ath10k: fix spelling mistakes and add details to mac logging
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
CommitLineData
5e3dd157
KV
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
edb8236d 18#include "core.h"
5e3dd157
KV
19#include "htc.h"
20#include "htt.h"
21#include "txrx.h"
22#include "debug.h"
a9bf0506 23#include "trace.h"
aa5b4fbc 24#include "mac.h"
5e3dd157
KV
25
26#include <linux/log2.h>
27
c545070e
MK
28#define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29#define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
5e3dd157
KV
30
31/* when under memory pressure rx ring refill may fail and needs a retry */
32#define HTT_RX_RING_REFILL_RETRY_MS 50
33
f6dc2095 34static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
6c5151a9 35static void ath10k_htt_txrx_compl_task(unsigned long ptr);
f6dc2095 36
c545070e
MK
37static struct sk_buff *
38ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39{
40 struct ath10k_skb_rxcb *rxcb;
41
42 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43 if (rxcb->paddr == paddr)
44 return ATH10K_RXCB_SKB(rxcb);
45
46 WARN_ON_ONCE(1);
47 return NULL;
48}
49
5e3dd157
KV
50static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51{
52 struct sk_buff *skb;
c545070e
MK
53 struct ath10k_skb_rxcb *rxcb;
54 struct hlist_node *n;
5e3dd157
KV
55 int i;
56
c545070e
MK
57 if (htt->rx_ring.in_ord_rx) {
58 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59 skb = ATH10K_RXCB_SKB(rxcb);
60 dma_unmap_single(htt->ar->dev, rxcb->paddr,
61 skb->len + skb_tailroom(skb),
62 DMA_FROM_DEVICE);
63 hash_del(&rxcb->hlist);
64 dev_kfree_skb_any(skb);
65 }
66 } else {
67 for (i = 0; i < htt->rx_ring.size; i++) {
68 skb = htt->rx_ring.netbufs_ring[i];
69 if (!skb)
70 continue;
71
72 rxcb = ATH10K_SKB_RXCB(skb);
73 dma_unmap_single(htt->ar->dev, rxcb->paddr,
74 skb->len + skb_tailroom(skb),
75 DMA_FROM_DEVICE);
76 dev_kfree_skb_any(skb);
77 }
5e3dd157
KV
78 }
79
80 htt->rx_ring.fill_cnt = 0;
c545070e
MK
81 hash_init(htt->rx_ring.skb_table);
82 memset(htt->rx_ring.netbufs_ring, 0,
83 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
5e3dd157
KV
84}
85
86static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87{
88 struct htt_rx_desc *rx_desc;
c545070e 89 struct ath10k_skb_rxcb *rxcb;
5e3dd157
KV
90 struct sk_buff *skb;
91 dma_addr_t paddr;
92 int ret = 0, idx;
93
c545070e
MK
94 /* The Full Rx Reorder firmware has no way of telling the host
95 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96 * To keep things simple make sure ring is always half empty. This
97 * guarantees there'll be no replenishment overruns possible.
98 */
99 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
8cc7f26c 101 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
5e3dd157
KV
102 while (num > 0) {
103 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104 if (!skb) {
105 ret = -ENOMEM;
106 goto fail;
107 }
108
109 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110 skb_pull(skb,
111 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112 skb->data);
113
114 /* Clear rx_desc attention word before posting to Rx ring */
115 rx_desc = (struct htt_rx_desc *)skb->data;
116 rx_desc->attention.flags = __cpu_to_le32(0);
117
118 paddr = dma_map_single(htt->ar->dev, skb->data,
119 skb->len + skb_tailroom(skb),
120 DMA_FROM_DEVICE);
121
122 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123 dev_kfree_skb_any(skb);
124 ret = -ENOMEM;
125 goto fail;
126 }
127
c545070e
MK
128 rxcb = ATH10K_SKB_RXCB(skb);
129 rxcb->paddr = paddr;
5e3dd157
KV
130 htt->rx_ring.netbufs_ring[idx] = skb;
131 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132 htt->rx_ring.fill_cnt++;
133
c545070e
MK
134 if (htt->rx_ring.in_ord_rx) {
135 hash_add(htt->rx_ring.skb_table,
136 &ATH10K_SKB_RXCB(skb)->hlist,
137 (u32)paddr);
138 }
139
5e3dd157
KV
140 num--;
141 idx++;
142 idx &= htt->rx_ring.size_mask;
143 }
144
145fail:
5de6dfc8
VT
146 /*
147 * Make sure the rx buffer is updated before available buffer
148 * index to avoid any potential rx ring corruption.
149 */
150 mb();
8cc7f26c 151 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
5e3dd157
KV
152 return ret;
153}
154
155static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156{
157 lockdep_assert_held(&htt->rx_ring.lock);
158 return __ath10k_htt_rx_ring_fill_n(htt, num);
159}
160
161static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162{
6e712d42 163 int ret, num_deficit, num_to_fill;
5e3dd157 164
6e712d42
MK
165 /* Refilling the whole RX ring buffer proves to be a bad idea. The
166 * reason is RX may take up significant amount of CPU cycles and starve
167 * other tasks, e.g. TX on an ethernet device while acting as a bridge
168 * with ath10k wlan interface. This ended up with very poor performance
169 * once CPU the host system was overwhelmed with RX on ath10k.
170 *
171 * By limiting the number of refills the replenishing occurs
172 * progressively. This in turns makes use of the fact tasklets are
173 * processed in FIFO order. This means actual RX processing can starve
174 * out refilling. If there's not enough buffers on RX ring FW will not
175 * report RX until it is refilled with enough buffers. This
176 * automatically balances load wrt to CPU power.
177 *
178 * This probably comes at a cost of lower maximum throughput but
179 * improves the avarage and stability. */
5e3dd157 180 spin_lock_bh(&htt->rx_ring.lock);
6e712d42
MK
181 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183 num_deficit -= num_to_fill;
5e3dd157
KV
184 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185 if (ret == -ENOMEM) {
186 /*
187 * Failed to fill it to the desired level -
188 * we'll start a timer and try again next time.
189 * As long as enough buffers are left in the ring for
190 * another A-MPDU rx, no special recovery is needed.
191 */
192 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
6e712d42
MK
194 } else if (num_deficit > 0) {
195 tasklet_schedule(&htt->rx_replenish_task);
5e3dd157
KV
196 }
197 spin_unlock_bh(&htt->rx_ring.lock);
198}
199
200static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201{
202 struct ath10k_htt *htt = (struct ath10k_htt *)arg;
af762c0b 203
5e3dd157
KV
204 ath10k_htt_rx_msdu_buff_replenish(htt);
205}
206
c545070e 207int ath10k_htt_rx_ring_refill(struct ath10k *ar)
5e3dd157 208{
c545070e
MK
209 struct ath10k_htt *htt = &ar->htt;
210 int ret;
3e841fd0 211
c545070e
MK
212 spin_lock_bh(&htt->rx_ring.lock);
213 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214 htt->rx_ring.fill_cnt));
215 spin_unlock_bh(&htt->rx_ring.lock);
3e841fd0 216
c545070e
MK
217 if (ret)
218 ath10k_htt_rx_ring_free(htt);
219
220 return ret;
3e841fd0 221}
5e3dd157 222
95bf21f9 223void ath10k_htt_rx_free(struct ath10k_htt *htt)
3e841fd0 224{
5e3dd157 225 del_timer_sync(&htt->rx_ring.refill_retry_timer);
6e712d42 226 tasklet_kill(&htt->rx_replenish_task);
6c5151a9
MK
227 tasklet_kill(&htt->txrx_compl_task);
228
229 skb_queue_purge(&htt->tx_compl_q);
230 skb_queue_purge(&htt->rx_compl_q);
c545070e 231 skb_queue_purge(&htt->rx_in_ord_compl_q);
5e3dd157 232
c545070e 233 ath10k_htt_rx_ring_free(htt);
5e3dd157
KV
234
235 dma_free_coherent(htt->ar->dev,
236 (htt->rx_ring.size *
237 sizeof(htt->rx_ring.paddrs_ring)),
238 htt->rx_ring.paddrs_ring,
239 htt->rx_ring.base_paddr);
240
241 dma_free_coherent(htt->ar->dev,
242 sizeof(*htt->rx_ring.alloc_idx.vaddr),
243 htt->rx_ring.alloc_idx.vaddr,
244 htt->rx_ring.alloc_idx.paddr);
245
246 kfree(htt->rx_ring.netbufs_ring);
247}
248
249static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250{
7aa7a72a 251 struct ath10k *ar = htt->ar;
5e3dd157
KV
252 int idx;
253 struct sk_buff *msdu;
254
45967089 255 lockdep_assert_held(&htt->rx_ring.lock);
5e3dd157 256
8d60ee87 257 if (htt->rx_ring.fill_cnt == 0) {
7aa7a72a 258 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
8d60ee87
MK
259 return NULL;
260 }
5e3dd157
KV
261
262 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263 msdu = htt->rx_ring.netbufs_ring[idx];
3e841fd0 264 htt->rx_ring.netbufs_ring[idx] = NULL;
c545070e 265 htt->rx_ring.paddrs_ring[idx] = 0;
5e3dd157
KV
266
267 idx++;
268 idx &= htt->rx_ring.size_mask;
269 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270 htt->rx_ring.fill_cnt--;
271
4de02806 272 dma_unmap_single(htt->ar->dev,
8582bf3b 273 ATH10K_SKB_RXCB(msdu)->paddr,
4de02806
MK
274 msdu->len + skb_tailroom(msdu),
275 DMA_FROM_DEVICE);
276 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277 msdu->data, msdu->len + skb_tailroom(msdu));
4de02806 278
5e3dd157
KV
279 return msdu;
280}
281
d84dd60f 282/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
5e3dd157
KV
283static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284 u8 **fw_desc, int *fw_desc_len,
f0e2770f 285 struct sk_buff_head *amsdu)
5e3dd157 286{
7aa7a72a 287 struct ath10k *ar = htt->ar;
5e3dd157 288 int msdu_len, msdu_chaining = 0;
9aa505d2 289 struct sk_buff *msdu;
5e3dd157
KV
290 struct htt_rx_desc *rx_desc;
291
45967089
MK
292 lockdep_assert_held(&htt->rx_ring.lock);
293
9aa505d2 294 for (;;) {
5e3dd157
KV
295 int last_msdu, msdu_len_invalid, msdu_chained;
296
9aa505d2
MK
297 msdu = ath10k_htt_rx_netbuf_pop(htt);
298 if (!msdu) {
9aa505d2 299 __skb_queue_purge(amsdu);
e0bd7513 300 return -ENOENT;
9aa505d2
MK
301 }
302
303 __skb_queue_tail(amsdu, msdu);
304
5e3dd157
KV
305 rx_desc = (struct htt_rx_desc *)msdu->data;
306
307 /* FIXME: we must report msdu payload since this is what caller
308 * expects now */
309 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312 /*
313 * Sanity check - confirm the HW is finished filling in the
314 * rx data.
315 * If the HW and SW are working correctly, then it's guaranteed
316 * that the HW's MAC DMA is done before this point in the SW.
317 * To prevent the case that we handle a stale Rx descriptor,
318 * just assert for now until we have a way to recover.
319 */
320 if (!(__le32_to_cpu(rx_desc->attention.flags)
321 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
9aa505d2 322 __skb_queue_purge(amsdu);
e0bd7513 323 return -EIO;
5e3dd157
KV
324 }
325
326 /*
327 * Copy the FW rx descriptor for this MSDU from the rx
328 * indication message into the MSDU's netbuf. HL uses the
329 * same rx indication message definition as LL, and simply
330 * appends new info (fields from the HW rx desc, and the
331 * MSDU payload itself). So, the offset into the rx
332 * indication message only has to account for the standard
333 * offset of the per-MSDU FW rx desc info within the
334 * message, and how many bytes of the per-MSDU FW rx desc
335 * info have already been consumed. (And the endianness of
336 * the host, since for a big-endian host, the rx ind
337 * message contents, including the per-MSDU rx desc bytes,
338 * were byteswapped during upload.)
339 */
340 if (*fw_desc_len > 0) {
341 rx_desc->fw_desc.info0 = **fw_desc;
342 /*
343 * The target is expected to only provide the basic
344 * per-MSDU rx descriptors. Just to be sure, verify
345 * that the target has not attached extension data
346 * (e.g. LRO flow ID).
347 */
348
349 /* or more, if there's extension data */
350 (*fw_desc)++;
351 (*fw_desc_len)--;
352 } else {
353 /*
354 * When an oversized AMSDU happened, FW will lost
355 * some of MSDU status - in this case, the FW
356 * descriptors provided will be less than the
357 * actual MSDUs inside this MPDU. Mark the FW
358 * descriptors so that it will still deliver to
359 * upper stack, if no CRC error for this MPDU.
360 *
361 * FIX THIS - the FW descriptors are actually for
362 * MSDUs in the end of this A-MSDU instead of the
363 * beginning.
364 */
365 rx_desc->fw_desc.info0 = 0;
366 }
367
368 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
372 RX_MSDU_START_INFO0_MSDU_LENGTH);
373 msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375 if (msdu_len_invalid)
376 msdu_len = 0;
377
378 skb_trim(msdu, 0);
379 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380 msdu_len -= msdu->len;
381
9aa505d2 382 /* Note: Chained buffers do not contain rx descriptor */
5e3dd157 383 while (msdu_chained--) {
9aa505d2
MK
384 msdu = ath10k_htt_rx_netbuf_pop(htt);
385 if (!msdu) {
9aa505d2 386 __skb_queue_purge(amsdu);
e0bd7513 387 return -ENOENT;
b30595ae
MK
388 }
389
9aa505d2
MK
390 __skb_queue_tail(amsdu, msdu);
391 skb_trim(msdu, 0);
392 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393 msdu_len -= msdu->len;
ede9c8e0 394 msdu_chaining = 1;
5e3dd157
KV
395 }
396
5e3dd157
KV
397 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
398 RX_MSDU_END_INFO0_LAST_MSDU;
399
b04e204f 400 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
a0883cf7 401 sizeof(*rx_desc) - sizeof(u32));
d8bb26b9 402
9aa505d2
MK
403 if (last_msdu)
404 break;
5e3dd157 405 }
5e3dd157 406
9aa505d2 407 if (skb_queue_empty(amsdu))
d84dd60f
JD
408 msdu_chaining = -1;
409
5e3dd157
KV
410 /*
411 * Don't refill the ring yet.
412 *
413 * First, the elements popped here are still in use - it is not
414 * safe to overwrite them until the matching call to
415 * mpdu_desc_list_next. Second, for efficiency it is preferable to
416 * refill the rx ring with 1 PPDU's worth of rx buffers (something
417 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418 * (something like 3 buffers). Consequently, we'll rely on the txrx
419 * SW to tell us when it is done pulling all the PPDU's rx buffers
420 * out of the rx ring, and then refill it just once.
421 */
422
423 return msdu_chaining;
424}
425
6e712d42
MK
426static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427{
428 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
af762c0b 429
6e712d42
MK
430 ath10k_htt_rx_msdu_buff_replenish(htt);
431}
432
c545070e
MK
433static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434 u32 paddr)
435{
436 struct ath10k *ar = htt->ar;
437 struct ath10k_skb_rxcb *rxcb;
438 struct sk_buff *msdu;
439
440 lockdep_assert_held(&htt->rx_ring.lock);
441
442 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443 if (!msdu)
444 return NULL;
445
446 rxcb = ATH10K_SKB_RXCB(msdu);
447 hash_del(&rxcb->hlist);
448 htt->rx_ring.fill_cnt--;
449
450 dma_unmap_single(htt->ar->dev, rxcb->paddr,
451 msdu->len + skb_tailroom(msdu),
452 DMA_FROM_DEVICE);
453 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454 msdu->data, msdu->len + skb_tailroom(msdu));
455
456 return msdu;
457}
458
459static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460 struct htt_rx_in_ord_ind *ev,
461 struct sk_buff_head *list)
462{
463 struct ath10k *ar = htt->ar;
464 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465 struct htt_rx_desc *rxd;
466 struct sk_buff *msdu;
467 int msdu_count;
468 bool is_offload;
469 u32 paddr;
470
471 lockdep_assert_held(&htt->rx_ring.lock);
472
473 msdu_count = __le16_to_cpu(ev->msdu_count);
474 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476 while (msdu_count--) {
477 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480 if (!msdu) {
481 __skb_queue_purge(list);
482 return -ENOENT;
483 }
484
485 __skb_queue_tail(list, msdu);
486
487 if (!is_offload) {
488 rxd = (void *)msdu->data;
489
490 trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492 skb_put(msdu, sizeof(*rxd));
493 skb_pull(msdu, sizeof(*rxd));
494 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496 if (!(__le32_to_cpu(rxd->attention.flags) &
497 RX_ATTENTION_FLAGS_MSDU_DONE)) {
498 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499 return -EIO;
500 }
501 }
502
503 msdu_desc++;
504 }
505
506 return 0;
507}
508
95bf21f9 509int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
5e3dd157 510{
7aa7a72a 511 struct ath10k *ar = htt->ar;
5e3dd157
KV
512 dma_addr_t paddr;
513 void *vaddr;
bd8bdbb6 514 size_t size;
5e3dd157
KV
515 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
51fc7d74
MK
517 htt->rx_confused = false;
518
fe2407a8
MK
519 /* XXX: The fill level could be changed during runtime in response to
520 * the host processing latency. Is this really worth it?
521 */
522 htt->rx_ring.size = HTT_RX_RING_SIZE;
523 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524 htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
5e3dd157 526 if (!is_power_of_2(htt->rx_ring.size)) {
7aa7a72a 527 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
5e3dd157
KV
528 return -EINVAL;
529 }
530
5e3dd157 531 htt->rx_ring.netbufs_ring =
3e841fd0 532 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
5e3dd157
KV
533 GFP_KERNEL);
534 if (!htt->rx_ring.netbufs_ring)
535 goto err_netbuf;
536
bd8bdbb6
KV
537 size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539 vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
5e3dd157
KV
540 if (!vaddr)
541 goto err_dma_ring;
542
543 htt->rx_ring.paddrs_ring = vaddr;
544 htt->rx_ring.base_paddr = paddr;
545
546 vaddr = dma_alloc_coherent(htt->ar->dev,
547 sizeof(*htt->rx_ring.alloc_idx.vaddr),
548 &paddr, GFP_DMA);
549 if (!vaddr)
550 goto err_dma_idx;
551
552 htt->rx_ring.alloc_idx.vaddr = vaddr;
553 htt->rx_ring.alloc_idx.paddr = paddr;
c545070e 554 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
5e3dd157
KV
555 *htt->rx_ring.alloc_idx.vaddr = 0;
556
557 /* Initialize the Rx refill retry timer */
558 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560 spin_lock_init(&htt->rx_ring.lock);
561
562 htt->rx_ring.fill_cnt = 0;
c545070e
MK
563 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564 hash_init(htt->rx_ring.skb_table);
5e3dd157 565
6e712d42
MK
566 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567 (unsigned long)htt);
568
6c5151a9
MK
569 skb_queue_head_init(&htt->tx_compl_q);
570 skb_queue_head_init(&htt->rx_compl_q);
c545070e 571 skb_queue_head_init(&htt->rx_in_ord_compl_q);
6c5151a9
MK
572
573 tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574 (unsigned long)htt);
575
7aa7a72a 576 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
5e3dd157
KV
577 htt->rx_ring.size, htt->rx_ring.fill_level);
578 return 0;
579
5e3dd157
KV
580err_dma_idx:
581 dma_free_coherent(htt->ar->dev,
582 (htt->rx_ring.size *
583 sizeof(htt->rx_ring.paddrs_ring)),
584 htt->rx_ring.paddrs_ring,
585 htt->rx_ring.base_paddr);
586err_dma_ring:
587 kfree(htt->rx_ring.netbufs_ring);
588err_netbuf:
589 return -ENOMEM;
590}
591
7aa7a72a
MK
592static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593 enum htt_rx_mpdu_encrypt_type type)
5e3dd157
KV
594{
595 switch (type) {
890d3b2a
MK
596 case HTT_RX_MPDU_ENCRYPT_NONE:
597 return 0;
5e3dd157
KV
598 case HTT_RX_MPDU_ENCRYPT_WEP40:
599 case HTT_RX_MPDU_ENCRYPT_WEP104:
890d3b2a 600 return IEEE80211_WEP_IV_LEN;
5e3dd157 601 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
5e3dd157 602 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
890d3b2a 603 return IEEE80211_TKIP_IV_LEN;
5e3dd157 604 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
890d3b2a
MK
605 return IEEE80211_CCMP_HDR_LEN;
606 case HTT_RX_MPDU_ENCRYPT_WEP128:
607 case HTT_RX_MPDU_ENCRYPT_WAPI:
608 break;
5e3dd157
KV
609 }
610
890d3b2a 611 ath10k_warn(ar, "unsupported encryption type %d\n", type);
5e3dd157
KV
612 return 0;
613}
614
890d3b2a
MK
615#define MICHAEL_MIC_LEN 8
616
7aa7a72a
MK
617static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618 enum htt_rx_mpdu_encrypt_type type)
5e3dd157
KV
619{
620 switch (type) {
621 case HTT_RX_MPDU_ENCRYPT_NONE:
890d3b2a 622 return 0;
5e3dd157
KV
623 case HTT_RX_MPDU_ENCRYPT_WEP40:
624 case HTT_RX_MPDU_ENCRYPT_WEP104:
890d3b2a 625 return IEEE80211_WEP_ICV_LEN;
5e3dd157
KV
626 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
890d3b2a 628 return IEEE80211_TKIP_ICV_LEN;
5e3dd157 629 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
890d3b2a
MK
630 return IEEE80211_CCMP_MIC_LEN;
631 case HTT_RX_MPDU_ENCRYPT_WEP128:
632 case HTT_RX_MPDU_ENCRYPT_WAPI:
633 break;
5e3dd157
KV
634 }
635
890d3b2a 636 ath10k_warn(ar, "unsupported encryption type %d\n", type);
5e3dd157
KV
637 return 0;
638}
639
f6dc2095
MK
640struct rfc1042_hdr {
641 u8 llc_dsap;
642 u8 llc_ssap;
643 u8 llc_ctrl;
644 u8 snap_oui[3];
645 __be16 snap_type;
646} __packed;
647
648struct amsdu_subframe_hdr {
649 u8 dst[ETH_ALEN];
650 u8 src[ETH_ALEN];
651 __be16 len;
652} __packed;
653
73539b40
JD
654static const u8 rx_legacy_rate_idx[] = {
655 3, /* 0x00 - 11Mbps */
656 2, /* 0x01 - 5.5Mbps */
657 1, /* 0x02 - 2Mbps */
658 0, /* 0x03 - 1Mbps */
659 3, /* 0x04 - 11Mbps */
660 2, /* 0x05 - 5.5Mbps */
661 1, /* 0x06 - 2Mbps */
662 0, /* 0x07 - 1Mbps */
663 10, /* 0x08 - 48Mbps */
664 8, /* 0x09 - 24Mbps */
665 6, /* 0x0A - 12Mbps */
666 4, /* 0x0B - 6Mbps */
667 11, /* 0x0C - 54Mbps */
668 9, /* 0x0D - 36Mbps */
669 7, /* 0x0E - 18Mbps */
670 5, /* 0x0F - 9Mbps */
671};
672
87326c97 673static void ath10k_htt_rx_h_rates(struct ath10k *ar,
b9fd8a84
MK
674 struct ieee80211_rx_status *status,
675 struct htt_rx_desc *rxd)
73539b40 676{
b9fd8a84 677 enum ieee80211_band band;
73539b40 678 u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
73539b40 679 u8 preamble = 0;
b9fd8a84 680 u32 info1, info2, info3;
73539b40 681
b9fd8a84
MK
682 /* Band value can't be set as undefined but freq can be 0 - use that to
683 * determine whether band is provided.
684 *
685 * FIXME: Perhaps this can go away if CCK rate reporting is a little
686 * reworked?
687 */
688 if (!status->freq)
73539b40
JD
689 return;
690
b9fd8a84
MK
691 band = status->band;
692 info1 = __le32_to_cpu(rxd->ppdu_start.info1);
693 info2 = __le32_to_cpu(rxd->ppdu_start.info2);
694 info3 = __le32_to_cpu(rxd->ppdu_start.info3);
695
696 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
73539b40
JD
697
698 switch (preamble) {
699 case HTT_RX_LEGACY:
b9fd8a84
MK
700 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
701 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
73539b40
JD
702 rate_idx = 0;
703
704 if (rate < 0x08 || rate > 0x0F)
705 break;
706
707 switch (band) {
708 case IEEE80211_BAND_2GHZ:
709 if (cck)
710 rate &= ~BIT(3);
711 rate_idx = rx_legacy_rate_idx[rate];
712 break;
713 case IEEE80211_BAND_5GHZ:
714 rate_idx = rx_legacy_rate_idx[rate];
715 /* We are using same rate table registering
716 HW - ath10k_rates[]. In case of 5GHz skip
717 CCK rates, so -4 here */
718 rate_idx -= 4;
719 break;
720 default:
721 break;
722 }
723
724 status->rate_idx = rate_idx;
725 break;
726 case HTT_RX_HT:
727 case HTT_RX_HT_WITH_TXBF:
b9fd8a84
MK
728 /* HT-SIG - Table 20-11 in info2 and info3 */
729 mcs = info2 & 0x1F;
73539b40 730 nss = mcs >> 3;
b9fd8a84
MK
731 bw = (info2 >> 7) & 1;
732 sgi = (info3 >> 7) & 1;
73539b40
JD
733
734 status->rate_idx = mcs;
735 status->flag |= RX_FLAG_HT;
736 if (sgi)
737 status->flag |= RX_FLAG_SHORT_GI;
738 if (bw)
739 status->flag |= RX_FLAG_40MHZ;
740 break;
741 case HTT_RX_VHT:
742 case HTT_RX_VHT_WITH_TXBF:
b9fd8a84 743 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
73539b40 744 TODO check this */
b9fd8a84
MK
745 mcs = (info3 >> 4) & 0x0F;
746 nss = ((info2 >> 10) & 0x07) + 1;
747 bw = info2 & 3;
748 sgi = info3 & 1;
73539b40
JD
749
750 status->rate_idx = mcs;
751 status->vht_nss = nss;
752
753 if (sgi)
754 status->flag |= RX_FLAG_SHORT_GI;
755
756 switch (bw) {
757 /* 20MHZ */
758 case 0:
759 break;
760 /* 40MHZ */
761 case 1:
762 status->flag |= RX_FLAG_40MHZ;
763 break;
764 /* 80MHZ */
765 case 2:
766 status->vht_flag |= RX_VHT_FLAG_80MHZ;
767 }
768
769 status->flag |= RX_FLAG_VHT;
770 break;
771 default:
772 break;
773 }
774}
775
36653f05
JD
776static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
777 struct ieee80211_rx_status *status)
778{
779 struct ieee80211_channel *ch;
780
781 spin_lock_bh(&ar->data_lock);
782 ch = ar->scan_channel;
783 if (!ch)
784 ch = ar->rx_channel;
785 spin_unlock_bh(&ar->data_lock);
786
787 if (!ch)
788 return false;
789
790 status->band = ch->band;
791 status->freq = ch->center_freq;
792
793 return true;
794}
795
b9fd8a84
MK
796static void ath10k_htt_rx_h_signal(struct ath10k *ar,
797 struct ieee80211_rx_status *status,
798 struct htt_rx_desc *rxd)
799{
800 /* FIXME: Get real NF */
801 status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
802 rxd->ppdu_start.rssi_comb;
803 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
804}
805
806static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
807 struct ieee80211_rx_status *status,
808 struct htt_rx_desc *rxd)
809{
810 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
811 * means all prior MSDUs in a PPDU are reported to mac80211 without the
812 * TSF. Is it worth holding frames until end of PPDU is known?
813 *
814 * FIXME: Can we get/compute 64bit TSF?
815 */
3ec79e3a 816 status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
b9fd8a84
MK
817 status->flag |= RX_FLAG_MACTIME_END;
818}
819
820static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
821 struct sk_buff_head *amsdu,
822 struct ieee80211_rx_status *status)
823{
824 struct sk_buff *first;
825 struct htt_rx_desc *rxd;
826 bool is_first_ppdu;
827 bool is_last_ppdu;
828
829 if (skb_queue_empty(amsdu))
830 return;
831
832 first = skb_peek(amsdu);
833 rxd = (void *)first->data - sizeof(*rxd);
834
835 is_first_ppdu = !!(rxd->attention.flags &
836 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
837 is_last_ppdu = !!(rxd->attention.flags &
838 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
839
840 if (is_first_ppdu) {
841 /* New PPDU starts so clear out the old per-PPDU status. */
842 status->freq = 0;
843 status->rate_idx = 0;
844 status->vht_nss = 0;
845 status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
846 status->flag &= ~(RX_FLAG_HT |
847 RX_FLAG_VHT |
848 RX_FLAG_SHORT_GI |
849 RX_FLAG_40MHZ |
850 RX_FLAG_MACTIME_END);
851 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
852
853 ath10k_htt_rx_h_signal(ar, status, rxd);
854 ath10k_htt_rx_h_channel(ar, status);
855 ath10k_htt_rx_h_rates(ar, status, rxd);
856 }
857
858 if (is_last_ppdu)
859 ath10k_htt_rx_h_mactime(ar, status, rxd);
860}
861
76f5329a
JD
862static const char * const tid_to_ac[] = {
863 "BE",
864 "BK",
865 "BK",
866 "BE",
867 "VI",
868 "VI",
869 "VO",
870 "VO",
871};
872
873static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
874{
875 u8 *qc;
876 int tid;
877
878 if (!ieee80211_is_data_qos(hdr->frame_control))
879 return "";
880
881 qc = ieee80211_get_qos_ctl(hdr);
882 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
883 if (tid < 8)
884 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
885 else
886 snprintf(out, size, "tid %d", tid);
887
888 return out;
889}
890
85f6d7cf
JD
891static void ath10k_process_rx(struct ath10k *ar,
892 struct ieee80211_rx_status *rx_status,
893 struct sk_buff *skb)
73539b40
JD
894{
895 struct ieee80211_rx_status *status;
76f5329a
JD
896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
897 char tid[32];
73539b40 898
85f6d7cf
JD
899 status = IEEE80211_SKB_RXCB(skb);
900 *status = *rx_status;
73539b40 901
7aa7a72a 902 ath10k_dbg(ar, ATH10K_DBG_DATA,
76f5329a 903 "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
85f6d7cf
JD
904 skb,
905 skb->len,
76f5329a
JD
906 ieee80211_get_SA(hdr),
907 ath10k_get_tid(hdr, tid, sizeof(tid)),
908 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
909 "mcast" : "ucast",
910 (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
73539b40
JD
911 status->flag == 0 ? "legacy" : "",
912 status->flag & RX_FLAG_HT ? "ht" : "",
913 status->flag & RX_FLAG_VHT ? "vht" : "",
914 status->flag & RX_FLAG_40MHZ ? "40" : "",
915 status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
916 status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
917 status->rate_idx,
918 status->vht_nss,
919 status->freq,
87326c97 920 status->band, status->flag,
78433f96 921 !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
76f5329a
JD
922 !!(status->flag & RX_FLAG_MMIC_ERROR),
923 !!(status->flag & RX_FLAG_AMSDU_MORE));
7aa7a72a 924 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
85f6d7cf 925 skb->data, skb->len);
5ce8e7fd
RM
926 trace_ath10k_rx_hdr(ar, skb->data, skb->len);
927 trace_ath10k_rx_payload(ar, skb->data, skb->len);
73539b40 928
85f6d7cf 929 ieee80211_rx(ar->hw, skb);
73539b40
JD
930}
931
d960c369
MK
932static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
933{
934 /* nwifi header is padded to 4 bytes. this fixes 4addr rx */
935 return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
936}
937
581c25f8
MK
938static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
939 struct sk_buff *msdu,
940 struct ieee80211_rx_status *status,
941 enum htt_rx_mpdu_encrypt_type enctype,
942 bool is_decrypted)
5e3dd157 943{
581c25f8 944 struct ieee80211_hdr *hdr;
5e3dd157 945 struct htt_rx_desc *rxd;
581c25f8
MK
946 size_t hdr_len;
947 size_t crypto_len;
948 bool is_first;
949 bool is_last;
950
951 rxd = (void *)msdu->data - sizeof(*rxd);
952 is_first = !!(rxd->msdu_end.info0 &
953 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
954 is_last = !!(rxd->msdu_end.info0 &
955 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
956
957 /* Delivered decapped frame:
958 * [802.11 header]
959 * [crypto param] <-- can be trimmed if !fcs_err &&
960 * !decrypt_err && !peer_idx_invalid
961 * [amsdu header] <-- only if A-MSDU
962 * [rfc1042/llc]
963 * [payload]
964 * [FCS] <-- at end, needs to be trimmed
965 */
966
967 /* This probably shouldn't happen but warn just in case */
968 if (unlikely(WARN_ON_ONCE(!is_first)))
969 return;
970
971 /* This probably shouldn't happen but warn just in case */
972 if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
973 return;
974
975 skb_trim(msdu, msdu->len - FCS_LEN);
976
977 /* In most cases this will be true for sniffed frames. It makes sense
978 * to deliver them as-is without stripping the crypto param. This would
979 * also make sense for software based decryption (which is not
980 * implemented in ath10k).
981 *
982 * If there's no error then the frame is decrypted. At least that is
983 * the case for frames that come in via fragmented rx indication.
984 */
985 if (!is_decrypted)
986 return;
987
988 /* The payload is decrypted so strip crypto params. Start from tail
989 * since hdr is used to compute some stuff.
990 */
991
992 hdr = (void *)msdu->data;
993
994 /* Tail */
995 skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
996
997 /* MMIC */
998 if (!ieee80211_has_morefrags(hdr->frame_control) &&
999 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1000 skb_trim(msdu, msdu->len - 8);
1001
1002 /* Head */
1003 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1004 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1005
1006 memmove((void *)msdu->data + crypto_len,
1007 (void *)msdu->data, hdr_len);
1008 skb_pull(msdu, crypto_len);
1009}
1010
1011static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1012 struct sk_buff *msdu,
1013 struct ieee80211_rx_status *status,
1014 const u8 first_hdr[64])
1015{
f6dc2095 1016 struct ieee80211_hdr *hdr;
581c25f8
MK
1017 size_t hdr_len;
1018 u8 da[ETH_ALEN];
1019 u8 sa[ETH_ALEN];
5e3dd157 1020
581c25f8
MK
1021 /* Delivered decapped frame:
1022 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1023 * [rfc1042/llc]
1024 *
1025 * Note: The nwifi header doesn't have QoS Control and is
1026 * (always?) a 3addr frame.
1027 *
1028 * Note2: There's no A-MSDU subframe header. Even if it's part
1029 * of an A-MSDU.
1030 */
9aa505d2 1031
581c25f8
MK
1032 /* pull decapped header and copy SA & DA */
1033 hdr = (struct ieee80211_hdr *)msdu->data;
1034 hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
1035 ether_addr_copy(da, ieee80211_get_DA(hdr));
1036 ether_addr_copy(sa, ieee80211_get_SA(hdr));
1037 skb_pull(msdu, hdr_len);
5e3dd157 1038
581c25f8
MK
1039 /* push original 802.11 header */
1040 hdr = (struct ieee80211_hdr *)first_hdr;
f6dc2095 1041 hdr_len = ieee80211_hdrlen(hdr->frame_control);
581c25f8 1042 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
5e3dd157 1043
581c25f8
MK
1044 /* original 802.11 header has a different DA and in
1045 * case of 4addr it may also have different SA
1046 */
1047 hdr = (struct ieee80211_hdr *)msdu->data;
1048 ether_addr_copy(ieee80211_get_DA(hdr), da);
1049 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1050}
5e3dd157 1051
581c25f8
MK
1052static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1053 struct sk_buff *msdu,
1054 enum htt_rx_mpdu_encrypt_type enctype)
1055{
1056 struct ieee80211_hdr *hdr;
1057 struct htt_rx_desc *rxd;
1058 size_t hdr_len, crypto_len;
1059 void *rfc1042;
1060 bool is_first, is_last, is_amsdu;
e3fbf8d2 1061
581c25f8
MK
1062 rxd = (void *)msdu->data - sizeof(*rxd);
1063 hdr = (void *)rxd->rx_hdr_status;
f6dc2095 1064
581c25f8
MK
1065 is_first = !!(rxd->msdu_end.info0 &
1066 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1067 is_last = !!(rxd->msdu_end.info0 &
1068 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1069 is_amsdu = !(is_first && is_last);
5e3dd157 1070
581c25f8 1071 rfc1042 = hdr;
5e3dd157 1072
581c25f8
MK
1073 if (is_first) {
1074 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1075 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
652de35e 1076
581c25f8
MK
1077 rfc1042 += round_up(hdr_len, 4) +
1078 round_up(crypto_len, 4);
f6dc2095 1079 }
5e3dd157 1080
581c25f8
MK
1081 if (is_amsdu)
1082 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1083
1084 return rfc1042;
5e3dd157
KV
1085}
1086
581c25f8
MK
1087static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1088 struct sk_buff *msdu,
1089 struct ieee80211_rx_status *status,
1090 const u8 first_hdr[64],
1091 enum htt_rx_mpdu_encrypt_type enctype)
5e3dd157 1092{
5e3dd157 1093 struct ieee80211_hdr *hdr;
581c25f8
MK
1094 struct ethhdr *eth;
1095 size_t hdr_len;
e3fbf8d2 1096 void *rfc1042;
581c25f8
MK
1097 u8 da[ETH_ALEN];
1098 u8 sa[ETH_ALEN];
5e3dd157 1099
581c25f8
MK
1100 /* Delivered decapped frame:
1101 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1102 * [payload]
1103 */
1104
1105 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1106 if (WARN_ON_ONCE(!rfc1042))
1107 return;
1108
1109 /* pull decapped header and copy SA & DA */
1110 eth = (struct ethhdr *)msdu->data;
1111 ether_addr_copy(da, eth->h_dest);
1112 ether_addr_copy(sa, eth->h_source);
1113 skb_pull(msdu, sizeof(struct ethhdr));
1114
1115 /* push rfc1042/llc/snap */
1116 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1117 sizeof(struct rfc1042_hdr));
1118
1119 /* push original 802.11 header */
1120 hdr = (struct ieee80211_hdr *)first_hdr;
1121 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1122 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1123
1124 /* original 802.11 header has a different DA and in
1125 * case of 4addr it may also have different SA
1126 */
1127 hdr = (struct ieee80211_hdr *)msdu->data;
1128 ether_addr_copy(ieee80211_get_DA(hdr), da);
1129 ether_addr_copy(ieee80211_get_SA(hdr), sa);
1130}
1131
1132static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1133 struct sk_buff *msdu,
1134 struct ieee80211_rx_status *status,
1135 const u8 first_hdr[64])
1136{
1137 struct ieee80211_hdr *hdr;
1138 size_t hdr_len;
1139
1140 /* Delivered decapped frame:
1141 * [amsdu header] <-- replaced with 802.11 hdr
1142 * [rfc1042/llc]
1143 * [payload]
1144 */
1145
1146 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1147
1148 hdr = (struct ieee80211_hdr *)first_hdr;
e3fbf8d2 1149 hdr_len = ieee80211_hdrlen(hdr->frame_control);
581c25f8
MK
1150 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1151}
5e3dd157 1152
581c25f8
MK
1153static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1154 struct sk_buff *msdu,
1155 struct ieee80211_rx_status *status,
1156 u8 first_hdr[64],
1157 enum htt_rx_mpdu_encrypt_type enctype,
1158 bool is_decrypted)
1159{
1160 struct htt_rx_desc *rxd;
1161 enum rx_msdu_decap_format decap;
1162 struct ieee80211_hdr *hdr;
f6dc2095 1163
581c25f8
MK
1164 /* First msdu's decapped header:
1165 * [802.11 header] <-- padded to 4 bytes long
1166 * [crypto param] <-- padded to 4 bytes long
1167 * [amsdu header] <-- only if A-MSDU
1168 * [rfc1042/llc]
1169 *
1170 * Other (2nd, 3rd, ..) msdu's decapped header:
1171 * [amsdu header] <-- only if A-MSDU
1172 * [rfc1042/llc]
1173 */
1174
1175 rxd = (void *)msdu->data - sizeof(*rxd);
1176 hdr = (void *)rxd->rx_hdr_status;
1177 decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1178 RX_MSDU_START_INFO1_DECAP_FORMAT);
1179
1180 switch (decap) {
5e3dd157 1181 case RX_MSDU_DECAP_RAW:
581c25f8
MK
1182 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1183 is_decrypted);
5e3dd157
KV
1184 break;
1185 case RX_MSDU_DECAP_NATIVE_WIFI:
581c25f8 1186 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
5e3dd157
KV
1187 break;
1188 case RX_MSDU_DECAP_ETHERNET2_DIX:
581c25f8 1189 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
e3fbf8d2
MK
1190 break;
1191 case RX_MSDU_DECAP_8023_SNAP_LLC:
581c25f8 1192 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
e3fbf8d2 1193 break;
5e3dd157 1194 }
5e3dd157
KV
1195}
1196
605f81aa
MK
1197static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1198{
1199 struct htt_rx_desc *rxd;
1200 u32 flags, info;
1201 bool is_ip4, is_ip6;
1202 bool is_tcp, is_udp;
1203 bool ip_csum_ok, tcpudp_csum_ok;
1204
1205 rxd = (void *)skb->data - sizeof(*rxd);
1206 flags = __le32_to_cpu(rxd->attention.flags);
1207 info = __le32_to_cpu(rxd->msdu_start.info1);
1208
1209 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1210 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1211 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1212 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1213 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1214 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1215
1216 if (!is_ip4 && !is_ip6)
1217 return CHECKSUM_NONE;
1218 if (!is_tcp && !is_udp)
1219 return CHECKSUM_NONE;
1220 if (!ip_csum_ok)
1221 return CHECKSUM_NONE;
1222 if (!tcpudp_csum_ok)
1223 return CHECKSUM_NONE;
1224
1225 return CHECKSUM_UNNECESSARY;
1226}
1227
581c25f8
MK
1228static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1229{
1230 msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1231}
1232
1233static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1234 struct sk_buff_head *amsdu,
1235 struct ieee80211_rx_status *status)
1236{
1237 struct sk_buff *first;
1238 struct sk_buff *last;
1239 struct sk_buff *msdu;
1240 struct htt_rx_desc *rxd;
1241 struct ieee80211_hdr *hdr;
1242 enum htt_rx_mpdu_encrypt_type enctype;
1243 u8 first_hdr[64];
1244 u8 *qos;
1245 size_t hdr_len;
1246 bool has_fcs_err;
1247 bool has_crypto_err;
1248 bool has_tkip_err;
1249 bool has_peer_idx_invalid;
1250 bool is_decrypted;
1251 u32 attention;
1252
1253 if (skb_queue_empty(amsdu))
1254 return;
1255
1256 first = skb_peek(amsdu);
1257 rxd = (void *)first->data - sizeof(*rxd);
1258
1259 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1260 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1261
1262 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1263 * decapped header. It'll be used for undecapping of each MSDU.
1264 */
1265 hdr = (void *)rxd->rx_hdr_status;
1266 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1267 memcpy(first_hdr, hdr, hdr_len);
1268
1269 /* Each A-MSDU subframe will use the original header as the base and be
1270 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1271 */
1272 hdr = (void *)first_hdr;
1273 qos = ieee80211_get_qos_ctl(hdr);
1274 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1275
1276 /* Some attention flags are valid only in the last MSDU. */
1277 last = skb_peek_tail(amsdu);
1278 rxd = (void *)last->data - sizeof(*rxd);
1279 attention = __le32_to_cpu(rxd->attention.flags);
1280
1281 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1282 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1283 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1284 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1285
1286 /* Note: If hardware captures an encrypted frame that it can't decrypt,
1287 * e.g. due to fcs error, missing peer or invalid key data it will
1288 * report the frame as raw.
1289 */
1290 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1291 !has_fcs_err &&
1292 !has_crypto_err &&
1293 !has_peer_idx_invalid);
1294
1295 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1296 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1297 RX_FLAG_MMIC_ERROR |
1298 RX_FLAG_DECRYPTED |
1299 RX_FLAG_IV_STRIPPED |
1300 RX_FLAG_MMIC_STRIPPED);
1301
1302 if (has_fcs_err)
1303 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1304
1305 if (has_tkip_err)
1306 status->flag |= RX_FLAG_MMIC_ERROR;
1307
1308 if (is_decrypted)
1309 status->flag |= RX_FLAG_DECRYPTED |
1310 RX_FLAG_IV_STRIPPED |
1311 RX_FLAG_MMIC_STRIPPED;
1312
1313 skb_queue_walk(amsdu, msdu) {
1314 ath10k_htt_rx_h_csum_offload(msdu);
1315 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1316 is_decrypted);
1317
1318 /* Undecapping involves copying the original 802.11 header back
1319 * to sk_buff. If frame is protected and hardware has decrypted
1320 * it then remove the protected bit.
1321 */
1322 if (!is_decrypted)
1323 continue;
1324
1325 hdr = (void *)msdu->data;
1326 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1327 }
1328}
1329
1330static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1331 struct sk_buff_head *amsdu,
1332 struct ieee80211_rx_status *status)
1333{
1334 struct sk_buff *msdu;
1335
1336 while ((msdu = __skb_dequeue(amsdu))) {
1337 /* Setup per-MSDU flags */
1338 if (skb_queue_empty(amsdu))
1339 status->flag &= ~RX_FLAG_AMSDU_MORE;
1340 else
1341 status->flag |= RX_FLAG_AMSDU_MORE;
1342
1343 ath10k_process_rx(ar, status, msdu);
1344 }
1345}
1346
9aa505d2 1347static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
bfa35368 1348{
9aa505d2 1349 struct sk_buff *skb, *first;
bfa35368
BG
1350 int space;
1351 int total_len = 0;
1352
1353 /* TODO: Might could optimize this by using
1354 * skb_try_coalesce or similar method to
1355 * decrease copying, or maybe get mac80211 to
1356 * provide a way to just receive a list of
1357 * skb?
1358 */
1359
9aa505d2 1360 first = __skb_dequeue(amsdu);
bfa35368
BG
1361
1362 /* Allocate total length all at once. */
9aa505d2
MK
1363 skb_queue_walk(amsdu, skb)
1364 total_len += skb->len;
bfa35368 1365
9aa505d2 1366 space = total_len - skb_tailroom(first);
bfa35368 1367 if ((space > 0) &&
9aa505d2 1368 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
bfa35368
BG
1369 /* TODO: bump some rx-oom error stat */
1370 /* put it back together so we can free the
1371 * whole list at once.
1372 */
9aa505d2 1373 __skb_queue_head(amsdu, first);
bfa35368
BG
1374 return -1;
1375 }
1376
1377 /* Walk list again, copying contents into
1378 * msdu_head
1379 */
9aa505d2
MK
1380 while ((skb = __skb_dequeue(amsdu))) {
1381 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1382 skb->len);
1383 dev_kfree_skb_any(skb);
bfa35368
BG
1384 }
1385
9aa505d2 1386 __skb_queue_head(amsdu, first);
bfa35368
BG
1387 return 0;
1388}
1389
581c25f8
MK
1390static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1391 struct sk_buff_head *amsdu,
1392 bool chained)
2acc4eb2 1393{
581c25f8
MK
1394 struct sk_buff *first;
1395 struct htt_rx_desc *rxd;
1396 enum rx_msdu_decap_format decap;
7aa7a72a 1397
581c25f8
MK
1398 first = skb_peek(amsdu);
1399 rxd = (void *)first->data - sizeof(*rxd);
1400 decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1401 RX_MSDU_START_INFO1_DECAP_FORMAT);
2acc4eb2 1402
581c25f8
MK
1403 if (!chained)
1404 return;
1405
1406 /* FIXME: Current unchaining logic can only handle simple case of raw
1407 * msdu chaining. If decapping is other than raw the chaining may be
1408 * more complex and this isn't handled by the current code. Don't even
1409 * try re-constructing such frames - it'll be pretty much garbage.
1410 */
1411 if (decap != RX_MSDU_DECAP_RAW ||
1412 skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1413 __skb_queue_purge(amsdu);
1414 return;
2acc4eb2
JD
1415 }
1416
581c25f8
MK
1417 ath10k_unchain_msdu(amsdu);
1418}
1419
1420static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1421 struct sk_buff_head *amsdu,
1422 struct ieee80211_rx_status *rx_status)
1423{
1424 struct sk_buff *msdu;
1425 struct htt_rx_desc *rxd;
d67d0a02
MK
1426 bool is_mgmt;
1427 bool has_fcs_err;
581c25f8
MK
1428
1429 msdu = skb_peek(amsdu);
1430 rxd = (void *)msdu->data - sizeof(*rxd);
1431
1432 /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1433 * invalid/dangerous frames.
1434 */
1435
1436 if (!rx_status->freq) {
1437 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
36653f05
JD
1438 return false;
1439 }
1440
d67d0a02
MK
1441 is_mgmt = !!(rxd->attention.flags &
1442 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1443 has_fcs_err = !!(rxd->attention.flags &
1444 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1445
581c25f8
MK
1446 /* Management frames are handled via WMI events. The pros of such
1447 * approach is that channel is explicitly provided in WMI events
1448 * whereas HTT doesn't provide channel information for Rxed frames.
d67d0a02
MK
1449 *
1450 * However some firmware revisions don't report corrupted frames via
1451 * WMI so don't drop them.
581c25f8 1452 */
d67d0a02 1453 if (is_mgmt && !has_fcs_err) {
7aa7a72a 1454 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
2acc4eb2
JD
1455 return false;
1456 }
1457
581c25f8
MK
1458 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1459 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
2acc4eb2
JD
1460 return false;
1461 }
1462
1463 return true;
1464}
1465
581c25f8
MK
1466static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1467 struct sk_buff_head *amsdu,
1468 struct ieee80211_rx_status *rx_status)
1469{
1470 if (skb_queue_empty(amsdu))
1471 return;
1472
1473 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1474 return;
1475
1476 __skb_queue_purge(amsdu);
1477}
1478
5e3dd157
KV
1479static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1480 struct htt_rx_indication *rx)
1481{
7aa7a72a 1482 struct ath10k *ar = htt->ar;
6df92a3d 1483 struct ieee80211_rx_status *rx_status = &htt->rx_status;
5e3dd157 1484 struct htt_rx_indication_mpdu_range *mpdu_ranges;
9aa505d2 1485 struct sk_buff_head amsdu;
5e3dd157
KV
1486 int num_mpdu_ranges;
1487 int fw_desc_len;
1488 u8 *fw_desc;
d540690d 1489 int i, ret, mpdu_count = 0;
5e3dd157 1490
45967089
MK
1491 lockdep_assert_held(&htt->rx_ring.lock);
1492
e0bd7513
MK
1493 if (htt->rx_confused)
1494 return;
1495
5e3dd157
KV
1496 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1497 fw_desc = (u8 *)&rx->fw_desc;
1498
1499 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1500 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1501 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1502
7aa7a72a 1503 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
5e3dd157
KV
1504 rx, sizeof(*rx) +
1505 (sizeof(struct htt_rx_indication_mpdu_range) *
1506 num_mpdu_ranges));
1507
d540690d
MK
1508 for (i = 0; i < num_mpdu_ranges; i++)
1509 mpdu_count += mpdu_ranges[i].mpdu_count;
1510
1511 while (mpdu_count--) {
d540690d
MK
1512 __skb_queue_head_init(&amsdu);
1513 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
f0e2770f 1514 &fw_desc_len, &amsdu);
d540690d 1515 if (ret < 0) {
e0bd7513 1516 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
d540690d 1517 __skb_queue_purge(&amsdu);
e0bd7513
MK
1518 /* FIXME: It's probably a good idea to reboot the
1519 * device instead of leaving it inoperable.
1520 */
1521 htt->rx_confused = true;
1522 break;
d540690d 1523 }
5e3dd157 1524
b9fd8a84 1525 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
581c25f8
MK
1526 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1527 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1528 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1529 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
5e3dd157
KV
1530 }
1531
6e712d42 1532 tasklet_schedule(&htt->rx_replenish_task);
5e3dd157
KV
1533}
1534
1535static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
5b07e07f 1536 struct htt_rx_fragment_indication *frag)
5e3dd157 1537{
7aa7a72a 1538 struct ath10k *ar = htt->ar;
6df92a3d 1539 struct ieee80211_rx_status *rx_status = &htt->rx_status;
9aa505d2 1540 struct sk_buff_head amsdu;
d84dd60f 1541 int ret;
5e3dd157 1542 u8 *fw_desc;
581c25f8 1543 int fw_desc_len;
5e3dd157
KV
1544
1545 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1546 fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1547
9aa505d2 1548 __skb_queue_head_init(&amsdu);
45967089
MK
1549
1550 spin_lock_bh(&htt->rx_ring.lock);
d84dd60f 1551 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
f0e2770f 1552 &amsdu);
45967089 1553 spin_unlock_bh(&htt->rx_ring.lock);
5e3dd157 1554
686687c9
MK
1555 tasklet_schedule(&htt->rx_replenish_task);
1556
7aa7a72a 1557 ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
5e3dd157 1558
d84dd60f 1559 if (ret) {
7aa7a72a 1560 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
d84dd60f 1561 ret);
9aa505d2 1562 __skb_queue_purge(&amsdu);
5e3dd157
KV
1563 return;
1564 }
1565
9aa505d2
MK
1566 if (skb_queue_len(&amsdu) != 1) {
1567 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1568 __skb_queue_purge(&amsdu);
1569 return;
1570 }
1571
89a5a317 1572 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
581c25f8
MK
1573 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1574 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1575 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
5e3dd157 1576
5e3dd157 1577 if (fw_desc_len > 0) {
7aa7a72a 1578 ath10k_dbg(ar, ATH10K_DBG_HTT,
5e3dd157
KV
1579 "expecting more fragmented rx in one indication %d\n",
1580 fw_desc_len);
1581 }
1582}
1583
6c5151a9
MK
1584static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1585 struct sk_buff *skb)
1586{
1587 struct ath10k_htt *htt = &ar->htt;
1588 struct htt_resp *resp = (struct htt_resp *)skb->data;
1589 struct htt_tx_done tx_done = {};
1590 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1591 __le16 msdu_id;
1592 int i;
1593
45967089
MK
1594 lockdep_assert_held(&htt->tx_lock);
1595
6c5151a9
MK
1596 switch (status) {
1597 case HTT_DATA_TX_STATUS_NO_ACK:
1598 tx_done.no_ack = true;
1599 break;
1600 case HTT_DATA_TX_STATUS_OK:
1601 break;
1602 case HTT_DATA_TX_STATUS_DISCARD:
1603 case HTT_DATA_TX_STATUS_POSTPONE:
1604 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1605 tx_done.discard = true;
1606 break;
1607 default:
7aa7a72a 1608 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
6c5151a9
MK
1609 tx_done.discard = true;
1610 break;
1611 }
1612
7aa7a72a 1613 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
6c5151a9
MK
1614 resp->data_tx_completion.num_msdus);
1615
1616 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1617 msdu_id = resp->data_tx_completion.msdus[i];
1618 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1619 ath10k_txrx_tx_unref(htt, &tx_done);
1620 }
1621}
1622
aa5b4fbc
MK
1623static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1624{
1625 struct htt_rx_addba *ev = &resp->rx_addba;
1626 struct ath10k_peer *peer;
1627 struct ath10k_vif *arvif;
1628 u16 info0, tid, peer_id;
1629
1630 info0 = __le16_to_cpu(ev->info0);
1631 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1632 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1633
7aa7a72a 1634 ath10k_dbg(ar, ATH10K_DBG_HTT,
aa5b4fbc
MK
1635 "htt rx addba tid %hu peer_id %hu size %hhu\n",
1636 tid, peer_id, ev->window_size);
1637
1638 spin_lock_bh(&ar->data_lock);
1639 peer = ath10k_peer_find_by_id(ar, peer_id);
1640 if (!peer) {
7aa7a72a 1641 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
aa5b4fbc
MK
1642 peer_id);
1643 spin_unlock_bh(&ar->data_lock);
1644 return;
1645 }
1646
1647 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1648 if (!arvif) {
7aa7a72a 1649 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
aa5b4fbc
MK
1650 peer->vdev_id);
1651 spin_unlock_bh(&ar->data_lock);
1652 return;
1653 }
1654
7aa7a72a 1655 ath10k_dbg(ar, ATH10K_DBG_HTT,
aa5b4fbc
MK
1656 "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1657 peer->addr, tid, ev->window_size);
1658
1659 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1660 spin_unlock_bh(&ar->data_lock);
1661}
1662
1663static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1664{
1665 struct htt_rx_delba *ev = &resp->rx_delba;
1666 struct ath10k_peer *peer;
1667 struct ath10k_vif *arvif;
1668 u16 info0, tid, peer_id;
1669
1670 info0 = __le16_to_cpu(ev->info0);
1671 tid = MS(info0, HTT_RX_BA_INFO0_TID);
1672 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1673
7aa7a72a 1674 ath10k_dbg(ar, ATH10K_DBG_HTT,
aa5b4fbc
MK
1675 "htt rx delba tid %hu peer_id %hu\n",
1676 tid, peer_id);
1677
1678 spin_lock_bh(&ar->data_lock);
1679 peer = ath10k_peer_find_by_id(ar, peer_id);
1680 if (!peer) {
7aa7a72a 1681 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
aa5b4fbc
MK
1682 peer_id);
1683 spin_unlock_bh(&ar->data_lock);
1684 return;
1685 }
1686
1687 arvif = ath10k_get_arvif(ar, peer->vdev_id);
1688 if (!arvif) {
7aa7a72a 1689 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
aa5b4fbc
MK
1690 peer->vdev_id);
1691 spin_unlock_bh(&ar->data_lock);
1692 return;
1693 }
1694
7aa7a72a 1695 ath10k_dbg(ar, ATH10K_DBG_HTT,
aa5b4fbc
MK
1696 "htt rx stop rx ba session sta %pM tid %hu\n",
1697 peer->addr, tid);
1698
1699 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1700 spin_unlock_bh(&ar->data_lock);
1701}
1702
c545070e
MK
1703static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1704 struct sk_buff_head *amsdu)
1705{
1706 struct sk_buff *msdu;
1707 struct htt_rx_desc *rxd;
1708
1709 if (skb_queue_empty(list))
1710 return -ENOBUFS;
1711
1712 if (WARN_ON(!skb_queue_empty(amsdu)))
1713 return -EINVAL;
1714
1715 while ((msdu = __skb_dequeue(list))) {
1716 __skb_queue_tail(amsdu, msdu);
1717
1718 rxd = (void *)msdu->data - sizeof(*rxd);
1719 if (rxd->msdu_end.info0 &
1720 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1721 break;
1722 }
1723
1724 msdu = skb_peek_tail(amsdu);
1725 rxd = (void *)msdu->data - sizeof(*rxd);
1726 if (!(rxd->msdu_end.info0 &
1727 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1728 skb_queue_splice_init(amsdu, list);
1729 return -EAGAIN;
1730 }
1731
1732 return 0;
1733}
1734
1735static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1736 struct sk_buff *skb)
1737{
1738 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1739
1740 if (!ieee80211_has_protected(hdr->frame_control))
1741 return;
1742
1743 /* Offloaded frames are already decrypted but firmware insists they are
1744 * protected in the 802.11 header. Strip the flag. Otherwise mac80211
1745 * will drop the frame.
1746 */
1747
1748 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1749 status->flag |= RX_FLAG_DECRYPTED |
1750 RX_FLAG_IV_STRIPPED |
1751 RX_FLAG_MMIC_STRIPPED;
1752}
1753
1754static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1755 struct sk_buff_head *list)
1756{
1757 struct ath10k_htt *htt = &ar->htt;
1758 struct ieee80211_rx_status *status = &htt->rx_status;
1759 struct htt_rx_offload_msdu *rx;
1760 struct sk_buff *msdu;
1761 size_t offset;
1762
1763 while ((msdu = __skb_dequeue(list))) {
1764 /* Offloaded frames don't have Rx descriptor. Instead they have
1765 * a short meta information header.
1766 */
1767
1768 rx = (void *)msdu->data;
1769
1770 skb_put(msdu, sizeof(*rx));
1771 skb_pull(msdu, sizeof(*rx));
1772
1773 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1774 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1775 dev_kfree_skb_any(msdu);
1776 continue;
1777 }
1778
1779 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1780
1781 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
1782 * actual payload is unaligned. Align the frame. Otherwise
1783 * mac80211 complains. This shouldn't reduce performance much
1784 * because these offloaded frames are rare.
1785 */
1786 offset = 4 - ((unsigned long)msdu->data & 3);
1787 skb_put(msdu, offset);
1788 memmove(msdu->data + offset, msdu->data, msdu->len);
1789 skb_pull(msdu, offset);
1790
1791 /* FIXME: The frame is NWifi. Re-construct QoS Control
1792 * if possible later.
1793 */
1794
1795 memset(status, 0, sizeof(*status));
1796 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1797
1798 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1799 ath10k_htt_rx_h_channel(ar, status);
1800 ath10k_process_rx(ar, status, msdu);
1801 }
1802}
1803
1804static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1805{
1806 struct ath10k_htt *htt = &ar->htt;
1807 struct htt_resp *resp = (void *)skb->data;
1808 struct ieee80211_rx_status *status = &htt->rx_status;
1809 struct sk_buff_head list;
1810 struct sk_buff_head amsdu;
1811 u16 peer_id;
1812 u16 msdu_count;
1813 u8 vdev_id;
1814 u8 tid;
1815 bool offload;
1816 bool frag;
1817 int ret;
1818
1819 lockdep_assert_held(&htt->rx_ring.lock);
1820
1821 if (htt->rx_confused)
1822 return;
1823
1824 skb_pull(skb, sizeof(resp->hdr));
1825 skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1826
1827 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1828 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1829 vdev_id = resp->rx_in_ord_ind.vdev_id;
1830 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1831 offload = !!(resp->rx_in_ord_ind.info &
1832 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1833 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1834
1835 ath10k_dbg(ar, ATH10K_DBG_HTT,
1836 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1837 vdev_id, peer_id, tid, offload, frag, msdu_count);
1838
1839 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1840 ath10k_warn(ar, "dropping invalid in order rx indication\n");
1841 return;
1842 }
1843
1844 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1845 * extracted and processed.
1846 */
1847 __skb_queue_head_init(&list);
1848 ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1849 if (ret < 0) {
1850 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1851 htt->rx_confused = true;
1852 return;
1853 }
1854
1855 /* Offloaded frames are very different and need to be handled
1856 * separately.
1857 */
1858 if (offload)
1859 ath10k_htt_rx_h_rx_offload(ar, &list);
1860
1861 while (!skb_queue_empty(&list)) {
1862 __skb_queue_head_init(&amsdu);
1863 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1864 switch (ret) {
1865 case 0:
1866 /* Note: The in-order indication may report interleaved
1867 * frames from different PPDUs meaning reported rx rate
1868 * to mac80211 isn't accurate/reliable. It's still
1869 * better to report something than nothing though. This
1870 * should still give an idea about rx rate to the user.
1871 */
1872 ath10k_htt_rx_h_ppdu(ar, &amsdu, status);
1873 ath10k_htt_rx_h_filter(ar, &amsdu, status);
1874 ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1875 ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1876 break;
1877 case -EAGAIN:
1878 /* fall through */
1879 default:
1880 /* Should not happen. */
1881 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1882 htt->rx_confused = true;
1883 __skb_queue_purge(&list);
1884 return;
1885 }
1886 }
1887
1888 tasklet_schedule(&htt->rx_replenish_task);
1889}
1890
5e3dd157
KV
1891void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1892{
edb8236d 1893 struct ath10k_htt *htt = &ar->htt;
5e3dd157
KV
1894 struct htt_resp *resp = (struct htt_resp *)skb->data;
1895
1896 /* confirm alignment */
1897 if (!IS_ALIGNED((unsigned long)skb->data, 4))
7aa7a72a 1898 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
5e3dd157 1899
7aa7a72a 1900 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
5e3dd157
KV
1901 resp->hdr.msg_type);
1902 switch (resp->hdr.msg_type) {
1903 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1904 htt->target_version_major = resp->ver_resp.major;
1905 htt->target_version_minor = resp->ver_resp.minor;
1906 complete(&htt->target_version_received);
1907 break;
1908 }
6c5151a9 1909 case HTT_T2H_MSG_TYPE_RX_IND:
45967089
MK
1910 spin_lock_bh(&htt->rx_ring.lock);
1911 __skb_queue_tail(&htt->rx_compl_q, skb);
1912 spin_unlock_bh(&htt->rx_ring.lock);
6c5151a9
MK
1913 tasklet_schedule(&htt->txrx_compl_task);
1914 return;
5e3dd157
KV
1915 case HTT_T2H_MSG_TYPE_PEER_MAP: {
1916 struct htt_peer_map_event ev = {
1917 .vdev_id = resp->peer_map.vdev_id,
1918 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1919 };
1920 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1921 ath10k_peer_map_event(htt, &ev);
1922 break;
1923 }
1924 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1925 struct htt_peer_unmap_event ev = {
1926 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1927 };
1928 ath10k_peer_unmap_event(htt, &ev);
1929 break;
1930 }
1931 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1932 struct htt_tx_done tx_done = {};
1933 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1934
1935 tx_done.msdu_id =
1936 __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1937
1938 switch (status) {
1939 case HTT_MGMT_TX_STATUS_OK:
1940 break;
1941 case HTT_MGMT_TX_STATUS_RETRY:
1942 tx_done.no_ack = true;
1943 break;
1944 case HTT_MGMT_TX_STATUS_DROP:
1945 tx_done.discard = true;
1946 break;
1947 }
1948
6c5151a9 1949 spin_lock_bh(&htt->tx_lock);
0a89f8a0 1950 ath10k_txrx_tx_unref(htt, &tx_done);
6c5151a9 1951 spin_unlock_bh(&htt->tx_lock);
5e3dd157
KV
1952 break;
1953 }
6c5151a9
MK
1954 case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1955 spin_lock_bh(&htt->tx_lock);
1956 __skb_queue_tail(&htt->tx_compl_q, skb);
1957 spin_unlock_bh(&htt->tx_lock);
1958 tasklet_schedule(&htt->txrx_compl_task);
1959 return;
5e3dd157
KV
1960 case HTT_T2H_MSG_TYPE_SEC_IND: {
1961 struct ath10k *ar = htt->ar;
1962 struct htt_security_indication *ev = &resp->security_indication;
1963
7aa7a72a 1964 ath10k_dbg(ar, ATH10K_DBG_HTT,
5e3dd157
KV
1965 "sec ind peer_id %d unicast %d type %d\n",
1966 __le16_to_cpu(ev->peer_id),
1967 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1968 MS(ev->flags, HTT_SECURITY_TYPE));
1969 complete(&ar->install_key_done);
1970 break;
1971 }
1972 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
7aa7a72a 1973 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
5e3dd157
KV
1974 skb->data, skb->len);
1975 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1976 break;
1977 }
1978 case HTT_T2H_MSG_TYPE_TEST:
1979 /* FIX THIS */
1980 break;
5e3dd157 1981 case HTT_T2H_MSG_TYPE_STATS_CONF:
d35a6c18 1982 trace_ath10k_htt_stats(ar, skb->data, skb->len);
a9bf0506
KV
1983 break;
1984 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
708b9bde
MK
1985 /* Firmware can return tx frames if it's unable to fully
1986 * process them and suspects host may be able to fix it. ath10k
1987 * sends all tx frames as already inspected so this shouldn't
1988 * happen unless fw has a bug.
1989 */
7aa7a72a 1990 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
708b9bde 1991 break;
5e3dd157 1992 case HTT_T2H_MSG_TYPE_RX_ADDBA:
aa5b4fbc
MK
1993 ath10k_htt_rx_addba(ar, resp);
1994 break;
5e3dd157 1995 case HTT_T2H_MSG_TYPE_RX_DELBA:
aa5b4fbc
MK
1996 ath10k_htt_rx_delba(ar, resp);
1997 break;
bfdd7937
RM
1998 case HTT_T2H_MSG_TYPE_PKTLOG: {
1999 struct ath10k_pktlog_hdr *hdr =
2000 (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2001
2002 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2003 sizeof(*hdr) +
2004 __le16_to_cpu(hdr->size));
2005 break;
2006 }
aa5b4fbc
MK
2007 case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2008 /* Ignore this event because mac80211 takes care of Rx
2009 * aggregation reordering.
2010 */
2011 break;
2012 }
c545070e
MK
2013 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2014 spin_lock_bh(&htt->rx_ring.lock);
2015 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2016 spin_unlock_bh(&htt->rx_ring.lock);
2017 tasklet_schedule(&htt->txrx_compl_task);
2018 return;
2019 }
2020 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2021 /* FIXME: This WMI-TLV event is overlapping with 10.2
2022 * CHAN_CHANGE - both being 0xF. Neither is being used in
2023 * practice so no immediate action is necessary. Nevertheless
2024 * HTT may need an abstraction layer like WMI has one day.
2025 */
2026 break;
5e3dd157 2027 default:
2358a544
MK
2028 ath10k_warn(ar, "htt event (%d) not handled\n",
2029 resp->hdr.msg_type);
7aa7a72a 2030 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
5e3dd157
KV
2031 skb->data, skb->len);
2032 break;
2033 };
2034
2035 /* Free the indication buffer */
2036 dev_kfree_skb_any(skb);
2037}
6c5151a9
MK
2038
2039static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2040{
2041 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
c545070e 2042 struct ath10k *ar = htt->ar;
6c5151a9
MK
2043 struct htt_resp *resp;
2044 struct sk_buff *skb;
2045
45967089
MK
2046 spin_lock_bh(&htt->tx_lock);
2047 while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
6c5151a9
MK
2048 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
2049 dev_kfree_skb_any(skb);
2050 }
45967089 2051 spin_unlock_bh(&htt->tx_lock);
6c5151a9 2052
45967089
MK
2053 spin_lock_bh(&htt->rx_ring.lock);
2054 while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
6c5151a9
MK
2055 resp = (struct htt_resp *)skb->data;
2056 ath10k_htt_rx_handler(htt, &resp->rx_ind);
2057 dev_kfree_skb_any(skb);
2058 }
c545070e
MK
2059
2060 while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2061 ath10k_htt_rx_in_ord_ind(ar, skb);
2062 dev_kfree_skb_any(skb);
2063 }
45967089 2064 spin_unlock_bh(&htt->rx_ring.lock);
6c5151a9 2065}
This page took 0.266435 seconds and 5 git commands to generate.