ath6kl: Fix kernel panic during rx aggregation
[deliverable/linux.git] / drivers / net / wireless / ath / ath6kl / sdio.c
CommitLineData
bdcd8170
KV
1/*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
9d9779e7 17#include <linux/module.h>
bdcd8170
KV
18#include <linux/mmc/card.h>
19#include <linux/mmc/mmc.h>
20#include <linux/mmc/host.h>
21#include <linux/mmc/sdio_func.h>
22#include <linux/mmc/sdio_ids.h>
23#include <linux/mmc/sdio.h>
24#include <linux/mmc/sd.h>
2e1cb23c 25#include "hif.h"
bdcd8170
KV
26#include "hif-ops.h"
27#include "target.h"
28#include "debug.h"
9df337a1 29#include "cfg80211.h"
bdcd8170
KV
30
31struct ath6kl_sdio {
32 struct sdio_func *func;
33
34 spinlock_t lock;
35
36 /* free list */
37 struct list_head bus_req_freeq;
38
39 /* available bus requests */
40 struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
41
42 struct ath6kl *ar;
fdb28589 43
bdcd8170
KV
44 u8 *dma_buffer;
45
fdb28589
RM
46 /* protects access to dma_buffer */
47 struct mutex dma_buffer_mutex;
48
bdcd8170
KV
49 /* scatter request list head */
50 struct list_head scat_req;
51
9d82682d
VT
52 /* Avoids disabling irq while the interrupts being handled */
53 struct mutex mtx_irq;
54
bdcd8170 55 spinlock_t scat_lock;
32a07e44
KV
56 bool scatter_enabled;
57
bdcd8170 58 bool is_disabled;
bdcd8170
KV
59 const struct sdio_device_id *id;
60 struct work_struct wr_async_work;
61 struct list_head wr_asyncq;
62 spinlock_t wr_async_lock;
63};
64
65#define CMD53_ARG_READ 0
66#define CMD53_ARG_WRITE 1
67#define CMD53_ARG_BLOCK_BASIS 1
68#define CMD53_ARG_FIXED_ADDRESS 0
69#define CMD53_ARG_INCR_ADDRESS 1
70
71static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
72{
73 return ar->hif_priv;
74}
75
76/*
77 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
78 * Most host controllers assume the buffer is DMA'able and will
79 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
80 * check fails on stack memory.
81 */
82static inline bool buf_needs_bounce(u8 *buf)
83{
84 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
85}
86
87static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
88{
89 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
90
91 /* EP1 has an extended range */
92 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
93 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
94 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
95 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
96 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
97 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
98}
99
100static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
101 u8 mode, u8 opcode, u32 addr,
102 u16 blksz)
103{
104 *arg = (((rw & 1) << 31) |
105 ((func & 0x7) << 28) |
106 ((mode & 1) << 27) |
107 ((opcode & 1) << 26) |
108 ((addr & 0x1FFFF) << 9) |
109 (blksz & 0x1FF));
110}
111
112static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
113 unsigned int address,
114 unsigned char val)
115{
116 const u8 func = 0;
117
118 *arg = ((write & 1) << 31) |
119 ((func & 0x7) << 28) |
120 ((raw & 1) << 27) |
121 (1 << 26) |
122 ((address & 0x1FFFF) << 9) |
123 (1 << 8) |
124 (val & 0xFF);
125}
126
127static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
128 unsigned int address,
129 unsigned char byte)
130{
131 struct mmc_command io_cmd;
132
133 memset(&io_cmd, 0, sizeof(io_cmd));
134 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
135 io_cmd.opcode = SD_IO_RW_DIRECT;
136 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
137
138 return mmc_wait_for_cmd(card->host, &io_cmd, 0);
139}
140
da220695
VT
141static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
142 u8 *buf, u32 len)
143{
144 int ret = 0;
145
861dd058
VT
146 sdio_claim_host(func);
147
da220695 148 if (request & HIF_WRITE) {
f7325b85 149 /* FIXME: looks like ugly workaround for something */
da220695
VT
150 if (addr >= HIF_MBOX_BASE_ADDR &&
151 addr <= HIF_MBOX_END_ADDR)
152 addr += (HIF_MBOX_WIDTH - len);
153
f7325b85 154 /* FIXME: this also looks like ugly workaround */
da220695
VT
155 if (addr == HIF_MBOX0_EXT_BASE_ADDR)
156 addr += HIF_MBOX0_EXT_WIDTH - len;
157
158 if (request & HIF_FIXED_ADDRESS)
159 ret = sdio_writesb(func, addr, buf, len);
160 else
161 ret = sdio_memcpy_toio(func, addr, buf, len);
162 } else {
163 if (request & HIF_FIXED_ADDRESS)
164 ret = sdio_readsb(func, buf, addr, len);
165 else
166 ret = sdio_memcpy_fromio(func, buf, addr, len);
167 }
168
861dd058
VT
169 sdio_release_host(func);
170
f7325b85
KV
171 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
172 request & HIF_WRITE ? "wr" : "rd", addr,
173 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
174 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
175
da220695
VT
176 return ret;
177}
178
bdcd8170
KV
179static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
180{
181 struct bus_request *bus_req;
bdcd8170 182
151bd30b 183 spin_lock_bh(&ar_sdio->lock);
bdcd8170
KV
184
185 if (list_empty(&ar_sdio->bus_req_freeq)) {
151bd30b 186 spin_unlock_bh(&ar_sdio->lock);
bdcd8170
KV
187 return NULL;
188 }
189
190 bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
191 struct bus_request, list);
192 list_del(&bus_req->list);
193
151bd30b 194 spin_unlock_bh(&ar_sdio->lock);
f7325b85
KV
195 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
196 __func__, bus_req);
bdcd8170
KV
197
198 return bus_req;
199}
200
201static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
202 struct bus_request *bus_req)
203{
f7325b85
KV
204 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
205 __func__, bus_req);
bdcd8170 206
151bd30b 207 spin_lock_bh(&ar_sdio->lock);
bdcd8170 208 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
151bd30b 209 spin_unlock_bh(&ar_sdio->lock);
bdcd8170
KV
210}
211
212static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
bdcd8170
KV
213 struct mmc_data *data)
214{
215 struct scatterlist *sg;
216 int i;
217
218 data->blksz = HIF_MBOX_BLOCK_SIZE;
219 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
220
221 ath6kl_dbg(ATH6KL_DBG_SCATTER,
222 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
223 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
224 data->blksz, data->blocks, scat_req->len,
225 scat_req->scat_entries);
226
227 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
228 MMC_DATA_READ;
229
230 /* fill SG entries */
d4df7890 231 sg = scat_req->sgentries;
bdcd8170
KV
232 sg_init_table(sg, scat_req->scat_entries);
233
234 /* assemble SG list */
235 for (i = 0; i < scat_req->scat_entries; i++, sg++) {
bdcd8170
KV
236 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
237 i, scat_req->scat_list[i].buf,
238 scat_req->scat_list[i].len);
239
240 sg_set_buf(sg, scat_req->scat_list[i].buf,
241 scat_req->scat_list[i].len);
242 }
243
244 /* set scatter-gather table for request */
d4df7890 245 data->sg = scat_req->sgentries;
bdcd8170
KV
246 data->sg_len = scat_req->scat_entries;
247}
248
249static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
250 struct bus_request *req)
251{
252 struct mmc_request mmc_req;
253 struct mmc_command cmd;
254 struct mmc_data data;
255 struct hif_scatter_req *scat_req;
256 u8 opcode, rw;
348a8fbc 257 int status, len;
bdcd8170
KV
258
259 scat_req = req->scat_req;
260
348a8fbc
VT
261 if (scat_req->virt_scat) {
262 len = scat_req->len;
263 if (scat_req->req & HIF_BLOCK_BASIS)
264 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
265
266 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
267 scat_req->addr, scat_req->virt_dma_buf,
268 len);
269 goto scat_complete;
270 }
271
bdcd8170
KV
272 memset(&mmc_req, 0, sizeof(struct mmc_request));
273 memset(&cmd, 0, sizeof(struct mmc_command));
274 memset(&data, 0, sizeof(struct mmc_data));
275
d4df7890 276 ath6kl_sdio_setup_scat_data(scat_req, &data);
bdcd8170
KV
277
278 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
279 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
280
281 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
282
283 /* Fixup the address so that the last byte will fall on MBOX EOM */
284 if (scat_req->req & HIF_WRITE) {
285 if (scat_req->addr == HIF_MBOX_BASE_ADDR)
286 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
287 else
288 /* Uses extended address range */
289 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
290 }
291
292 /* set command argument */
293 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
294 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
295 data.blocks);
296
297 cmd.opcode = SD_IO_RW_EXTENDED;
298 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
299
300 mmc_req.cmd = &cmd;
301 mmc_req.data = &data;
302
861dd058
VT
303 sdio_claim_host(ar_sdio->func);
304
bdcd8170
KV
305 mmc_set_data_timeout(&data, ar_sdio->func->card);
306 /* synchronous call to process request */
307 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
308
861dd058
VT
309 sdio_release_host(ar_sdio->func);
310
bdcd8170 311 status = cmd.error ? cmd.error : data.error;
348a8fbc
VT
312
313scat_complete:
bdcd8170
KV
314 scat_req->status = status;
315
316 if (scat_req->status)
317 ath6kl_err("Scatter write request failed:%d\n",
318 scat_req->status);
319
320 if (scat_req->req & HIF_ASYNCHRONOUS)
e041c7f9 321 scat_req->complete(ar_sdio->ar->htc_target, scat_req);
bdcd8170
KV
322
323 return status;
324}
325
3df505ad
VT
326static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
327 int n_scat_entry, int n_scat_req,
328 bool virt_scat)
329{
330 struct hif_scatter_req *s_req;
331 struct bus_request *bus_req;
cfeab10b
VT
332 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
333 u8 *virt_buf;
3df505ad
VT
334
335 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
336 scat_req_sz = sizeof(*s_req) + scat_list_sz;
337
338 if (!virt_scat)
339 sg_sz = sizeof(struct scatterlist) * n_scat_entry;
cfeab10b
VT
340 else
341 buf_sz = 2 * L1_CACHE_BYTES +
342 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
3df505ad
VT
343
344 for (i = 0; i < n_scat_req; i++) {
345 /* allocate the scatter request */
346 s_req = kzalloc(scat_req_sz, GFP_KERNEL);
347 if (!s_req)
348 return -ENOMEM;
349
cfeab10b
VT
350 if (virt_scat) {
351 virt_buf = kzalloc(buf_sz, GFP_KERNEL);
352 if (!virt_buf) {
353 kfree(s_req);
354 return -ENOMEM;
355 }
356
357 s_req->virt_dma_buf =
358 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
359 } else {
3df505ad
VT
360 /* allocate sglist */
361 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
362
363 if (!s_req->sgentries) {
364 kfree(s_req);
365 return -ENOMEM;
366 }
367 }
368
369 /* allocate a bus request for this scatter request */
370 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
371 if (!bus_req) {
372 kfree(s_req->sgentries);
cfeab10b 373 kfree(s_req->virt_dma_buf);
3df505ad
VT
374 kfree(s_req);
375 return -ENOMEM;
376 }
377
378 /* assign the scatter request to this bus request */
379 bus_req->scat_req = s_req;
380 s_req->busrequest = bus_req;
381
4a005c3e
VT
382 s_req->virt_scat = virt_scat;
383
3df505ad
VT
384 /* add it to the scatter pool */
385 hif_scatter_req_add(ar_sdio->ar, s_req);
386 }
387
388 return 0;
389}
390
bdcd8170
KV
391static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
392 u32 len, u32 request)
393{
394 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
395 u8 *tbuf = NULL;
396 int ret;
397 bool bounced = false;
398
399 if (request & HIF_BLOCK_BASIS)
400 len = round_down(len, HIF_MBOX_BLOCK_SIZE);
401
402 if (buf_needs_bounce(buf)) {
403 if (!ar_sdio->dma_buffer)
404 return -ENOMEM;
fdb28589 405 mutex_lock(&ar_sdio->dma_buffer_mutex);
bdcd8170
KV
406 tbuf = ar_sdio->dma_buffer;
407 memcpy(tbuf, buf, len);
408 bounced = true;
409 } else
410 tbuf = buf;
411
da220695
VT
412 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
413 if ((request & HIF_READ) && bounced)
414 memcpy(buf, tbuf, len);
bdcd8170 415
fdb28589
RM
416 if (bounced)
417 mutex_unlock(&ar_sdio->dma_buffer_mutex);
418
bdcd8170
KV
419 return ret;
420}
421
422static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
423 struct bus_request *req)
424{
425 if (req->scat_req)
426 ath6kl_sdio_scat_rw(ar_sdio, req);
427 else {
428 void *context;
429 int status;
430
431 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
432 req->buffer, req->length,
433 req->request);
434 context = req->packet;
435 ath6kl_sdio_free_bus_req(ar_sdio, req);
8e8ddb2b 436 ath6kl_hif_rw_comp_handler(context, status);
bdcd8170
KV
437 }
438}
439
440static void ath6kl_sdio_write_async_work(struct work_struct *work)
441{
442 struct ath6kl_sdio *ar_sdio;
bdcd8170
KV
443 struct bus_request *req, *tmp_req;
444
445 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
bdcd8170 446
151bd30b 447 spin_lock_bh(&ar_sdio->wr_async_lock);
bdcd8170
KV
448 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
449 list_del(&req->list);
151bd30b 450 spin_unlock_bh(&ar_sdio->wr_async_lock);
bdcd8170 451 __ath6kl_sdio_write_async(ar_sdio, req);
151bd30b 452 spin_lock_bh(&ar_sdio->wr_async_lock);
bdcd8170 453 }
151bd30b 454 spin_unlock_bh(&ar_sdio->wr_async_lock);
bdcd8170
KV
455}
456
457static void ath6kl_sdio_irq_handler(struct sdio_func *func)
458{
459 int status;
460 struct ath6kl_sdio *ar_sdio;
461
f7325b85
KV
462 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
463
bdcd8170 464 ar_sdio = sdio_get_drvdata(func);
9d82682d 465 mutex_lock(&ar_sdio->mtx_irq);
bdcd8170
KV
466 /*
467 * Release the host during interrups so we can pick it back up when
468 * we process commands.
469 */
470 sdio_release_host(ar_sdio->func);
471
8e8ddb2b 472 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
bdcd8170 473 sdio_claim_host(ar_sdio->func);
9d82682d 474 mutex_unlock(&ar_sdio->mtx_irq);
bdcd8170
KV
475 WARN_ON(status && status != -ECANCELED);
476}
477
b2e75698 478static int ath6kl_sdio_power_on(struct ath6kl *ar)
bdcd8170 479{
b2e75698 480 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
bdcd8170
KV
481 struct sdio_func *func = ar_sdio->func;
482 int ret = 0;
483
484 if (!ar_sdio->is_disabled)
485 return 0;
486
3ef987be
KV
487 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
488
bdcd8170
KV
489 sdio_claim_host(func);
490
491 ret = sdio_enable_func(func);
492 if (ret) {
493 ath6kl_err("Unable to enable sdio func: %d)\n", ret);
494 sdio_release_host(func);
495 return ret;
496 }
497
498 sdio_release_host(func);
499
500 /*
501 * Wait for hardware to initialise. It should take a lot less than
502 * 10 ms but let's be conservative here.
503 */
504 msleep(10);
505
506 ar_sdio->is_disabled = false;
507
508 return ret;
509}
510
b2e75698 511static int ath6kl_sdio_power_off(struct ath6kl *ar)
bdcd8170 512{
b2e75698 513 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
bdcd8170
KV
514 int ret;
515
516 if (ar_sdio->is_disabled)
517 return 0;
518
3ef987be
KV
519 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
520
bdcd8170
KV
521 /* Disable the card */
522 sdio_claim_host(ar_sdio->func);
523 ret = sdio_disable_func(ar_sdio->func);
524 sdio_release_host(ar_sdio->func);
525
526 if (ret)
527 return ret;
528
529 ar_sdio->is_disabled = true;
530
531 return ret;
532}
533
534static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
535 u32 length, u32 request,
536 struct htc_packet *packet)
537{
538 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
539 struct bus_request *bus_req;
bdcd8170
KV
540
541 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
542
543 if (!bus_req)
544 return -ENOMEM;
545
546 bus_req->address = address;
547 bus_req->buffer = buffer;
548 bus_req->length = length;
549 bus_req->request = request;
550 bus_req->packet = packet;
551
151bd30b 552 spin_lock_bh(&ar_sdio->wr_async_lock);
bdcd8170 553 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
151bd30b 554 spin_unlock_bh(&ar_sdio->wr_async_lock);
bdcd8170
KV
555 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
556
557 return 0;
558}
559
560static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
561{
562 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
563 int ret;
564
565 sdio_claim_host(ar_sdio->func);
566
567 /* Register the isr */
568 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
569 if (ret)
570 ath6kl_err("Failed to claim sdio irq: %d\n", ret);
571
572 sdio_release_host(ar_sdio->func);
573}
574
575static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
576{
577 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
578 int ret;
579
580 sdio_claim_host(ar_sdio->func);
581
9d82682d 582 mutex_lock(&ar_sdio->mtx_irq);
bdcd8170
KV
583
584 ret = sdio_release_irq(ar_sdio->func);
585 if (ret)
586 ath6kl_err("Failed to release sdio irq: %d\n", ret);
587
9d82682d
VT
588 mutex_unlock(&ar_sdio->mtx_irq);
589
bdcd8170
KV
590 sdio_release_host(ar_sdio->func);
591}
592
593static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
594{
595 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
596 struct hif_scatter_req *node = NULL;
bdcd8170 597
151bd30b 598 spin_lock_bh(&ar_sdio->scat_lock);
bdcd8170
KV
599
600 if (!list_empty(&ar_sdio->scat_req)) {
601 node = list_first_entry(&ar_sdio->scat_req,
602 struct hif_scatter_req, list);
603 list_del(&node->list);
604 }
605
151bd30b 606 spin_unlock_bh(&ar_sdio->scat_lock);
bdcd8170
KV
607
608 return node;
609}
610
611static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
612 struct hif_scatter_req *s_req)
613{
614 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
bdcd8170 615
151bd30b 616 spin_lock_bh(&ar_sdio->scat_lock);
bdcd8170
KV
617
618 list_add_tail(&s_req->list, &ar_sdio->scat_req);
619
151bd30b 620 spin_unlock_bh(&ar_sdio->scat_lock);
bdcd8170
KV
621
622}
623
c630d18a
VT
624/* scatter gather read write request */
625static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
626 struct hif_scatter_req *scat_req)
627{
628 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
c630d18a
VT
629 u32 request = scat_req->req;
630 int status = 0;
c630d18a
VT
631
632 if (!scat_req->len)
633 return -EINVAL;
634
635 ath6kl_dbg(ATH6KL_DBG_SCATTER,
636 "hif-scatter: total len: %d scatter entries: %d\n",
637 scat_req->len, scat_req->scat_entries);
638
861dd058 639 if (request & HIF_SYNCHRONOUS)
d4df7890 640 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
861dd058 641 else {
151bd30b 642 spin_lock_bh(&ar_sdio->wr_async_lock);
d4df7890 643 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
151bd30b 644 spin_unlock_bh(&ar_sdio->wr_async_lock);
c630d18a
VT
645 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
646 }
647
648 return status;
649}
650
18a0f93e
VT
651/* clean up scatter support */
652static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
653{
654 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
655 struct hif_scatter_req *s_req, *tmp_req;
18a0f93e
VT
656
657 /* empty the free list */
151bd30b 658 spin_lock_bh(&ar_sdio->scat_lock);
18a0f93e
VT
659 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
660 list_del(&s_req->list);
151bd30b 661 spin_unlock_bh(&ar_sdio->scat_lock);
18a0f93e 662
32a07e44
KV
663 /*
664 * FIXME: should we also call completion handler with
665 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
666 * that the packet is properly freed?
667 */
18a0f93e
VT
668 if (s_req->busrequest)
669 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
670 kfree(s_req->virt_dma_buf);
671 kfree(s_req->sgentries);
672 kfree(s_req);
673
151bd30b 674 spin_lock_bh(&ar_sdio->scat_lock);
18a0f93e 675 }
151bd30b 676 spin_unlock_bh(&ar_sdio->scat_lock);
18a0f93e
VT
677}
678
679/* setup of HIF scatter resources */
50745af7 680static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
18a0f93e
VT
681{
682 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
50745af7 683 struct htc_target *target = ar->htc_target;
cfeab10b
VT
684 int ret;
685 bool virt_scat = false;
18a0f93e 686
32a07e44
KV
687 if (ar_sdio->scatter_enabled)
688 return 0;
689
690 ar_sdio->scatter_enabled = true;
691
18a0f93e
VT
692 /* check if host supports scatter and it meets our requirements */
693 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
cfeab10b 694 ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
18a0f93e
VT
695 ar_sdio->func->card->host->max_segs,
696 MAX_SCATTER_ENTRIES_PER_REQ);
cfeab10b 697 virt_scat = true;
18a0f93e
VT
698 }
699
cfeab10b
VT
700 if (!virt_scat) {
701 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
702 MAX_SCATTER_ENTRIES_PER_REQ,
703 MAX_SCATTER_REQUESTS, virt_scat);
704
705 if (!ret) {
3ef987be
KV
706 ath6kl_dbg(ATH6KL_DBG_BOOT,
707 "hif-scatter enabled requests %d entries %d\n",
cfeab10b
VT
708 MAX_SCATTER_REQUESTS,
709 MAX_SCATTER_ENTRIES_PER_REQ);
710
50745af7
VT
711 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
712 target->max_xfer_szper_scatreq =
cfeab10b
VT
713 MAX_SCATTER_REQ_TRANSFER_SIZE;
714 } else {
715 ath6kl_sdio_cleanup_scatter(ar);
716 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
717 }
718 }
18a0f93e 719
cfeab10b
VT
720 if (virt_scat || ret) {
721 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
722 ATH6KL_SCATTER_ENTRIES_PER_REQ,
723 ATH6KL_SCATTER_REQS, virt_scat);
724
725 if (ret) {
726 ath6kl_err("failed to alloc virtual scatter resources !\n");
727 ath6kl_sdio_cleanup_scatter(ar);
728 return ret;
729 }
730
3ef987be
KV
731 ath6kl_dbg(ATH6KL_DBG_BOOT,
732 "virtual scatter enabled requests %d entries %d\n",
cfeab10b
VT
733 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
734
50745af7
VT
735 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
736 target->max_xfer_szper_scatreq =
cfeab10b 737 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
18a0f93e
VT
738 }
739
18a0f93e
VT
740 return 0;
741}
742
e28e8104
KV
743static int ath6kl_sdio_config(struct ath6kl *ar)
744{
745 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
746 struct sdio_func *func = ar_sdio->func;
747 int ret;
748
749 sdio_claim_host(func);
750
751 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
752 MANUFACTURER_ID_AR6003_BASE) {
753 /* enable 4-bit ASYNC interrupt on AR6003 or later */
754 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
755 CCCR_SDIO_IRQ_MODE_REG,
756 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
757 if (ret) {
758 ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
759 ret);
760 goto out;
761 }
762
763 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
764 }
765
766 /* give us some time to enable, in ms */
767 func->enable_timeout = 100;
768
769 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
770 if (ret) {
771 ath6kl_err("Set sdio block size %d failed: %d)\n",
772 HIF_MBOX_BLOCK_SIZE, ret);
e28e8104
KV
773 goto out;
774 }
775
776out:
777 sdio_release_host(func);
778
779 return ret;
780}
781
0f60e9f4 782static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
abcb344b
KV
783{
784 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
785 struct sdio_func *func = ar_sdio->func;
786 mmc_pm_flag_t flags;
787 int ret;
788
789 flags = sdio_get_host_pm_caps(func);
790
b4b2a0b1
KV
791 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
792
8277de15
KV
793 if (!(flags & MMC_PM_KEEP_POWER) ||
794 (ar->conf_flags & ATH6KL_CONF_SUSPEND_CUTPOWER)) {
b4b2a0b1 795 /* as host doesn't support keep power we need to cut power */
0f60e9f4
RM
796 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER,
797 NULL);
17380859 798 }
abcb344b
KV
799
800 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
801 if (ret) {
802 printk(KERN_ERR "ath6kl: set sdio pm flags failed: %d\n",
803 ret);
804 return ret;
805 }
806
10509f90
KV
807 if (!(flags & MMC_PM_WAKE_SDIO_IRQ))
808 goto deepsleep;
809
810 /* sdio irq wakes up host */
811
812 if (ar->state == ATH6KL_STATE_SCHED_SCAN) {
813 ret = ath6kl_cfg80211_suspend(ar,
814 ATH6KL_CFG_SUSPEND_SCHED_SCAN,
815 NULL);
816 if (ret) {
817 ath6kl_warn("Schedule scan suspend failed: %d", ret);
818 return ret;
819 }
820
821 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
822 if (ret)
823 ath6kl_warn("set sdio wake irq flag failed: %d\n", ret);
824
825 return ret;
826 }
827
828 if (wow) {
d7c44e0b
RM
829 /*
830 * The host sdio controller is capable of keep power and
831 * sdio irq wake up at this point. It's fine to continue
832 * wow suspend operation.
833 */
834 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
835 if (ret)
836 return ret;
837
838 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
839 if (ret)
840 ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
841
842 return ret;
843 }
844
10509f90 845deepsleep:
0f60e9f4 846 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, NULL);
abcb344b
KV
847}
848
aa6cffc1
CN
849static int ath6kl_sdio_resume(struct ath6kl *ar)
850{
b4b2a0b1
KV
851 switch (ar->state) {
852 case ATH6KL_STATE_OFF:
853 case ATH6KL_STATE_CUTPOWER:
854 ath6kl_dbg(ATH6KL_DBG_SUSPEND,
855 "sdio resume configuring sdio\n");
856
857 /* need to set sdio settings after power is cut from sdio */
858 ath6kl_sdio_config(ar);
859 break;
860
861 case ATH6KL_STATE_ON:
b4b2a0b1
KV
862 break;
863
864 case ATH6KL_STATE_DEEPSLEEP:
865 break;
d7c44e0b
RM
866
867 case ATH6KL_STATE_WOW:
868 break;
10509f90
KV
869 case ATH6KL_STATE_SCHED_SCAN:
870 break;
b4b2a0b1
KV
871 }
872
52d81a68 873 ath6kl_cfg80211_resume(ar);
aa6cffc1
CN
874
875 return 0;
876}
877
c7111495
KV
878/* set the window address register (using 4-byte register access ). */
879static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
880{
881 int status;
882 u8 addr_val[4];
883 s32 i;
884
885 /*
886 * Write bytes 1,2,3 of the register to set the upper address bytes,
887 * the LSB is written last to initiate the access cycle
888 */
889
890 for (i = 1; i <= 3; i++) {
891 /*
892 * Fill the buffer with the address byte value we want to
893 * hit 4 times.
894 */
895 memset(addr_val, ((u8 *)&addr)[i], 4);
896
897 /*
898 * Hit each byte of the register address with a 4-byte
899 * write operation to the same address, this is a harmless
900 * operation.
901 */
902 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
903 4, HIF_WR_SYNC_BYTE_FIX);
904 if (status)
905 break;
906 }
907
908 if (status) {
909 ath6kl_err("%s: failed to write initial bytes of 0x%x "
910 "to window reg: 0x%X\n", __func__,
911 addr, reg_addr);
912 return status;
913 }
914
915 /*
916 * Write the address register again, this time write the whole
917 * 4-byte value. The effect here is that the LSB write causes the
918 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
919 * effect since we are writing the same values again
920 */
921 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
922 4, HIF_WR_SYNC_BYTE_INC);
923
924 if (status) {
925 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
926 __func__, addr, reg_addr);
927 return status;
928 }
929
930 return 0;
931}
932
933static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
934{
935 int status;
936
937 /* set window register to start read cycle */
938 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
939 address);
940
941 if (status)
942 return status;
943
944 /* read the data */
945 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
946 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
947 if (status) {
948 ath6kl_err("%s: failed to read from window data addr\n",
949 __func__);
950 return status;
951 }
952
953 return status;
954}
955
956static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
957 __le32 data)
958{
959 int status;
960 u32 val = (__force u32) data;
961
962 /* set write data */
963 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
964 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
965 if (status) {
966 ath6kl_err("%s: failed to write 0x%x to window data addr\n",
967 __func__, data);
968 return status;
969 }
970
971 /* set window register, which starts the write cycle */
972 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
973 address);
974}
975
66b693c3
KV
976static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
977{
978 u32 addr;
979 unsigned long timeout;
980 int ret;
981
982 ar->bmi.cmd_credits = 0;
983
984 /* Read the counter register to get the command credits */
985 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
986
987 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
988 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
989
990 /*
991 * Hit the credit counter with a 4-byte access, the first byte
992 * read will hit the counter and cause a decrement, while the
993 * remaining 3 bytes has no effect. The rationale behind this
994 * is to make all HIF accesses 4-byte aligned.
995 */
996 ret = ath6kl_sdio_read_write_sync(ar, addr,
997 (u8 *)&ar->bmi.cmd_credits, 4,
998 HIF_RD_SYNC_BYTE_INC);
999 if (ret) {
1000 ath6kl_err("Unable to decrement the command credit "
1001 "count register: %d\n", ret);
1002 return ret;
1003 }
1004
1005 /* The counter is only 8 bits.
1006 * Ignore anything in the upper 3 bytes
1007 */
1008 ar->bmi.cmd_credits &= 0xFF;
1009 }
1010
1011 if (!ar->bmi.cmd_credits) {
1012 ath6kl_err("bmi communication timeout\n");
1013 return -ETIMEDOUT;
1014 }
1015
1016 return 0;
1017}
1018
1019static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1020{
1021 unsigned long timeout;
1022 u32 rx_word = 0;
1023 int ret = 0;
1024
1025 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1026 while ((time_before(jiffies, timeout)) && !rx_word) {
1027 ret = ath6kl_sdio_read_write_sync(ar,
1028 RX_LOOKAHEAD_VALID_ADDRESS,
1029 (u8 *)&rx_word, sizeof(rx_word),
1030 HIF_RD_SYNC_BYTE_INC);
1031 if (ret) {
1032 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1033 return ret;
1034 }
1035
1036 /* all we really want is one bit */
1037 rx_word &= (1 << ENDPOINT1);
1038 }
1039
1040 if (!rx_word) {
1041 ath6kl_err("bmi_recv_buf FIFO empty\n");
1042 return -EINVAL;
1043 }
1044
1045 return ret;
1046}
1047
1048static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1049{
1050 int ret;
1051 u32 addr;
1052
1053 ret = ath6kl_sdio_bmi_credits(ar);
1054 if (ret)
1055 return ret;
1056
1057 addr = ar->mbox_info.htc_addr;
1058
1059 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1060 HIF_WR_SYNC_BYTE_INC);
1061 if (ret)
1062 ath6kl_err("unable to send the bmi data to the device\n");
1063
1064 return ret;
1065}
1066
1067static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1068{
1069 int ret;
1070 u32 addr;
1071
1072 /*
1073 * During normal bootup, small reads may be required.
1074 * Rather than issue an HIF Read and then wait as the Target
1075 * adds successive bytes to the FIFO, we wait here until
1076 * we know that response data is available.
1077 *
1078 * This allows us to cleanly timeout on an unexpected
1079 * Target failure rather than risk problems at the HIF level.
1080 * In particular, this avoids SDIO timeouts and possibly garbage
1081 * data on some host controllers. And on an interconnect
1082 * such as Compact Flash (as well as some SDIO masters) which
1083 * does not provide any indication on data timeout, it avoids
1084 * a potential hang or garbage response.
1085 *
1086 * Synchronization is more difficult for reads larger than the
1087 * size of the MBOX FIFO (128B), because the Target is unable
1088 * to push the 129th byte of data until AFTER the Host posts an
1089 * HIF Read and removes some FIFO data. So for large reads the
1090 * Host proceeds to post an HIF Read BEFORE all the data is
1091 * actually available to read. Fortunately, large BMI reads do
1092 * not occur in practice -- they're supported for debug/development.
1093 *
1094 * So Host/Target BMI synchronization is divided into these cases:
1095 * CASE 1: length < 4
1096 * Should not happen
1097 *
1098 * CASE 2: 4 <= length <= 128
1099 * Wait for first 4 bytes to be in FIFO
1100 * If CONSERVATIVE_BMI_READ is enabled, also wait for
1101 * a BMI command credit, which indicates that the ENTIRE
1102 * response is available in the the FIFO
1103 *
1104 * CASE 3: length > 128
1105 * Wait for the first 4 bytes to be in FIFO
1106 *
1107 * For most uses, a small timeout should be sufficient and we will
1108 * usually see a response quickly; but there may be some unusual
1109 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1110 * For now, we use an unbounded busy loop while waiting for
1111 * BMI_EXECUTE.
1112 *
1113 * If BMI_EXECUTE ever needs to support longer-latency execution,
1114 * especially in production, this code needs to be enhanced to sleep
1115 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
1116 * a function of Host processor speed.
1117 */
1118 if (len >= 4) { /* NB: Currently, always true */
1119 ret = ath6kl_bmi_get_rx_lkahd(ar);
1120 if (ret)
1121 return ret;
1122 }
1123
1124 addr = ar->mbox_info.htc_addr;
1125 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1126 HIF_RD_SYNC_BYTE_INC);
1127 if (ret) {
1128 ath6kl_err("Unable to read the bmi data from the device: %d\n",
1129 ret);
1130 return ret;
1131 }
1132
1133 return 0;
1134}
1135
32a07e44
KV
1136static void ath6kl_sdio_stop(struct ath6kl *ar)
1137{
1138 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1139 struct bus_request *req, *tmp_req;
1140 void *context;
1141
1142 /* FIXME: make sure that wq is not queued again */
1143
1144 cancel_work_sync(&ar_sdio->wr_async_work);
1145
1146 spin_lock_bh(&ar_sdio->wr_async_lock);
1147
1148 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1149 list_del(&req->list);
1150
1151 if (req->scat_req) {
1152 /* this is a scatter gather request */
1153 req->scat_req->status = -ECANCELED;
1154 req->scat_req->complete(ar_sdio->ar->htc_target,
1155 req->scat_req);
1156 } else {
1157 context = req->packet;
1158 ath6kl_sdio_free_bus_req(ar_sdio, req);
1159 ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1160 }
1161 }
1162
1163 spin_unlock_bh(&ar_sdio->wr_async_lock);
1164
1165 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1166}
1167
bdcd8170
KV
1168static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1169 .read_write_sync = ath6kl_sdio_read_write_sync,
1170 .write_async = ath6kl_sdio_write_async,
1171 .irq_enable = ath6kl_sdio_irq_enable,
1172 .irq_disable = ath6kl_sdio_irq_disable,
1173 .scatter_req_get = ath6kl_sdio_scatter_req_get,
1174 .scatter_req_add = ath6kl_sdio_scatter_req_add,
1175 .enable_scatter = ath6kl_sdio_enable_scatter,
f74a7361 1176 .scat_req_rw = ath6kl_sdio_async_rw_scatter,
bdcd8170 1177 .cleanup_scatter = ath6kl_sdio_cleanup_scatter,
abcb344b 1178 .suspend = ath6kl_sdio_suspend,
aa6cffc1 1179 .resume = ath6kl_sdio_resume,
c7111495
KV
1180 .diag_read32 = ath6kl_sdio_diag_read32,
1181 .diag_write32 = ath6kl_sdio_diag_write32,
66b693c3
KV
1182 .bmi_read = ath6kl_sdio_bmi_read,
1183 .bmi_write = ath6kl_sdio_bmi_write,
b2e75698
KV
1184 .power_on = ath6kl_sdio_power_on,
1185 .power_off = ath6kl_sdio_power_off,
32a07e44 1186 .stop = ath6kl_sdio_stop,
bdcd8170
KV
1187};
1188
b4b2a0b1
KV
1189#ifdef CONFIG_PM_SLEEP
1190
1191/*
1192 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1193 * suspend. We instead follow cfg80211 suspend/resume handlers.
1194 */
1195static int ath6kl_sdio_pm_suspend(struct device *device)
1196{
1197 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1198
1199 return 0;
1200}
1201
1202static int ath6kl_sdio_pm_resume(struct device *device)
1203{
1204 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1205
1206 return 0;
1207}
1208
1209static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1210 ath6kl_sdio_pm_resume);
1211
1212#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1213
1214#else
1215
1216#define ATH6KL_SDIO_PM_OPS NULL
1217
1218#endif /* CONFIG_PM_SLEEP */
1219
bdcd8170
KV
1220static int ath6kl_sdio_probe(struct sdio_func *func,
1221 const struct sdio_device_id *id)
1222{
1223 int ret;
1224 struct ath6kl_sdio *ar_sdio;
1225 struct ath6kl *ar;
1226 int count;
1227
3ef987be
KV
1228 ath6kl_dbg(ATH6KL_DBG_BOOT,
1229 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
f7325b85
KV
1230 func->num, func->vendor, func->device,
1231 func->max_blksize, func->cur_blksize);
bdcd8170
KV
1232
1233 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1234 if (!ar_sdio)
1235 return -ENOMEM;
1236
1237 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1238 if (!ar_sdio->dma_buffer) {
1239 ret = -ENOMEM;
1240 goto err_hif;
1241 }
1242
1243 ar_sdio->func = func;
1244 sdio_set_drvdata(func, ar_sdio);
1245
1246 ar_sdio->id = id;
1247 ar_sdio->is_disabled = true;
1248
1249 spin_lock_init(&ar_sdio->lock);
1250 spin_lock_init(&ar_sdio->scat_lock);
1251 spin_lock_init(&ar_sdio->wr_async_lock);
fdb28589 1252 mutex_init(&ar_sdio->dma_buffer_mutex);
9d82682d 1253 mutex_init(&ar_sdio->mtx_irq);
bdcd8170
KV
1254
1255 INIT_LIST_HEAD(&ar_sdio->scat_req);
1256 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1257 INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1258
1259 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1260
1261 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1262 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1263
45eaa78f 1264 ar = ath6kl_core_create(&ar_sdio->func->dev);
bdcd8170
KV
1265 if (!ar) {
1266 ath6kl_err("Failed to alloc ath6kl core\n");
1267 ret = -ENOMEM;
1268 goto err_dma;
1269 }
1270
1271 ar_sdio->ar = ar;
77eab1e9 1272 ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
bdcd8170
KV
1273 ar->hif_priv = ar_sdio;
1274 ar->hif_ops = &ath6kl_sdio_ops;
1f4c894d 1275 ar->bmi.max_data_size = 256;
bdcd8170
KV
1276
1277 ath6kl_sdio_set_mbox_info(ar);
1278
e28e8104 1279 ret = ath6kl_sdio_config(ar);
bdcd8170 1280 if (ret) {
e28e8104
KV
1281 ath6kl_err("Failed to config sdio: %d\n", ret);
1282 goto err_core_alloc;
bdcd8170
KV
1283 }
1284
bdcd8170
KV
1285 ret = ath6kl_core_init(ar);
1286 if (ret) {
1287 ath6kl_err("Failed to init ath6kl core\n");
e28e8104 1288 goto err_core_alloc;
bdcd8170
KV
1289 }
1290
1291 return ret;
1292
8dafb70e 1293err_core_alloc:
45eaa78f 1294 ath6kl_core_destroy(ar_sdio->ar);
bdcd8170
KV
1295err_dma:
1296 kfree(ar_sdio->dma_buffer);
1297err_hif:
1298 kfree(ar_sdio);
1299
1300 return ret;
1301}
1302
1303static void ath6kl_sdio_remove(struct sdio_func *func)
1304{
1305 struct ath6kl_sdio *ar_sdio;
1306
3ef987be
KV
1307 ath6kl_dbg(ATH6KL_DBG_BOOT,
1308 "sdio removed func %d vendor 0x%x device 0x%x\n",
f7325b85
KV
1309 func->num, func->vendor, func->device);
1310
bdcd8170
KV
1311 ar_sdio = sdio_get_drvdata(func);
1312
1313 ath6kl_stop_txrx(ar_sdio->ar);
1314 cancel_work_sync(&ar_sdio->wr_async_work);
1315
6db8fa53 1316 ath6kl_core_cleanup(ar_sdio->ar);
0e7de662 1317 ath6kl_core_destroy(ar_sdio->ar);
bdcd8170 1318
bdcd8170
KV
1319 kfree(ar_sdio->dma_buffer);
1320 kfree(ar_sdio);
1321}
1322
1323static const struct sdio_device_id ath6kl_sdio_devices[] = {
1324 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1325 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
d93e2c2f
NG
1326 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1327 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
bdcd8170
KV
1328 {},
1329};
1330
1331MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1332
1333static struct sdio_driver ath6kl_sdio_driver = {
241b128b 1334 .name = "ath6kl_sdio",
bdcd8170
KV
1335 .id_table = ath6kl_sdio_devices,
1336 .probe = ath6kl_sdio_probe,
1337 .remove = ath6kl_sdio_remove,
b4b2a0b1 1338 .drv.pm = ATH6KL_SDIO_PM_OPS,
bdcd8170
KV
1339};
1340
1341static int __init ath6kl_sdio_init(void)
1342{
1343 int ret;
1344
1345 ret = sdio_register_driver(&ath6kl_sdio_driver);
1346 if (ret)
1347 ath6kl_err("sdio driver registration failed: %d\n", ret);
1348
1349 return ret;
1350}
1351
1352static void __exit ath6kl_sdio_exit(void)
1353{
1354 sdio_unregister_driver(&ath6kl_sdio_driver);
1355}
1356
1357module_init(ath6kl_sdio_init);
1358module_exit(ath6kl_sdio_exit);
1359
1360MODULE_AUTHOR("Atheros Communications, Inc.");
1361MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1362MODULE_LICENSE("Dual BSD/GPL");
1363
c0038972
KV
1364MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1365MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1366MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
0d0192ba
KV
1367MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1368MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
c0038972
KV
1369MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1370MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1371MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
0d0192ba
KV
1372MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1373MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
c0038972 1374MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
f0ea5d58
KV
1375MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1376MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
c0038972 1377MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
f0ea5d58
KV
1378MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1379MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
This page took 0.129156 seconds and 5 git commands to generate.