ath9k_hw: fix synth delay for half/quarter channels
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / ar9002_phy.c
CommitLineData
8fe65368 1/*
5b68138e 2 * Copyright (c) 2008-2011 Atheros Communications Inc.
8fe65368
LR
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17/**
18 * DOC: Programming Atheros 802.11n analog front end radios
19 *
20 * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
21 * devices have either an external AR2133 analog front end radio for single
22 * band 2.4 GHz communication or an AR5133 analog front end radio for dual
23 * band 2.4 GHz / 5 GHz communication.
24 *
25 * All devices after the AR5416 and AR5418 family starting with the AR9280
26 * have their analog front radios, MAC/BB and host PCIe/USB interface embedded
27 * into a single-chip and require less programming.
28 *
29 * The following single-chips exist with a respective embedded radio:
30 *
31 * AR9280 - 11n dual-band 2x2 MIMO for PCIe
32 * AR9281 - 11n single-band 1x2 MIMO for PCIe
33 * AR9285 - 11n single-band 1x1 for PCIe
34 * AR9287 - 11n single-band 2x2 MIMO for PCIe
35 *
36 * AR9220 - 11n dual-band 2x2 MIMO for PCI
37 * AR9223 - 11n single-band 2x2 MIMO for PCI
38 *
39 * AR9287 - 11n single-band 1x1 MIMO for USB
40 */
41
42#include "hw.h"
43#include "ar9002_phy.h"
44
45/**
46 * ar9002_hw_set_channel - set channel on single-chip device
47 * @ah: atheros hardware structure
48 * @chan:
49 *
50 * This is the function to change channel on single-chip devices, that is
51 * all devices after ar9280.
52 *
53 * This function takes the channel value in MHz and sets
54 * hardware channel value. Assumes writes have been enabled to analog bus.
55 *
56 * Actual Expression,
57 *
58 * For 2GHz channel,
59 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
60 * (freq_ref = 40MHz)
61 *
62 * For 5GHz channel,
63 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
64 * (freq_ref = 40MHz/(24>>amodeRefSel))
65 */
66static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
67{
68 u16 bMode, fracMode, aModeRefSel = 0;
69 u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
70 struct chan_centers centers;
71 u32 refDivA = 24;
72
73 ath9k_hw_get_channel_centers(ah, chan, &centers);
74 freq = centers.synth_center;
75
76 reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
77 reg32 &= 0xc0000000;
78
79 if (freq < 4800) { /* 2 GHz, fractional mode */
80 u32 txctl;
81 int regWrites = 0;
82
83 bMode = 1;
84 fracMode = 1;
85 aModeRefSel = 0;
7152451a 86 channelSel = CHANSEL_2G(freq);
8fe65368
LR
87
88 if (AR_SREV_9287_11_OR_LATER(ah)) {
89 if (freq == 2484) {
90 /* Enable channel spreading for channel 14 */
91 REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
92 1, regWrites);
93 } else {
94 REG_WRITE_ARRAY(&ah->iniCckfirNormal,
95 1, regWrites);
96 }
97 } else {
98 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
99 if (freq == 2484) {
100 /* Enable channel spreading for channel 14 */
101 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
102 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
103 } else {
104 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
106 }
107 }
108 } else {
109 bMode = 0;
110 fracMode = 0;
111
112 switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
113 case 0:
0407cf1c
FF
114 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
115 aModeRefSel = 0;
116 else if ((freq % 20) == 0)
8fe65368
LR
117 aModeRefSel = 3;
118 else if ((freq % 10) == 0)
119 aModeRefSel = 2;
120 if (aModeRefSel)
121 break;
122 case 1:
123 default:
124 aModeRefSel = 0;
125 /*
126 * Enable 2G (fractional) mode for channels
127 * which are 5MHz spaced.
128 */
129 fracMode = 1;
130 refDivA = 1;
7152451a 131 channelSel = CHANSEL_5G(freq);
8fe65368
LR
132
133 /* RefDivA setting */
134 REG_RMW_FIELD(ah, AR_AN_SYNTH9,
135 AR_AN_SYNTH9_REFDIVA, refDivA);
136
137 }
138
139 if (!fracMode) {
140 ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
141 channelSel = ndiv & 0x1ff;
142 channelFrac = (ndiv & 0xfffffe00) * 2;
143 channelSel = (channelSel << 17) | channelFrac;
144 }
145 }
146
147 reg32 = reg32 |
148 (bMode << 29) |
149 (fracMode << 28) | (aModeRefSel << 26) | (channelSel);
150
151 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
152
153 ah->curchan = chan;
154 ah->curchan_rad_index = -1;
155
156 return 0;
157}
158
159/**
160 * ar9002_hw_spur_mitigate - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
163 *
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
166 */
167static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
168 struct ath9k_channel *chan)
169{
170 int bb_spur = AR_NO_SPUR;
171 int freq;
172 int bin, cur_bin;
173 int bb_spur_off, spur_subchannel_sd;
174 int spur_freq_sd;
175 int spur_delta_phase;
176 int denominator;
177 int upper, lower, cur_vit_mask;
178 int tmp, newVal;
179 int i;
07b2fa5a
JP
180 static const int pilot_mask_reg[4] = {
181 AR_PHY_TIMING7, AR_PHY_TIMING8,
182 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
8fe65368 183 };
07b2fa5a
JP
184 static const int chan_mask_reg[4] = {
185 AR_PHY_TIMING9, AR_PHY_TIMING10,
186 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
8fe65368 187 };
07b2fa5a 188 static const int inc[4] = { 0, 100, 0, 0 };
8fe65368
LR
189 struct chan_centers centers;
190
191 int8_t mask_m[123];
192 int8_t mask_p[123];
193 int8_t mask_amt;
194 int tmp_mask;
195 int cur_bb_spur;
196 bool is2GHz = IS_CHAN_2GHZ(chan);
197
198 memset(&mask_m, 0, sizeof(int8_t) * 123);
199 memset(&mask_p, 0, sizeof(int8_t) * 123);
200
201 ath9k_hw_get_channel_centers(ah, chan, &centers);
202 freq = centers.synth_center;
203
204 ah->config.spurmode = SPUR_ENABLE_EEPROM;
205 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
206 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
207
44cefead
BP
208 if (AR_NO_SPUR == cur_bb_spur)
209 break;
210
8fe65368
LR
211 if (is2GHz)
212 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
213 else
214 cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
215
8fe65368
LR
216 cur_bb_spur = cur_bb_spur - freq;
217
218 if (IS_CHAN_HT40(chan)) {
219 if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
220 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
221 bb_spur = cur_bb_spur;
222 break;
223 }
224 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
225 (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
226 bb_spur = cur_bb_spur;
227 break;
228 }
229 }
230
231 if (AR_NO_SPUR == bb_spur) {
232 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
233 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
234 return;
235 } else {
236 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
237 AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
238 }
239
240 bin = bb_spur * 320;
241
242 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
243
7d0d0df0
S
244 ENABLE_REGWRITE_BUFFER(ah);
245
8fe65368
LR
246 newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
247 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
248 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
249 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
250 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
251
252 newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
253 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
254 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
255 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
256 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
257 REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
258
259 if (IS_CHAN_HT40(chan)) {
260 if (bb_spur < 0) {
261 spur_subchannel_sd = 1;
262 bb_spur_off = bb_spur + 10;
263 } else {
264 spur_subchannel_sd = 0;
265 bb_spur_off = bb_spur - 10;
266 }
267 } else {
268 spur_subchannel_sd = 0;
269 bb_spur_off = bb_spur;
270 }
271
272 if (IS_CHAN_HT40(chan))
273 spur_delta_phase =
274 ((bb_spur * 262144) /
275 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
276 else
277 spur_delta_phase =
278 ((bb_spur * 524288) /
279 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
280
281 denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
282 spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
283
284 newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
285 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
286 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
287 REG_WRITE(ah, AR_PHY_TIMING11, newVal);
288
289 newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
290 REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
291
292 cur_bin = -6000;
293 upper = bin + 100;
294 lower = bin - 100;
295
296 for (i = 0; i < 4; i++) {
297 int pilot_mask = 0;
298 int chan_mask = 0;
299 int bp = 0;
300 for (bp = 0; bp < 30; bp++) {
301 if ((cur_bin > lower) && (cur_bin < upper)) {
302 pilot_mask = pilot_mask | 0x1 << bp;
303 chan_mask = chan_mask | 0x1 << bp;
304 }
305 cur_bin += 100;
306 }
307 cur_bin += inc[i];
308 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
309 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
310 }
311
312 cur_vit_mask = 6100;
313 upper = bin + 120;
314 lower = bin - 120;
315
316 for (i = 0; i < 123; i++) {
317 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
318
319 /* workaround for gcc bug #37014 */
320 volatile int tmp_v = abs(cur_vit_mask - bin);
321
322 if (tmp_v < 75)
323 mask_amt = 1;
324 else
325 mask_amt = 0;
326 if (cur_vit_mask < 0)
327 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
328 else
329 mask_p[cur_vit_mask / 100] = mask_amt;
330 }
331 cur_vit_mask -= 100;
332 }
333
334 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
335 | (mask_m[48] << 26) | (mask_m[49] << 24)
336 | (mask_m[50] << 22) | (mask_m[51] << 20)
337 | (mask_m[52] << 18) | (mask_m[53] << 16)
338 | (mask_m[54] << 14) | (mask_m[55] << 12)
339 | (mask_m[56] << 10) | (mask_m[57] << 8)
340 | (mask_m[58] << 6) | (mask_m[59] << 4)
341 | (mask_m[60] << 2) | (mask_m[61] << 0);
342 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
343 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
344
345 tmp_mask = (mask_m[31] << 28)
346 | (mask_m[32] << 26) | (mask_m[33] << 24)
347 | (mask_m[34] << 22) | (mask_m[35] << 20)
348 | (mask_m[36] << 18) | (mask_m[37] << 16)
349 | (mask_m[48] << 14) | (mask_m[39] << 12)
350 | (mask_m[40] << 10) | (mask_m[41] << 8)
351 | (mask_m[42] << 6) | (mask_m[43] << 4)
352 | (mask_m[44] << 2) | (mask_m[45] << 0);
353 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
354 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
355
356 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
357 | (mask_m[18] << 26) | (mask_m[18] << 24)
358 | (mask_m[20] << 22) | (mask_m[20] << 20)
359 | (mask_m[22] << 18) | (mask_m[22] << 16)
360 | (mask_m[24] << 14) | (mask_m[24] << 12)
361 | (mask_m[25] << 10) | (mask_m[26] << 8)
362 | (mask_m[27] << 6) | (mask_m[28] << 4)
363 | (mask_m[29] << 2) | (mask_m[30] << 0);
364 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
365 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
366
367 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
368 | (mask_m[2] << 26) | (mask_m[3] << 24)
369 | (mask_m[4] << 22) | (mask_m[5] << 20)
370 | (mask_m[6] << 18) | (mask_m[7] << 16)
371 | (mask_m[8] << 14) | (mask_m[9] << 12)
372 | (mask_m[10] << 10) | (mask_m[11] << 8)
373 | (mask_m[12] << 6) | (mask_m[13] << 4)
374 | (mask_m[14] << 2) | (mask_m[15] << 0);
375 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
376 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
377
378 tmp_mask = (mask_p[15] << 28)
379 | (mask_p[14] << 26) | (mask_p[13] << 24)
380 | (mask_p[12] << 22) | (mask_p[11] << 20)
381 | (mask_p[10] << 18) | (mask_p[9] << 16)
382 | (mask_p[8] << 14) | (mask_p[7] << 12)
383 | (mask_p[6] << 10) | (mask_p[5] << 8)
384 | (mask_p[4] << 6) | (mask_p[3] << 4)
385 | (mask_p[2] << 2) | (mask_p[1] << 0);
386 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
387 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
388
389 tmp_mask = (mask_p[30] << 28)
390 | (mask_p[29] << 26) | (mask_p[28] << 24)
391 | (mask_p[27] << 22) | (mask_p[26] << 20)
392 | (mask_p[25] << 18) | (mask_p[24] << 16)
393 | (mask_p[23] << 14) | (mask_p[22] << 12)
394 | (mask_p[21] << 10) | (mask_p[20] << 8)
395 | (mask_p[19] << 6) | (mask_p[18] << 4)
396 | (mask_p[17] << 2) | (mask_p[16] << 0);
397 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
398 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
399
400 tmp_mask = (mask_p[45] << 28)
401 | (mask_p[44] << 26) | (mask_p[43] << 24)
402 | (mask_p[42] << 22) | (mask_p[41] << 20)
403 | (mask_p[40] << 18) | (mask_p[39] << 16)
404 | (mask_p[38] << 14) | (mask_p[37] << 12)
405 | (mask_p[36] << 10) | (mask_p[35] << 8)
406 | (mask_p[34] << 6) | (mask_p[33] << 4)
407 | (mask_p[32] << 2) | (mask_p[31] << 0);
408 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
409 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
410
411 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
412 | (mask_p[59] << 26) | (mask_p[58] << 24)
413 | (mask_p[57] << 22) | (mask_p[56] << 20)
414 | (mask_p[55] << 18) | (mask_p[54] << 16)
415 | (mask_p[53] << 14) | (mask_p[52] << 12)
416 | (mask_p[51] << 10) | (mask_p[50] << 8)
417 | (mask_p[49] << 6) | (mask_p[48] << 4)
418 | (mask_p[47] << 2) | (mask_p[46] << 0);
419 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
420 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
7d0d0df0
S
421
422 REGWRITE_BUFFER_FLUSH(ah);
8fe65368
LR
423}
424
425static void ar9002_olc_init(struct ath_hw *ah)
426{
427 u32 i;
428
429 if (!OLC_FOR_AR9280_20_LATER)
430 return;
431
432 if (OLC_FOR_AR9287_10_LATER) {
433 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
434 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
435 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
436 AR9287_AN_TXPC0_TXPCMODE,
437 AR9287_AN_TXPC0_TXPCMODE_S,
438 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
439 udelay(100);
440 } else {
441 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
442 ah->originalGain[i] =
443 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
444 AR_PHY_TX_GAIN);
445 ah->PDADCdelta = 0;
446 }
447}
448
64773964
LR
449static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
450 struct ath9k_channel *chan)
451{
804f6acb
FF
452 int ref_div = 5;
453 int pll_div = 0x2c;
64773964
LR
454 u32 pll;
455
804f6acb
FF
456 if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
457 if (AR_SREV_9280_20(ah)) {
458 ref_div = 10;
459 pll_div = 0x50;
460 } else {
461 pll_div = 0x28;
462 }
463 }
464
465 pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
466 pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
64773964
LR
467
468 if (chan && IS_CHAN_HALF_RATE(chan))
469 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
470 else if (chan && IS_CHAN_QUARTER_RATE(chan))
471 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
472
64773964
LR
473 return pll;
474}
475
641d9921
FF
476static void ar9002_hw_do_getnf(struct ath_hw *ah,
477 int16_t nfarray[NUM_NF_READINGS])
478{
641d9921
FF
479 int16_t nf;
480
481 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
7919a57b 482 nfarray[0] = sign_extend32(nf, 8);
641d9921 483
54bd5006 484 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
866b7780 485 if (IS_CHAN_HT40(ah->curchan))
7919a57b 486 nfarray[3] = sign_extend32(nf, 8);
641d9921 487
54bd5006
FF
488 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
489 return;
641d9921 490
54bd5006 491 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
7919a57b 492 nfarray[1] = sign_extend32(nf, 8);
641d9921 493
54bd5006 494 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
866b7780 495 if (IS_CHAN_HT40(ah->curchan))
7919a57b 496 nfarray[4] = sign_extend32(nf, 8);
641d9921
FF
497}
498
f2552e28
FF
499static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
500{
501 if (AR_SREV_9285(ah)) {
502 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
503 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
504 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
505 } else if (AR_SREV_9287(ah)) {
506 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
507 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
508 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
509 } else if (AR_SREV_9271(ah)) {
510 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
511 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
512 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
513 } else {
514 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
515 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
516 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
517 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
518 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
519 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
520 }
521}
522
69de3721 523static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
21cc630f
VT
524 struct ath_hw_antcomb_conf *antconf)
525{
526 u32 regval;
527
528 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
529 antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
530 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
531 antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
532 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
533 antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
534 AR_PHY_9285_FAST_DIV_BIAS_S;
8afbcc8b
MSS
535 antconf->lna1_lna2_delta = -3;
536 antconf->div_group = 0;
21cc630f 537}
21cc630f 538
69de3721 539static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
21cc630f
VT
540 struct ath_hw_antcomb_conf *antconf)
541{
542 u32 regval;
543
544 regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
545 regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
546 AR_PHY_9285_ANT_DIV_ALT_LNACONF |
547 AR_PHY_9285_FAST_DIV_BIAS);
548 regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
549 & AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
550 regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
551 & AR_PHY_9285_ANT_DIV_ALT_LNACONF);
552 regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
553 & AR_PHY_9285_FAST_DIV_BIAS);
554
555 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
556}
69de3721
MSS
557
558void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
559{
560 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
561 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
562
563 priv_ops->set_rf_regs = NULL;
564 priv_ops->rf_alloc_ext_banks = NULL;
565 priv_ops->rf_free_ext_banks = NULL;
566 priv_ops->rf_set_freq = ar9002_hw_set_channel;
567 priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
568 priv_ops->olc_init = ar9002_olc_init;
569 priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
570 priv_ops->do_getnf = ar9002_hw_do_getnf;
571
572 ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
573 ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
574
575 ar9002_hw_set_nf_limits(ah);
576}
This page took 0.234993 seconds and 5 git commands to generate.