ath10k: make target_ce_config_wlan more readable
[deliverable/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
CommitLineData
5e3dd157
KV
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/pci.h>
19#include <linux/module.h>
20#include <linux/interrupt.h>
21#include <linux/spinlock.h>
22
23#include "core.h"
24#include "debug.h"
25
26#include "targaddrs.h"
27#include "bmi.h"
28
29#include "hif.h"
30#include "htc.h"
31
32#include "ce.h"
33#include "pci.h"
34
8cc8df90 35static unsigned int ath10k_target_ps;
5e3dd157
KV
36module_param(ath10k_target_ps, uint, 0644);
37MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
38
5e3dd157
KV
39#define QCA988X_2_0_DEVICE_ID (0x003c)
40
41static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
5e3dd157
KV
42 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
43 {0}
44};
45
46static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
47 u32 *data);
48
49static void ath10k_pci_process_ce(struct ath10k *ar);
50static int ath10k_pci_post_rx(struct ath10k *ar);
87263e5b 51static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
5e3dd157 52 int num);
87263e5b 53static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info);
5e3dd157 54static void ath10k_pci_stop_ce(struct ath10k *ar);
8c5c5368
MK
55static void ath10k_pci_device_reset(struct ath10k *ar);
56static int ath10k_pci_reset_target(struct ath10k *ar);
32270b61
MK
57static int ath10k_pci_start_intr(struct ath10k *ar);
58static void ath10k_pci_stop_intr(struct ath10k *ar);
5e3dd157
KV
59
60static const struct ce_attr host_ce_config_wlan[] = {
48e9c225
KV
61 /* CE0: host->target HTC control and raw streams */
62 {
63 .flags = CE_ATTR_FLAGS,
64 .src_nentries = 16,
65 .src_sz_max = 256,
66 .dest_nentries = 0,
67 },
68
69 /* CE1: target->host HTT + HTC control */
70 {
71 .flags = CE_ATTR_FLAGS,
72 .src_nentries = 0,
73 .src_sz_max = 512,
74 .dest_nentries = 512,
75 },
76
77 /* CE2: target->host WMI */
78 {
79 .flags = CE_ATTR_FLAGS,
80 .src_nentries = 0,
81 .src_sz_max = 2048,
82 .dest_nentries = 32,
83 },
84
85 /* CE3: host->target WMI */
86 {
87 .flags = CE_ATTR_FLAGS,
88 .src_nentries = 32,
89 .src_sz_max = 2048,
90 .dest_nentries = 0,
91 },
92
93 /* CE4: host->target HTT */
94 {
95 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
96 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
97 .src_sz_max = 256,
98 .dest_nentries = 0,
99 },
100
101 /* CE5: unused */
102 {
103 .flags = CE_ATTR_FLAGS,
104 .src_nentries = 0,
105 .src_sz_max = 0,
106 .dest_nentries = 0,
107 },
108
109 /* CE6: target autonomous hif_memcpy */
110 {
111 .flags = CE_ATTR_FLAGS,
112 .src_nentries = 0,
113 .src_sz_max = 0,
114 .dest_nentries = 0,
115 },
116
117 /* CE7: ce_diag, the Diagnostic Window */
118 {
119 .flags = CE_ATTR_FLAGS,
120 .src_nentries = 2,
121 .src_sz_max = DIAG_TRANSFER_LIMIT,
122 .dest_nentries = 2,
123 },
5e3dd157
KV
124};
125
126/* Target firmware's Copy Engine configuration. */
127static const struct ce_pipe_config target_ce_config_wlan[] = {
d88effba
KV
128 /* CE0: host->target HTC control and raw streams */
129 {
130 .pipenum = 0,
131 .pipedir = PIPEDIR_OUT,
132 .nentries = 32,
133 .nbytes_max = 256,
134 .flags = CE_ATTR_FLAGS,
135 .reserved = 0,
136 },
137
138 /* CE1: target->host HTT + HTC control */
139 {
140 .pipenum = 1,
141 .pipedir = PIPEDIR_IN,
142 .nentries = 32,
143 .nbytes_max = 512,
144 .flags = CE_ATTR_FLAGS,
145 .reserved = 0,
146 },
147
148 /* CE2: target->host WMI */
149 {
150 .pipenum = 2,
151 .pipedir = PIPEDIR_IN,
152 .nentries = 32,
153 .nbytes_max = 2048,
154 .flags = CE_ATTR_FLAGS,
155 .reserved = 0,
156 },
157
158 /* CE3: host->target WMI */
159 {
160 .pipenum = 3,
161 .pipedir = PIPEDIR_OUT,
162 .nentries = 32,
163 .nbytes_max = 2048,
164 .flags = CE_ATTR_FLAGS,
165 .reserved = 0,
166 },
167
168 /* CE4: host->target HTT */
169 {
170 .pipenum = 4,
171 .pipedir = PIPEDIR_OUT,
172 .nentries = 256,
173 .nbytes_max = 256,
174 .flags = CE_ATTR_FLAGS,
175 .reserved = 0,
176 },
177
5e3dd157 178 /* NB: 50% of src nentries, since tx has 2 frags */
d88effba
KV
179
180 /* CE5: unused */
181 {
182 .pipenum = 5,
183 .pipedir = PIPEDIR_OUT,
184 .nentries = 32,
185 .nbytes_max = 2048,
186 .flags = CE_ATTR_FLAGS,
187 .reserved = 0,
188 },
189
190 /* CE6: Reserved for target autonomous hif_memcpy */
191 {
192 .pipenum = 6,
193 .pipedir = PIPEDIR_INOUT,
194 .nentries = 32,
195 .nbytes_max = 4096,
196 .flags = CE_ATTR_FLAGS,
197 .reserved = 0,
198 },
199
5e3dd157
KV
200 /* CE7 used only by Host */
201};
202
203/*
204 * Diagnostic read/write access is provided for startup/config/debug usage.
205 * Caller must guarantee proper alignment, when applicable, and single user
206 * at any moment.
207 */
208static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
209 int nbytes)
210{
211 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
212 int ret = 0;
213 u32 buf;
214 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
215 unsigned int id;
216 unsigned int flags;
2aa39115 217 struct ath10k_ce_pipe *ce_diag;
5e3dd157
KV
218 /* Host buffer address in CE space */
219 u32 ce_data;
220 dma_addr_t ce_data_base = 0;
221 void *data_buf = NULL;
222 int i;
223
224 /*
225 * This code cannot handle reads to non-memory space. Redirect to the
226 * register read fn but preserve the multi word read capability of
227 * this fn
228 */
229 if (address < DRAM_BASE_ADDRESS) {
230 if (!IS_ALIGNED(address, 4) ||
231 !IS_ALIGNED((unsigned long)data, 4))
232 return -EIO;
233
234 while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
235 ar, address, (u32 *)data)) == 0)) {
236 nbytes -= sizeof(u32);
237 address += sizeof(u32);
238 data += sizeof(u32);
239 }
240 return ret;
241 }
242
243 ce_diag = ar_pci->ce_diag;
244
245 /*
246 * Allocate a temporary bounce buffer to hold caller's data
247 * to be DMA'ed from Target. This guarantees
248 * 1) 4-byte alignment
249 * 2) Buffer in DMA-able space
250 */
251 orig_nbytes = nbytes;
252 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
253 orig_nbytes,
254 &ce_data_base);
255
256 if (!data_buf) {
257 ret = -ENOMEM;
258 goto done;
259 }
260 memset(data_buf, 0, orig_nbytes);
261
262 remaining_bytes = orig_nbytes;
263 ce_data = ce_data_base;
264 while (remaining_bytes) {
265 nbytes = min_t(unsigned int, remaining_bytes,
266 DIAG_TRANSFER_LIMIT);
267
268 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
269 if (ret != 0)
270 goto done;
271
272 /* Request CE to send from Target(!) address to Host buffer */
273 /*
274 * The address supplied by the caller is in the
275 * Target CPU virtual address space.
276 *
277 * In order to use this address with the diagnostic CE,
278 * convert it from Target CPU virtual address space
279 * to CE address space
280 */
281 ath10k_pci_wake(ar);
282 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
283 address);
284 ath10k_pci_sleep(ar);
285
286 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
287 0);
288 if (ret)
289 goto done;
290
291 i = 0;
292 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
293 &completed_nbytes,
294 &id) != 0) {
295 mdelay(1);
296 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
297 ret = -EBUSY;
298 goto done;
299 }
300 }
301
302 if (nbytes != completed_nbytes) {
303 ret = -EIO;
304 goto done;
305 }
306
307 if (buf != (u32) address) {
308 ret = -EIO;
309 goto done;
310 }
311
312 i = 0;
313 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
314 &completed_nbytes,
315 &id, &flags) != 0) {
316 mdelay(1);
317
318 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
319 ret = -EBUSY;
320 goto done;
321 }
322 }
323
324 if (nbytes != completed_nbytes) {
325 ret = -EIO;
326 goto done;
327 }
328
329 if (buf != ce_data) {
330 ret = -EIO;
331 goto done;
332 }
333
334 remaining_bytes -= nbytes;
335 address += nbytes;
336 ce_data += nbytes;
337 }
338
339done:
340 if (ret == 0) {
341 /* Copy data from allocated DMA buf to caller's buf */
342 WARN_ON_ONCE(orig_nbytes & 3);
343 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
344 ((u32 *)data)[i] =
345 __le32_to_cpu(((__le32 *)data_buf)[i]);
346 }
347 } else
348 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
349 __func__, address);
350
351 if (data_buf)
352 pci_free_consistent(ar_pci->pdev, orig_nbytes,
353 data_buf, ce_data_base);
354
355 return ret;
356}
357
358/* Read 4-byte aligned data from Target memory or register */
359static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
360 u32 *data)
361{
362 /* Assume range doesn't cross this boundary */
363 if (address >= DRAM_BASE_ADDRESS)
364 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
365
366 ath10k_pci_wake(ar);
367 *data = ath10k_pci_read32(ar, address);
368 ath10k_pci_sleep(ar);
369 return 0;
370}
371
372static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
373 const void *data, int nbytes)
374{
375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 int ret = 0;
377 u32 buf;
378 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
379 unsigned int id;
380 unsigned int flags;
2aa39115 381 struct ath10k_ce_pipe *ce_diag;
5e3dd157
KV
382 void *data_buf = NULL;
383 u32 ce_data; /* Host buffer address in CE space */
384 dma_addr_t ce_data_base = 0;
385 int i;
386
387 ce_diag = ar_pci->ce_diag;
388
389 /*
390 * Allocate a temporary bounce buffer to hold caller's data
391 * to be DMA'ed to Target. This guarantees
392 * 1) 4-byte alignment
393 * 2) Buffer in DMA-able space
394 */
395 orig_nbytes = nbytes;
396 data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
397 orig_nbytes,
398 &ce_data_base);
399 if (!data_buf) {
400 ret = -ENOMEM;
401 goto done;
402 }
403
404 /* Copy caller's data to allocated DMA buf */
405 WARN_ON_ONCE(orig_nbytes & 3);
406 for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
407 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
408
409 /*
410 * The address supplied by the caller is in the
411 * Target CPU virtual address space.
412 *
413 * In order to use this address with the diagnostic CE,
414 * convert it from
415 * Target CPU virtual address space
416 * to
417 * CE address space
418 */
419 ath10k_pci_wake(ar);
420 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
421 ath10k_pci_sleep(ar);
422
423 remaining_bytes = orig_nbytes;
424 ce_data = ce_data_base;
425 while (remaining_bytes) {
426 /* FIXME: check cast */
427 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
428
429 /* Set up to receive directly into Target(!) address */
430 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
431 if (ret != 0)
432 goto done;
433
434 /*
435 * Request CE to send caller-supplied data that
436 * was copied to bounce buffer to Target(!) address.
437 */
438 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
439 nbytes, 0, 0);
440 if (ret != 0)
441 goto done;
442
443 i = 0;
444 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
445 &completed_nbytes,
446 &id) != 0) {
447 mdelay(1);
448
449 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
450 ret = -EBUSY;
451 goto done;
452 }
453 }
454
455 if (nbytes != completed_nbytes) {
456 ret = -EIO;
457 goto done;
458 }
459
460 if (buf != ce_data) {
461 ret = -EIO;
462 goto done;
463 }
464
465 i = 0;
466 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
467 &completed_nbytes,
468 &id, &flags) != 0) {
469 mdelay(1);
470
471 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
472 ret = -EBUSY;
473 goto done;
474 }
475 }
476
477 if (nbytes != completed_nbytes) {
478 ret = -EIO;
479 goto done;
480 }
481
482 if (buf != address) {
483 ret = -EIO;
484 goto done;
485 }
486
487 remaining_bytes -= nbytes;
488 address += nbytes;
489 ce_data += nbytes;
490 }
491
492done:
493 if (data_buf) {
494 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
495 ce_data_base);
496 }
497
498 if (ret != 0)
499 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
500 address);
501
502 return ret;
503}
504
505/* Write 4B data to Target memory or register */
506static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
507 u32 data)
508{
509 /* Assume range doesn't cross this boundary */
510 if (address >= DRAM_BASE_ADDRESS)
511 return ath10k_pci_diag_write_mem(ar, address, &data,
512 sizeof(u32));
513
514 ath10k_pci_wake(ar);
515 ath10k_pci_write32(ar, address, data);
516 ath10k_pci_sleep(ar);
517 return 0;
518}
519
520static bool ath10k_pci_target_is_awake(struct ath10k *ar)
521{
522 void __iomem *mem = ath10k_pci_priv(ar)->mem;
523 u32 val;
524 val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
525 RTC_STATE_ADDRESS);
526 return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
527}
528
529static void ath10k_pci_wait(struct ath10k *ar)
530{
531 int n = 100;
532
533 while (n-- && !ath10k_pci_target_is_awake(ar))
534 msleep(10);
535
536 if (n < 0)
537 ath10k_warn("Unable to wakeup target\n");
538}
539
540void ath10k_do_pci_wake(struct ath10k *ar)
541{
542 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
543 void __iomem *pci_addr = ar_pci->mem;
544 int tot_delay = 0;
545 int curr_delay = 5;
546
547 if (atomic_read(&ar_pci->keep_awake_count) == 0) {
548 /* Force AWAKE */
549 iowrite32(PCIE_SOC_WAKE_V_MASK,
550 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
551 PCIE_SOC_WAKE_ADDRESS);
552 }
553 atomic_inc(&ar_pci->keep_awake_count);
554
555 if (ar_pci->verified_awake)
556 return;
557
558 for (;;) {
559 if (ath10k_pci_target_is_awake(ar)) {
560 ar_pci->verified_awake = true;
561 break;
562 }
563
564 if (tot_delay > PCIE_WAKE_TIMEOUT) {
565 ath10k_warn("target takes too long to wake up (awake count %d)\n",
566 atomic_read(&ar_pci->keep_awake_count));
567 break;
568 }
569
570 udelay(curr_delay);
571 tot_delay += curr_delay;
572
573 if (curr_delay < 50)
574 curr_delay += 5;
575 }
576}
577
578void ath10k_do_pci_sleep(struct ath10k *ar)
579{
580 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
581 void __iomem *pci_addr = ar_pci->mem;
582
583 if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
584 /* Allow sleep */
585 ar_pci->verified_awake = false;
586 iowrite32(PCIE_SOC_WAKE_RESET,
587 pci_addr + PCIE_LOCAL_BASE_ADDRESS +
588 PCIE_SOC_WAKE_ADDRESS);
589 }
590}
591
592/*
593 * FIXME: Handle OOM properly.
594 */
595static inline
87263e5b 596struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info)
5e3dd157
KV
597{
598 struct ath10k_pci_compl *compl = NULL;
599
600 spin_lock_bh(&pipe_info->pipe_lock);
601 if (list_empty(&pipe_info->compl_free)) {
602 ath10k_warn("Completion buffers are full\n");
603 goto exit;
604 }
605 compl = list_first_entry(&pipe_info->compl_free,
606 struct ath10k_pci_compl, list);
607 list_del(&compl->list);
608exit:
609 spin_unlock_bh(&pipe_info->pipe_lock);
610 return compl;
611}
612
613/* Called by lower (CE) layer when a send to Target completes. */
2aa39115 614static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state,
5e3dd157
KV
615 void *transfer_context,
616 u32 ce_data,
617 unsigned int nbytes,
618 unsigned int transfer_id)
619{
620 struct ath10k *ar = ce_state->ar;
621 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 622 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
5e3dd157
KV
623 struct ath10k_pci_compl *compl;
624 bool process = false;
625
626 do {
627 /*
628 * For the send completion of an item in sendlist, just
629 * increment num_sends_allowed. The upper layer callback will
630 * be triggered when last fragment is done with send.
631 */
632 if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
633 spin_lock_bh(&pipe_info->pipe_lock);
634 pipe_info->num_sends_allowed++;
635 spin_unlock_bh(&pipe_info->pipe_lock);
636 continue;
637 }
638
639 compl = get_free_compl(pipe_info);
640 if (!compl)
641 break;
642
f9d8fece 643 compl->state = ATH10K_PCI_COMPL_SEND;
5e3dd157
KV
644 compl->ce_state = ce_state;
645 compl->pipe_info = pipe_info;
646 compl->transfer_context = transfer_context;
647 compl->nbytes = nbytes;
648 compl->transfer_id = transfer_id;
649 compl->flags = 0;
650
651 /*
652 * Add the completion to the processing queue.
653 */
654 spin_lock_bh(&ar_pci->compl_lock);
655 list_add_tail(&compl->list, &ar_pci->compl_process);
656 spin_unlock_bh(&ar_pci->compl_lock);
657
658 process = true;
659 } while (ath10k_ce_completed_send_next(ce_state,
660 &transfer_context,
661 &ce_data, &nbytes,
662 &transfer_id) == 0);
663
664 /*
665 * If only some of the items within a sendlist have completed,
666 * don't invoke completion processing until the entire sendlist
667 * has been sent.
668 */
669 if (!process)
670 return;
671
672 ath10k_pci_process_ce(ar);
673}
674
675/* Called by lower (CE) layer when data is received from the Target. */
2aa39115 676static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state,
5e3dd157
KV
677 void *transfer_context, u32 ce_data,
678 unsigned int nbytes,
679 unsigned int transfer_id,
680 unsigned int flags)
681{
682 struct ath10k *ar = ce_state->ar;
683 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 684 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
5e3dd157
KV
685 struct ath10k_pci_compl *compl;
686 struct sk_buff *skb;
687
688 do {
689 compl = get_free_compl(pipe_info);
690 if (!compl)
691 break;
692
f9d8fece 693 compl->state = ATH10K_PCI_COMPL_RECV;
5e3dd157
KV
694 compl->ce_state = ce_state;
695 compl->pipe_info = pipe_info;
696 compl->transfer_context = transfer_context;
697 compl->nbytes = nbytes;
698 compl->transfer_id = transfer_id;
699 compl->flags = flags;
700
701 skb = transfer_context;
702 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
703 skb->len + skb_tailroom(skb),
704 DMA_FROM_DEVICE);
705 /*
706 * Add the completion to the processing queue.
707 */
708 spin_lock_bh(&ar_pci->compl_lock);
709 list_add_tail(&compl->list, &ar_pci->compl_process);
710 spin_unlock_bh(&ar_pci->compl_lock);
711
712 } while (ath10k_ce_completed_recv_next(ce_state,
713 &transfer_context,
714 &ce_data, &nbytes,
715 &transfer_id,
716 &flags) == 0);
717
718 ath10k_pci_process_ce(ar);
719}
720
721/* Send the first nbytes bytes of the buffer */
722static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
723 unsigned int transfer_id,
724 unsigned int bytes, struct sk_buff *nbuf)
725{
726 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
727 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 728 struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe_id]);
2aa39115 729 struct ath10k_ce_pipe *ce_hdl = pipe_info->ce_hdl;
5e3dd157
KV
730 struct ce_sendlist sendlist;
731 unsigned int len;
732 u32 flags = 0;
733 int ret;
734
735 memset(&sendlist, 0, sizeof(struct ce_sendlist));
736
737 len = min(bytes, nbuf->len);
738 bytes -= len;
739
740 if (len & 3)
741 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
742
743 ath10k_dbg(ATH10K_DBG_PCI,
744 "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
745 nbuf->data, (unsigned long long) skb_cb->paddr,
746 nbuf->len, len);
747 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
748 "ath10k tx: data: ",
749 nbuf->data, nbuf->len);
750
751 ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
752
753 /* Make sure we have resources to handle this request */
754 spin_lock_bh(&pipe_info->pipe_lock);
755 if (!pipe_info->num_sends_allowed) {
756 ath10k_warn("Pipe: %d is full\n", pipe_id);
757 spin_unlock_bh(&pipe_info->pipe_lock);
758 return -ENOSR;
759 }
760 pipe_info->num_sends_allowed--;
761 spin_unlock_bh(&pipe_info->pipe_lock);
762
763 ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
764 if (ret)
765 ath10k_warn("CE send failed: %p\n", nbuf);
766
767 return ret;
768}
769
770static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
771{
772 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 773 struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe]);
5e3dd157
KV
774 int ret;
775
776 spin_lock_bh(&pipe_info->pipe_lock);
777 ret = pipe_info->num_sends_allowed;
778 spin_unlock_bh(&pipe_info->pipe_lock);
779
780 return ret;
781}
782
783static void ath10k_pci_hif_dump_area(struct ath10k *ar)
784{
785 u32 reg_dump_area = 0;
786 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
787 u32 host_addr;
788 int ret;
789 u32 i;
790
791 ath10k_err("firmware crashed!\n");
792 ath10k_err("hardware name %s version 0x%x\n",
793 ar->hw_params.name, ar->target_version);
794 ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
795 ar->fw_version_minor, ar->fw_version_release,
796 ar->fw_version_build);
797
798 host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
799 if (ath10k_pci_diag_read_mem(ar, host_addr,
800 &reg_dump_area, sizeof(u32)) != 0) {
801 ath10k_warn("could not read hi_failure_state\n");
802 return;
803 }
804
805 ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
806
807 ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
808 &reg_dump_values[0],
809 REG_DUMP_COUNT_QCA988X * sizeof(u32));
810 if (ret != 0) {
811 ath10k_err("could not dump FW Dump Area\n");
812 return;
813 }
814
815 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
816
817 ath10k_err("target Register Dump\n");
818 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
819 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
820 i,
821 reg_dump_values[i],
822 reg_dump_values[i + 1],
823 reg_dump_values[i + 2],
824 reg_dump_values[i + 3]);
affd3217
MK
825
826 ieee80211_queue_work(ar->hw, &ar->restart_work);
5e3dd157
KV
827}
828
829static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
830 int force)
831{
832 if (!force) {
833 int resources;
834 /*
835 * Decide whether to actually poll for completions, or just
836 * wait for a later chance.
837 * If there seem to be plenty of resources left, then just wait
838 * since checking involves reading a CE register, which is a
839 * relatively expensive operation.
840 */
841 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
842
843 /*
844 * If at least 50% of the total resources are still available,
845 * don't bother checking again yet.
846 */
847 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
848 return;
849 }
850 ath10k_ce_per_engine_service(ar, pipe);
851}
852
e799bbff
MK
853static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
854 struct ath10k_hif_cb *callbacks)
5e3dd157
KV
855{
856 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
857
858 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
859
860 memcpy(&ar_pci->msg_callbacks_current, callbacks,
861 sizeof(ar_pci->msg_callbacks_current));
862}
863
864static int ath10k_pci_start_ce(struct ath10k *ar)
865{
866 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2aa39115 867 struct ath10k_ce_pipe *ce_diag = ar_pci->ce_diag;
5e3dd157 868 const struct ce_attr *attr;
87263e5b 869 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
870 struct ath10k_pci_compl *compl;
871 int i, pipe_num, completions, disable_interrupts;
872
873 spin_lock_init(&ar_pci->compl_lock);
874 INIT_LIST_HEAD(&ar_pci->compl_process);
875
876 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
877 pipe_info = &ar_pci->pipe_info[pipe_num];
878
879 spin_lock_init(&pipe_info->pipe_lock);
880 INIT_LIST_HEAD(&pipe_info->compl_free);
881
882 /* Handle Diagnostic CE specially */
883 if (pipe_info->ce_hdl == ce_diag)
884 continue;
885
886 attr = &host_ce_config_wlan[pipe_num];
887 completions = 0;
888
889 if (attr->src_nentries) {
890 disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
891 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
892 ath10k_pci_ce_send_done,
893 disable_interrupts);
894 completions += attr->src_nentries;
895 pipe_info->num_sends_allowed = attr->src_nentries - 1;
896 }
897
898 if (attr->dest_nentries) {
899 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
900 ath10k_pci_ce_recv_data);
901 completions += attr->dest_nentries;
902 }
903
904 if (completions == 0)
905 continue;
906
907 for (i = 0; i < completions; i++) {
ffe5daa8 908 compl = kmalloc(sizeof(*compl), GFP_KERNEL);
5e3dd157
KV
909 if (!compl) {
910 ath10k_warn("No memory for completion state\n");
911 ath10k_pci_stop_ce(ar);
912 return -ENOMEM;
913 }
914
f9d8fece 915 compl->state = ATH10K_PCI_COMPL_FREE;
5e3dd157
KV
916 list_add_tail(&compl->list, &pipe_info->compl_free);
917 }
918 }
919
920 return 0;
921}
922
923static void ath10k_pci_stop_ce(struct ath10k *ar)
924{
925 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
926 struct ath10k_pci_compl *compl;
927 struct sk_buff *skb;
928 int i;
929
930 ath10k_ce_disable_interrupts(ar);
931
932 /* Cancel the pending tasklet */
933 tasklet_kill(&ar_pci->intr_tq);
934
935 for (i = 0; i < CE_COUNT; i++)
936 tasklet_kill(&ar_pci->pipe_info[i].intr);
937
938 /* Mark pending completions as aborted, so that upper layers free up
939 * their associated resources */
940 spin_lock_bh(&ar_pci->compl_lock);
941 list_for_each_entry(compl, &ar_pci->compl_process, list) {
942 skb = (struct sk_buff *)compl->transfer_context;
943 ATH10K_SKB_CB(skb)->is_aborted = true;
944 }
945 spin_unlock_bh(&ar_pci->compl_lock);
946}
947
948static void ath10k_pci_cleanup_ce(struct ath10k *ar)
949{
950 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
951 struct ath10k_pci_compl *compl, *tmp;
87263e5b 952 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
953 struct sk_buff *netbuf;
954 int pipe_num;
955
956 /* Free pending completions. */
957 spin_lock_bh(&ar_pci->compl_lock);
958 if (!list_empty(&ar_pci->compl_process))
959 ath10k_warn("pending completions still present! possible memory leaks.\n");
960
961 list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
962 list_del(&compl->list);
963 netbuf = (struct sk_buff *)compl->transfer_context;
964 dev_kfree_skb_any(netbuf);
965 kfree(compl);
966 }
967 spin_unlock_bh(&ar_pci->compl_lock);
968
969 /* Free unused completions for each pipe. */
970 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
971 pipe_info = &ar_pci->pipe_info[pipe_num];
972
973 spin_lock_bh(&pipe_info->pipe_lock);
974 list_for_each_entry_safe(compl, tmp,
975 &pipe_info->compl_free, list) {
976 list_del(&compl->list);
977 kfree(compl);
978 }
979 spin_unlock_bh(&pipe_info->pipe_lock);
980 }
981}
982
983static void ath10k_pci_process_ce(struct ath10k *ar)
984{
985 struct ath10k_pci *ar_pci = ar->hif.priv;
986 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
987 struct ath10k_pci_compl *compl;
988 struct sk_buff *skb;
989 unsigned int nbytes;
990 int ret, send_done = 0;
991
992 /* Upper layers aren't ready to handle tx/rx completions in parallel so
993 * we must serialize all completion processing. */
994
995 spin_lock_bh(&ar_pci->compl_lock);
996 if (ar_pci->compl_processing) {
997 spin_unlock_bh(&ar_pci->compl_lock);
998 return;
999 }
1000 ar_pci->compl_processing = true;
1001 spin_unlock_bh(&ar_pci->compl_lock);
1002
1003 for (;;) {
1004 spin_lock_bh(&ar_pci->compl_lock);
1005 if (list_empty(&ar_pci->compl_process)) {
1006 spin_unlock_bh(&ar_pci->compl_lock);
1007 break;
1008 }
1009 compl = list_first_entry(&ar_pci->compl_process,
1010 struct ath10k_pci_compl, list);
1011 list_del(&compl->list);
1012 spin_unlock_bh(&ar_pci->compl_lock);
1013
f9d8fece
MK
1014 switch (compl->state) {
1015 case ATH10K_PCI_COMPL_SEND:
5e3dd157
KV
1016 cb->tx_completion(ar,
1017 compl->transfer_context,
1018 compl->transfer_id);
1019 send_done = 1;
f9d8fece
MK
1020 break;
1021 case ATH10K_PCI_COMPL_RECV:
5e3dd157
KV
1022 ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
1023 if (ret) {
1024 ath10k_warn("Unable to post recv buffer for pipe: %d\n",
1025 compl->pipe_info->pipe_num);
1026 break;
1027 }
1028
1029 skb = (struct sk_buff *)compl->transfer_context;
1030 nbytes = compl->nbytes;
1031
1032 ath10k_dbg(ATH10K_DBG_PCI,
1033 "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
1034 skb, nbytes);
1035 ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
1036 "ath10k rx: ", skb->data, nbytes);
1037
1038 if (skb->len + skb_tailroom(skb) >= nbytes) {
1039 skb_trim(skb, 0);
1040 skb_put(skb, nbytes);
1041 cb->rx_completion(ar, skb,
1042 compl->pipe_info->pipe_num);
1043 } else {
1044 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
1045 nbytes,
1046 skb->len + skb_tailroom(skb));
1047 }
f9d8fece
MK
1048 break;
1049 case ATH10K_PCI_COMPL_FREE:
1050 ath10k_warn("free completion cannot be processed\n");
1051 break;
1052 default:
1053 ath10k_warn("invalid completion state (%d)\n",
1054 compl->state);
1055 break;
5e3dd157
KV
1056 }
1057
f9d8fece 1058 compl->state = ATH10K_PCI_COMPL_FREE;
5e3dd157
KV
1059
1060 /*
1061 * Add completion back to the pipe's free list.
1062 */
1063 spin_lock_bh(&compl->pipe_info->pipe_lock);
1064 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
1065 compl->pipe_info->num_sends_allowed += send_done;
1066 spin_unlock_bh(&compl->pipe_info->pipe_lock);
1067 }
1068
1069 spin_lock_bh(&ar_pci->compl_lock);
1070 ar_pci->compl_processing = false;
1071 spin_unlock_bh(&ar_pci->compl_lock);
1072}
1073
1074/* TODO - temporary mapping while we have too few CE's */
1075static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1076 u16 service_id, u8 *ul_pipe,
1077 u8 *dl_pipe, int *ul_is_polled,
1078 int *dl_is_polled)
1079{
1080 int ret = 0;
1081
1082 /* polling for received messages not supported */
1083 *dl_is_polled = 0;
1084
1085 switch (service_id) {
1086 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
1087 /*
1088 * Host->target HTT gets its own pipe, so it can be polled
1089 * while other pipes are interrupt driven.
1090 */
1091 *ul_pipe = 4;
1092 /*
1093 * Use the same target->host pipe for HTC ctrl, HTC raw
1094 * streams, and HTT.
1095 */
1096 *dl_pipe = 1;
1097 break;
1098
1099 case ATH10K_HTC_SVC_ID_RSVD_CTRL:
1100 case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
1101 /*
1102 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
1103 * HTC_CTRL_RSVD_SVC could share the same pipe as the
1104 * WMI services. So, if another CE is needed, change
1105 * this to *ul_pipe = 3, which frees up CE 0.
1106 */
1107 /* *ul_pipe = 3; */
1108 *ul_pipe = 0;
1109 *dl_pipe = 1;
1110 break;
1111
1112 case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1113 case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1114 case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1115 case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1116
1117 case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1118 *ul_pipe = 3;
1119 *dl_pipe = 2;
1120 break;
1121
1122 /* pipe 5 unused */
1123 /* pipe 6 reserved */
1124 /* pipe 7 reserved */
1125
1126 default:
1127 ret = -1;
1128 break;
1129 }
1130 *ul_is_polled =
1131 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1132
1133 return ret;
1134}
1135
1136static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1137 u8 *ul_pipe, u8 *dl_pipe)
1138{
1139 int ul_is_polled, dl_is_polled;
1140
1141 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1142 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1143 ul_pipe,
1144 dl_pipe,
1145 &ul_is_polled,
1146 &dl_is_polled);
1147}
1148
87263e5b 1149static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
5e3dd157
KV
1150 int num)
1151{
1152 struct ath10k *ar = pipe_info->hif_ce_state;
1153 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2aa39115 1154 struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl;
5e3dd157
KV
1155 struct sk_buff *skb;
1156 dma_addr_t ce_data;
1157 int i, ret = 0;
1158
1159 if (pipe_info->buf_sz == 0)
1160 return 0;
1161
1162 for (i = 0; i < num; i++) {
1163 skb = dev_alloc_skb(pipe_info->buf_sz);
1164 if (!skb) {
1165 ath10k_warn("could not allocate skbuff for pipe %d\n",
1166 num);
1167 ret = -ENOMEM;
1168 goto err;
1169 }
1170
1171 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1172
1173 ce_data = dma_map_single(ar->dev, skb->data,
1174 skb->len + skb_tailroom(skb),
1175 DMA_FROM_DEVICE);
1176
1177 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1178 ath10k_warn("could not dma map skbuff\n");
1179 dev_kfree_skb_any(skb);
1180 ret = -EIO;
1181 goto err;
1182 }
1183
1184 ATH10K_SKB_CB(skb)->paddr = ce_data;
1185
1186 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1187 pipe_info->buf_sz,
1188 PCI_DMA_FROMDEVICE);
1189
1190 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1191 ce_data);
1192 if (ret) {
1193 ath10k_warn("could not enqueue to pipe %d (%d)\n",
1194 num, ret);
1195 goto err;
1196 }
1197 }
1198
1199 return ret;
1200
1201err:
1202 ath10k_pci_rx_pipe_cleanup(pipe_info);
1203 return ret;
1204}
1205
1206static int ath10k_pci_post_rx(struct ath10k *ar)
1207{
1208 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 1209 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
1210 const struct ce_attr *attr;
1211 int pipe_num, ret = 0;
1212
1213 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1214 pipe_info = &ar_pci->pipe_info[pipe_num];
1215 attr = &host_ce_config_wlan[pipe_num];
1216
1217 if (attr->dest_nentries == 0)
1218 continue;
1219
1220 ret = ath10k_pci_post_rx_pipe(pipe_info,
1221 attr->dest_nentries - 1);
1222 if (ret) {
1223 ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
1224 pipe_num);
1225
1226 for (; pipe_num >= 0; pipe_num--) {
1227 pipe_info = &ar_pci->pipe_info[pipe_num];
1228 ath10k_pci_rx_pipe_cleanup(pipe_info);
1229 }
1230 return ret;
1231 }
1232 }
1233
1234 return 0;
1235}
1236
1237static int ath10k_pci_hif_start(struct ath10k *ar)
1238{
1239 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1240 int ret;
1241
1242 ret = ath10k_pci_start_ce(ar);
1243 if (ret) {
1244 ath10k_warn("could not start CE (%d)\n", ret);
1245 return ret;
1246 }
1247
1248 /* Post buffers once to start things off. */
1249 ret = ath10k_pci_post_rx(ar);
1250 if (ret) {
1251 ath10k_warn("could not post rx pipes (%d)\n", ret);
1252 return ret;
1253 }
1254
1255 ar_pci->started = 1;
1256 return 0;
1257}
1258
87263e5b 1259static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
5e3dd157
KV
1260{
1261 struct ath10k *ar;
1262 struct ath10k_pci *ar_pci;
2aa39115 1263 struct ath10k_ce_pipe *ce_hdl;
5e3dd157
KV
1264 u32 buf_sz;
1265 struct sk_buff *netbuf;
1266 u32 ce_data;
1267
1268 buf_sz = pipe_info->buf_sz;
1269
1270 /* Unused Copy Engine */
1271 if (buf_sz == 0)
1272 return;
1273
1274 ar = pipe_info->hif_ce_state;
1275 ar_pci = ath10k_pci_priv(ar);
1276
1277 if (!ar_pci->started)
1278 return;
1279
1280 ce_hdl = pipe_info->ce_hdl;
1281
1282 while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1283 &ce_data) == 0) {
1284 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1285 netbuf->len + skb_tailroom(netbuf),
1286 DMA_FROM_DEVICE);
1287 dev_kfree_skb_any(netbuf);
1288 }
1289}
1290
87263e5b 1291static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
5e3dd157
KV
1292{
1293 struct ath10k *ar;
1294 struct ath10k_pci *ar_pci;
2aa39115 1295 struct ath10k_ce_pipe *ce_hdl;
5e3dd157
KV
1296 struct sk_buff *netbuf;
1297 u32 ce_data;
1298 unsigned int nbytes;
1299 unsigned int id;
1300 u32 buf_sz;
1301
1302 buf_sz = pipe_info->buf_sz;
1303
1304 /* Unused Copy Engine */
1305 if (buf_sz == 0)
1306 return;
1307
1308 ar = pipe_info->hif_ce_state;
1309 ar_pci = ath10k_pci_priv(ar);
1310
1311 if (!ar_pci->started)
1312 return;
1313
1314 ce_hdl = pipe_info->ce_hdl;
1315
1316 while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1317 &ce_data, &nbytes, &id) == 0) {
1318 if (netbuf != CE_SENDLIST_ITEM_CTXT)
1319 /*
1320 * Indicate the completion to higer layer to free
1321 * the buffer
1322 */
1323 ATH10K_SKB_CB(netbuf)->is_aborted = true;
1324 ar_pci->msg_callbacks_current.tx_completion(ar,
1325 netbuf,
1326 id);
1327 }
1328}
1329
1330/*
1331 * Cleanup residual buffers for device shutdown:
1332 * buffers that were enqueued for receive
1333 * buffers that were to be sent
1334 * Note: Buffers that had completed but which were
1335 * not yet processed are on a completion queue. They
1336 * are handled when the completion thread shuts down.
1337 */
1338static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1339{
1340 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1341 int pipe_num;
1342
1343 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
87263e5b 1344 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
1345
1346 pipe_info = &ar_pci->pipe_info[pipe_num];
1347 ath10k_pci_rx_pipe_cleanup(pipe_info);
1348 ath10k_pci_tx_pipe_cleanup(pipe_info);
1349 }
1350}
1351
1352static void ath10k_pci_ce_deinit(struct ath10k *ar)
1353{
1354 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 1355 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
1356 int pipe_num;
1357
1358 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1359 pipe_info = &ar_pci->pipe_info[pipe_num];
1360 if (pipe_info->ce_hdl) {
1361 ath10k_ce_deinit(pipe_info->ce_hdl);
1362 pipe_info->ce_hdl = NULL;
1363 pipe_info->buf_sz = 0;
1364 }
1365 }
1366}
1367
32270b61
MK
1368static void ath10k_pci_disable_irqs(struct ath10k *ar)
1369{
1370 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1371 int i;
1372
1373 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1374 disable_irq(ar_pci->pdev->irq + i);
1375}
1376
5e3dd157
KV
1377static void ath10k_pci_hif_stop(struct ath10k *ar)
1378{
32270b61
MK
1379 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1380
5e3dd157
KV
1381 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1382
32270b61
MK
1383 /* Irqs are never explicitly re-enabled. They are implicitly re-enabled
1384 * by ath10k_pci_start_intr(). */
1385 ath10k_pci_disable_irqs(ar);
1386
5e3dd157
KV
1387 ath10k_pci_stop_ce(ar);
1388
1389 /* At this point, asynchronous threads are stopped, the target should
1390 * not DMA nor interrupt. We process the leftovers and then free
1391 * everything else up. */
1392
1393 ath10k_pci_process_ce(ar);
1394 ath10k_pci_cleanup_ce(ar);
1395 ath10k_pci_buffer_cleanup(ar);
32270b61
MK
1396
1397 ar_pci->started = 0;
5e3dd157
KV
1398}
1399
1400static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1401 void *req, u32 req_len,
1402 void *resp, u32 *resp_len)
1403{
1404 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2aa39115
MK
1405 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1406 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1407 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1408 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
5e3dd157
KV
1409 dma_addr_t req_paddr = 0;
1410 dma_addr_t resp_paddr = 0;
1411 struct bmi_xfer xfer = {};
1412 void *treq, *tresp = NULL;
1413 int ret = 0;
1414
1415 if (resp && !resp_len)
1416 return -EINVAL;
1417
1418 if (resp && resp_len && *resp_len == 0)
1419 return -EINVAL;
1420
1421 treq = kmemdup(req, req_len, GFP_KERNEL);
1422 if (!treq)
1423 return -ENOMEM;
1424
1425 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1426 ret = dma_mapping_error(ar->dev, req_paddr);
1427 if (ret)
1428 goto err_dma;
1429
1430 if (resp && resp_len) {
1431 tresp = kzalloc(*resp_len, GFP_KERNEL);
1432 if (!tresp) {
1433 ret = -ENOMEM;
1434 goto err_req;
1435 }
1436
1437 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1438 DMA_FROM_DEVICE);
1439 ret = dma_mapping_error(ar->dev, resp_paddr);
1440 if (ret)
1441 goto err_req;
1442
1443 xfer.wait_for_resp = true;
1444 xfer.resp_len = 0;
1445
1446 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1447 }
1448
1449 init_completion(&xfer.done);
1450
1451 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1452 if (ret)
1453 goto err_resp;
1454
1455 ret = wait_for_completion_timeout(&xfer.done,
1456 BMI_COMMUNICATION_TIMEOUT_HZ);
1457 if (ret <= 0) {
1458 u32 unused_buffer;
1459 unsigned int unused_nbytes;
1460 unsigned int unused_id;
1461
1462 ret = -ETIMEDOUT;
1463 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1464 &unused_nbytes, &unused_id);
1465 } else {
1466 /* non-zero means we did not time out */
1467 ret = 0;
1468 }
1469
1470err_resp:
1471 if (resp) {
1472 u32 unused_buffer;
1473
1474 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1475 dma_unmap_single(ar->dev, resp_paddr,
1476 *resp_len, DMA_FROM_DEVICE);
1477 }
1478err_req:
1479 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1480
1481 if (ret == 0 && resp_len) {
1482 *resp_len = min(*resp_len, xfer.resp_len);
1483 memcpy(resp, tresp, xfer.resp_len);
1484 }
1485err_dma:
1486 kfree(treq);
1487 kfree(tresp);
1488
1489 return ret;
1490}
1491
2aa39115 1492static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state,
5e3dd157
KV
1493 void *transfer_context,
1494 u32 data,
1495 unsigned int nbytes,
1496 unsigned int transfer_id)
1497{
1498 struct bmi_xfer *xfer = transfer_context;
1499
1500 if (xfer->wait_for_resp)
1501 return;
1502
1503 complete(&xfer->done);
1504}
1505
2aa39115 1506static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state,
5e3dd157
KV
1507 void *transfer_context,
1508 u32 data,
1509 unsigned int nbytes,
1510 unsigned int transfer_id,
1511 unsigned int flags)
1512{
1513 struct bmi_xfer *xfer = transfer_context;
1514
1515 if (!xfer->wait_for_resp) {
1516 ath10k_warn("unexpected: BMI data received; ignoring\n");
1517 return;
1518 }
1519
1520 xfer->resp_len = nbytes;
1521 complete(&xfer->done);
1522}
1523
1524/*
1525 * Map from service/endpoint to Copy Engine.
1526 * This table is derived from the CE_PCI TABLE, above.
1527 * It is passed to the Target at startup for use by firmware.
1528 */
1529static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1530 {
1531 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1532 PIPEDIR_OUT, /* out = UL = host -> target */
1533 3,
1534 },
1535 {
1536 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1537 PIPEDIR_IN, /* in = DL = target -> host */
1538 2,
1539 },
1540 {
1541 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1542 PIPEDIR_OUT, /* out = UL = host -> target */
1543 3,
1544 },
1545 {
1546 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1547 PIPEDIR_IN, /* in = DL = target -> host */
1548 2,
1549 },
1550 {
1551 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1552 PIPEDIR_OUT, /* out = UL = host -> target */
1553 3,
1554 },
1555 {
1556 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1557 PIPEDIR_IN, /* in = DL = target -> host */
1558 2,
1559 },
1560 {
1561 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1562 PIPEDIR_OUT, /* out = UL = host -> target */
1563 3,
1564 },
1565 {
1566 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1567 PIPEDIR_IN, /* in = DL = target -> host */
1568 2,
1569 },
1570 {
1571 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1572 PIPEDIR_OUT, /* out = UL = host -> target */
1573 3,
1574 },
1575 {
1576 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1577 PIPEDIR_IN, /* in = DL = target -> host */
1578 2,
1579 },
1580 {
1581 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1582 PIPEDIR_OUT, /* out = UL = host -> target */
1583 0, /* could be moved to 3 (share with WMI) */
1584 },
1585 {
1586 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1587 PIPEDIR_IN, /* in = DL = target -> host */
1588 1,
1589 },
1590 {
1591 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1592 PIPEDIR_OUT, /* out = UL = host -> target */
1593 0,
1594 },
1595 {
1596 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
1597 PIPEDIR_IN, /* in = DL = target -> host */
1598 1,
1599 },
1600 {
1601 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1602 PIPEDIR_OUT, /* out = UL = host -> target */
1603 4,
1604 },
1605 {
1606 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1607 PIPEDIR_IN, /* in = DL = target -> host */
1608 1,
1609 },
1610
1611 /* (Additions here) */
1612
1613 { /* Must be last */
1614 0,
1615 0,
1616 0,
1617 },
1618};
1619
1620/*
1621 * Send an interrupt to the device to wake up the Target CPU
1622 * so it has an opportunity to notice any changed state.
1623 */
1624static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1625{
1626 int ret;
1627 u32 core_ctrl;
1628
1629 ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1630 CORE_CTRL_ADDRESS,
1631 &core_ctrl);
1632 if (ret) {
1633 ath10k_warn("Unable to read core ctrl\n");
1634 return ret;
1635 }
1636
1637 /* A_INUM_FIRMWARE interrupt to Target CPU */
1638 core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1639
1640 ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1641 CORE_CTRL_ADDRESS,
1642 core_ctrl);
1643 if (ret)
1644 ath10k_warn("Unable to set interrupt mask\n");
1645
1646 return ret;
1647}
1648
1649static int ath10k_pci_init_config(struct ath10k *ar)
1650{
1651 u32 interconnect_targ_addr;
1652 u32 pcie_state_targ_addr = 0;
1653 u32 pipe_cfg_targ_addr = 0;
1654 u32 svc_to_pipe_map = 0;
1655 u32 pcie_config_flags = 0;
1656 u32 ealloc_value;
1657 u32 ealloc_targ_addr;
1658 u32 flag2_value;
1659 u32 flag2_targ_addr;
1660 int ret = 0;
1661
1662 /* Download to Target the CE Config and the service-to-CE map */
1663 interconnect_targ_addr =
1664 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1665
1666 /* Supply Target-side CE configuration */
1667 ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1668 &pcie_state_targ_addr);
1669 if (ret != 0) {
1670 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1671 return ret;
1672 }
1673
1674 if (pcie_state_targ_addr == 0) {
1675 ret = -EIO;
1676 ath10k_err("Invalid pcie state addr\n");
1677 return ret;
1678 }
1679
1680 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1681 offsetof(struct pcie_state,
1682 pipe_cfg_addr),
1683 &pipe_cfg_targ_addr);
1684 if (ret != 0) {
1685 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1686 return ret;
1687 }
1688
1689 if (pipe_cfg_targ_addr == 0) {
1690 ret = -EIO;
1691 ath10k_err("Invalid pipe cfg addr\n");
1692 return ret;
1693 }
1694
1695 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1696 target_ce_config_wlan,
1697 sizeof(target_ce_config_wlan));
1698
1699 if (ret != 0) {
1700 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1701 return ret;
1702 }
1703
1704 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1705 offsetof(struct pcie_state,
1706 svc_to_pipe_map),
1707 &svc_to_pipe_map);
1708 if (ret != 0) {
1709 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1710 return ret;
1711 }
1712
1713 if (svc_to_pipe_map == 0) {
1714 ret = -EIO;
1715 ath10k_err("Invalid svc_to_pipe map\n");
1716 return ret;
1717 }
1718
1719 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1720 target_service_to_ce_map_wlan,
1721 sizeof(target_service_to_ce_map_wlan));
1722 if (ret != 0) {
1723 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1724 return ret;
1725 }
1726
1727 ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1728 offsetof(struct pcie_state,
1729 config_flags),
1730 &pcie_config_flags);
1731 if (ret != 0) {
1732 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1733 return ret;
1734 }
1735
1736 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1737
1738 ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1739 offsetof(struct pcie_state, config_flags),
1740 &pcie_config_flags,
1741 sizeof(pcie_config_flags));
1742 if (ret != 0) {
1743 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1744 return ret;
1745 }
1746
1747 /* configure early allocation */
1748 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1749
1750 ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1751 if (ret != 0) {
1752 ath10k_err("Faile to get early alloc val: %d\n", ret);
1753 return ret;
1754 }
1755
1756 /* first bank is switched to IRAM */
1757 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1758 HI_EARLY_ALLOC_MAGIC_MASK);
1759 ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1760 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1761
1762 ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1763 if (ret != 0) {
1764 ath10k_err("Failed to set early alloc val: %d\n", ret);
1765 return ret;
1766 }
1767
1768 /* Tell Target to proceed with initialization */
1769 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1770
1771 ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1772 if (ret != 0) {
1773 ath10k_err("Failed to get option val: %d\n", ret);
1774 return ret;
1775 }
1776
1777 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1778
1779 ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1780 if (ret != 0) {
1781 ath10k_err("Failed to set option val: %d\n", ret);
1782 return ret;
1783 }
1784
1785 return 0;
1786}
1787
1788
1789
1790static int ath10k_pci_ce_init(struct ath10k *ar)
1791{
1792 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
87263e5b 1793 struct ath10k_pci_pipe *pipe_info;
5e3dd157
KV
1794 const struct ce_attr *attr;
1795 int pipe_num;
1796
1797 for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1798 pipe_info = &ar_pci->pipe_info[pipe_num];
1799 pipe_info->pipe_num = pipe_num;
1800 pipe_info->hif_ce_state = ar;
1801 attr = &host_ce_config_wlan[pipe_num];
1802
1803 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1804 if (pipe_info->ce_hdl == NULL) {
1805 ath10k_err("Unable to initialize CE for pipe: %d\n",
1806 pipe_num);
1807
1808 /* It is safe to call it here. It checks if ce_hdl is
1809 * valid for each pipe */
1810 ath10k_pci_ce_deinit(ar);
1811 return -1;
1812 }
1813
1814 if (pipe_num == ar_pci->ce_count - 1) {
1815 /*
1816 * Reserve the ultimate CE for
1817 * diagnostic Window support
1818 */
1819 ar_pci->ce_diag =
1820 ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
1821 continue;
1822 }
1823
1824 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1825 }
1826
1827 /*
1828 * Initially, establish CE completion handlers for use with BMI.
1829 * These are overwritten with generic handlers after we exit BMI phase.
1830 */
1831 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1832 ath10k_ce_send_cb_register(pipe_info->ce_hdl,
1833 ath10k_pci_bmi_send_done, 0);
1834
1835 pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1836 ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
1837 ath10k_pci_bmi_recv_data);
1838
1839 return 0;
1840}
1841
1842static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1843{
1844 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1845 u32 fw_indicator_address, fw_indicator;
1846
1847 ath10k_pci_wake(ar);
1848
1849 fw_indicator_address = ar_pci->fw_indicator_address;
1850 fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1851
1852 if (fw_indicator & FW_IND_EVENT_PENDING) {
1853 /* ACK: clear Target-side pending event */
1854 ath10k_pci_write32(ar, fw_indicator_address,
1855 fw_indicator & ~FW_IND_EVENT_PENDING);
1856
1857 if (ar_pci->started) {
1858 ath10k_pci_hif_dump_area(ar);
1859 } else {
1860 /*
1861 * Probable Target failure before we're prepared
1862 * to handle it. Generally unexpected.
1863 */
1864 ath10k_warn("early firmware event indicated\n");
1865 }
1866 }
1867
1868 ath10k_pci_sleep(ar);
1869}
1870
8c5c5368
MK
1871static int ath10k_pci_hif_power_up(struct ath10k *ar)
1872{
8cc8df90 1873 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
8c5c5368
MK
1874 int ret;
1875
32270b61
MK
1876 ret = ath10k_pci_start_intr(ar);
1877 if (ret) {
1878 ath10k_err("could not start interrupt handling (%d)\n", ret);
1879 goto err;
1880 }
1881
8c5c5368
MK
1882 /*
1883 * Bring the target up cleanly.
1884 *
1885 * The target may be in an undefined state with an AUX-powered Target
1886 * and a Host in WoW mode. If the Host crashes, loses power, or is
1887 * restarted (without unloading the driver) then the Target is left
1888 * (aux) powered and running. On a subsequent driver load, the Target
1889 * is in an unexpected state. We try to catch that here in order to
1890 * reset the Target and retry the probe.
1891 */
1892 ath10k_pci_device_reset(ar);
1893
1894 ret = ath10k_pci_reset_target(ar);
1895 if (ret)
32270b61 1896 goto err_irq;
8c5c5368 1897
8cc8df90 1898 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
8c5c5368 1899 /* Force AWAKE forever */
8c5c5368 1900 ath10k_do_pci_wake(ar);
8c5c5368
MK
1901
1902 ret = ath10k_pci_ce_init(ar);
1903 if (ret)
1904 goto err_ps;
1905
1906 ret = ath10k_pci_init_config(ar);
1907 if (ret)
1908 goto err_ce;
1909
1910 ret = ath10k_pci_wake_target_cpu(ar);
1911 if (ret) {
1912 ath10k_err("could not wake up target CPU (%d)\n", ret);
1913 goto err_ce;
1914 }
1915
1916 return 0;
1917
1918err_ce:
1919 ath10k_pci_ce_deinit(ar);
1920err_ps:
8cc8df90 1921 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
8c5c5368 1922 ath10k_do_pci_sleep(ar);
32270b61
MK
1923err_irq:
1924 ath10k_pci_stop_intr(ar);
8c5c5368
MK
1925err:
1926 return ret;
1927}
1928
1929static void ath10k_pci_hif_power_down(struct ath10k *ar)
1930{
8cc8df90
BM
1931 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1932
32270b61 1933 ath10k_pci_stop_intr(ar);
8cc8df90 1934
8c5c5368 1935 ath10k_pci_ce_deinit(ar);
8cc8df90 1936 if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
8c5c5368
MK
1937 ath10k_do_pci_sleep(ar);
1938}
1939
8cd13cad
MK
1940#ifdef CONFIG_PM
1941
1942#define ATH10K_PCI_PM_CONTROL 0x44
1943
1944static int ath10k_pci_hif_suspend(struct ath10k *ar)
1945{
1946 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1947 struct pci_dev *pdev = ar_pci->pdev;
1948 u32 val;
1949
1950 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1951
1952 if ((val & 0x000000ff) != 0x3) {
1953 pci_save_state(pdev);
1954 pci_disable_device(pdev);
1955 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1956 (val & 0xffffff00) | 0x03);
1957 }
1958
1959 return 0;
1960}
1961
1962static int ath10k_pci_hif_resume(struct ath10k *ar)
1963{
1964 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1965 struct pci_dev *pdev = ar_pci->pdev;
1966 u32 val;
1967
1968 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1969
1970 if ((val & 0x000000ff) != 0) {
1971 pci_restore_state(pdev);
1972 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1973 val & 0xffffff00);
1974 /*
1975 * Suspend/Resume resets the PCI configuration space,
1976 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1977 * to keep PCI Tx retries from interfering with C3 CPU state
1978 */
1979 pci_read_config_dword(pdev, 0x40, &val);
1980
1981 if ((val & 0x0000ff00) != 0)
1982 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1983 }
1984
1985 return 0;
1986}
1987#endif
1988
5e3dd157
KV
1989static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1990 .send_head = ath10k_pci_hif_send_head,
1991 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
1992 .start = ath10k_pci_hif_start,
1993 .stop = ath10k_pci_hif_stop,
1994 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
1995 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
1996 .send_complete_check = ath10k_pci_hif_send_complete_check,
e799bbff 1997 .set_callbacks = ath10k_pci_hif_set_callbacks,
5e3dd157 1998 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
8c5c5368
MK
1999 .power_up = ath10k_pci_hif_power_up,
2000 .power_down = ath10k_pci_hif_power_down,
8cd13cad
MK
2001#ifdef CONFIG_PM
2002 .suspend = ath10k_pci_hif_suspend,
2003 .resume = ath10k_pci_hif_resume,
2004#endif
5e3dd157
KV
2005};
2006
2007static void ath10k_pci_ce_tasklet(unsigned long ptr)
2008{
87263e5b 2009 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
5e3dd157
KV
2010 struct ath10k_pci *ar_pci = pipe->ar_pci;
2011
2012 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2013}
2014
2015static void ath10k_msi_err_tasklet(unsigned long data)
2016{
2017 struct ath10k *ar = (struct ath10k *)data;
2018
2019 ath10k_pci_fw_interrupt_handler(ar);
2020}
2021
2022/*
2023 * Handler for a per-engine interrupt on a PARTICULAR CE.
2024 * This is used in cases where each CE has a private MSI interrupt.
2025 */
2026static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2027{
2028 struct ath10k *ar = arg;
2029 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2030 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2031
e5742672 2032 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
5e3dd157
KV
2033 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
2034 return IRQ_HANDLED;
2035 }
2036
2037 /*
2038 * NOTE: We are able to derive ce_id from irq because we
2039 * use a one-to-one mapping for CE's 0..5.
2040 * CE's 6 & 7 do not use interrupts at all.
2041 *
2042 * This mapping must be kept in sync with the mapping
2043 * used by firmware.
2044 */
2045 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2046 return IRQ_HANDLED;
2047}
2048
2049static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2050{
2051 struct ath10k *ar = arg;
2052 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2053
2054 tasklet_schedule(&ar_pci->msi_fw_err);
2055 return IRQ_HANDLED;
2056}
2057
2058/*
2059 * Top-level interrupt handler for all PCI interrupts from a Target.
2060 * When a block of MSI interrupts is allocated, this top-level handler
2061 * is not used; instead, we directly call the correct sub-handler.
2062 */
2063static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2064{
2065 struct ath10k *ar = arg;
2066 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2067
2068 if (ar_pci->num_msi_intrs == 0) {
2069 /*
2070 * IMPORTANT: INTR_CLR regiser has to be set after
2071 * INTR_ENABLE is set to 0, otherwise interrupt can not be
2072 * really cleared.
2073 */
2074 iowrite32(0, ar_pci->mem +
2075 (SOC_CORE_BASE_ADDRESS |
2076 PCIE_INTR_ENABLE_ADDRESS));
2077 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2078 PCIE_INTR_CE_MASK_ALL,
2079 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2080 PCIE_INTR_CLR_ADDRESS));
2081 /*
2082 * IMPORTANT: this extra read transaction is required to
2083 * flush the posted write buffer.
2084 */
2085 (void) ioread32(ar_pci->mem +
2086 (SOC_CORE_BASE_ADDRESS |
2087 PCIE_INTR_ENABLE_ADDRESS));
2088 }
2089
2090 tasklet_schedule(&ar_pci->intr_tq);
2091
2092 return IRQ_HANDLED;
2093}
2094
2095static void ath10k_pci_tasklet(unsigned long data)
2096{
2097 struct ath10k *ar = (struct ath10k *)data;
2098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2099
2100 ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
2101 ath10k_ce_per_engine_service_any(ar);
2102
2103 if (ar_pci->num_msi_intrs == 0) {
2104 /* Enable Legacy PCI line interrupts */
2105 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2106 PCIE_INTR_CE_MASK_ALL,
2107 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2108 PCIE_INTR_ENABLE_ADDRESS));
2109 /*
2110 * IMPORTANT: this extra read transaction is required to
2111 * flush the posted write buffer
2112 */
2113 (void) ioread32(ar_pci->mem +
2114 (SOC_CORE_BASE_ADDRESS |
2115 PCIE_INTR_ENABLE_ADDRESS));
2116 }
2117}
2118
2119static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
2120{
2121 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2122 int ret;
2123 int i;
2124
2125 ret = pci_enable_msi_block(ar_pci->pdev, num);
2126 if (ret)
2127 return ret;
2128
2129 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2130 ath10k_pci_msi_fw_handler,
2131 IRQF_SHARED, "ath10k_pci", ar);
591ecdb8
MK
2132 if (ret) {
2133 ath10k_warn("request_irq(%d) failed %d\n",
2134 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2135
2136 pci_disable_msi(ar_pci->pdev);
5e3dd157 2137 return ret;
591ecdb8 2138 }
5e3dd157
KV
2139
2140 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2141 ret = request_irq(ar_pci->pdev->irq + i,
2142 ath10k_pci_per_engine_handler,
2143 IRQF_SHARED, "ath10k_pci", ar);
2144 if (ret) {
2145 ath10k_warn("request_irq(%d) failed %d\n",
2146 ar_pci->pdev->irq + i, ret);
2147
87b1423b
MK
2148 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2149 free_irq(ar_pci->pdev->irq + i, ar);
5e3dd157 2150
87b1423b 2151 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
5e3dd157
KV
2152 pci_disable_msi(ar_pci->pdev);
2153 return ret;
2154 }
2155 }
2156
2157 ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
2158 return 0;
2159}
2160
2161static int ath10k_pci_start_intr_msi(struct ath10k *ar)
2162{
2163 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2164 int ret;
2165
2166 ret = pci_enable_msi(ar_pci->pdev);
2167 if (ret < 0)
2168 return ret;
2169
2170 ret = request_irq(ar_pci->pdev->irq,
2171 ath10k_pci_interrupt_handler,
2172 IRQF_SHARED, "ath10k_pci", ar);
2173 if (ret < 0) {
2174 pci_disable_msi(ar_pci->pdev);
2175 return ret;
2176 }
2177
2178 ath10k_info("MSI interrupt handling\n");
2179 return 0;
2180}
2181
2182static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
2183{
2184 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2185 int ret;
2186
2187 ret = request_irq(ar_pci->pdev->irq,
2188 ath10k_pci_interrupt_handler,
2189 IRQF_SHARED, "ath10k_pci", ar);
2190 if (ret < 0)
2191 return ret;
2192
2193 /*
2194 * Make sure to wake the Target before enabling Legacy
2195 * Interrupt.
2196 */
2197 iowrite32(PCIE_SOC_WAKE_V_MASK,
2198 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2199 PCIE_SOC_WAKE_ADDRESS);
2200
2201 ath10k_pci_wait(ar);
2202
2203 /*
2204 * A potential race occurs here: The CORE_BASE write
2205 * depends on target correctly decoding AXI address but
2206 * host won't know when target writes BAR to CORE_CTRL.
2207 * This write might get lost if target has NOT written BAR.
2208 * For now, fix the race by repeating the write in below
2209 * synchronization checking.
2210 */
2211 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2212 PCIE_INTR_CE_MASK_ALL,
2213 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2214 PCIE_INTR_ENABLE_ADDRESS));
2215 iowrite32(PCIE_SOC_WAKE_RESET,
2216 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2217 PCIE_SOC_WAKE_ADDRESS);
2218
2219 ath10k_info("legacy interrupt handling\n");
2220 return 0;
2221}
2222
2223static int ath10k_pci_start_intr(struct ath10k *ar)
2224{
2225 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2226 int num = MSI_NUM_REQUEST;
2227 int ret;
2228 int i;
2229
2230 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
2231 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2232 (unsigned long) ar);
2233
2234 for (i = 0; i < CE_COUNT; i++) {
2235 ar_pci->pipe_info[i].ar_pci = ar_pci;
2236 tasklet_init(&ar_pci->pipe_info[i].intr,
2237 ath10k_pci_ce_tasklet,
2238 (unsigned long)&ar_pci->pipe_info[i]);
2239 }
2240
2241 if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2242 num = 1;
2243
2244 if (num > 1) {
2245 ret = ath10k_pci_start_intr_msix(ar, num);
2246 if (ret == 0)
2247 goto exit;
2248
2249 ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
2250 num = 1;
2251 }
2252
2253 if (num == 1) {
2254 ret = ath10k_pci_start_intr_msi(ar);
2255 if (ret == 0)
2256 goto exit;
2257
2258 ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
2259 ret);
2260 num = 0;
2261 }
2262
2263 ret = ath10k_pci_start_intr_legacy(ar);
2264
2265exit:
2266 ar_pci->num_msi_intrs = num;
2267 ar_pci->ce_count = CE_COUNT;
2268 return ret;
2269}
2270
2271static void ath10k_pci_stop_intr(struct ath10k *ar)
2272{
2273 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2274 int i;
2275
2276 /* There's at least one interrupt irregardless whether its legacy INTR
2277 * or MSI or MSI-X */
2278 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2279 free_irq(ar_pci->pdev->irq + i, ar);
2280
2281 if (ar_pci->num_msi_intrs > 0)
2282 pci_disable_msi(ar_pci->pdev);
2283}
2284
2285static int ath10k_pci_reset_target(struct ath10k *ar)
2286{
2287 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2288 int wait_limit = 300; /* 3 sec */
2289
2290 /* Wait for Target to finish initialization before we proceed. */
2291 iowrite32(PCIE_SOC_WAKE_V_MASK,
2292 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2293 PCIE_SOC_WAKE_ADDRESS);
2294
2295 ath10k_pci_wait(ar);
2296
2297 while (wait_limit-- &&
2298 !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2299 FW_IND_INITIALIZED)) {
2300 if (ar_pci->num_msi_intrs == 0)
2301 /* Fix potential race by repeating CORE_BASE writes */
2302 iowrite32(PCIE_INTR_FIRMWARE_MASK |
2303 PCIE_INTR_CE_MASK_ALL,
2304 ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2305 PCIE_INTR_ENABLE_ADDRESS));
2306 mdelay(10);
2307 }
2308
2309 if (wait_limit < 0) {
2310 ath10k_err("Target stalled\n");
2311 iowrite32(PCIE_SOC_WAKE_RESET,
2312 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2313 PCIE_SOC_WAKE_ADDRESS);
2314 return -EIO;
2315 }
2316
2317 iowrite32(PCIE_SOC_WAKE_RESET,
2318 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2319 PCIE_SOC_WAKE_ADDRESS);
2320
2321 return 0;
2322}
2323
7a5fe3f8 2324static void ath10k_pci_device_reset(struct ath10k *ar)
5e3dd157 2325{
7a5fe3f8 2326 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
5e3dd157
KV
2327 void __iomem *mem = ar_pci->mem;
2328 int i;
2329 u32 val;
2330
2331 if (!SOC_GLOBAL_RESET_ADDRESS)
2332 return;
2333
2334 if (!mem)
2335 return;
2336
2337 ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
2338 PCIE_SOC_WAKE_V_MASK);
2339 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2340 if (ath10k_pci_target_is_awake(ar))
2341 break;
2342 msleep(1);
2343 }
2344
2345 /* Put Target, including PCIe, into RESET. */
2346 val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
2347 val |= 1;
2348 ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2349
2350 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2351 if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2352 RTC_STATE_COLD_RESET_MASK)
2353 break;
2354 msleep(1);
2355 }
2356
2357 /* Pull Target, including PCIe, out of RESET. */
2358 val &= ~1;
2359 ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2360
2361 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2362 if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2363 RTC_STATE_COLD_RESET_MASK))
2364 break;
2365 msleep(1);
2366 }
2367
2368 ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2369}
2370
2371static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2372{
2373 int i;
2374
2375 for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2376 if (!test_bit(i, ar_pci->features))
2377 continue;
2378
2379 switch (i) {
2380 case ATH10K_PCI_FEATURE_MSI_X:
2381 ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
2382 break;
8cc8df90
BM
2383 case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2384 ath10k_dbg(ATH10K_DBG_PCI, "QCA98XX SoC power save enabled\n");
2385 break;
5e3dd157
KV
2386 }
2387 }
2388}
2389
2390static int ath10k_pci_probe(struct pci_dev *pdev,
2391 const struct pci_device_id *pci_dev)
2392{
2393 void __iomem *mem;
2394 int ret = 0;
2395 struct ath10k *ar;
2396 struct ath10k_pci *ar_pci;
2397 u32 lcr_val;
2398
2399 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2400
2401 ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2402 if (ar_pci == NULL)
2403 return -ENOMEM;
2404
2405 ar_pci->pdev = pdev;
2406 ar_pci->dev = &pdev->dev;
2407
2408 switch (pci_dev->device) {
5e3dd157
KV
2409 case QCA988X_2_0_DEVICE_ID:
2410 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2411 break;
2412 default:
2413 ret = -ENODEV;
2414 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2415 goto err_ar_pci;
2416 }
2417
8cc8df90
BM
2418 if (ath10k_target_ps)
2419 set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2420
5e3dd157
KV
2421 ath10k_pci_dump_features(ar_pci);
2422
3a0861ff 2423 ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
5e3dd157
KV
2424 if (!ar) {
2425 ath10k_err("ath10k_core_create failed!\n");
2426 ret = -EINVAL;
2427 goto err_ar_pci;
2428 }
2429
5e3dd157
KV
2430 ar_pci->ar = ar;
2431 ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2432 atomic_set(&ar_pci->keep_awake_count, 0);
2433
2434 pci_set_drvdata(pdev, ar);
2435
2436 /*
2437 * Without any knowledge of the Host, the Target may have been reset or
2438 * power cycled and its Config Space may no longer reflect the PCI
2439 * address space that was assigned earlier by the PCI infrastructure.
2440 * Refresh it now.
2441 */
2442 ret = pci_assign_resource(pdev, BAR_NUM);
2443 if (ret) {
2444 ath10k_err("cannot assign PCI space: %d\n", ret);
2445 goto err_ar;
2446 }
2447
2448 ret = pci_enable_device(pdev);
2449 if (ret) {
2450 ath10k_err("cannot enable PCI device: %d\n", ret);
2451 goto err_ar;
2452 }
2453
2454 /* Request MMIO resources */
2455 ret = pci_request_region(pdev, BAR_NUM, "ath");
2456 if (ret) {
2457 ath10k_err("PCI MMIO reservation error: %d\n", ret);
2458 goto err_device;
2459 }
2460
2461 /*
2462 * Target structures have a limit of 32 bit DMA pointers.
2463 * DMA pointers can be wider than 32 bits by default on some systems.
2464 */
2465 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2466 if (ret) {
2467 ath10k_err("32-bit DMA not available: %d\n", ret);
2468 goto err_region;
2469 }
2470
2471 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2472 if (ret) {
2473 ath10k_err("cannot enable 32-bit consistent DMA\n");
2474 goto err_region;
2475 }
2476
2477 /* Set bus master bit in PCI_COMMAND to enable DMA */
2478 pci_set_master(pdev);
2479
2480 /*
2481 * Temporary FIX: disable ASPM
2482 * Will be removed after the OTP is programmed
2483 */
2484 pci_read_config_dword(pdev, 0x80, &lcr_val);
2485 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2486
2487 /* Arrange for access to Target SoC registers. */
2488 mem = pci_iomap(pdev, BAR_NUM, 0);
2489 if (!mem) {
2490 ath10k_err("PCI iomap error\n");
2491 ret = -EIO;
2492 goto err_master;
2493 }
2494
2495 ar_pci->mem = mem;
2496
2497 spin_lock_init(&ar_pci->ce_lock);
2498
5e3dd157
KV
2499 ret = ath10k_core_register(ar);
2500 if (ret) {
2501 ath10k_err("could not register driver core (%d)\n", ret);
32270b61 2502 goto err_iomap;
5e3dd157
KV
2503 }
2504
2505 return 0;
2506
5e3dd157
KV
2507err_iomap:
2508 pci_iounmap(pdev, mem);
2509err_master:
2510 pci_clear_master(pdev);
2511err_region:
2512 pci_release_region(pdev, BAR_NUM);
2513err_device:
2514 pci_disable_device(pdev);
2515err_ar:
2516 pci_set_drvdata(pdev, NULL);
2517 ath10k_core_destroy(ar);
2518err_ar_pci:
2519 /* call HIF PCI free here */
2520 kfree(ar_pci);
2521
2522 return ret;
2523}
2524
2525static void ath10k_pci_remove(struct pci_dev *pdev)
2526{
2527 struct ath10k *ar = pci_get_drvdata(pdev);
2528 struct ath10k_pci *ar_pci;
2529
2530 ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2531
2532 if (!ar)
2533 return;
2534
2535 ar_pci = ath10k_pci_priv(ar);
2536
2537 if (!ar_pci)
2538 return;
2539
2540 tasklet_kill(&ar_pci->msi_fw_err);
2541
2542 ath10k_core_unregister(ar);
5e3dd157
KV
2543
2544 pci_set_drvdata(pdev, NULL);
2545 pci_iounmap(pdev, ar_pci->mem);
2546 pci_release_region(pdev, BAR_NUM);
2547 pci_clear_master(pdev);
2548 pci_disable_device(pdev);
2549
2550 ath10k_core_destroy(ar);
2551 kfree(ar_pci);
2552}
2553
5e3dd157
KV
2554MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2555
2556static struct pci_driver ath10k_pci_driver = {
2557 .name = "ath10k_pci",
2558 .id_table = ath10k_pci_id_table,
2559 .probe = ath10k_pci_probe,
2560 .remove = ath10k_pci_remove,
5e3dd157
KV
2561};
2562
2563static int __init ath10k_pci_init(void)
2564{
2565 int ret;
2566
2567 ret = pci_register_driver(&ath10k_pci_driver);
2568 if (ret)
2569 ath10k_err("pci_register_driver failed [%d]\n", ret);
2570
2571 return ret;
2572}
2573module_init(ath10k_pci_init);
2574
2575static void __exit ath10k_pci_exit(void)
2576{
2577 pci_unregister_driver(&ath10k_pci_driver);
2578}
2579
2580module_exit(ath10k_pci_exit);
2581
2582MODULE_AUTHOR("Qualcomm Atheros");
2583MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2584MODULE_LICENSE("Dual BSD/GPL");
5e3dd157
KV
2585MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2586MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2587MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
This page took 0.141615 seconds and 5 git commands to generate.