ath10k: clean up PCI completion states
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / ce.c
CommitLineData
5e3dd157
KV
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "hif.h"
19#include "pci.h"
20#include "ce.h"
21#include "debug.h"
22
23/*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28/*
29 * A single CopyEngine (CE) comprises two "rings":
30 * a source ring
31 * a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers. When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
62static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 u32 ce_ctrl_addr,
64 unsigned int n)
65{
66 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67}
68
69static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 u32 ce_ctrl_addr)
71{
72 return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73}
74
75static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 u32 ce_ctrl_addr,
77 unsigned int n)
78{
57a8930a 79 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
5e3dd157
KV
80}
81
82static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 u32 ce_ctrl_addr)
84{
85 return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86}
87
88static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 u32 ce_ctrl_addr)
90{
91 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92}
93
94static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 u32 ce_ctrl_addr,
96 unsigned int addr)
97{
98 ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99}
100
101static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 u32 ce_ctrl_addr,
103 unsigned int n)
104{
105 ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106}
107
108static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 u32 ce_ctrl_addr,
110 unsigned int n)
111{
112 u32 ctrl1_addr = ath10k_pci_read32((ar),
113 (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 CE_CTRL1_DMAX_LENGTH_SET(n));
118}
119
120static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 u32 ce_ctrl_addr,
122 unsigned int n)
123{
124 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129}
130
131static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 u32 ce_ctrl_addr,
133 unsigned int n)
134{
135 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140}
141
142static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 u32 ce_ctrl_addr)
144{
145 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146}
147
148static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 u32 ce_ctrl_addr,
150 u32 addr)
151{
152 ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153}
154
155static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 u32 ce_ctrl_addr,
157 unsigned int n)
158{
159 ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160}
161
162static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 u32 ce_ctrl_addr,
164 unsigned int n)
165{
166 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 SRC_WATERMARK_HIGH_SET(n));
171}
172
173static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 u32 ce_ctrl_addr,
175 unsigned int n)
176{
177 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 (addr & ~SRC_WATERMARK_LOW_MASK) |
181 SRC_WATERMARK_LOW_SET(n));
182}
183
184static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 u32 ce_ctrl_addr,
186 unsigned int n)
187{
188 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 (addr & ~DST_WATERMARK_HIGH_MASK) |
192 DST_WATERMARK_HIGH_SET(n));
193}
194
195static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 u32 ce_ctrl_addr,
197 unsigned int n)
198{
199 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 (addr & ~DST_WATERMARK_LOW_MASK) |
203 DST_WATERMARK_LOW_SET(n));
204}
205
206static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 u32 ce_ctrl_addr)
208{
209 u32 host_ie_addr = ath10k_pci_read32(ar,
210 ce_ctrl_addr + HOST_IE_ADDRESS);
211
212 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214}
215
216static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 u32 ce_ctrl_addr)
218{
219 u32 host_ie_addr = ath10k_pci_read32(ar,
220 ce_ctrl_addr + HOST_IE_ADDRESS);
221
222 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224}
225
226static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 u32 ce_ctrl_addr)
228{
229 u32 host_ie_addr = ath10k_pci_read32(ar,
230 ce_ctrl_addr + HOST_IE_ADDRESS);
231
232 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 host_ie_addr & ~CE_WATERMARK_MASK);
234}
235
236static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 u32 ce_ctrl_addr)
238{
239 u32 misc_ie_addr = ath10k_pci_read32(ar,
240 ce_ctrl_addr + MISC_IE_ADDRESS);
241
242 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 misc_ie_addr | CE_ERROR_MASK);
244}
245
246static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
247 u32 ce_ctrl_addr,
248 unsigned int mask)
249{
250 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
251}
252
253
254/*
255 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
256 * ath10k_ce_sendlist_send.
257 * The caller takes responsibility for any needed locking.
258 */
259static int ath10k_ce_send_nolock(struct ce_state *ce_state,
260 void *per_transfer_context,
261 u32 buffer,
262 unsigned int nbytes,
263 unsigned int transfer_id,
264 unsigned int flags)
265{
266 struct ath10k *ar = ce_state->ar;
267 struct ce_ring_state *src_ring = ce_state->src_ring;
268 struct ce_desc *desc, *sdesc;
269 unsigned int nentries_mask = src_ring->nentries_mask;
270 unsigned int sw_index = src_ring->sw_index;
271 unsigned int write_index = src_ring->write_index;
272 u32 ctrl_addr = ce_state->ctrl_addr;
273 u32 desc_flags = 0;
274 int ret = 0;
275
276 if (nbytes > ce_state->src_sz_max)
277 ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n",
278 __func__, nbytes, ce_state->src_sz_max);
279
280 ath10k_pci_wake(ar);
281
282 if (unlikely(CE_RING_DELTA(nentries_mask,
283 write_index, sw_index - 1) <= 0)) {
284 ret = -EIO;
285 goto exit;
286 }
287
288 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
289 write_index);
290 sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
291
292 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
293
294 if (flags & CE_SEND_FLAG_GATHER)
295 desc_flags |= CE_DESC_FLAGS_GATHER;
296 if (flags & CE_SEND_FLAG_BYTE_SWAP)
297 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
298
299 sdesc->addr = __cpu_to_le32(buffer);
300 sdesc->nbytes = __cpu_to_le16(nbytes);
301 sdesc->flags = __cpu_to_le16(desc_flags);
302
303 *desc = *sdesc;
304
305 src_ring->per_transfer_context[write_index] = per_transfer_context;
306
307 /* Update Source Ring Write Index */
308 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
309
310 /* WORKAROUND */
311 if (!(flags & CE_SEND_FLAG_GATHER))
312 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
313
314 src_ring->write_index = write_index;
315exit:
316 ath10k_pci_sleep(ar);
317 return ret;
318}
319
320int ath10k_ce_send(struct ce_state *ce_state,
321 void *per_transfer_context,
322 u32 buffer,
323 unsigned int nbytes,
324 unsigned int transfer_id,
325 unsigned int flags)
326{
327 struct ath10k *ar = ce_state->ar;
328 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
329 int ret;
330
331 spin_lock_bh(&ar_pci->ce_lock);
332 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
333 buffer, nbytes, transfer_id, flags);
334 spin_unlock_bh(&ar_pci->ce_lock);
335
336 return ret;
337}
338
339void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer,
340 unsigned int nbytes, u32 flags)
341{
342 unsigned int num_items = sendlist->num_items;
343 struct ce_sendlist_item *item;
344
345 item = &sendlist->item[num_items];
346 item->data = buffer;
347 item->u.nbytes = nbytes;
348 item->flags = flags;
349 sendlist->num_items++;
350}
351
352int ath10k_ce_sendlist_send(struct ce_state *ce_state,
353 void *per_transfer_context,
354 struct ce_sendlist *sendlist,
355 unsigned int transfer_id)
356{
357 struct ce_ring_state *src_ring = ce_state->src_ring;
358 struct ce_sendlist_item *item;
359 struct ath10k *ar = ce_state->ar;
360 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
361 unsigned int nentries_mask = src_ring->nentries_mask;
362 unsigned int num_items = sendlist->num_items;
363 unsigned int sw_index;
364 unsigned int write_index;
365 int i, delta, ret = -ENOMEM;
366
367 spin_lock_bh(&ar_pci->ce_lock);
368
369 sw_index = src_ring->sw_index;
370 write_index = src_ring->write_index;
371
372 delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
373
374 if (delta >= num_items) {
375 /*
376 * Handle all but the last item uniformly.
377 */
378 for (i = 0; i < num_items - 1; i++) {
379 item = &sendlist->item[i];
380 ret = ath10k_ce_send_nolock(ce_state,
381 CE_SENDLIST_ITEM_CTXT,
382 (u32) item->data,
383 item->u.nbytes, transfer_id,
384 item->flags |
385 CE_SEND_FLAG_GATHER);
386 if (ret)
387 ath10k_warn("CE send failed for item: %d\n", i);
388 }
389 /*
390 * Provide valid context pointer for final item.
391 */
392 item = &sendlist->item[i];
393 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
394 (u32) item->data, item->u.nbytes,
395 transfer_id, item->flags);
396 if (ret)
397 ath10k_warn("CE send failed for last item: %d\n", i);
398 }
399
400 spin_unlock_bh(&ar_pci->ce_lock);
401
402 return ret;
403}
404
405int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state,
406 void *per_recv_context,
407 u32 buffer)
408{
409 struct ce_ring_state *dest_ring = ce_state->dest_ring;
410 u32 ctrl_addr = ce_state->ctrl_addr;
411 struct ath10k *ar = ce_state->ar;
412 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
413 unsigned int nentries_mask = dest_ring->nentries_mask;
414 unsigned int write_index;
415 unsigned int sw_index;
416 int ret;
417
418 spin_lock_bh(&ar_pci->ce_lock);
419 write_index = dest_ring->write_index;
420 sw_index = dest_ring->sw_index;
421
422 ath10k_pci_wake(ar);
423
424 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) {
425 struct ce_desc *base = dest_ring->base_addr_owner_space;
426 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
427
428 /* Update destination descriptor */
429 desc->addr = __cpu_to_le32(buffer);
430 desc->nbytes = 0;
431
432 dest_ring->per_transfer_context[write_index] =
433 per_recv_context;
434
435 /* Update Destination Ring Write Index */
436 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
437 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
438 dest_ring->write_index = write_index;
439 ret = 0;
440 } else {
441 ret = -EIO;
442 }
443 ath10k_pci_sleep(ar);
444 spin_unlock_bh(&ar_pci->ce_lock);
445
446 return ret;
447}
448
449/*
450 * Guts of ath10k_ce_completed_recv_next.
451 * The caller takes responsibility for any necessary locking.
452 */
453static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state,
454 void **per_transfer_contextp,
455 u32 *bufferp,
456 unsigned int *nbytesp,
457 unsigned int *transfer_idp,
458 unsigned int *flagsp)
459{
460 struct ce_ring_state *dest_ring = ce_state->dest_ring;
461 unsigned int nentries_mask = dest_ring->nentries_mask;
462 unsigned int sw_index = dest_ring->sw_index;
463
464 struct ce_desc *base = dest_ring->base_addr_owner_space;
465 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
466 struct ce_desc sdesc;
467 u16 nbytes;
468
469 /* Copy in one go for performance reasons */
470 sdesc = *desc;
471
472 nbytes = __le16_to_cpu(sdesc.nbytes);
473 if (nbytes == 0) {
474 /*
475 * This closes a relatively unusual race where the Host
476 * sees the updated DRRI before the update to the
477 * corresponding descriptor has completed. We treat this
478 * as a descriptor that is not yet done.
479 */
480 return -EIO;
481 }
482
483 desc->nbytes = 0;
484
485 /* Return data from completed destination descriptor */
486 *bufferp = __le32_to_cpu(sdesc.addr);
487 *nbytesp = nbytes;
488 *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
489
490 if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
491 *flagsp = CE_RECV_FLAG_SWAPPED;
492 else
493 *flagsp = 0;
494
495 if (per_transfer_contextp)
496 *per_transfer_contextp =
497 dest_ring->per_transfer_context[sw_index];
498
499 /* sanity */
500 dest_ring->per_transfer_context[sw_index] = NULL;
501
502 /* Update sw_index */
503 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
504 dest_ring->sw_index = sw_index;
505
506 return 0;
507}
508
509int ath10k_ce_completed_recv_next(struct ce_state *ce_state,
510 void **per_transfer_contextp,
511 u32 *bufferp,
512 unsigned int *nbytesp,
513 unsigned int *transfer_idp,
514 unsigned int *flagsp)
515{
516 struct ath10k *ar = ce_state->ar;
517 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
518 int ret;
519
520 spin_lock_bh(&ar_pci->ce_lock);
521 ret = ath10k_ce_completed_recv_next_nolock(ce_state,
522 per_transfer_contextp,
523 bufferp, nbytesp,
524 transfer_idp, flagsp);
525 spin_unlock_bh(&ar_pci->ce_lock);
526
527 return ret;
528}
529
530int ath10k_ce_revoke_recv_next(struct ce_state *ce_state,
531 void **per_transfer_contextp,
532 u32 *bufferp)
533{
534 struct ce_ring_state *dest_ring;
535 unsigned int nentries_mask;
536 unsigned int sw_index;
537 unsigned int write_index;
538 int ret;
539 struct ath10k *ar;
540 struct ath10k_pci *ar_pci;
541
542 dest_ring = ce_state->dest_ring;
543
544 if (!dest_ring)
545 return -EIO;
546
547 ar = ce_state->ar;
548 ar_pci = ath10k_pci_priv(ar);
549
550 spin_lock_bh(&ar_pci->ce_lock);
551
552 nentries_mask = dest_ring->nentries_mask;
553 sw_index = dest_ring->sw_index;
554 write_index = dest_ring->write_index;
555 if (write_index != sw_index) {
556 struct ce_desc *base = dest_ring->base_addr_owner_space;
557 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
558
559 /* Return data from completed destination descriptor */
560 *bufferp = __le32_to_cpu(desc->addr);
561
562 if (per_transfer_contextp)
563 *per_transfer_contextp =
564 dest_ring->per_transfer_context[sw_index];
565
566 /* sanity */
567 dest_ring->per_transfer_context[sw_index] = NULL;
568
569 /* Update sw_index */
570 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
571 dest_ring->sw_index = sw_index;
572 ret = 0;
573 } else {
574 ret = -EIO;
575 }
576
577 spin_unlock_bh(&ar_pci->ce_lock);
578
579 return ret;
580}
581
582/*
583 * Guts of ath10k_ce_completed_send_next.
584 * The caller takes responsibility for any necessary locking.
585 */
586static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state,
587 void **per_transfer_contextp,
588 u32 *bufferp,
589 unsigned int *nbytesp,
590 unsigned int *transfer_idp)
591{
592 struct ce_ring_state *src_ring = ce_state->src_ring;
593 u32 ctrl_addr = ce_state->ctrl_addr;
594 struct ath10k *ar = ce_state->ar;
595 unsigned int nentries_mask = src_ring->nentries_mask;
596 unsigned int sw_index = src_ring->sw_index;
597 unsigned int read_index;
598 int ret = -EIO;
599
600 if (src_ring->hw_index == sw_index) {
601 /*
602 * The SW completion index has caught up with the cached
603 * version of the HW completion index.
604 * Update the cached HW completion index to see whether
605 * the SW has really caught up to the HW, or if the cached
606 * value of the HW index has become stale.
607 */
608 ath10k_pci_wake(ar);
609 src_ring->hw_index =
610 ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
432358ed 611 src_ring->hw_index &= nentries_mask;
5e3dd157
KV
612 ath10k_pci_sleep(ar);
613 }
614 read_index = src_ring->hw_index;
615
616 if ((read_index != sw_index) && (read_index != 0xffffffff)) {
617 struct ce_desc *sbase = src_ring->shadow_base;
618 struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
619
620 /* Return data from completed source descriptor */
621 *bufferp = __le32_to_cpu(sdesc->addr);
622 *nbytesp = __le16_to_cpu(sdesc->nbytes);
623 *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
624 CE_DESC_FLAGS_META_DATA);
625
626 if (per_transfer_contextp)
627 *per_transfer_contextp =
628 src_ring->per_transfer_context[sw_index];
629
630 /* sanity */
631 src_ring->per_transfer_context[sw_index] = NULL;
632
633 /* Update sw_index */
634 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
635 src_ring->sw_index = sw_index;
636 ret = 0;
637 }
638
639 return ret;
640}
641
642/* NB: Modeled after ath10k_ce_completed_send_next */
643int ath10k_ce_cancel_send_next(struct ce_state *ce_state,
644 void **per_transfer_contextp,
645 u32 *bufferp,
646 unsigned int *nbytesp,
647 unsigned int *transfer_idp)
648{
649 struct ce_ring_state *src_ring;
650 unsigned int nentries_mask;
651 unsigned int sw_index;
652 unsigned int write_index;
653 int ret;
654 struct ath10k *ar;
655 struct ath10k_pci *ar_pci;
656
657 src_ring = ce_state->src_ring;
658
659 if (!src_ring)
660 return -EIO;
661
662 ar = ce_state->ar;
663 ar_pci = ath10k_pci_priv(ar);
664
665 spin_lock_bh(&ar_pci->ce_lock);
666
667 nentries_mask = src_ring->nentries_mask;
668 sw_index = src_ring->sw_index;
669 write_index = src_ring->write_index;
670
671 if (write_index != sw_index) {
672 struct ce_desc *base = src_ring->base_addr_owner_space;
673 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
674
675 /* Return data from completed source descriptor */
676 *bufferp = __le32_to_cpu(desc->addr);
677 *nbytesp = __le16_to_cpu(desc->nbytes);
678 *transfer_idp = MS(__le16_to_cpu(desc->flags),
679 CE_DESC_FLAGS_META_DATA);
680
681 if (per_transfer_contextp)
682 *per_transfer_contextp =
683 src_ring->per_transfer_context[sw_index];
684
685 /* sanity */
686 src_ring->per_transfer_context[sw_index] = NULL;
687
688 /* Update sw_index */
689 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
690 src_ring->sw_index = sw_index;
691 ret = 0;
692 } else {
693 ret = -EIO;
694 }
695
696 spin_unlock_bh(&ar_pci->ce_lock);
697
698 return ret;
699}
700
701int ath10k_ce_completed_send_next(struct ce_state *ce_state,
702 void **per_transfer_contextp,
703 u32 *bufferp,
704 unsigned int *nbytesp,
705 unsigned int *transfer_idp)
706{
707 struct ath10k *ar = ce_state->ar;
708 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
709 int ret;
710
711 spin_lock_bh(&ar_pci->ce_lock);
712 ret = ath10k_ce_completed_send_next_nolock(ce_state,
713 per_transfer_contextp,
714 bufferp, nbytesp,
715 transfer_idp);
716 spin_unlock_bh(&ar_pci->ce_lock);
717
718 return ret;
719}
720
721/*
722 * Guts of interrupt handler for per-engine interrupts on a particular CE.
723 *
724 * Invokes registered callbacks for recv_complete,
725 * send_complete, and watermarks.
726 */
727void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
728{
729 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
730 struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
731 u32 ctrl_addr = ce_state->ctrl_addr;
732 void *transfer_context;
733 u32 buf;
734 unsigned int nbytes;
735 unsigned int id;
736 unsigned int flags;
737
738 ath10k_pci_wake(ar);
739 spin_lock_bh(&ar_pci->ce_lock);
740
741 /* Clear the copy-complete interrupts that will be handled here. */
742 ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
743 HOST_IS_COPY_COMPLETE_MASK);
744
745 if (ce_state->recv_cb) {
746 /*
747 * Pop completed recv buffers and call the registered
748 * recv callback for each
749 */
750 while (ath10k_ce_completed_recv_next_nolock(ce_state,
751 &transfer_context,
752 &buf, &nbytes,
753 &id, &flags) == 0) {
754 spin_unlock_bh(&ar_pci->ce_lock);
755 ce_state->recv_cb(ce_state, transfer_context, buf,
756 nbytes, id, flags);
757 spin_lock_bh(&ar_pci->ce_lock);
758 }
759 }
760
761 if (ce_state->send_cb) {
762 /*
763 * Pop completed send buffers and call the registered
764 * send callback for each
765 */
766 while (ath10k_ce_completed_send_next_nolock(ce_state,
767 &transfer_context,
768 &buf,
769 &nbytes,
770 &id) == 0) {
771 spin_unlock_bh(&ar_pci->ce_lock);
772 ce_state->send_cb(ce_state, transfer_context,
773 buf, nbytes, id);
774 spin_lock_bh(&ar_pci->ce_lock);
775 }
776 }
777
778 /*
779 * Misc CE interrupts are not being handled, but still need
780 * to be cleared.
781 */
782 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
783
784 spin_unlock_bh(&ar_pci->ce_lock);
785 ath10k_pci_sleep(ar);
786}
787
788/*
789 * Handler for per-engine interrupts on ALL active CEs.
790 * This is used in cases where the system is sharing a
791 * single interrput for all CEs
792 */
793
794void ath10k_ce_per_engine_service_any(struct ath10k *ar)
795{
796 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
797 int ce_id;
798 u32 intr_summary;
799
800 ath10k_pci_wake(ar);
801 intr_summary = CE_INTERRUPT_SUMMARY(ar);
802
803 for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) {
804 if (intr_summary & (1 << ce_id))
805 intr_summary &= ~(1 << ce_id);
806 else
807 /* no intr pending on this CE */
808 continue;
809
810 ath10k_ce_per_engine_service(ar, ce_id);
811 }
812
813 ath10k_pci_sleep(ar);
814}
815
816/*
817 * Adjust interrupts for the copy complete handler.
818 * If it's needed for either send or recv, then unmask
819 * this interrupt; otherwise, mask it.
820 *
821 * Called with ce_lock held.
822 */
823static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state,
824 int disable_copy_compl_intr)
825{
826 u32 ctrl_addr = ce_state->ctrl_addr;
827 struct ath10k *ar = ce_state->ar;
828
829 ath10k_pci_wake(ar);
830
831 if ((!disable_copy_compl_intr) &&
832 (ce_state->send_cb || ce_state->recv_cb))
833 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
834 else
835 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
836
837 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
838
839 ath10k_pci_sleep(ar);
840}
841
842void ath10k_ce_disable_interrupts(struct ath10k *ar)
843{
844 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
845 int ce_id;
846
847 ath10k_pci_wake(ar);
848 for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) {
849 struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id];
850 u32 ctrl_addr = ce_state->ctrl_addr;
851
852 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
853 }
854 ath10k_pci_sleep(ar);
855}
856
857void ath10k_ce_send_cb_register(struct ce_state *ce_state,
858 void (*send_cb) (struct ce_state *ce_state,
859 void *transfer_context,
860 u32 buffer,
861 unsigned int nbytes,
862 unsigned int transfer_id),
863 int disable_interrupts)
864{
865 struct ath10k *ar = ce_state->ar;
866 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
867
868 spin_lock_bh(&ar_pci->ce_lock);
869 ce_state->send_cb = send_cb;
870 ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts);
871 spin_unlock_bh(&ar_pci->ce_lock);
872}
873
874void ath10k_ce_recv_cb_register(struct ce_state *ce_state,
875 void (*recv_cb) (struct ce_state *ce_state,
876 void *transfer_context,
877 u32 buffer,
878 unsigned int nbytes,
879 unsigned int transfer_id,
880 unsigned int flags))
881{
882 struct ath10k *ar = ce_state->ar;
883 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
884
885 spin_lock_bh(&ar_pci->ce_lock);
886 ce_state->recv_cb = recv_cb;
887 ath10k_ce_per_engine_handler_adjust(ce_state, 0);
888 spin_unlock_bh(&ar_pci->ce_lock);
889}
890
891static int ath10k_ce_init_src_ring(struct ath10k *ar,
892 unsigned int ce_id,
893 struct ce_state *ce_state,
894 const struct ce_attr *attr)
895{
896 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
897 struct ce_ring_state *src_ring;
898 unsigned int nentries = attr->src_nentries;
899 unsigned int ce_nbytes;
900 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
901 dma_addr_t base_addr;
902 char *ptr;
903
904 nentries = roundup_pow_of_two(nentries);
905
906 if (ce_state->src_ring) {
907 WARN_ON(ce_state->src_ring->nentries != nentries);
908 return 0;
909 }
910
911 ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
912 ptr = kzalloc(ce_nbytes, GFP_KERNEL);
913 if (ptr == NULL)
914 return -ENOMEM;
915
916 ce_state->src_ring = (struct ce_ring_state *)ptr;
917 src_ring = ce_state->src_ring;
918
919 ptr += sizeof(struct ce_ring_state);
920 src_ring->nentries = nentries;
921 src_ring->nentries_mask = nentries - 1;
922
923 ath10k_pci_wake(ar);
924 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
432358ed 925 src_ring->sw_index &= src_ring->nentries_mask;
5e3dd157
KV
926 src_ring->hw_index = src_ring->sw_index;
927
928 src_ring->write_index =
929 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
432358ed 930 src_ring->write_index &= src_ring->nentries_mask;
5e3dd157
KV
931 ath10k_pci_sleep(ar);
932
933 src_ring->per_transfer_context = (void **)ptr;
934
935 /*
936 * Legacy platforms that do not support cache
937 * coherent DMA are unsupported
938 */
939 src_ring->base_addr_owner_space_unaligned =
940 pci_alloc_consistent(ar_pci->pdev,
941 (nentries * sizeof(struct ce_desc) +
942 CE_DESC_RING_ALIGN),
943 &base_addr);
9c5ae691
JD
944 if (!src_ring->base_addr_owner_space_unaligned) {
945 kfree(ce_state->src_ring);
946 ce_state->src_ring = NULL;
947 return -ENOMEM;
948 }
949
5e3dd157
KV
950 src_ring->base_addr_ce_space_unaligned = base_addr;
951
952 src_ring->base_addr_owner_space = PTR_ALIGN(
953 src_ring->base_addr_owner_space_unaligned,
954 CE_DESC_RING_ALIGN);
955 src_ring->base_addr_ce_space = ALIGN(
956 src_ring->base_addr_ce_space_unaligned,
957 CE_DESC_RING_ALIGN);
958
959 /*
960 * Also allocate a shadow src ring in regular
961 * mem to use for faster access.
962 */
963 src_ring->shadow_base_unaligned =
964 kmalloc((nentries * sizeof(struct ce_desc) +
965 CE_DESC_RING_ALIGN), GFP_KERNEL);
9c5ae691
JD
966 if (!src_ring->shadow_base_unaligned) {
967 pci_free_consistent(ar_pci->pdev,
968 (nentries * sizeof(struct ce_desc) +
969 CE_DESC_RING_ALIGN),
970 src_ring->base_addr_owner_space,
971 src_ring->base_addr_ce_space);
972 kfree(ce_state->src_ring);
973 ce_state->src_ring = NULL;
974 return -ENOMEM;
975 }
5e3dd157
KV
976
977 src_ring->shadow_base = PTR_ALIGN(
978 src_ring->shadow_base_unaligned,
979 CE_DESC_RING_ALIGN);
980
981 ath10k_pci_wake(ar);
982 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
983 src_ring->base_addr_ce_space);
984 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
985 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
986 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
987 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
988 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
989 ath10k_pci_sleep(ar);
990
991 return 0;
992}
993
994static int ath10k_ce_init_dest_ring(struct ath10k *ar,
995 unsigned int ce_id,
996 struct ce_state *ce_state,
997 const struct ce_attr *attr)
998{
999 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1000 struct ce_ring_state *dest_ring;
1001 unsigned int nentries = attr->dest_nentries;
1002 unsigned int ce_nbytes;
1003 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1004 dma_addr_t base_addr;
1005 char *ptr;
1006
1007 nentries = roundup_pow_of_two(nentries);
1008
1009 if (ce_state->dest_ring) {
1010 WARN_ON(ce_state->dest_ring->nentries != nentries);
1011 return 0;
1012 }
1013
1014 ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *));
1015 ptr = kzalloc(ce_nbytes, GFP_KERNEL);
1016 if (ptr == NULL)
1017 return -ENOMEM;
1018
1019 ce_state->dest_ring = (struct ce_ring_state *)ptr;
1020 dest_ring = ce_state->dest_ring;
1021
1022 ptr += sizeof(struct ce_ring_state);
1023 dest_ring->nentries = nentries;
1024 dest_ring->nentries_mask = nentries - 1;
1025
1026 ath10k_pci_wake(ar);
1027 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
432358ed 1028 dest_ring->sw_index &= dest_ring->nentries_mask;
5e3dd157
KV
1029 dest_ring->write_index =
1030 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
432358ed 1031 dest_ring->write_index &= dest_ring->nentries_mask;
5e3dd157
KV
1032 ath10k_pci_sleep(ar);
1033
1034 dest_ring->per_transfer_context = (void **)ptr;
1035
1036 /*
1037 * Legacy platforms that do not support cache
1038 * coherent DMA are unsupported
1039 */
1040 dest_ring->base_addr_owner_space_unaligned =
1041 pci_alloc_consistent(ar_pci->pdev,
1042 (nentries * sizeof(struct ce_desc) +
1043 CE_DESC_RING_ALIGN),
1044 &base_addr);
9c5ae691
JD
1045 if (!dest_ring->base_addr_owner_space_unaligned) {
1046 kfree(ce_state->dest_ring);
1047 ce_state->dest_ring = NULL;
1048 return -ENOMEM;
1049 }
1050
5e3dd157
KV
1051 dest_ring->base_addr_ce_space_unaligned = base_addr;
1052
1053 /*
1054 * Correctly initialize memory to 0 to prevent garbage
1055 * data crashing system when download firmware
1056 */
1057 memset(dest_ring->base_addr_owner_space_unaligned, 0,
1058 nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1059
1060 dest_ring->base_addr_owner_space = PTR_ALIGN(
1061 dest_ring->base_addr_owner_space_unaligned,
1062 CE_DESC_RING_ALIGN);
1063 dest_ring->base_addr_ce_space = ALIGN(
1064 dest_ring->base_addr_ce_space_unaligned,
1065 CE_DESC_RING_ALIGN);
1066
1067 ath10k_pci_wake(ar);
1068 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1069 dest_ring->base_addr_ce_space);
1070 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1071 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1072 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1073 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1074 ath10k_pci_sleep(ar);
1075
1076 return 0;
1077}
1078
1079static struct ce_state *ath10k_ce_init_state(struct ath10k *ar,
1080 unsigned int ce_id,
1081 const struct ce_attr *attr)
1082{
1083 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1084 struct ce_state *ce_state = NULL;
1085 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1086
1087 spin_lock_bh(&ar_pci->ce_lock);
1088
1089 if (!ar_pci->ce_id_to_state[ce_id]) {
1090 ce_state = kzalloc(sizeof(*ce_state), GFP_ATOMIC);
1091 if (ce_state == NULL) {
1092 spin_unlock_bh(&ar_pci->ce_lock);
1093 return NULL;
1094 }
1095
1096 ar_pci->ce_id_to_state[ce_id] = ce_state;
1097 ce_state->ar = ar;
1098 ce_state->id = ce_id;
1099 ce_state->ctrl_addr = ctrl_addr;
1100 ce_state->state = CE_RUNNING;
1101 /* Save attribute flags */
1102 ce_state->attr_flags = attr->flags;
1103 ce_state->src_sz_max = attr->src_sz_max;
1104 }
1105
1106 spin_unlock_bh(&ar_pci->ce_lock);
1107
1108 return ce_state;
1109}
1110
1111/*
1112 * Initialize a Copy Engine based on caller-supplied attributes.
1113 * This may be called once to initialize both source and destination
1114 * rings or it may be called twice for separate source and destination
1115 * initialization. It may be that only one side or the other is
1116 * initialized by software/firmware.
1117 */
1118struct ce_state *ath10k_ce_init(struct ath10k *ar,
1119 unsigned int ce_id,
1120 const struct ce_attr *attr)
1121{
1122 struct ce_state *ce_state;
1123 u32 ctrl_addr = ath10k_ce_base_address(ce_id);
1124
1125 ce_state = ath10k_ce_init_state(ar, ce_id, attr);
1126 if (!ce_state) {
1127 ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id);
1128 return NULL;
1129 }
1130
1131 if (attr->src_nentries) {
1132 if (ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr)) {
1133 ath10k_err("Failed to initialize CE src ring for ID: %d\n",
1134 ce_id);
1135 ath10k_ce_deinit(ce_state);
1136 return NULL;
1137 }
1138 }
1139
1140 if (attr->dest_nentries) {
1141 if (ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr)) {
1142 ath10k_err("Failed to initialize CE dest ring for ID: %d\n",
1143 ce_id);
1144 ath10k_ce_deinit(ce_state);
1145 return NULL;
1146 }
1147 }
1148
1149 /* Enable CE error interrupts */
1150 ath10k_pci_wake(ar);
1151 ath10k_ce_error_intr_enable(ar, ctrl_addr);
1152 ath10k_pci_sleep(ar);
1153
1154 return ce_state;
1155}
1156
1157void ath10k_ce_deinit(struct ce_state *ce_state)
1158{
1159 unsigned int ce_id = ce_state->id;
1160 struct ath10k *ar = ce_state->ar;
1161 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1162
1163 ce_state->state = CE_UNUSED;
1164 ar_pci->ce_id_to_state[ce_id] = NULL;
1165
1166 if (ce_state->src_ring) {
1167 kfree(ce_state->src_ring->shadow_base_unaligned);
1168 pci_free_consistent(ar_pci->pdev,
1169 (ce_state->src_ring->nentries *
1170 sizeof(struct ce_desc) +
1171 CE_DESC_RING_ALIGN),
1172 ce_state->src_ring->base_addr_owner_space,
1173 ce_state->src_ring->base_addr_ce_space);
1174 kfree(ce_state->src_ring);
1175 }
1176
1177 if (ce_state->dest_ring) {
1178 pci_free_consistent(ar_pci->pdev,
1179 (ce_state->dest_ring->nentries *
1180 sizeof(struct ce_desc) +
1181 CE_DESC_RING_ALIGN),
1182 ce_state->dest_ring->base_addr_owner_space,
1183 ce_state->dest_ring->base_addr_ce_space);
1184 kfree(ce_state->dest_ring);
1185 }
1186 kfree(ce_state);
1187}
This page took 0.107497 seconds and 5 git commands to generate.