload now)
171 0: disable csum_offload[checksum offload
172 1: enable checksum offload. (Default)
173*/
174VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
175
176#define FLOW_CNTL_DEF 1
177#define FLOW_CNTL_MIN 1
178#define FLOW_CNTL_MAX 5
179
180/* flow_control[] is used for setting the flow control ability of NIC.
181 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
182 2: enable TX flow control.
183 3: enable RX flow control.
184 4: enable RX/TX flow control.
185 5: disable
186*/
187VELOCITY_PARAM(flow_control, "Enable flow control ability");
188
189#define MED_LNK_DEF 0
190#define MED_LNK_MIN 0
191#define MED_LNK_MAX 4
192/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
193 0: indicate autonegotiation for both speed and duplex mode
194 1: indicate 100Mbps half duplex mode
195 2: indicate 100Mbps full duplex mode
196 3: indicate 10Mbps half duplex mode
197 4: indicate 10Mbps full duplex mode
198
199 Note:
200 if EEPROM have been set to the force mode, this option is ignored
201 by driver.
202*/
203VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
204
205#define VAL_PKT_LEN_DEF 0
206/* ValPktLen[] is used for setting the checksum offload ability of NIC.
207 0: Receive frame with invalid layer 2 length (Default)
208 1: Drop frame with invalid layer 2 length
209*/
210VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
211
212#define WOL_OPT_DEF 0
213#define WOL_OPT_MIN 0
214#define WOL_OPT_MAX 7
215/* wol_opts[] is used for controlling wake on lan behavior.
216 0: Wake up if recevied a magic packet. (Default)
217 1: Wake up if link status is on/off.
218 2: Wake up if recevied an arp packet.
219 4: Wake up if recevied any unicast packet.
220 Those value can be sumed up to support more than one option.
221*/
222VELOCITY_PARAM(wol_opts, "Wake On Lan options");
223
224#define INT_WORKS_DEF 20
225#define INT_WORKS_MIN 10
226#define INT_WORKS_MAX 64
227
228VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
229
230static int rx_copybreak = 200;
231module_param(rx_copybreak, int, 0644);
232MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
233
234static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info);
235static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
236static void velocity_print_info(struct velocity_info *vptr);
237static int velocity_open(struct net_device *dev);
238static int velocity_change_mtu(struct net_device *dev, int mtu);
239static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
240static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs);
241static void velocity_set_multi(struct net_device *dev);
242static struct net_device_stats *velocity_get_stats(struct net_device *dev);
243static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
244static int velocity_close(struct net_device *dev);
245static int velocity_receive_frame(struct velocity_info *, int idx);
246static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
247static void velocity_free_rd_ring(struct velocity_info *vptr);
248static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
249static int velocity_soft_reset(struct velocity_info *vptr);
250static void mii_init(struct velocity_info *vptr, u32 mii_status);
251static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
252static void velocity_print_link_status(struct velocity_info *vptr);
253static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
254static void velocity_shutdown(struct velocity_info *vptr);
255static void enable_flow_control_ability(struct velocity_info *vptr);
256static void enable_mii_autopoll(struct mac_regs __iomem * regs);
257static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
258static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
259static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
260static u32 check_connection_type(struct mac_regs __iomem * regs);
261static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
262
263#ifdef CONFIG_PM
264
265static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
266static int velocity_resume(struct pci_dev *pdev);
267
268static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
269
270static struct notifier_block velocity_inetaddr_notifier = {
271 .notifier_call = velocity_netdev_event,
272};
273
274static DEFINE_SPINLOCK(velocity_dev_list_lock);
275static LIST_HEAD(velocity_dev_list);
276
277static void velocity_register_notifier(void)
278{
279 register_inetaddr_notifier(&velocity_inetaddr_notifier);
280}
281
282static void velocity_unregister_notifier(void)
283{
284 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
285}
286
287#else /* CONFIG_PM */
288
289#define velocity_register_notifier() do {} while (0)
290#define velocity_unregister_notifier() do {} while (0)
291
292#endif /* !CONFIG_PM */
293
294/*
295 * Internal board variants. At the moment we have only one
296 */
297
298static struct velocity_info_tbl chip_info_table[] = {
299 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 256, 1, 0x00FFFFFFUL},
300 {0, NULL}
301};
302
303/*
304 * Describe the PCI device identifiers that we support in this
305 * device driver. Used for hotplug autoloading.
306 */
307
308static struct pci_device_id velocity_id_table[] __devinitdata = {
309 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X,
310 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) chip_info_table},
311 {0, }
312};
313
314MODULE_DEVICE_TABLE(pci, velocity_id_table);
315
316/**
317 * get_chip_name - identifier to name
318 * @id: chip identifier
319 *
320 * Given a chip identifier return a suitable description. Returns
321 * a pointer a static string valid while the driver is loaded.
322 */
323
324static char __devinit *get_chip_name(enum chip_type chip_id)
325{
326 int i;
327 for (i = 0; chip_info_table[i].name != NULL; i++)
328 if (chip_info_table[i].chip_id == chip_id)
329 break;
330 return chip_info_table[i].name;
331}
332
333/**
334 * velocity_remove1 - device unplug
335 * @pdev: PCI device being removed
336 *
337 * Device unload callback. Called on an unplug or on module
338 * unload for each active device that is present. Disconnects
339 * the device from the network layer and frees all the resources
340 */
341
342static void __devexit velocity_remove1(struct pci_dev *pdev)
343{
344 struct net_device *dev = pci_get_drvdata(pdev);
345 struct velocity_info *vptr = dev->priv;
346
347#ifdef CONFIG_PM
348 unsigned long flags;
349
350 spin_lock_irqsave(&velocity_dev_list_lock, flags);
351 if (!list_empty(&velocity_dev_list))
352 list_del(&vptr->list);
353 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
354#endif
355 unregister_netdev(dev);
356 iounmap(vptr->mac_regs);
357 pci_release_regions(pdev);
358 pci_disable_device(pdev);
359 pci_set_drvdata(pdev, NULL);
360 free_netdev(dev);
361
362 velocity_nics--;
363}
364
365/**
366 * velocity_set_int_opt - parser for integer options
367 * @opt: pointer to option value
368 * @val: value the user requested (or -1 for default)
369 * @min: lowest value allowed
370 * @max: highest value allowed
371 * @def: default value
372 * @name: property name
373 * @dev: device name
374 *
375 * Set an integer property in the module options. This function does
376 * all the verification and checking as well as reporting so that
377 * we don't duplicate code for each option.
378 */
379
380static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
381{
382 if (val == -1)
383 *opt = def;
384 else if (val < min || val > max) {
385 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
386 devname, name, min, max);
387 *opt = def;
388 } else {
389 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
390 devname, name, val);
391 *opt = val;
392 }
393}
394
395/**
396 * velocity_set_bool_opt - parser for boolean options
397 * @opt: pointer to option value
398 * @val: value the user requested (or -1 for default)
399 * @def: default value (yes/no)
400 * @flag: numeric value to set for true.
401 * @name: property name
402 * @dev: device name
403 *
404 * Set a boolean property in the module options. This function does
405 * all the verification and checking as well as reporting so that
406 * we don't duplicate code for each option.
407 */
408
409static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
410{
411 (*opt) &= (~flag);
412 if (val == -1)
413 *opt |= (def ? flag : 0);
414 else if (val < 0 || val > 1) {
415 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
416 devname, name);
417 *opt |= (def ? flag : 0);
418 } else {
419 printk(KERN_INFO "%s: set parameter %s to %s\n",
420 devname, name, val ? "TRUE" : "FALSE");
421 *opt |= (val ? flag : 0);
422 }
423}
424
425/**
426 * velocity_get_options - set options on device
427 * @opts: option structure for the device
428 * @index: index of option to use in module options array
429 * @devname: device name
430 *
431 * Turn the module and command options into a single structure
432 * for the current device
433 */
434
435static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
436{
437
438 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
439 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
440 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
441 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
442 velocity_set_int_opt(&opts->vid, VID_setting[index], VLAN_ID_MIN, VLAN_ID_MAX, VLAN_ID_DEF, "VID_setting", devname);
443 velocity_set_bool_opt(&opts->flags, enable_tagging[index], TAGGING_DEF, VELOCITY_FLAGS_TAGGING, "enable_tagging", devname);
444 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
445 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
446 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
447 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
448 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
449 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
450 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
451 opts->numrx = (opts->numrx & ~3);
452}
453
454/**
455 * velocity_init_cam_filter - initialise CAM
456 * @vptr: velocity to program
457 *
458 * Initialize the content addressable memory used for filters. Load
459 * appropriately according to the presence of VLAN
460 */
461
462static void velocity_init_cam_filter(struct velocity_info *vptr)
463{
464 struct mac_regs __iomem * regs = vptr->mac_regs;
465
466 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
467 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
468 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
469
470 /* Disable all CAMs */
471 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
472 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
473 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
474 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
475
476 /* Enable first VCAM */
477 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
478 /* If Tagging option is enabled and VLAN ID is not zero, then
479 turn on MCFG_RTGOPT also */
480 if (vptr->options.vid != 0)
481 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
482
483 mac_set_cam(regs, 0, (u8 *) & (vptr->options.vid), VELOCITY_VLAN_ID_CAM);
484 vptr->vCAMmask[0] |= 1;
485 mac_set_cam_mask(regs, vptr->vCAMmask, VELOCITY_VLAN_ID_CAM);
486 } else {
487 u16 temp = 0;
488 mac_set_cam(regs, 0, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
489 temp = 1;
490 mac_set_cam_mask(regs, (u8 *) &temp, VELOCITY_VLAN_ID_CAM);
491 }
492}
493
494/**
495 * velocity_rx_reset - handle a receive reset
496 * @vptr: velocity we are resetting
497 *
498 * Reset the ownership and status for the receive ring side.
499 * Hand all the receive queue to the NIC.
500 */
501
502static void velocity_rx_reset(struct velocity_info *vptr)
503{
504
505 struct mac_regs __iomem * regs = vptr->mac_regs;
506 int i;
507
508 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
509
510 /*
511 * Init state, all RD entries belong to the NIC
512 */
513 for (i = 0; i < vptr->options.numrx; ++i)
514 vptr->rd_ring[i].rdesc0.owner = OWNED_BY_NIC;
515
516 writew(vptr->options.numrx, &regs->RBRDU);
517 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
518 writew(0, &regs->RDIdx);
519 writew(vptr->options.numrx - 1, &regs->RDCSize);
520}
521
522/**
523 * velocity_init_registers - initialise MAC registers
524 * @vptr: velocity to init
525 * @type: type of initialisation (hot or cold)
526 *
527 * Initialise the MAC on a reset or on first set up on the
528 * hardware.
529 */
530
531static void velocity_init_registers(struct velocity_info *vptr,
532 enum velocity_init_type type)
533{
534 struct mac_regs __iomem * regs = vptr->mac_regs;
535 int i, mii_status;
536
537 mac_wol_reset(regs);
538
539 switch (type) {
540 case VELOCITY_INIT_RESET:
541 case VELOCITY_INIT_WOL:
542
543 netif_stop_queue(vptr->dev);
544
545 /*
546 * Reset RX to prevent RX pointer not on the 4X location
547 */
548 velocity_rx_reset(vptr);
549 mac_rx_queue_run(regs);
550 mac_rx_queue_wake(regs);
551
552 mii_status = velocity_get_opt_media_mode(vptr);
553 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
554 velocity_print_link_status(vptr);
555 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
556 netif_wake_queue(vptr->dev);
557 }
558
559 enable_flow_control_ability(vptr);
560
561 mac_clear_isr(regs);
562 writel(CR0_STOP, &regs->CR0Clr);
563 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
564 &regs->CR0Set);
565
566 break;
567
568 case VELOCITY_INIT_COLD:
569 default:
570 /*
571 * Do reset
572 */
573 velocity_soft_reset(vptr);
574 mdelay(5);
575
576 mac_eeprom_reload(regs);
577 for (i = 0; i < 6; i++) {
578 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
579 }
580 /*
581 * clear Pre_ACPI bit.
582 */
583 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
584 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
585 mac_set_dma_length(regs, vptr->options.DMA_length);
586
587 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
588 /*
589 * Back off algorithm use original IEEE standard
590 */
591 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
592
593 /*
594 * Init CAM filter
595 */
596 velocity_init_cam_filter(vptr);
597
598 /*
599 * Set packet filter: Receive directed and broadcast address
600 */
601 velocity_set_multi(vptr->dev);
602
603 /*
604 * Enable MII auto-polling
605 */
606 enable_mii_autopoll(regs);
607
608 vptr->int_mask = INT_MASK_DEF;
609
610 writel(cpu_to_le32(vptr->rd_pool_dma), &regs->RDBaseLo);
611 writew(vptr->options.numrx - 1, &regs->RDCSize);
612 mac_rx_queue_run(regs);
613 mac_rx_queue_wake(regs);
614
615 writew(vptr->options.numtx - 1, &regs->TDCSize);
616
617 for (i = 0; i < vptr->num_txq; i++) {
618 writel(cpu_to_le32(vptr->td_pool_dma[i]), &(regs->TDBaseLo[i]));
619 mac_tx_queue_run(regs, i);
620 }
621
622 init_flow_control_register(vptr);
623
624 writel(CR0_STOP, &regs->CR0Clr);
625 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
626
627 mii_status = velocity_get_opt_media_mode(vptr);
628 netif_stop_queue(vptr->dev);
629
630 mii_init(vptr, mii_status);
631
632 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
633 velocity_print_link_status(vptr);
634 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
635 netif_wake_queue(vptr->dev);
636 }
637
638 enable_flow_control_ability(vptr);
639 mac_hw_mibs_init(regs);
640 mac_write_int_mask(vptr->int_mask, regs);
641 mac_clear_isr(regs);
642
643 }
644}
645
646/**
647 * velocity_soft_reset - soft reset
648 * @vptr: velocity to reset
649 *
650 * Kick off a soft reset of the velocity adapter and then poll
651 * until the reset sequence has completed before returning.
652 */
653
654static int velocity_soft_reset(struct velocity_info *vptr)
655{
656 struct mac_regs __iomem * regs = vptr->mac_regs;
657 int i = 0;
658
659 writel(CR0_SFRST, &regs->CR0Set);
660
661 for (i = 0; i < W_MAX_TIMEOUT; i++) {
662 udelay(5);
663 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
664 break;
665 }
666
667 if (i == W_MAX_TIMEOUT) {
668 writel(CR0_FORSRST, &regs->CR0Set);
669 /* FIXME: PCI POSTING */
670 /* delay 2ms */
671 mdelay(2);
672 }
673 return 0;
674}
675
676/**
677 * velocity_found1 - set up discovered velocity card
678 * @pdev: PCI device
679 * @ent: PCI device table entry that matched
680 *
681 * Configure a discovered adapter from scratch. Return a negative
682 * errno error code on failure paths.
683 */
684
685static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
686{
687 static int first = 1;
688 struct net_device *dev;
689 int i;
690 struct velocity_info_tbl *info = (struct velocity_info_tbl *) ent->driver_data;
691 struct velocity_info *vptr;
692 struct mac_regs __iomem * regs;
693 int ret = -ENOMEM;
694
695 if (velocity_nics >= MAX_UNITS) {
696 printk(KERN_NOTICE VELOCITY_NAME ": already found %d NICs.\n",
697 velocity_nics);
698 return -ENODEV;
699 }
700
701 dev = alloc_etherdev(sizeof(struct velocity_info));
702
703 if (dev == NULL) {
704 printk(KERN_ERR VELOCITY_NAME ": allocate net device failed.\n");
705 goto out;
706 }
707
708 /* Chain it all together */
709
710 SET_MODULE_OWNER(dev);
711 SET_NETDEV_DEV(dev, &pdev->dev);
712 vptr = dev->priv;
713
714
715 if (first) {
716 printk(KERN_INFO "%s Ver. %s\n",
717 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
718 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
719 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
720 first = 0;
721 }
722
723 velocity_init_info(pdev, vptr, info);
724
725 vptr->dev = dev;
726
727 dev->irq = pdev->irq;
728
729 ret = pci_enable_device(pdev);
730 if (ret < 0)
731 goto err_free_dev;
732
733 ret = velocity_get_pci_info(vptr, pdev);
734 if (ret < 0) {
735 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
736 goto err_disable;
737 }
738
739 ret = pci_request_regions(pdev, VELOCITY_NAME);
740 if (ret < 0) {
741 printk(KERN_ERR VELOCITY_NAME ": Failed to find PCI device.\n");
742 goto err_disable;
743 }
744
745 regs = ioremap(vptr->memaddr, vptr->io_size);
746 if (regs == NULL) {
747 ret = -EIO;
748 goto err_release_res;
749 }
750
751 vptr->mac_regs = regs;
752
753 mac_wol_reset(regs);
754
755 dev->base_addr = vptr->ioaddr;
756
757 for (i = 0; i < 6; i++)
758 dev->dev_addr[i] = readb(&regs->PAR[i]);
759
760
761 velocity_get_options(&vptr->options, velocity_nics, dev->name);
762
763 /*
764 * Mask out the options cannot be set to the chip
765 */
766
767 vptr->options.flags &= info->flags;
768
769 /*
770 * Enable the chip specified capbilities
771 */
772
773 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
774
775 vptr->wol_opts = vptr->options.wol_opts;
776 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
777
778 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
779
780 dev->irq = pdev->irq;
781 dev->open = velocity_open;
782 dev->hard_start_xmit = velocity_xmit;
783 dev->stop = velocity_close;
784 dev->get_stats = velocity_get_stats;
785 dev->set_multicast_list = velocity_set_multi;
786 dev->do_ioctl = velocity_ioctl;
787 dev->ethtool_ops = &velocity_ethtool_ops;
788 dev->change_mtu = velocity_change_mtu;
789#ifdef VELOCITY_ZERO_COPY_SUPPORT
790 dev->features |= NETIF_F_SG;
791#endif
792
793 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM) {
9f3f46b5 794 dev->features |= NETIF_F_IP_CSUM;
1da177e4
LT
795 }
796
797 ret = register_netdev(dev);
798 if (ret < 0)
799 goto err_iounmap;
800
801 velocity_print_info(vptr);
802 pci_set_drvdata(pdev, dev);
803
804 /* and leave the chip powered down */
805
806 pci_set_power_state(pdev, PCI_D3hot);
807#ifdef CONFIG_PM
808 {
809 unsigned long flags;
810
811 spin_lock_irqsave(&velocity_dev_list_lock, flags);
812 list_add(&vptr->list, &velocity_dev_list);
813 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
814 }
815#endif
816 velocity_nics++;
817out:
818 return ret;
819
820err_iounmap:
821 iounmap(regs);
822err_release_res:
823 pci_release_regions(pdev);
824err_disable:
825 pci_disable_device(pdev);
826err_free_dev:
827 free_netdev(dev);
828 goto out;
829}
830
831/**
832 * velocity_print_info - per driver data
833 * @vptr: velocity
834 *
835 * Print per driver data as the kernel driver finds Velocity
836 * hardware
837 */
838
839static void __devinit velocity_print_info(struct velocity_info *vptr)
840{
841 struct net_device *dev = vptr->dev;
842
843 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
844 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
845 dev->name,
846 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
847 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
848}
849
850/**
851 * velocity_init_info - init private data
852 * @pdev: PCI device
853 * @vptr: Velocity info
854 * @info: Board type
855 *
856 * Set up the initial velocity_info struct for the device that has been
857 * discovered.
858 */
859
860static void __devinit velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr, struct velocity_info_tbl *info)
861{
862 memset(vptr, 0, sizeof(struct velocity_info));
863
864 vptr->pdev = pdev;
865 vptr->chip_id = info->chip_id;
866 vptr->io_size = info->io_size;
867 vptr->num_txq = info->txqueue;
868 vptr->multicast_limit = MCAM_SIZE;
869 spin_lock_init(&vptr->lock);
870 INIT_LIST_HEAD(&vptr->list);
871}
872
873/**
874 * velocity_get_pci_info - retrieve PCI info for device
875 * @vptr: velocity device
876 * @pdev: PCI device it matches
877 *
878 * Retrieve the PCI configuration space data that interests us from
879 * the kernel PCI layer
880 */
881
882static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
883{
884
885 if(pci_read_config_byte(pdev, PCI_REVISION_ID, &vptr->rev_id) < 0)
886 return -EIO;
887
888 pci_set_master(pdev);
889
890 vptr->ioaddr = pci_resource_start(pdev, 0);
891 vptr->memaddr = pci_resource_start(pdev, 1);
892
893 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_IO))
894 {
895 printk(KERN_ERR "%s: region #0 is not an I/O resource, aborting.\n",
896 pci_name(pdev));
897 return -EINVAL;
898 }
899
900 if((pci_resource_flags(pdev, 1) & IORESOURCE_IO))
901 {
902 printk(KERN_ERR "%s: region #1 is an I/O resource, aborting.\n",
903 pci_name(pdev));
904 return -EINVAL;
905 }
906
907 if(pci_resource_len(pdev, 1) < 256)
908 {
909 printk(KERN_ERR "%s: region #1 is too small.\n",
910 pci_name(pdev));
911 return -EINVAL;
912 }
913 vptr->pdev = pdev;
914
915 return 0;
916}
917
918/**
919 * velocity_init_rings - set up DMA rings
920 * @vptr: Velocity to set up
921 *
922 * Allocate PCI mapped DMA rings for the receive and transmit layer
923 * to use.
924 */
925
926static int velocity_init_rings(struct velocity_info *vptr)
927{
928 int i;
929 unsigned int psize;
930 unsigned int tsize;
931 dma_addr_t pool_dma;
932 u8 *pool;
933
934 /*
935 * Allocate all RD/TD rings a single pool
936 */
937
938 psize = vptr->options.numrx * sizeof(struct rx_desc) +
939 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
940
941 /*
942 * pci_alloc_consistent() fulfills the requirement for 64 bytes
943 * alignment
944 */
945 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
946
947 if (pool == NULL) {
948 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
949 vptr->dev->name);
950 return -ENOMEM;
951 }
952
953 memset(pool, 0, psize);
954
955 vptr->rd_ring = (struct rx_desc *) pool;
956
957 vptr->rd_pool_dma = pool_dma;
958
959 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
960 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
961 &vptr->tx_bufs_dma);
962
963 if (vptr->tx_bufs == NULL) {
964 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
965 vptr->dev->name);
966 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
967 return -ENOMEM;
968 }
969
970 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
971
972 i = vptr->options.numrx * sizeof(struct rx_desc);
973 pool += i;
974 pool_dma += i;
975 for (i = 0; i < vptr->num_txq; i++) {
976 int offset = vptr->options.numtx * sizeof(struct tx_desc);
977
978 vptr->td_pool_dma[i] = pool_dma;
979 vptr->td_rings[i] = (struct tx_desc *) pool;
980 pool += offset;
981 pool_dma += offset;
982 }
983 return 0;
984}
985
986/**
987 * velocity_free_rings - free PCI ring pointers
988 * @vptr: Velocity to free from
989 *
990 * Clean up the PCI ring buffers allocated to this velocity.
991 */
992
993static void velocity_free_rings(struct velocity_info *vptr)
994{
995 int size;
996
997 size = vptr->options.numrx * sizeof(struct rx_desc) +
998 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
999
1000 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1001
1002 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1003
1004 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1005}
1006
1007static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1008{
1009 struct mac_regs __iomem *regs = vptr->mac_regs;
1010 int avail, dirty, unusable;
1011
1012 /*
1013 * RD number must be equal to 4X per hardware spec
1014 * (programming guide rev 1.20, p.13)
1015 */
1016 if (vptr->rd_filled < 4)
1017 return;
1018
1019 wmb();
1020
1021 unusable = vptr->rd_filled & 0x0003;
1022 dirty = vptr->rd_dirty - unusable;
1023 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1024 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1025 vptr->rd_ring[dirty].rdesc0.owner = OWNED_BY_NIC;
1026 }
1027
1028 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1029 vptr->rd_filled = unusable;
1030}
1031
1032static int velocity_rx_refill(struct velocity_info *vptr)
1033{
1034 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1035
1036 do {
1037 struct rx_desc *rd = vptr->rd_ring + dirty;
1038
1039 /* Fine for an all zero Rx desc at init time as well */
1040 if (rd->rdesc0.owner == OWNED_BY_NIC)
1041 break;
1042
1043 if (!vptr->rd_info[dirty].skb) {
1044 ret = velocity_alloc_rx_buf(vptr, dirty);
1045 if (ret < 0)
1046 break;
1047 }
1048 done++;
1049 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1050 } while (dirty != vptr->rd_curr);
1051
1052 if (done) {
1053 vptr->rd_dirty = dirty;
1054 vptr->rd_filled += done;
1055 velocity_give_many_rx_descs(vptr);
1056 }
1057
1058 return ret;
1059}
1060
1061/**
1062 * velocity_init_rd_ring - set up receive ring
1063 * @vptr: velocity to configure
1064 *
1065 * Allocate and set up the receive buffers for each ring slot and
1066 * assign them to the network adapter.
1067 */
1068
1069static int velocity_init_rd_ring(struct velocity_info *vptr)
1070{
1071 int ret = -ENOMEM;
1072 unsigned int rsize = sizeof(struct velocity_rd_info) *
1073 vptr->options.numrx;
1074
1075 vptr->rd_info = kmalloc(rsize, GFP_KERNEL);
1076 if(vptr->rd_info == NULL)
1077 goto out;
1078 memset(vptr->rd_info, 0, rsize);
1079
1080 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1081
1082 ret = velocity_rx_refill(vptr);
1083 if (ret < 0) {
1084 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1085 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1086 velocity_free_rd_ring(vptr);
1087 }
1088out:
1089 return ret;
1090}
1091
1092/**
1093 * velocity_free_rd_ring - free receive ring
1094 * @vptr: velocity to clean up
1095 *
1096 * Free the receive buffers for each ring slot and any
1097 * attached socket buffers that need to go away.
1098 */
1099
1100static void velocity_free_rd_ring(struct velocity_info *vptr)
1101{
1102 int i;
1103
1104 if (vptr->rd_info == NULL)
1105 return;
1106
1107 for (i = 0; i < vptr->options.numrx; i++) {
1108 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
b3c3e7d7
FR
1109 struct rx_desc *rd = vptr->rd_ring + i;
1110
1111 memset(rd, 0, sizeof(*rd));
1da177e4
LT
1112
1113 if (!rd_info->skb)
1114 continue;
1115 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1116 PCI_DMA_FROMDEVICE);
1117 rd_info->skb_dma = (dma_addr_t) NULL;
1118
1119 dev_kfree_skb(rd_info->skb);
1120 rd_info->skb = NULL;
1121 }
1122
1123 kfree(vptr->rd_info);
1124 vptr->rd_info = NULL;
1125}
1126
1127/**
1128 * velocity_init_td_ring - set up transmit ring
1129 * @vptr: velocity
1130 *
1131 * Set up the transmit ring and chain the ring pointers together.
1132 * Returns zero on success or a negative posix errno code for
1133 * failure.
1134 */
1135
1136static int velocity_init_td_ring(struct velocity_info *vptr)
1137{
1138 int i, j;
1139 dma_addr_t curr;
1140 struct tx_desc *td;
1141 struct velocity_td_info *td_info;
1142 unsigned int tsize = sizeof(struct velocity_td_info) *
1143 vptr->options.numtx;
1144
1145 /* Init the TD ring entries */
1146 for (j = 0; j < vptr->num_txq; j++) {
1147 curr = vptr->td_pool_dma[j];
1148
1149 vptr->td_infos[j] = kmalloc(tsize, GFP_KERNEL);
1150 if(vptr->td_infos[j] == NULL)
1151 {
1152 while(--j >= 0)
1153 kfree(vptr->td_infos[j]);
1154 return -ENOMEM;
1155 }
1156 memset(vptr->td_infos[j], 0, tsize);
1157
1158 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1159 td = &(vptr->td_rings[j][i]);
1160 td_info = &(vptr->td_infos[j][i]);
1161 td_info->buf = vptr->tx_bufs +
1162 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1163 td_info->buf_dma = vptr->tx_bufs_dma +
1164 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1165 }
1166 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1167 }
1168 return 0;
1169}
1170
1171/*
1172 * FIXME: could we merge this with velocity_free_tx_buf ?
1173 */
1174
1175static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1176 int q, int n)
1177{
1178 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1179 int i;
1180
1181 if (td_info == NULL)
1182 return;
1183
1184 if (td_info->skb) {
1185 for (i = 0; i < td_info->nskb_dma; i++)
1186 {
1187 if (td_info->skb_dma[i]) {
1188 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1189 td_info->skb->len, PCI_DMA_TODEVICE);
1190 td_info->skb_dma[i] = (dma_addr_t) NULL;
1191 }
1192 }
1193 dev_kfree_skb(td_info->skb);
1194 td_info->skb = NULL;
1195 }
1196}
1197
1198/**
1199 * velocity_free_td_ring - free td ring
1200 * @vptr: velocity
1201 *
1202 * Free up the transmit ring for this particular velocity adapter.
1203 * We free the ring contents but not the ring itself.
1204 */
1205
1206static void velocity_free_td_ring(struct velocity_info *vptr)
1207{
1208 int i, j;
1209
1210 for (j = 0; j < vptr->num_txq; j++) {
1211 if (vptr->td_infos[j] == NULL)
1212 continue;
1213 for (i = 0; i < vptr->options.numtx; i++) {
1214 velocity_free_td_ring_entry(vptr, j, i);
1215
1216 }
b4558ea9
JJ
1217 kfree(vptr->td_infos[j]);
1218 vptr->td_infos[j] = NULL;
1da177e4
LT
1219 }
1220}
1221
1222/**
1223 * velocity_rx_srv - service RX interrupt
1224 * @vptr: velocity
1225 * @status: adapter status (unused)
1226 *
1227 * Walk the receive ring of the velocity adapter and remove
1228 * any received packets from the receive queue. Hand the ring
1229 * slots back to the adapter for reuse.
1230 */
1231
1232static int velocity_rx_srv(struct velocity_info *vptr, int status)
1233{
1234 struct net_device_stats *stats = &vptr->stats;
1235 int rd_curr = vptr->rd_curr;
1236 int works = 0;
1237
1238 do {
1239 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1240
1241 if (!vptr->rd_info[rd_curr].skb)
1242 break;
1243
1244 if (rd->rdesc0.owner == OWNED_BY_NIC)
1245 break;
1246
1247 rmb();
1248
1249 /*
1250 * Don't drop CE or RL error frame although RXOK is off
1251 */
1252 if ((rd->rdesc0.RSR & RSR_RXOK) || (!(rd->rdesc0.RSR & RSR_RXOK) && (rd->rdesc0.RSR & (RSR_CE | RSR_RL)))) {
1253 if (velocity_receive_frame(vptr, rd_curr) < 0)
1254 stats->rx_dropped++;
1255 } else {
1256 if (rd->rdesc0.RSR & RSR_CRC)
1257 stats->rx_crc_errors++;
1258 if (rd->rdesc0.RSR & RSR_FAE)
1259 stats->rx_frame_errors++;
1260
1261 stats->rx_dropped++;
1262 }
1263
1264 rd->inten = 1;
1265
1266 vptr->dev->last_rx = jiffies;
1267
1268 rd_curr++;
1269 if (rd_curr >= vptr->options.numrx)
1270 rd_curr = 0;
1271 } while (++works <= 15);
1272
1273 vptr->rd_curr = rd_curr;
1274
1275 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1276 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1277 "%s: rx buf allocation failure\n", vptr->dev->name);
1278 }
1279
1280 VAR_USED(stats);
1281 return works;
1282}
1283
1284/**
1285 * velocity_rx_csum - checksum process
1286 * @rd: receive packet descriptor
1287 * @skb: network layer packet buffer
1288 *
1289 * Process the status bits for the received packet and determine
1290 * if the checksum was computed and verified by the hardware
1291 */
1292
1293static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1294{
1295 skb->ip_summed = CHECKSUM_NONE;
1296
1297 if (rd->rdesc1.CSM & CSM_IPKT) {
1298 if (rd->rdesc1.CSM & CSM_IPOK) {
1299 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1300 (rd->rdesc1.CSM & CSM_UDPKT)) {
1301 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1302 return;
1303 }
1304 }
1305 skb->ip_summed = CHECKSUM_UNNECESSARY;
1306 }
1307 }
1308}
1309
1310/**
1311 * velocity_rx_copy - in place Rx copy for small packets
1312 * @rx_skb: network layer packet buffer candidate
1313 * @pkt_size: received data size
1314 * @rd: receive packet descriptor
1315 * @dev: network device
1316 *
1317 * Replace the current skb that is scheduled for Rx processing by a
1318 * shorter, immediatly allocated skb, if the received packet is small
1319 * enough. This function returns a negative value if the received
1320 * packet is too big or if memory is exhausted.
1321 */
1322static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1323 struct velocity_info *vptr)
1324{
1325 int ret = -1;
1326
1327 if (pkt_size < rx_copybreak) {
1328 struct sk_buff *new_skb;
1329
1330 new_skb = dev_alloc_skb(pkt_size + 2);
1331 if (new_skb) {
1332 new_skb->dev = vptr->dev;
1333 new_skb->ip_summed = rx_skb[0]->ip_summed;
1334
1335 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1336 skb_reserve(new_skb, 2);
1337
689be439 1338 memcpy(new_skb->data, rx_skb[0]->data, pkt_size);
1da177e4
LT
1339 *rx_skb = new_skb;
1340 ret = 0;
1341 }
1342
1343 }
1344 return ret;
1345}
1346
1347/**
1348 * velocity_iph_realign - IP header alignment
1349 * @vptr: velocity we are handling
1350 * @skb: network layer packet buffer
1351 * @pkt_size: received data size
1352 *
1353 * Align IP header on a 2 bytes boundary. This behavior can be
1354 * configured by the user.
1355 */
1356static inline void velocity_iph_realign(struct velocity_info *vptr,
1357 struct sk_buff *skb, int pkt_size)
1358{
1359 /* FIXME - memmove ? */
1360 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1361 int i;
1362
1363 for (i = pkt_size; i >= 0; i--)
1364 *(skb->data + i + 2) = *(skb->data + i);
1365 skb_reserve(skb, 2);
1366 }
1367}
1368
1369/**
1370 * velocity_receive_frame - received packet processor
1371 * @vptr: velocity we are handling
1372 * @idx: ring index
1373 *
1374 * A packet has arrived. We process the packet and if appropriate
1375 * pass the frame up the network stack
1376 */
1377
1378static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1379{
1380 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1381 struct net_device_stats *stats = &vptr->stats;
1382 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1383 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1384 int pkt_len = rd->rdesc0.len;
1385 struct sk_buff *skb;
1386
1387 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1388 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1389 stats->rx_length_errors++;
1390 return -EINVAL;
1391 }
1392
1393 if (rd->rdesc0.RSR & RSR_MAR)
1394 vptr->stats.multicast++;
1395
1396 skb = rd_info->skb;
1397 skb->dev = vptr->dev;
1398
1399 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1400 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1401
1402 /*
1403 * Drop frame not meeting IEEE 802.3
1404 */
1405
1406 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1407 if (rd->rdesc0.RSR & RSR_RL) {
1408 stats->rx_length_errors++;
1409 return -EINVAL;
1410 }
1411 }
1412
1413 pci_action = pci_dma_sync_single_for_device;
1414
1415 velocity_rx_csum(rd, skb);
1416
1417 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1418 velocity_iph_realign(vptr, skb, pkt_len);
1419 pci_action = pci_unmap_single;
1420 rd_info->skb = NULL;
1421 }
1422
1423 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1424 PCI_DMA_FROMDEVICE);
1425
1426 skb_put(skb, pkt_len - 4);
1427 skb->protocol = eth_type_trans(skb, skb->dev);
1428
1429 stats->rx_bytes += pkt_len;
1430 netif_rx(skb);
1431
1432 return 0;
1433}
1434
1435/**
1436 * velocity_alloc_rx_buf - allocate aligned receive buffer
1437 * @vptr: velocity
1438 * @idx: ring index
1439 *
1440 * Allocate a new full sized buffer for the reception of a frame and
1441 * map it into PCI space for the hardware to use. The hardware
1442 * requires *64* byte alignment of the buffer which makes life
1443 * less fun than would be ideal.
1444 */
1445
1446static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1447{
1448 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1449 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1450
1451 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1452 if (rd_info->skb == NULL)
1453 return -ENOMEM;
1454
1455 /*
1456 * Do the gymnastics to get the buffer head for data at
1457 * 64byte alignment.
1458 */
689be439 1459 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1da177e4 1460 rd_info->skb->dev = vptr->dev;
689be439 1461 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1da177e4
LT
1462
1463 /*
1464 * Fill in the descriptor to match
1465 */
1466
1467 *((u32 *) & (rd->rdesc0)) = 0;
1468 rd->len = cpu_to_le32(vptr->rx_buf_sz);
1469 rd->inten = 1;
1470 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1471 rd->pa_high = 0;
1472 return 0;
1473}
1474
1475/**
1476 * tx_srv - transmit interrupt service
1477 * @vptr; Velocity
1478 * @status:
1479 *
1480 * Scan the queues looking for transmitted packets that
1481 * we can complete and clean up. Update any statistics as
1482 * neccessary/
1483 */
1484
1485static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1486{
1487 struct tx_desc *td;
1488 int qnum;
1489 int full = 0;
1490 int idx;
1491 int works = 0;
1492 struct velocity_td_info *tdinfo;
1493 struct net_device_stats *stats = &vptr->stats;
1494
1495 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1496 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1497 idx = (idx + 1) % vptr->options.numtx) {
1498
1499 /*
1500 * Get Tx Descriptor
1501 */
1502 td = &(vptr->td_rings[qnum][idx]);
1503 tdinfo = &(vptr->td_infos[qnum][idx]);
1504
1505 if (td->tdesc0.owner == OWNED_BY_NIC)
1506 break;
1507
1508 if ((works++ > 15))
1509 break;
1510
1511 if (td->tdesc0.TSR & TSR0_TERR) {
1512 stats->tx_errors++;
1513 stats->tx_dropped++;
1514 if (td->tdesc0.TSR & TSR0_CDH)
1515 stats->tx_heartbeat_errors++;
1516 if (td->tdesc0.TSR & TSR0_CRS)
1517 stats->tx_carrier_errors++;
1518 if (td->tdesc0.TSR & TSR0_ABT)
1519 stats->tx_aborted_errors++;
1520 if (td->tdesc0.TSR & TSR0_OWC)
1521 stats->tx_window_errors++;
1522 } else {
1523 stats->tx_packets++;
1524 stats->tx_bytes += tdinfo->skb->len;
1525 }
1526 velocity_free_tx_buf(vptr, tdinfo);
1527 vptr->td_used[qnum]--;
1528 }
1529 vptr->td_tail[qnum] = idx;
1530
1531 if (AVAIL_TD(vptr, qnum) < 1) {
1532 full = 1;
1533 }
1534 }
1535 /*
1536 * Look to see if we should kick the transmit network
1537 * layer for more work.
1538 */
1539 if (netif_queue_stopped(vptr->dev) && (full == 0)
1540 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1541 netif_wake_queue(vptr->dev);
1542 }
1543 return works;
1544}
1545
1546/**
1547 * velocity_print_link_status - link status reporting
1548 * @vptr: velocity to report on
1549 *
1550 * Turn the link status of the velocity card into a kernel log
1551 * description of the new link state, detailing speed and duplex
1552 * status
1553 */
1554
1555static void velocity_print_link_status(struct velocity_info *vptr)
1556{
1557
1558 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1559 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1560 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1561 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link autonegation", vptr->dev->name);
1562
1563 if (vptr->mii_status & VELOCITY_SPEED_1000)
1564 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1565 else if (vptr->mii_status & VELOCITY_SPEED_100)
1566 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1567 else
1568 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1569
1570 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1571 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1572 else
1573 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1574 } else {
1575 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1576 switch (vptr->options.spd_dpx) {
1577 case SPD_DPX_100_HALF:
1578 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1579 break;
1580 case SPD_DPX_100_FULL:
1581 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1582 break;
1583 case SPD_DPX_10_HALF:
1584 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1585 break;
1586 case SPD_DPX_10_FULL:
1587 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1588 break;
1589 default:
1590 break;
1591 }
1592 }
1593}
1594
1595/**
1596 * velocity_error - handle error from controller
1597 * @vptr: velocity
1598 * @status: card status
1599 *
1600 * Process an error report from the hardware and attempt to recover
1601 * the card itself. At the moment we cannot recover from some
1602 * theoretically impossible errors but this could be fixed using
1603 * the pci_device_failed logic to bounce the hardware
1604 *
1605 */
1606
1607static void velocity_error(struct velocity_info *vptr, int status)
1608{
1609
1610 if (status & ISR_TXSTLI) {
1611 struct mac_regs __iomem * regs = vptr->mac_regs;
1612
1613 printk(KERN_ERR "TD structure errror TDindex=%hx\n", readw(&regs->TDIdx[0]));
1614 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1615 writew(TRDCSR_RUN, &regs->TDCSRClr);
1616 netif_stop_queue(vptr->dev);
1617
1618 /* FIXME: port over the pci_device_failed code and use it
1619 here */
1620 }
1621
1622 if (status & ISR_SRCI) {
1623 struct mac_regs __iomem * regs = vptr->mac_regs;
1624 int linked;
1625
1626 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1627 vptr->mii_status = check_connection_type(regs);
1628
1629 /*
1630 * If it is a 3119, disable frame bursting in
1631 * halfduplex mode and enable it in fullduplex
1632 * mode
1633 */
1634 if (vptr->rev_id < REV_ID_VT3216_A0) {
1635 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1636 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1637 else
1638 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1639 }
1640 /*
1641 * Only enable CD heart beat counter in 10HD mode
1642 */
1643 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1644 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1645 } else {
1646 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1647 }
1648 }
1649 /*
1650 * Get link status from PHYSR0
1651 */
1652 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1653
1654 if (linked) {
1655 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1656 } else {
1657 vptr->mii_status |= VELOCITY_LINK_FAIL;
1658 }
1659
1660 velocity_print_link_status(vptr);
1661 enable_flow_control_ability(vptr);
1662
1663 /*
1664 * Re-enable auto-polling because SRCI will disable
1665 * auto-polling
1666 */
1667
1668 enable_mii_autopoll(regs);
1669
1670 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1671 netif_stop_queue(vptr->dev);
1672 else
1673 netif_wake_queue(vptr->dev);
1674
1675 };
1676 if (status & ISR_MIBFI)
1677 velocity_update_hw_mibs(vptr);
1678 if (status & ISR_LSTEI)
1679 mac_rx_queue_wake(vptr->mac_regs);
1680}
1681
1682/**
1683 * velocity_free_tx_buf - free transmit buffer
1684 * @vptr: velocity
1685 * @tdinfo: buffer
1686 *
1687 * Release an transmit buffer. If the buffer was preallocated then
1688 * recycle it, if not then unmap the buffer.
1689 */
1690
1691static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1692{
1693 struct sk_buff *skb = tdinfo->skb;
1694 int i;
1695
1696 /*
1697 * Don't unmap the pre-allocated tx_bufs
1698 */
1699 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1700
1701 for (i = 0; i < tdinfo->nskb_dma; i++) {
1702#ifdef VELOCITY_ZERO_COPY_SUPPORT
1703 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], td->tdesc1.len, PCI_DMA_TODEVICE);
1704#else
1705 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1706#endif
1707 tdinfo->skb_dma[i] = 0;
1708 }
1709 }
1710 dev_kfree_skb_irq(skb);
1711 tdinfo->skb = NULL;
1712}
1713
1714/**
1715 * velocity_open - interface activation callback
1716 * @dev: network layer device to open
1717 *
1718 * Called when the network layer brings the interface up. Returns
1719 * a negative posix error code on failure, or zero on success.
1720 *
1721 * All the ring allocation and set up is done on open for this
1722 * adapter to minimise memory usage when inactive
1723 */
1724
1725static int velocity_open(struct net_device *dev)
1726{
1727 struct velocity_info *vptr = dev->priv;
1728 int ret;
1729
1730 vptr->rx_buf_sz = (dev->mtu <= 1504 ? PKT_BUF_SZ : dev->mtu + 32);
1731
1732 ret = velocity_init_rings(vptr);
1733 if (ret < 0)
1734 goto out;
1735
1736 ret = velocity_init_rd_ring(vptr);
1737 if (ret < 0)
1738 goto err_free_desc_rings;
1739
1740 ret = velocity_init_td_ring(vptr);
1741 if (ret < 0)
1742 goto err_free_rd_ring;
1743
1744 /* Ensure chip is running */
1745 pci_set_power_state(vptr->pdev, PCI_D0);
1746
1747 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1748
1749 ret = request_irq(vptr->pdev->irq, &velocity_intr, SA_SHIRQ,
1750 dev->name, dev);
1751 if (ret < 0) {
1752 /* Power down the chip */
1753 pci_set_power_state(vptr->pdev, PCI_D3hot);
1754 goto err_free_td_ring;
1755 }
1756
1757 mac_enable_int(vptr->mac_regs);
1758 netif_start_queue(dev);
1759 vptr->flags |= VELOCITY_FLAGS_OPENED;
1760out:
1761 return ret;
1762
1763err_free_td_ring:
1764 velocity_free_td_ring(vptr);
1765err_free_rd_ring:
1766 velocity_free_rd_ring(vptr);
1767err_free_desc_rings:
1768 velocity_free_rings(vptr);
1769 goto out;
1770}
1771
1772/**
1773 * velocity_change_mtu - MTU change callback
1774 * @dev: network device
1775 * @new_mtu: desired MTU
1776 *
1777 * Handle requests from the networking layer for MTU change on
1778 * this interface. It gets called on a change by the network layer.
1779 * Return zero for success or negative posix error code.
1780 */
1781
1782static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1783{
1784 struct velocity_info *vptr = dev->priv;
1785 unsigned long flags;
1786 int oldmtu = dev->mtu;
1787 int ret = 0;
1788
1789 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1790 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1791 vptr->dev->name);
1792 return -EINVAL;
1793 }
1794
1795 if (new_mtu != oldmtu) {
1796 spin_lock_irqsave(&vptr->lock, flags);
1797
1798 netif_stop_queue(dev);
1799 velocity_shutdown(vptr);
1800
1801 velocity_free_td_ring(vptr);
1802 velocity_free_rd_ring(vptr);
1803
1804 dev->mtu = new_mtu;
1805 if (new_mtu > 8192)
1806 vptr->rx_buf_sz = 9 * 1024;
1807 else if (new_mtu > 4096)
1808 vptr->rx_buf_sz = 8192;
1809 else
1810 vptr->rx_buf_sz = 4 * 1024;
1811
1812 ret = velocity_init_rd_ring(vptr);
1813 if (ret < 0)
1814 goto out_unlock;
1815
1816 ret = velocity_init_td_ring(vptr);
1817 if (ret < 0)
1818 goto out_unlock;
1819
1820 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1821
1822 mac_enable_int(vptr->mac_regs);
1823 netif_start_queue(dev);
1824out_unlock:
1825 spin_unlock_irqrestore(&vptr->lock, flags);
1826 }
1827
1828 return ret;
1829}
1830
1831/**
1832 * velocity_shutdown - shut down the chip
1833 * @vptr: velocity to deactivate
1834 *
1835 * Shuts down the internal operations of the velocity and
1836 * disables interrupts, autopolling, transmit and receive
1837 */
1838
1839static void velocity_shutdown(struct velocity_info *vptr)
1840{
1841 struct mac_regs __iomem * regs = vptr->mac_regs;
1842 mac_disable_int(regs);
1843 writel(CR0_STOP, &regs->CR0Set);
1844 writew(0xFFFF, &regs->TDCSRClr);
1845 writeb(0xFF, &regs->RDCSRClr);
1846 safe_disable_mii_autopoll(regs);
1847 mac_clear_isr(regs);
1848}
1849
1850/**
1851 * velocity_close - close adapter callback
1852 * @dev: network device
1853 *
1854 * Callback from the network layer when the velocity is being
1855 * deactivated by the network layer
1856 */
1857
1858static int velocity_close(struct net_device *dev)
1859{
1860 struct velocity_info *vptr = dev->priv;
1861
1862 netif_stop_queue(dev);
1863 velocity_shutdown(vptr);
1864
1865 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
1866 velocity_get_ip(vptr);
1867 if (dev->irq != 0)
1868 free_irq(dev->irq, dev);
1869
1870 /* Power down the chip */
1871 pci_set_power_state(vptr->pdev, PCI_D3hot);
1872
1873 /* Free the resources */
1874 velocity_free_td_ring(vptr);
1875 velocity_free_rd_ring(vptr);
1876 velocity_free_rings(vptr);
1877
1878 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
1879 return 0;
1880}
1881
1882/**
1883 * velocity_xmit - transmit packet callback
1884 * @skb: buffer to transmit
1885 * @dev: network device
1886 *
1887 * Called by the networ layer to request a packet is queued to
1888 * the velocity. Returns zero on success.
1889 */
1890
1891static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
1892{
1893 struct velocity_info *vptr = dev->priv;
1894 int qnum = 0;
1895 struct tx_desc *td_ptr;
1896 struct velocity_td_info *tdinfo;
1897 unsigned long flags;
1898 int index;
1899
1900 int pktlen = skb->len;
1901
364c6bad
HX
1902#ifdef VELOCITY_ZERO_COPY_SUPPORT
1903 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
1904 kfree_skb(skb);
1905 return 0;
1906 }
1907#endif
1908
1da177e4
LT
1909 spin_lock_irqsave(&vptr->lock, flags);
1910
1911 index = vptr->td_curr[qnum];
1912 td_ptr = &(vptr->td_rings[qnum][index]);
1913 tdinfo = &(vptr->td_infos[qnum][index]);
1914
1915 td_ptr->tdesc1.TCPLS = TCPLS_NORMAL;
1916 td_ptr->tdesc1.TCR = TCR0_TIC;
1917 td_ptr->td_buf[0].queue = 0;
1918
1919 /*
1920 * Pad short frames.
1921 */
1922 if (pktlen < ETH_ZLEN) {
1923 /* Cannot occur until ZC support */
1da177e4
LT
1924 pktlen = ETH_ZLEN;
1925 memcpy(tdinfo->buf, skb->data, skb->len);
1926 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
1927 tdinfo->skb = skb;
1928 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1929 td_ptr->tdesc0.pktsize = pktlen;
1930 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1931 td_ptr->td_buf[0].pa_high = 0;
1932 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1933 tdinfo->nskb_dma = 1;
1934 td_ptr->tdesc1.CMDZ = 2;
1935 } else
1936#ifdef VELOCITY_ZERO_COPY_SUPPORT
1937 if (skb_shinfo(skb)->nr_frags > 0) {
1938 int nfrags = skb_shinfo(skb)->nr_frags;
1939 tdinfo->skb = skb;
1940 if (nfrags > 6) {
1da177e4
LT
1941 memcpy(tdinfo->buf, skb->data, skb->len);
1942 tdinfo->skb_dma[0] = tdinfo->buf_dma;
1943 td_ptr->tdesc0.pktsize =
1944 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1945 td_ptr->td_buf[0].pa_high = 0;
1946 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1947 tdinfo->nskb_dma = 1;
1948 td_ptr->tdesc1.CMDZ = 2;
1949 } else {
1950 int i = 0;
1951 tdinfo->nskb_dma = 0;
1952 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data, skb->len - skb->data_len, PCI_DMA_TODEVICE);
1953
1954 td_ptr->tdesc0.pktsize = pktlen;
1955
1956 /* FIXME: support 48bit DMA later */
1957 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
1958 td_ptr->td_buf[i].pa_high = 0;
1959 td_ptr->td_buf[i].bufsize = skb->len->skb->data_len;
1960
1961 for (i = 0; i < nfrags; i++) {
1962 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1963 void *addr = ((void *) page_address(frag->page + frag->page_offset));
1964
1965 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
1966
1967 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
1968 td_ptr->td_buf[i + 1].pa_high = 0;
1969 td_ptr->td_buf[i + 1].bufsize = frag->size;
1970 }
1971 tdinfo->nskb_dma = i - 1;
1972 td_ptr->tdesc1.CMDZ = i;
1973 }
1974
1975 } else
1976#endif
1977 {
1978 /*
1979 * Map the linear network buffer into PCI space and
1980 * add it to the transmit ring.
1981 */
1982 tdinfo->skb = skb;
1983 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
1984 td_ptr->tdesc0.pktsize = pktlen;
1985 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
1986 td_ptr->td_buf[0].pa_high = 0;
1987 td_ptr->td_buf[0].bufsize = td_ptr->tdesc0.pktsize;
1988 tdinfo->nskb_dma = 1;
1989 td_ptr->tdesc1.CMDZ = 2;
1990 }
1991
1992 if (vptr->flags & VELOCITY_FLAGS_TAGGING) {
1993 td_ptr->tdesc1.pqinf.VID = (vptr->options.vid & 0xfff);
1994 td_ptr->tdesc1.pqinf.priority = 0;
1995 td_ptr->tdesc1.pqinf.CFI = 0;
1996 td_ptr->tdesc1.TCR |= TCR0_VETAG;
1997 }
1998
1999 /*
2000 * Handle hardware checksum
2001 */
2002 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2003 && (skb->ip_summed == CHECKSUM_HW)) {
2004 struct iphdr *ip = skb->nh.iph;
2005 if (ip->protocol == IPPROTO_TCP)
2006 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2007 else if (ip->protocol == IPPROTO_UDP)
2008 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2009 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2010 }
2011 {
2012
2013 int prev = index - 1;
2014
2015 if (prev < 0)
2016 prev = vptr->options.numtx - 1;
2017 td_ptr->tdesc0.owner = OWNED_BY_NIC;
2018 vptr->td_used[qnum]++;
2019 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2020
2021 if (AVAIL_TD(vptr, qnum) < 1)
2022 netif_stop_queue(dev);
2023
2024 td_ptr = &(vptr->td_rings[qnum][prev]);
2025 td_ptr->td_buf[0].queue = 1;
2026 mac_tx_queue_wake(vptr->mac_regs, qnum);
2027 }
2028 dev->trans_start = jiffies;
2029 spin_unlock_irqrestore(&vptr->lock, flags);
2030 return 0;
2031}
2032
2033/**
2034 * velocity_intr - interrupt callback
2035 * @irq: interrupt number
2036 * @dev_instance: interrupting device
2037 * @pt_regs: CPU register state at interrupt
2038 *
2039 * Called whenever an interrupt is generated by the velocity
2040 * adapter IRQ line. We may not be the source of the interrupt
2041 * and need to identify initially if we are, and if not exit as
2042 * efficiently as possible.
2043 */
2044
2045static int velocity_intr(int irq, void *dev_instance, struct pt_regs *regs)
2046{
2047 struct net_device *dev = dev_instance;
2048 struct velocity_info *vptr = dev->priv;
2049 u32 isr_status;
2050 int max_count = 0;
2051
2052
2053 spin_lock(&vptr->lock);
2054 isr_status = mac_read_isr(vptr->mac_regs);
2055
2056 /* Not us ? */
2057 if (isr_status == 0) {
2058 spin_unlock(&vptr->lock);
2059 return IRQ_NONE;
2060 }
2061
2062 mac_disable_int(vptr->mac_regs);
2063
2064 /*
2065 * Keep processing the ISR until we have completed
2066 * processing and the isr_status becomes zero
2067 */
2068
2069 while (isr_status != 0) {
2070 mac_write_isr(vptr->mac_regs, isr_status);
2071 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2072 velocity_error(vptr, isr_status);
2073 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2074 max_count += velocity_rx_srv(vptr, isr_status);
2075 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2076 max_count += velocity_tx_srv(vptr, isr_status);
2077 isr_status = mac_read_isr(vptr->mac_regs);
2078 if (max_count > vptr->options.int_works)
2079 {
2080 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2081 dev->name);
2082 max_count = 0;
2083 }
2084 }
2085 spin_unlock(&vptr->lock);
2086 mac_enable_int(vptr->mac_regs);
2087 return IRQ_HANDLED;
2088
2089}
2090
2091
2092/**
2093 * velocity_set_multi - filter list change callback
2094 * @dev: network device
2095 *
2096 * Called by the network layer when the filter lists need to change
2097 * for a velocity adapter. Reload the CAMs with the new address
2098 * filter ruleset.
2099 */
2100
2101static void velocity_set_multi(struct net_device *dev)
2102{
2103 struct velocity_info *vptr = dev->priv;
2104 struct mac_regs __iomem * regs = vptr->mac_regs;
2105 u8 rx_mode;
2106 int i;
2107 struct dev_mc_list *mclist;
2108
2109 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2110 /* Unconditionally log net taps. */
2111 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2112 writel(0xffffffff, &regs->MARCAM[0]);
2113 writel(0xffffffff, &regs->MARCAM[4]);
2114 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2115 } else if ((dev->mc_count > vptr->multicast_limit)
2116 || (dev->flags & IFF_ALLMULTI)) {
2117 writel(0xffffffff, &regs->MARCAM[0]);
2118 writel(0xffffffff, &regs->MARCAM[4]);
2119 rx_mode = (RCR_AM | RCR_AB);
2120 } else {
2121 int offset = MCAM_SIZE - vptr->multicast_limit;
2122 mac_get_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2123
2124 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2125 mac_set_cam(regs, i + offset, mclist->dmi_addr, VELOCITY_MULTICAST_CAM);
2126 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2127 }
2128
2129 mac_set_cam_mask(regs, vptr->mCAMmask, VELOCITY_MULTICAST_CAM);
2130 rx_mode = (RCR_AM | RCR_AB);
2131 }
2132 if (dev->mtu > 1500)
2133 rx_mode |= RCR_AL;
2134
2135 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2136
2137}
2138
2139/**
2140 * velocity_get_status - statistics callback
2141 * @dev: network device
2142 *
2143 * Callback from the network layer to allow driver statistics
2144 * to be resynchronized with hardware collected state. In the
2145 * case of the velocity we need to pull the MIB counters from
2146 * the hardware into the counters before letting the network
2147 * layer display them.
2148 */
2149
2150static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2151{
2152 struct velocity_info *vptr = dev->priv;
2153
2154 /* If the hardware is down, don't touch MII */
2155 if(!netif_running(dev))
2156 return &vptr->stats;
2157
2158 spin_lock_irq(&vptr->lock);
2159 velocity_update_hw_mibs(vptr);
2160 spin_unlock_irq(&vptr->lock);
2161
2162 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2163 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2164 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2165
2166// unsigned long rx_dropped; /* no space in linux buffers */
2167 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2168 /* detailed rx_errors: */
2169// unsigned long rx_length_errors;
2170// unsigned long rx_over_errors; /* receiver ring buff overflow */
2171 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2172// unsigned long rx_frame_errors; /* recv'd frame alignment error */
2173// unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2174// unsigned long rx_missed_errors; /* receiver missed packet */
2175
2176 /* detailed tx_errors */
2177// unsigned long tx_fifo_errors;
2178
2179 return &vptr->stats;
2180}
2181
2182
2183/**
2184 * velocity_ioctl - ioctl entry point
2185 * @dev: network device
2186 * @rq: interface request ioctl
2187 * @cmd: command code
2188 *
2189 * Called when the user issues an ioctl request to the network
2190 * device in question. The velocity interface supports MII.
2191 */
2192
2193static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2194{
2195 struct velocity_info *vptr = dev->priv;
2196 int ret;
2197
2198 /* If we are asked for information and the device is power
2199 saving then we need to bring the device back up to talk to it */
2200
2201 if (!netif_running(dev))
2202 pci_set_power_state(vptr->pdev, PCI_D0);
2203
2204 switch (cmd) {
2205 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2206 case SIOCGMIIREG: /* Read MII PHY register. */
2207 case SIOCSMIIREG: /* Write to MII PHY register. */
2208 ret = velocity_mii_ioctl(dev, rq, cmd);
2209 break;
2210
2211 default:
2212 ret = -EOPNOTSUPP;
2213 }
2214 if (!netif_running(dev))
2215 pci_set_power_state(vptr->pdev, PCI_D3hot);
2216
2217
2218 return ret;
2219}
2220
2221/*
2222 * Definition for our device driver. The PCI layer interface
2223 * uses this to handle all our card discover and plugging
2224 */
2225
2226static struct pci_driver velocity_driver = {
2227 .name = VELOCITY_NAME,
2228 .id_table = velocity_id_table,
2229 .probe = velocity_found1,
2230 .remove = __devexit_p(velocity_remove1),
2231#ifdef CONFIG_PM
2232 .suspend = velocity_suspend,
2233 .resume = velocity_resume,
2234#endif
2235};
2236
2237/**
2238 * velocity_init_module - load time function
2239 *
2240 * Called when the velocity module is loaded. The PCI driver
2241 * is registered with the PCI layer, and in turn will call
2242 * the probe functions for each velocity adapter installed
2243 * in the system.
2244 */
2245
2246static int __init velocity_init_module(void)
2247{
2248 int ret;
2249
2250 velocity_register_notifier();
2251 ret = pci_module_init(&velocity_driver);
2252 if (ret < 0)
2253 velocity_unregister_notifier();
2254 return ret;
2255}
2256
2257/**
2258 * velocity_cleanup - module unload
2259 *
2260 * When the velocity hardware is unloaded this function is called.
2261 * It will clean up the notifiers and the unregister the PCI
2262 * driver interface for this hardware. This in turn cleans up
2263 * all discovered interfaces before returning from the function
2264 */
2265
2266static void __exit velocity_cleanup_module(void)
2267{
2268 velocity_unregister_notifier();
2269 pci_unregister_driver(&velocity_driver);
2270}
2271
2272module_init(velocity_init_module);
2273module_exit(velocity_cleanup_module);
2274
2275
2276/*
2277 * MII access , media link mode setting functions
2278 */
2279
2280
2281/**
2282 * mii_init - set up MII
2283 * @vptr: velocity adapter
2284 * @mii_status: links tatus
2285 *
2286 * Set up the PHY for the current link state.
2287 */
2288
2289static void mii_init(struct velocity_info *vptr, u32 mii_status)
2290{
2291 u16 BMCR;
2292
2293 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2294 case PHYID_CICADA_CS8201:
2295 /*
2296 * Reset to hardware default
2297 */
2298 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2299 /*
2300 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2301 * off it in NWay-forced half mode for NWay-forced v.s.
2302 * legacy-forced issue.
2303 */
2304 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2305 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2306 else
2307 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2308 /*
2309 * Turn on Link/Activity LED enable bit for CIS8201
2310 */
2311 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2312 break;
2313 case PHYID_VT3216_32BIT:
2314 case PHYID_VT3216_64BIT:
2315 /*
2316 * Reset to hardware default
2317 */
2318 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2319 /*
2320 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2321 * off it in NWay-forced half mode for NWay-forced v.s.
2322 * legacy-forced issue
2323 */
2324 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2325 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2326 else
2327 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2328 break;
2329
2330 case PHYID_MARVELL_1000:
2331 case PHYID_MARVELL_1000S:
2332 /*
2333 * Assert CRS on Transmit
2334 */
2335 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2336 /*
2337 * Reset to hardware default
2338 */
2339 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2340 break;
2341 default:
2342 ;
2343 }
2344 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2345 if (BMCR & BMCR_ISO) {
2346 BMCR &= ~BMCR_ISO;
2347 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2348 }
2349}
2350
2351/**
2352 * safe_disable_mii_autopoll - autopoll off
2353 * @regs: velocity registers
2354 *
2355 * Turn off the autopoll and wait for it to disable on the chip
2356 */
2357
2358static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2359{
2360 u16 ww;
2361
2362 /* turn off MAUTO */
2363 writeb(0, &regs->MIICR);
2364 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2365 udelay(1);
2366 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2367 break;
2368 }
2369}
2370
2371/**
2372 * enable_mii_autopoll - turn on autopolling
2373 * @regs: velocity registers
2374 *
2375 * Enable the MII link status autopoll feature on the Velocity
2376 * hardware. Wait for it to enable.
2377 */
2378
2379static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2380{
2381 int ii;
2382
2383 writeb(0, &(regs->MIICR));
2384 writeb(MIIADR_SWMPL, &regs->MIIADR);
2385
2386 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2387 udelay(1);
2388 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2389 break;
2390 }
2391
2392 writeb(MIICR_MAUTO, &regs->MIICR);
2393
2394 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2395 udelay(1);
2396 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2397 break;
2398 }
2399
2400}
2401
2402/**
2403 * velocity_mii_read - read MII data
2404 * @regs: velocity registers
2405 * @index: MII register index
2406 * @data: buffer for received data
2407 *
2408 * Perform a single read of an MII 16bit register. Returns zero
2409 * on success or -ETIMEDOUT if the PHY did not respond.
2410 */
2411
2412static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2413{
2414 u16 ww;
2415
2416 /*
2417 * Disable MIICR_MAUTO, so that mii addr can be set normally
2418 */
2419 safe_disable_mii_autopoll(regs);
2420
2421 writeb(index, &regs->MIIADR);
2422
2423 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2424
2425 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2426 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2427 break;
2428 }
2429
2430 *data = readw(&regs->MIIDATA);
2431
2432 enable_mii_autopoll(regs);
2433 if (ww == W_MAX_TIMEOUT)
2434 return -ETIMEDOUT;
2435 return 0;
2436}
2437
2438/**
2439 * velocity_mii_write - write MII data
2440 * @regs: velocity registers
2441 * @index: MII register index
2442 * @data: 16bit data for the MII register
2443 *
2444 * Perform a single write to an MII 16bit register. Returns zero
2445 * on success or -ETIMEDOUT if the PHY did not respond.
2446 */
2447
2448static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2449{
2450 u16 ww;
2451
2452 /*
2453 * Disable MIICR_MAUTO, so that mii addr can be set normally
2454 */
2455 safe_disable_mii_autopoll(regs);
2456
2457 /* MII reg offset */
2458 writeb(mii_addr, &regs->MIIADR);
2459 /* set MII data */
2460 writew(data, &regs->MIIDATA);
2461
2462 /* turn on MIICR_WCMD */
2463 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2464
2465 /* W_MAX_TIMEOUT is the timeout period */
2466 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2467 udelay(5);
2468 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2469 break;
2470 }
2471 enable_mii_autopoll(regs);
2472
2473 if (ww == W_MAX_TIMEOUT)
2474 return -ETIMEDOUT;
2475 return 0;
2476}
2477
2478/**
2479 * velocity_get_opt_media_mode - get media selection
2480 * @vptr: velocity adapter
2481 *
2482 * Get the media mode stored in EEPROM or module options and load
2483 * mii_status accordingly. The requested link state information
2484 * is also returned.
2485 */
2486
2487static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2488{
2489 u32 status = 0;
2490
2491 switch (vptr->options.spd_dpx) {
2492 case SPD_DPX_AUTO:
2493 status = VELOCITY_AUTONEG_ENABLE;
2494 break;
2495 case SPD_DPX_100_FULL:
2496 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2497 break;
2498 case SPD_DPX_10_FULL:
2499 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2500 break;
2501 case SPD_DPX_100_HALF:
2502 status = VELOCITY_SPEED_100;
2503 break;
2504 case SPD_DPX_10_HALF:
2505 status = VELOCITY_SPEED_10;
2506 break;
2507 }
2508 vptr->mii_status = status;
2509 return status;
2510}
2511
2512/**
2513 * mii_set_auto_on - autonegotiate on
2514 * @vptr: velocity
2515 *
2516 * Enable autonegotation on this interface
2517 */
2518
2519static void mii_set_auto_on(struct velocity_info *vptr)
2520{
2521 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2522 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2523 else
2524 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2525}
2526
2527
2528/*
2529static void mii_set_auto_off(struct velocity_info * vptr)
2530{
2531 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2532}
2533*/
2534
2535/**
2536 * set_mii_flow_control - flow control setup
2537 * @vptr: velocity interface
2538 *
2539 * Set up the flow control on this interface according to
2540 * the supplied user/eeprom options.
2541 */
2542
2543static void set_mii_flow_control(struct velocity_info *vptr)
2544{
2545 /*Enable or Disable PAUSE in ANAR */
2546 switch (vptr->options.flow_cntl) {
2547 case FLOW_CNTL_TX:
2548 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2549 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2550 break;
2551
2552 case FLOW_CNTL_RX:
2553 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2554 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2555 break;
2556
2557 case FLOW_CNTL_TX_RX:
2558 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2559 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2560 break;
2561
2562 case FLOW_CNTL_DISABLE:
2563 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2564 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2565 break;
2566 default:
2567 break;
2568 }
2569}
2570
2571/**
2572 * velocity_set_media_mode - set media mode
2573 * @mii_status: old MII link state
2574 *
2575 * Check the media link state and configure the flow control
2576 * PHY and also velocity hardware setup accordingly. In particular
2577 * we need to set up CD polling and frame bursting.
2578 */
2579
2580static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2581{
2582 u32 curr_status;
2583 struct mac_regs __iomem * regs = vptr->mac_regs;
2584
2585 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2586 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2587
2588 /* Set mii link status */
2589 set_mii_flow_control(vptr);
2590
2591 /*
2592 Check if new status is consisent with current status
2593 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2594 || (mii_status==curr_status)) {
2595 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2596 vptr->mii_status=check_connection_type(vptr->mac_regs);
2597 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2598 return 0;
2599 }
2600 */
2601
2602 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2603 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2604 }
2605
2606 /*
2607 * If connection type is AUTO
2608 */
2609 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2610 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2611 /* clear force MAC mode bit */
2612 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2613 /* set duplex mode of MAC according to duplex mode of MII */
2614 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2615 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2616 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2617
2618 /* enable AUTO-NEGO mode */
2619 mii_set_auto_on(vptr);
2620 } else {
2621 u16 ANAR;
2622 u8 CHIPGCR;
2623
2624 /*
2625 * 1. if it's 3119, disable frame bursting in halfduplex mode
2626 * and enable it in fullduplex mode
2627 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2628 * 3. only enable CD heart beat counter in 10HD mode
2629 */
2630
2631 /* set force MAC mode bit */
2632 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2633
2634 CHIPGCR = readb(&regs->CHIPGCR);
2635 CHIPGCR &= ~CHIPGCR_FCGMII;
2636
2637 if (mii_status & VELOCITY_DUPLEX_FULL) {
2638 CHIPGCR |= CHIPGCR_FCFDX;
2639 writeb(CHIPGCR, &regs->CHIPGCR);
2640 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2641 if (vptr->rev_id < REV_ID_VT3216_A0)
2642 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2643 } else {
2644 CHIPGCR &= ~CHIPGCR_FCFDX;
2645 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2646 writeb(CHIPGCR, &regs->CHIPGCR);
2647 if (vptr->rev_id < REV_ID_VT3216_A0)
2648 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2649 }
2650
2651 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2652
2653 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2654 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2655 } else {
2656 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2657 }
2658 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2659 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2660 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2661 if (mii_status & VELOCITY_SPEED_100) {
2662 if (mii_status & VELOCITY_DUPLEX_FULL)
2663 ANAR |= ANAR_TXFD;
2664 else
2665 ANAR |= ANAR_TX;
2666 } else {
2667 if (mii_status & VELOCITY_DUPLEX_FULL)
2668 ANAR |= ANAR_10FD;
2669 else
2670 ANAR |= ANAR_10;
2671 }
2672 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2673 /* enable AUTO-NEGO mode */
2674 mii_set_auto_on(vptr);
2675 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2676 }
2677 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2678 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2679 return VELOCITY_LINK_CHANGE;
2680}
2681
2682/**
2683 * mii_check_media_mode - check media state
2684 * @regs: velocity registers
2685 *
2686 * Check the current MII status and determine the link status
2687 * accordingly
2688 */
2689
2690static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2691{
2692 u32 status = 0;
2693 u16 ANAR;
2694
2695 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2696 status |= VELOCITY_LINK_FAIL;
2697
2698 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2699 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2700 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2701 status |= (VELOCITY_SPEED_1000);
2702 else {
2703 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2704 if (ANAR & ANAR_TXFD)
2705 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2706 else if (ANAR & ANAR_TX)
2707 status |= VELOCITY_SPEED_100;
2708 else if (ANAR & ANAR_10FD)
2709 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2710 else
2711 status |= (VELOCITY_SPEED_10);
2712 }
2713
2714 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2715 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2716 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2717 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2718 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2719 status |= VELOCITY_AUTONEG_ENABLE;
2720 }
2721 }
2722
2723 return status;
2724}
2725
2726static u32 check_connection_type(struct mac_regs __iomem * regs)
2727{
2728 u32 status = 0;
2729 u8 PHYSR0;
2730 u16 ANAR;
2731 PHYSR0 = readb(&regs->PHYSR0);
2732
2733 /*
2734 if (!(PHYSR0 & PHYSR0_LINKGD))
2735 status|=VELOCITY_LINK_FAIL;
2736 */
2737
2738 if (PHYSR0 & PHYSR0_FDPX)
2739 status |= VELOCITY_DUPLEX_FULL;
2740
2741 if (PHYSR0 & PHYSR0_SPDG)
2742 status |= VELOCITY_SPEED_1000;
2743 if (PHYSR0 & PHYSR0_SPD10)
2744 status |= VELOCITY_SPEED_10;
2745 else
2746 status |= VELOCITY_SPEED_100;
2747
2748 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2749 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2750 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2751 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2752 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2753 status |= VELOCITY_AUTONEG_ENABLE;
2754 }
2755 }
2756
2757 return status;
2758}
2759
2760/**
2761 * enable_flow_control_ability - flow control
2762 * @vptr: veloity to configure
2763 *
2764 * Set up flow control according to the flow control options
2765 * determined by the eeprom/configuration.
2766 */
2767
2768static void enable_flow_control_ability(struct velocity_info *vptr)
2769{
2770
2771 struct mac_regs __iomem * regs = vptr->mac_regs;
2772
2773 switch (vptr->options.flow_cntl) {
2774
2775 case FLOW_CNTL_DEFAULT:
2776 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2777 writel(CR0_FDXRFCEN, &regs->CR0Set);
2778 else
2779 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2780
2781 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2782 writel(CR0_FDXTFCEN, &regs->CR0Set);
2783 else
2784 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2785 break;
2786
2787 case FLOW_CNTL_TX:
2788 writel(CR0_FDXTFCEN, &regs->CR0Set);
2789 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2790 break;
2791
2792 case FLOW_CNTL_RX:
2793 writel(CR0_FDXRFCEN, &regs->CR0Set);
2794 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2795 break;
2796
2797 case FLOW_CNTL_TX_RX:
2798 writel(CR0_FDXTFCEN, &regs->CR0Set);
2799 writel(CR0_FDXRFCEN, &regs->CR0Set);
2800 break;
2801
2802 case FLOW_CNTL_DISABLE:
2803 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2804 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2805 break;
2806
2807 default:
2808 break;
2809 }
2810
2811}
2812
2813
2814/**
2815 * velocity_ethtool_up - pre hook for ethtool
2816 * @dev: network device
2817 *
2818 * Called before an ethtool operation. We need to make sure the
2819 * chip is out of D3 state before we poke at it.
2820 */
2821
2822static int velocity_ethtool_up(struct net_device *dev)
2823{
2824 struct velocity_info *vptr = dev->priv;
2825 if (!netif_running(dev))
2826 pci_set_power_state(vptr->pdev, PCI_D0);
2827 return 0;
2828}
2829
2830/**
2831 * velocity_ethtool_down - post hook for ethtool
2832 * @dev: network device
2833 *
2834 * Called after an ethtool operation. Restore the chip back to D3
2835 * state if it isn't running.
2836 */
2837
2838static void velocity_ethtool_down(struct net_device *dev)
2839{
2840 struct velocity_info *vptr = dev->priv;
2841 if (!netif_running(dev))
2842 pci_set_power_state(vptr->pdev, PCI_D3hot);
2843}
2844
2845static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2846{
2847 struct velocity_info *vptr = dev->priv;
2848 struct mac_regs __iomem * regs = vptr->mac_regs;
2849 u32 status;
2850 status = check_connection_type(vptr->mac_regs);
2851
2852 cmd->supported = SUPPORTED_TP | SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full;
2853 if (status & VELOCITY_SPEED_100)
2854 cmd->speed = SPEED_100;
2855 else
2856 cmd->speed = SPEED_10;
2857 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2858 cmd->port = PORT_TP;
2859 cmd->transceiver = XCVR_INTERNAL;
2860 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
2861
2862 if (status & VELOCITY_DUPLEX_FULL)
2863 cmd->duplex = DUPLEX_FULL;
2864 else
2865 cmd->duplex = DUPLEX_HALF;
2866
2867 return 0;
2868}
2869
2870static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2871{
2872 struct velocity_info *vptr = dev->priv;
2873 u32 curr_status;
2874 u32 new_status = 0;
2875 int ret = 0;
2876
2877 curr_status = check_connection_type(vptr->mac_regs);
2878 curr_status &= (~VELOCITY_LINK_FAIL);
2879
2880 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
2881 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
2882 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
2883 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
2884
2885 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
2886 ret = -EINVAL;
2887 else
2888 velocity_set_media_mode(vptr, new_status);
2889
2890 return ret;
2891}
2892
2893static u32 velocity_get_link(struct net_device *dev)
2894{
2895 struct velocity_info *vptr = dev->priv;
2896 struct mac_regs __iomem * regs = vptr->mac_regs;
2897 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 0 : 1;
2898}
2899
2900static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2901{
2902 struct velocity_info *vptr = dev->priv;
2903 strcpy(info->driver, VELOCITY_NAME);
2904 strcpy(info->version, VELOCITY_VERSION);
2905 strcpy(info->bus_info, pci_name(vptr->pdev));
2906}
2907
2908static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2909{
2910 struct velocity_info *vptr = dev->priv;
2911 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
2912 wol->wolopts |= WAKE_MAGIC;
2913 /*
2914 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2915 wol.wolopts|=WAKE_PHY;
2916 */
2917 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2918 wol->wolopts |= WAKE_UCAST;
2919 if (vptr->wol_opts & VELOCITY_WOL_ARP)
2920 wol->wolopts |= WAKE_ARP;
2921 memcpy(&wol->sopass, vptr->wol_passwd, 6);
2922}
2923
2924static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2925{
2926 struct velocity_info *vptr = dev->priv;
2927
2928 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
2929 return -EFAULT;
2930 vptr->wol_opts = VELOCITY_WOL_MAGIC;
2931
2932 /*
2933 if (wol.wolopts & WAKE_PHY) {
2934 vptr->wol_opts|=VELOCITY_WOL_PHY;
2935 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
2936 }
2937 */
2938
2939 if (wol->wolopts & WAKE_MAGIC) {
2940 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
2941 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2942 }
2943 if (wol->wolopts & WAKE_UCAST) {
2944 vptr->wol_opts |= VELOCITY_WOL_UCAST;
2945 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2946 }
2947 if (wol->wolopts & WAKE_ARP) {
2948 vptr->wol_opts |= VELOCITY_WOL_ARP;
2949 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2950 }
2951 memcpy(vptr->wol_passwd, wol->sopass, 6);
2952 return 0;
2953}
2954
2955static u32 velocity_get_msglevel(struct net_device *dev)
2956{
2957 return msglevel;
2958}
2959
2960static void velocity_set_msglevel(struct net_device *dev, u32 value)
2961{
2962 msglevel = value;
2963}
2964
2965static struct ethtool_ops velocity_ethtool_ops = {
2966 .get_settings = velocity_get_settings,
2967 .set_settings = velocity_set_settings,
2968 .get_drvinfo = velocity_get_drvinfo,
2969 .get_wol = velocity_ethtool_get_wol,
2970 .set_wol = velocity_ethtool_set_wol,
2971 .get_msglevel = velocity_get_msglevel,
2972 .set_msglevel = velocity_set_msglevel,
2973 .get_link = velocity_get_link,
2974 .begin = velocity_ethtool_up,
2975 .complete = velocity_ethtool_down
2976};
2977
2978/**
2979 * velocity_mii_ioctl - MII ioctl handler
2980 * @dev: network device
2981 * @ifr: the ifreq block for the ioctl
2982 * @cmd: the command
2983 *
2984 * Process MII requests made via ioctl from the network layer. These
2985 * are used by tools like kudzu to interrogate the link state of the
2986 * hardware
2987 */
2988
2989static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2990{
2991 struct velocity_info *vptr = dev->priv;
2992 struct mac_regs __iomem * regs = vptr->mac_regs;
2993 unsigned long flags;
2994 struct mii_ioctl_data *miidata = if_mii(ifr);
2995 int err;
2996
2997 switch (cmd) {
2998 case SIOCGMIIPHY:
2999 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3000 break;
3001 case SIOCGMIIREG:
3002 if (!capable(CAP_NET_ADMIN))
3003 return -EPERM;
3004 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3005 return -ETIMEDOUT;
3006 break;
3007 case SIOCSMIIREG:
3008 if (!capable(CAP_NET_ADMIN))
3009 return -EPERM;
3010 spin_lock_irqsave(&vptr->lock, flags);
3011 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3012 spin_unlock_irqrestore(&vptr->lock, flags);
3013 check_connection_type(vptr->mac_regs);
3014 if(err)
3015 return err;
3016 break;
3017 default:
3018 return -EOPNOTSUPP;
3019 }
3020 return 0;
3021}
3022
3023#ifdef CONFIG_PM
3024
3025/**
3026 * velocity_save_context - save registers
3027 * @vptr: velocity
3028 * @context: buffer for stored context
3029 *
3030 * Retrieve the current configuration from the velocity hardware
3031 * and stash it in the context structure, for use by the context
3032 * restore functions. This allows us to save things we need across
3033 * power down states
3034 */
3035
3036static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3037{
3038 struct mac_regs __iomem * regs = vptr->mac_regs;
3039 u16 i;
3040 u8 __iomem *ptr = (u8 __iomem *)regs;
3041
3042 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3043 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3044
3045 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3046 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3047
3048 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3049 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3050
3051}
3052
3053/**
3054 * velocity_restore_context - restore registers
3055 * @vptr: velocity
3056 * @context: buffer for stored context
3057 *
3058 * Reload the register configuration from the velocity context
3059 * created by velocity_save_context.
3060 */
3061
3062static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3063{
3064 struct mac_regs __iomem * regs = vptr->mac_regs;
3065 int i;
3066 u8 __iomem *ptr = (u8 __iomem *)regs;
3067
3068 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3069 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3070 }
3071
3072 /* Just skip cr0 */
3073 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3074 /* Clear */
3075 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3076 /* Set */
3077 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3078 }
3079
3080 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3081 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3082 }
3083
3084 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3085 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3086 }
3087
3088 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3089 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3090 }
3091
3092}
3093
3094/**
3095 * wol_calc_crc - WOL CRC
3096 * @pattern: data pattern
3097 * @mask_pattern: mask
3098 *
3099 * Compute the wake on lan crc hashes for the packet header
3100 * we are interested in.
3101 */
3102
3103static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3104{
3105 u16 crc = 0xFFFF;
3106 u8 mask;
3107 int i, j;
3108
3109 for (i = 0; i < size; i++) {
3110 mask = mask_pattern[i];
3111
3112 /* Skip this loop if the mask equals to zero */
3113 if (mask == 0x00)
3114 continue;
3115
3116 for (j = 0; j < 8; j++) {
3117 if ((mask & 0x01) == 0) {
3118 mask >>= 1;
3119 continue;
3120 }
3121 mask >>= 1;
3122 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3123 }
3124 }
3125 /* Finally, invert the result once to get the correct data */
3126 crc = ~crc;
3127 return bitreverse(crc) >> 16;
3128}
3129
3130/**
3131 * velocity_set_wol - set up for wake on lan
3132 * @vptr: velocity to set WOL status on
3133 *
3134 * Set a card up for wake on lan either by unicast or by
3135 * ARP packet.
3136 *
3137 * FIXME: check static buffer is safe here
3138 */
3139
3140static int velocity_set_wol(struct velocity_info *vptr)
3141{
3142 struct mac_regs __iomem * regs = vptr->mac_regs;
3143 static u8 buf[256];
3144 int i;
3145
3146 static u32 mask_pattern[2][4] = {
3147 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3148 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3149 };
3150
3151 writew(0xFFFF, &regs->WOLCRClr);
3152 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3153 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3154
3155 /*
3156 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3157 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3158 */
3159
3160 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3161 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3162 }
3163
3164 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3165 struct arp_packet *arp = (struct arp_packet *) buf;
3166 u16 crc;
3167 memset(buf, 0, sizeof(struct arp_packet) + 7);
3168
3169 for (i = 0; i < 4; i++)
3170 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3171
3172 arp->type = htons(ETH_P_ARP);
3173 arp->ar_op = htons(1);
3174
3175 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3176
3177 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3178 (u8 *) & mask_pattern[0][0]);
3179
3180 writew(crc, &regs->PatternCRC[0]);
3181 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3182 }
3183
3184 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3185 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3186
3187 writew(0x0FFF, &regs->WOLSRClr);
3188
3189 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3190 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3191 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3192
3193 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3194 }
3195
3196 if (vptr->mii_status & VELOCITY_SPEED_1000)
3197 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3198
3199 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3200
3201 {
3202 u8 GCR;
3203 GCR = readb(&regs->CHIPGCR);
3204 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3205 writeb(GCR, &regs->CHIPGCR);
3206 }
3207
3208 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3209 /* Turn on SWPTAG just before entering power mode */
3210 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3211 /* Go to bed ..... */
3212 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3213
3214 return 0;
3215}
3216
3217static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3218{
3219 struct net_device *dev = pci_get_drvdata(pdev);
3220 struct velocity_info *vptr = netdev_priv(dev);
3221 unsigned long flags;
3222
3223 if(!netif_running(vptr->dev))
3224 return 0;
3225
3226 netif_device_detach(vptr->dev);
3227
3228 spin_lock_irqsave(&vptr->lock, flags);
3229 pci_save_state(pdev);
3230#ifdef ETHTOOL_GWOL
3231 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3232 velocity_get_ip(vptr);
3233 velocity_save_context(vptr, &vptr->context);
3234 velocity_shutdown(vptr);
3235 velocity_set_wol(vptr);
3236 pci_enable_wake(pdev, 3, 1);
3237 pci_set_power_state(pdev, PCI_D3hot);
3238 } else {
3239 velocity_save_context(vptr, &vptr->context);
3240 velocity_shutdown(vptr);
3241 pci_disable_device(pdev);
3242 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3243 }
3244#else
3245 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3246#endif
3247 spin_unlock_irqrestore(&vptr->lock, flags);
3248 return 0;
3249}
3250
3251static int velocity_resume(struct pci_dev *pdev)
3252{
3253 struct net_device *dev = pci_get_drvdata(pdev);
3254 struct velocity_info *vptr = netdev_priv(dev);
3255 unsigned long flags;
3256 int i;
3257
3258 if(!netif_running(vptr->dev))
3259 return 0;
3260
3261 pci_set_power_state(pdev, PCI_D0);
3262 pci_enable_wake(pdev, 0, 0);
3263 pci_restore_state(pdev);
3264
3265 mac_wol_reset(vptr->mac_regs);
3266
3267 spin_lock_irqsave(&vptr->lock, flags);
3268 velocity_restore_context(vptr, &vptr->context);
3269 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3270 mac_disable_int(vptr->mac_regs);
3271
3272 velocity_tx_srv(vptr, 0);
3273
3274 for (i = 0; i < vptr->num_txq; i++) {
3275 if (vptr->td_used[i]) {
3276 mac_tx_queue_wake(vptr->mac_regs, i);
3277 }
3278 }
3279
3280 mac_enable_int(vptr->mac_regs);
3281 spin_unlock_irqrestore(&vptr->lock, flags);
3282 netif_device_attach(vptr->dev);
3283
3284 return 0;
3285}
3286
3287static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3288{
3289 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3290
3291 if (ifa) {
3292 struct net_device *dev = ifa->ifa_dev->dev;
3293 struct velocity_info *vptr;
3294 unsigned long flags;
3295
3296 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3297 list_for_each_entry(vptr, &velocity_dev_list, list) {
3298 if (vptr->dev == dev) {
3299 velocity_get_ip(vptr);
3300 break;
3301 }
3302 }
3303 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3304 }
3305 return NOTIFY_DONE;
3306}
3307#endif
This page took 0.269803 seconds and 5 git commands to generate.