ath9k_hw: Fix usec to hw clock conversion in 5Ghz for ar9003
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
CommitLineData
b5aec950
S
1/*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
c46917bb 17#include "hw.h"
8fe65368 18#include "ar9002_phy.h"
b5aec950
S
19
20static void ath9k_get_txgain_index(struct ath_hw *ah,
21 struct ath9k_channel *chan,
22 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
24{
25 u8 pcdac, i = 0;
26 u16 idxL = 0, idxR = 0, numPiers;
27 bool match;
28 struct chan_centers centers;
29
30 ath9k_hw_get_channel_centers(ah, chan, &centers);
31
32 for (numPiers = 0; numPiers < availPiers; numPiers++)
33 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 break;
35
36 match = ath9k_hw_get_lower_upper_index(
37 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 calChans, numPiers, &idxL, &idxR);
39 if (match) {
40 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 } else {
43 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
46 }
47
48 while (pcdac > ah->originalGain[i] &&
49 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 i++;
51
52 *pcdacIdx = i;
53 return;
54}
55
56static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
60{
61 u32 i;
62 u32 offset;
63
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
78}
79
80static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81{
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83}
84
85static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86{
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88}
89
90static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
91{
92#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
5bb12791 93 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
96
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
5bb12791 98 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
b5aec950 99 eep_data)) {
c46917bb
LR
100 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
101 "Unable to read eeprom region\n");
b5aec950
S
102 return false;
103 }
104 eep_data++;
105 }
106 return true;
107#undef SIZE_EEPROM_DEF
108}
109
110static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
111{
112 struct ar5416_eeprom_def *eep =
113 (struct ar5416_eeprom_def *) &ah->eeprom.def;
c46917bb 114 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
115 u16 *eepdata, temp, magic, magic2;
116 u32 sum = 0, el;
117 bool need_swap = false;
118 int i, addr, size;
119
5bb12791 120 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
c46917bb 121 ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
b5aec950
S
122 return false;
123 }
124
125 if (!ath9k_hw_use_flash(ah)) {
c46917bb
LR
126 ath_print(common, ATH_DBG_EEPROM,
127 "Read Magic = 0x%04X\n", magic);
b5aec950
S
128
129 if (magic != AR5416_EEPROM_MAGIC) {
130 magic2 = swab16(magic);
131
132 if (magic2 == AR5416_EEPROM_MAGIC) {
133 size = sizeof(struct ar5416_eeprom_def);
134 need_swap = true;
135 eepdata = (u16 *) (&ah->eeprom);
136
137 for (addr = 0; addr < size / sizeof(u16); addr++) {
138 temp = swab16(*eepdata);
139 *eepdata = temp;
140 eepdata++;
141 }
142 } else {
c46917bb
LR
143 ath_print(common, ATH_DBG_FATAL,
144 "Invalid EEPROM Magic. "
145 "Endianness mismatch.\n");
b5aec950
S
146 return -EINVAL;
147 }
148 }
149 }
150
c46917bb
LR
151 ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
152 need_swap ? "True" : "False");
b5aec950
S
153
154 if (need_swap)
155 el = swab16(ah->eeprom.def.baseEepHeader.length);
156 else
157 el = ah->eeprom.def.baseEepHeader.length;
158
159 if (el > sizeof(struct ar5416_eeprom_def))
160 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
161 else
162 el = el / sizeof(u16);
163
164 eepdata = (u16 *)(&ah->eeprom);
165
166 for (i = 0; i < el; i++)
167 sum ^= *eepdata++;
168
169 if (need_swap) {
170 u32 integer, j;
171 u16 word;
172
c46917bb
LR
173 ath_print(common, ATH_DBG_EEPROM,
174 "EEPROM Endianness is not native.. Changing.\n");
b5aec950
S
175
176 word = swab16(eep->baseEepHeader.length);
177 eep->baseEepHeader.length = word;
178
179 word = swab16(eep->baseEepHeader.checksum);
180 eep->baseEepHeader.checksum = word;
181
182 word = swab16(eep->baseEepHeader.version);
183 eep->baseEepHeader.version = word;
184
185 word = swab16(eep->baseEepHeader.regDmn[0]);
186 eep->baseEepHeader.regDmn[0] = word;
187
188 word = swab16(eep->baseEepHeader.regDmn[1]);
189 eep->baseEepHeader.regDmn[1] = word;
190
191 word = swab16(eep->baseEepHeader.rfSilent);
192 eep->baseEepHeader.rfSilent = word;
193
194 word = swab16(eep->baseEepHeader.blueToothOptions);
195 eep->baseEepHeader.blueToothOptions = word;
196
197 word = swab16(eep->baseEepHeader.deviceCap);
198 eep->baseEepHeader.deviceCap = word;
199
200 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
201 struct modal_eep_header *pModal =
202 &eep->modalHeader[j];
203 integer = swab32(pModal->antCtrlCommon);
204 pModal->antCtrlCommon = integer;
205
206 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
207 integer = swab32(pModal->antCtrlChain[i]);
208 pModal->antCtrlChain[i] = integer;
209 }
210
211 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
212 word = swab16(pModal->spurChans[i].spurChan);
213 pModal->spurChans[i].spurChan = word;
214 }
215 }
216 }
217
218 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
219 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
c46917bb
LR
220 ath_print(common, ATH_DBG_FATAL,
221 "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
b5aec950
S
222 sum, ah->eep_ops->get_eeprom_ver(ah));
223 return -EINVAL;
224 }
225
57b98384
FF
226 /* Enable fixup for AR_AN_TOP2 if necessary */
227 if (AR_SREV_9280_10_OR_LATER(ah) &&
228 (eep->baseEepHeader.version & 0xff) > 0x0a &&
229 eep->baseEepHeader.pwdclkind == 0)
230 ah->need_an_top2_fixup = 1;
231
b5aec950
S
232 return 0;
233}
234
235static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
236 enum eeprom_param param)
237{
238 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
239 struct modal_eep_header *pModal = eep->modalHeader;
240 struct base_eep_header *pBase = &eep->baseEepHeader;
241
242 switch (param) {
243 case EEP_NFTHRESH_5:
244 return pModal[0].noiseFloorThreshCh[0];
245 case EEP_NFTHRESH_2:
246 return pModal[1].noiseFloorThreshCh[0];
49101676 247 case EEP_MAC_LSW:
b5aec950 248 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
49101676 249 case EEP_MAC_MID:
b5aec950 250 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
49101676 251 case EEP_MAC_MSW:
b5aec950
S
252 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
253 case EEP_REG_0:
254 return pBase->regDmn[0];
255 case EEP_REG_1:
256 return pBase->regDmn[1];
257 case EEP_OP_CAP:
258 return pBase->deviceCap;
259 case EEP_OP_MODE:
260 return pBase->opCapFlags;
261 case EEP_RF_SILENT:
262 return pBase->rfSilent;
263 case EEP_OB_5:
264 return pModal[0].ob;
265 case EEP_DB_5:
266 return pModal[0].db;
267 case EEP_OB_2:
268 return pModal[1].ob;
269 case EEP_DB_2:
270 return pModal[1].db;
271 case EEP_MINOR_REV:
272 return AR5416_VER_MASK;
273 case EEP_TX_MASK:
274 return pBase->txMask;
275 case EEP_RX_MASK:
276 return pBase->rxMask;
277 case EEP_RXGAIN_TYPE:
278 return pBase->rxGainType;
279 case EEP_TXGAIN_TYPE:
280 return pBase->txGainType;
281 case EEP_OL_PWRCTRL:
282 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
283 return pBase->openLoopPwrCntl ? true : false;
284 else
285 return false;
286 case EEP_RC_CHAIN_MASK:
287 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
288 return pBase->rcChainMask;
289 else
290 return 0;
291 case EEP_DAC_HPWR_5G:
292 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
293 return pBase->dacHiPwrMode_5G;
294 else
295 return 0;
296 case EEP_FRAC_N_5G:
297 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
298 return pBase->frac_n_5g;
299 else
300 return 0;
e41f0bfc
SB
301 case EEP_PWR_TABLE_OFFSET:
302 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
303 return pBase->pwr_table_offset;
304 else
305 return AR5416_PWR_TABLE_OFFSET_DB;
b5aec950
S
306 default:
307 return 0;
308 }
309}
310
311static void ath9k_hw_def_set_gain(struct ath_hw *ah,
312 struct modal_eep_header *pModal,
313 struct ar5416_eeprom_def *eep,
314 u8 txRxAttenLocal, int regChainOffset, int i)
315{
316 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
317 txRxAttenLocal = pModal->txRxAttenCh[i];
318
319 if (AR_SREV_9280_10_OR_LATER(ah)) {
320 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
321 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
322 pModal->bswMargin[i]);
323 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
324 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
325 pModal->bswAtten[i]);
326 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
327 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
328 pModal->xatten2Margin[i]);
329 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
330 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
331 pModal->xatten2Db[i]);
332 } else {
333 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
334 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
335 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
336 | SM(pModal-> bswMargin[i],
337 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
338 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
339 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
340 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
341 | SM(pModal->bswAtten[i],
342 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
343 }
344 }
345
346 if (AR_SREV_9280_10_OR_LATER(ah)) {
347 REG_RMW_FIELD(ah,
348 AR_PHY_RXGAIN + regChainOffset,
349 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
350 REG_RMW_FIELD(ah,
351 AR_PHY_RXGAIN + regChainOffset,
352 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
353 } else {
354 REG_WRITE(ah,
355 AR_PHY_RXGAIN + regChainOffset,
356 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
357 ~AR_PHY_RXGAIN_TXRX_ATTEN)
358 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
359 REG_WRITE(ah,
360 AR_PHY_GAIN_2GHZ + regChainOffset,
361 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
362 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
363 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
364 }
365}
366
367static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
368 struct ath9k_channel *chan)
369{
370 struct modal_eep_header *pModal;
371 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
372 int i, regChainOffset;
373 u8 txRxAttenLocal;
374
375 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
376 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
377
378 REG_WRITE(ah, AR_PHY_SWITCH_COM,
379 ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
380
381 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
382 if (AR_SREV_9280(ah)) {
383 if (i >= 2)
384 break;
385 }
386
387 if (AR_SREV_5416_20_OR_LATER(ah) &&
388 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
389 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
390 else
391 regChainOffset = i * 0x1000;
392
393 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
394 pModal->antCtrlChain[i]);
395
396 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
397 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
398 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
399 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
400 SM(pModal->iqCalICh[i],
401 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
402 SM(pModal->iqCalQCh[i],
403 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
404
405 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
406 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
407 regChainOffset, i);
408 }
409
410 if (AR_SREV_9280_10_OR_LATER(ah)) {
411 if (IS_CHAN_2GHZ(chan)) {
412 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
413 AR_AN_RF2G1_CH0_OB,
414 AR_AN_RF2G1_CH0_OB_S,
415 pModal->ob);
416 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
417 AR_AN_RF2G1_CH0_DB,
418 AR_AN_RF2G1_CH0_DB_S,
419 pModal->db);
420 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
421 AR_AN_RF2G1_CH1_OB,
422 AR_AN_RF2G1_CH1_OB_S,
423 pModal->ob_ch1);
424 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
425 AR_AN_RF2G1_CH1_DB,
426 AR_AN_RF2G1_CH1_DB_S,
427 pModal->db_ch1);
428 } else {
429 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
430 AR_AN_RF5G1_CH0_OB5,
431 AR_AN_RF5G1_CH0_OB5_S,
432 pModal->ob);
433 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
434 AR_AN_RF5G1_CH0_DB5,
435 AR_AN_RF5G1_CH0_DB5_S,
436 pModal->db);
437 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
438 AR_AN_RF5G1_CH1_OB5,
439 AR_AN_RF5G1_CH1_OB5_S,
440 pModal->ob_ch1);
441 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
442 AR_AN_RF5G1_CH1_DB5,
443 AR_AN_RF5G1_CH1_DB5_S,
444 pModal->db_ch1);
445 }
446 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
447 AR_AN_TOP2_XPABIAS_LVL,
448 AR_AN_TOP2_XPABIAS_LVL_S,
449 pModal->xpaBiasLvl);
450 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
451 AR_AN_TOP2_LOCALBIAS,
452 AR_AN_TOP2_LOCALBIAS_S,
453 pModal->local_bias);
454 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
455 pModal->force_xpaon);
456 }
457
458 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
459 pModal->switchSettling);
460 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
461 pModal->adcDesiredSize);
462
463 if (!AR_SREV_9280_10_OR_LATER(ah))
464 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
465 AR_PHY_DESIRED_SZ_PGA,
466 pModal->pgaDesiredSize);
467
468 REG_WRITE(ah, AR_PHY_RF_CTL4,
469 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
470 | SM(pModal->txEndToXpaOff,
471 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
472 | SM(pModal->txFrameToXpaOn,
473 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
474 | SM(pModal->txFrameToXpaOn,
475 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
476
477 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
478 pModal->txEndToRxOn);
479
480 if (AR_SREV_9280_10_OR_LATER(ah)) {
481 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
482 pModal->thresh62);
483 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
484 AR_PHY_EXT_CCA0_THRESH62,
485 pModal->thresh62);
486 } else {
487 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
488 pModal->thresh62);
489 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
490 AR_PHY_EXT_CCA_THRESH62,
491 pModal->thresh62);
492 }
493
494 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
495 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
496 AR_PHY_TX_END_DATA_START,
497 pModal->txFrameToDataStart);
498 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
499 pModal->txFrameToPaOn);
500 }
501
502 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
503 if (IS_CHAN_HT40(chan))
504 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
505 AR_PHY_SETTLING_SWITCH,
506 pModal->swSettleHt40);
507 }
508
509 if (AR_SREV_9280_20_OR_LATER(ah) &&
510 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
511 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
512 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
513 pModal->miscBits);
514
515
516 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
517 if (IS_CHAN_2GHZ(chan))
518 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
519 eep->baseEepHeader.dacLpMode);
520 else if (eep->baseEepHeader.dacHiPwrMode_5G)
521 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
522 else
523 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
524 eep->baseEepHeader.dacLpMode);
525
d865ca6c
SB
526 udelay(100);
527
b5aec950
S
528 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
529 pModal->miscBits >> 2);
530
531 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
532 AR_PHY_TX_DESIRED_SCALE_CCK,
533 eep->baseEepHeader.desiredScaleCCK);
534 }
535}
536
537static void ath9k_hw_def_set_addac(struct ath_hw *ah,
538 struct ath9k_channel *chan)
539{
540#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
541 struct modal_eep_header *pModal;
542 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
543 u8 biaslevel;
544
545 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
546 return;
547
548 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
549 return;
550
551 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
552
553 if (pModal->xpaBiasLvl != 0xff) {
554 biaslevel = pModal->xpaBiasLvl;
555 } else {
556 u16 resetFreqBin, freqBin, freqCount = 0;
557 struct chan_centers centers;
558
559 ath9k_hw_get_channel_centers(ah, chan, &centers);
560
561 resetFreqBin = FREQ2FBIN(centers.synth_center,
562 IS_CHAN_2GHZ(chan));
563 freqBin = XPA_LVL_FREQ(0) & 0xff;
564 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
565
566 freqCount++;
567
568 while (freqCount < 3) {
569 if (XPA_LVL_FREQ(freqCount) == 0x0)
570 break;
571
572 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
573 if (resetFreqBin >= freqBin)
574 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
575 else
576 break;
577 freqCount++;
578 }
579 }
580
581 if (IS_CHAN_2GHZ(chan)) {
582 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
583 7, 1) & (~0x18)) | biaslevel << 3;
584 } else {
585 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
586 6, 1) & (~0xc0)) | biaslevel << 6;
587 }
588#undef XPA_LVL_FREQ
589}
590
591static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
592 struct ath9k_channel *chan,
593 struct cal_data_per_freq *pRawDataSet,
594 u8 *bChans, u16 availPiers,
595 u16 tPdGainOverlap, int16_t *pMinCalPower,
596 u16 *pPdGainBoundaries, u8 *pPDADCValues,
597 u16 numXpdGains)
598{
599 int i, j, k;
600 int16_t ss;
601 u16 idxL = 0, idxR = 0, numPiers;
602 static u8 vpdTableL[AR5416_NUM_PD_GAINS]
603 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
604 static u8 vpdTableR[AR5416_NUM_PD_GAINS]
605 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
606 static u8 vpdTableI[AR5416_NUM_PD_GAINS]
607 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
608
609 u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
610 u8 minPwrT4[AR5416_NUM_PD_GAINS];
611 u8 maxPwrT4[AR5416_NUM_PD_GAINS];
612 int16_t vpdStep;
613 int16_t tmpVal;
614 u16 sizeCurrVpdTable, maxIndex, tgtIndex;
615 bool match;
616 int16_t minDelta = 0;
617 struct chan_centers centers;
618
619 ath9k_hw_get_channel_centers(ah, chan, &centers);
620
621 for (numPiers = 0; numPiers < availPiers; numPiers++) {
622 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
623 break;
624 }
625
626 match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
627 IS_CHAN_2GHZ(chan)),
628 bChans, numPiers, &idxL, &idxR);
629
630 if (match) {
631 for (i = 0; i < numXpdGains; i++) {
632 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
633 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
634 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
635 pRawDataSet[idxL].pwrPdg[i],
636 pRawDataSet[idxL].vpdPdg[i],
637 AR5416_PD_GAIN_ICEPTS,
638 vpdTableI[i]);
639 }
640 } else {
641 for (i = 0; i < numXpdGains; i++) {
642 pVpdL = pRawDataSet[idxL].vpdPdg[i];
643 pPwrL = pRawDataSet[idxL].pwrPdg[i];
644 pVpdR = pRawDataSet[idxR].vpdPdg[i];
645 pPwrR = pRawDataSet[idxR].pwrPdg[i];
646
647 minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
648
649 maxPwrT4[i] =
650 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
651 pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
652
653
654 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
655 pPwrL, pVpdL,
656 AR5416_PD_GAIN_ICEPTS,
657 vpdTableL[i]);
658 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
659 pPwrR, pVpdR,
660 AR5416_PD_GAIN_ICEPTS,
661 vpdTableR[i]);
662
663 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
664 vpdTableI[i][j] =
665 (u8)(ath9k_hw_interpolate((u16)
666 FREQ2FBIN(centers.
667 synth_center,
668 IS_CHAN_2GHZ
669 (chan)),
670 bChans[idxL], bChans[idxR],
671 vpdTableL[i][j], vpdTableR[i][j]));
672 }
673 }
674 }
675
676 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
677
678 k = 0;
679
680 for (i = 0; i < numXpdGains; i++) {
681 if (i == (numXpdGains - 1))
682 pPdGainBoundaries[i] =
683 (u16)(maxPwrT4[i] / 2);
684 else
685 pPdGainBoundaries[i] =
686 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
687
688 pPdGainBoundaries[i] =
689 min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
690
691 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
692 minDelta = pPdGainBoundaries[0] - 23;
693 pPdGainBoundaries[0] = 23;
694 } else {
695 minDelta = 0;
696 }
697
698 if (i == 0) {
699 if (AR_SREV_9280_10_OR_LATER(ah))
700 ss = (int16_t)(0 - (minPwrT4[i] / 2));
701 else
702 ss = 0;
703 } else {
704 ss = (int16_t)((pPdGainBoundaries[i - 1] -
705 (minPwrT4[i] / 2)) -
706 tPdGainOverlap + 1 + minDelta);
707 }
708 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
709 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
710
711 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
712 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
713 pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
714 ss++;
715 }
716
717 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
718 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
719 (minPwrT4[i] / 2));
720 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
721 tgtIndex : sizeCurrVpdTable;
722
723 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
724 pPDADCValues[k++] = vpdTableI[i][ss++];
725 }
726
727 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
728 vpdTableI[i][sizeCurrVpdTable - 2]);
729 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
730
731 if (tgtIndex > maxIndex) {
732 while ((ss <= tgtIndex) &&
733 (k < (AR5416_NUM_PDADC_VALUES - 1))) {
734 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
735 (ss - maxIndex + 1) * vpdStep));
736 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
737 255 : tmpVal);
738 ss++;
739 }
740 }
741 }
742
743 while (i < AR5416_PD_GAINS_IN_MASK) {
744 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
745 i++;
746 }
747
748 while (k < AR5416_NUM_PDADC_VALUES) {
749 pPDADCValues[k] = pPDADCValues[k - 1];
750 k++;
751 }
752
753 return;
754}
755
e41f0bfc
SB
756static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
757 u16 *gb,
758 u16 numXpdGain,
759 u16 pdGainOverlap_t2,
760 int8_t pwr_table_offset,
761 int16_t *diff)
762
763{
764 u16 k;
765
766 /* Prior to writing the boundaries or the pdadc vs. power table
767 * into the chip registers the default starting point on the pdadc
768 * vs. power table needs to be checked and the curve boundaries
769 * adjusted accordingly
770 */
771 if (AR_SREV_9280_20_OR_LATER(ah)) {
772 u16 gb_limit;
773
774 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
775 /* get the difference in dB */
776 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
777 /* get the number of half dB steps */
778 *diff *= 2;
779 /* change the original gain boundary settings
780 * by the number of half dB steps
781 */
782 for (k = 0; k < numXpdGain; k++)
783 gb[k] = (u16)(gb[k] - *diff);
784 }
785 /* Because of a hardware limitation, ensure the gain boundary
786 * is not larger than (63 - overlap)
787 */
788 gb_limit = (u16)(AR5416_MAX_RATE_POWER - pdGainOverlap_t2);
789
790 for (k = 0; k < numXpdGain; k++)
791 gb[k] = (u16)min(gb_limit, gb[k]);
792 }
793
794 return *diff;
795}
796
797static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
798 int8_t pwr_table_offset,
799 int16_t diff,
800 u8 *pdadcValues)
801{
802#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
803 u16 k;
804
805 /* If this is a board that has a pwrTableOffset that differs from
806 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
807 * pdadc vs pwr table needs to be adjusted prior to writing to the
808 * chip.
809 */
810 if (AR_SREV_9280_20_OR_LATER(ah)) {
811 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
812 /* shift the table to start at the new offset */
813 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
814 pdadcValues[k] = pdadcValues[k + diff];
815 }
816
817 /* fill the back of the table */
818 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
819 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
820 }
821 }
822 }
823#undef NUM_PDADC
824}
825
b5aec950
S
826static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
827 struct ath9k_channel *chan,
828 int16_t *pTxPowerIndexOffset)
829{
830#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
831#define SM_PDGAIN_B(x, y) \
832 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
c46917bb 833 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
834 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
835 struct cal_data_per_freq *pRawDataset;
836 u8 *pCalBChans = NULL;
837 u16 pdGainOverlap_t2;
838 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
839 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
840 u16 numPiers, i, j;
e41f0bfc 841 int16_t tMinCalPower, diff = 0;
b5aec950
S
842 u16 numXpdGain, xpdMask;
843 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
844 u32 reg32, regOffset, regChainOffset;
845 int16_t modalIdx;
e41f0bfc 846 int8_t pwr_table_offset;
b5aec950
S
847
848 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
849 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
850
e41f0bfc
SB
851 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
852
b5aec950
S
853 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
854 AR5416_EEP_MINOR_VER_2) {
855 pdGainOverlap_t2 =
856 pEepData->modalHeader[modalIdx].pdGainOverlap;
857 } else {
858 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
859 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
860 }
861
862 if (IS_CHAN_2GHZ(chan)) {
863 pCalBChans = pEepData->calFreqPier2G;
864 numPiers = AR5416_NUM_2G_CAL_PIERS;
865 } else {
866 pCalBChans = pEepData->calFreqPier5G;
867 numPiers = AR5416_NUM_5G_CAL_PIERS;
868 }
869
870 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
871 pRawDataset = pEepData->calPierData2G[0];
872 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
873 pRawDataset)->vpdPdg[0][0];
874 }
875
876 numXpdGain = 0;
877
878 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
879 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
880 if (numXpdGain >= AR5416_NUM_PD_GAINS)
881 break;
882 xpdGainValues[numXpdGain] =
883 (u16)(AR5416_PD_GAINS_IN_MASK - i);
884 numXpdGain++;
885 }
886 }
887
888 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
889 (numXpdGain - 1) & 0x3);
890 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
891 xpdGainValues[0]);
892 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
893 xpdGainValues[1]);
894 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
895 xpdGainValues[2]);
896
897 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
898 if (AR_SREV_5416_20_OR_LATER(ah) &&
899 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
900 (i != 0)) {
901 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
902 } else
903 regChainOffset = i * 0x1000;
904
905 if (pEepData->baseEepHeader.txMask & (1 << i)) {
906 if (IS_CHAN_2GHZ(chan))
907 pRawDataset = pEepData->calPierData2G[i];
908 else
909 pRawDataset = pEepData->calPierData5G[i];
910
911
912 if (OLC_FOR_AR9280_20_LATER) {
913 u8 pcdacIdx;
914 u8 txPower;
915
916 ath9k_get_txgain_index(ah, chan,
917 (struct calDataPerFreqOpLoop *)pRawDataset,
918 pCalBChans, numPiers, &txPower, &pcdacIdx);
919 ath9k_olc_get_pdadcs(ah, pcdacIdx,
920 txPower/2, pdadcValues);
921 } else {
922 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
923 chan, pRawDataset,
924 pCalBChans, numPiers,
925 pdGainOverlap_t2,
926 &tMinCalPower,
927 gainBoundaries,
928 pdadcValues,
929 numXpdGain);
930 }
931
e41f0bfc
SB
932 diff = ath9k_change_gain_boundary_setting(ah,
933 gainBoundaries,
934 numXpdGain,
935 pdGainOverlap_t2,
936 pwr_table_offset,
937 &diff);
938
b5aec950
S
939 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
940 if (OLC_FOR_AR9280_20_LATER) {
941 REG_WRITE(ah,
942 AR_PHY_TPCRG5 + regChainOffset,
943 SM(0x6,
944 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
945 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
946 SM_PD_GAIN(3) | SM_PD_GAIN(4));
947 } else {
948 REG_WRITE(ah,
949 AR_PHY_TPCRG5 + regChainOffset,
950 SM(pdGainOverlap_t2,
951 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
952 SM_PDGAIN_B(0, 1) |
953 SM_PDGAIN_B(1, 2) |
954 SM_PDGAIN_B(2, 3) |
955 SM_PDGAIN_B(3, 4));
956 }
957 }
958
e41f0bfc
SB
959
960 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
961 diff, pdadcValues);
962
b5aec950
S
963 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
964 for (j = 0; j < 32; j++) {
965 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
966 ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
967 ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
968 ((pdadcValues[4 * j + 3] & 0xFF) << 24);
969 REG_WRITE(ah, regOffset, reg32);
970
c46917bb
LR
971 ath_print(common, ATH_DBG_EEPROM,
972 "PDADC (%d,%4x): %4.4x %8.8x\n",
973 i, regChainOffset, regOffset,
974 reg32);
975 ath_print(common, ATH_DBG_EEPROM,
976 "PDADC: Chain %d | PDADC %3d "
977 "Value %3d | PDADC %3d Value %3d | "
978 "PDADC %3d Value %3d | PDADC %3d "
979 "Value %3d |\n",
980 i, 4 * j, pdadcValues[4 * j],
981 4 * j + 1, pdadcValues[4 * j + 1],
982 4 * j + 2, pdadcValues[4 * j + 2],
983 4 * j + 3,
984 pdadcValues[4 * j + 3]);
b5aec950
S
985
986 regOffset += 4;
987 }
988 }
989 }
990
991 *pTxPowerIndexOffset = 0;
992#undef SM_PD_GAIN
993#undef SM_PDGAIN_B
994}
995
996static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
997 struct ath9k_channel *chan,
998 int16_t *ratesArray,
999 u16 cfgCtl,
1000 u16 AntennaReduction,
1001 u16 twiceMaxRegulatoryPower,
1002 u16 powerLimit)
1003{
1004#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
d865ca6c 1005#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
b5aec950 1006
608b88cb 1007 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
b5aec950
S
1008 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1009 u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1010 static const u16 tpScaleReductionTable[5] =
1011 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1012
1013 int i;
1014 int16_t twiceLargestAntenna;
1015 struct cal_ctl_data *rep;
1016 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1017 0, { 0, 0, 0, 0}
1018 };
1019 struct cal_target_power_leg targetPowerOfdmExt = {
1020 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1021 0, { 0, 0, 0, 0 }
1022 };
1023 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1024 0, {0, 0, 0, 0}
1025 };
1026 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1027 u16 ctlModesFor11a[] =
1028 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1029 u16 ctlModesFor11g[] =
1030 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1031 CTL_2GHT40
1032 };
1033 u16 numCtlModes, *pCtlMode, ctlMode, freq;
1034 struct chan_centers centers;
1035 int tx_chainmask;
1036 u16 twiceMinEdgePower;
1037
1038 tx_chainmask = ah->txchainmask;
1039
1040 ath9k_hw_get_channel_centers(ah, chan, &centers);
1041
1042 twiceLargestAntenna = max(
1043 pEepData->modalHeader
1044 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1045 pEepData->modalHeader
1046 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1047
1048 twiceLargestAntenna = max((u8)twiceLargestAntenna,
1049 pEepData->modalHeader
1050 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1051
1052 twiceLargestAntenna = (int16_t)min(AntennaReduction -
1053 twiceLargestAntenna, 0);
1054
1055 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1056
608b88cb 1057 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
b5aec950 1058 maxRegAllowedPower -=
608b88cb 1059 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
b5aec950
S
1060 }
1061
1062 scaledPower = min(powerLimit, maxRegAllowedPower);
1063
1064 switch (ar5416_get_ntxchains(tx_chainmask)) {
1065 case 1:
1066 break;
1067 case 2:
1068 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1069 break;
1070 case 3:
1071 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1072 break;
1073 }
1074
1075 scaledPower = max((u16)0, scaledPower);
1076
1077 if (IS_CHAN_2GHZ(chan)) {
1078 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1079 SUB_NUM_CTL_MODES_AT_2G_40;
1080 pCtlMode = ctlModesFor11g;
1081
1082 ath9k_hw_get_legacy_target_powers(ah, chan,
1083 pEepData->calTargetPowerCck,
1084 AR5416_NUM_2G_CCK_TARGET_POWERS,
1085 &targetPowerCck, 4, false);
1086 ath9k_hw_get_legacy_target_powers(ah, chan,
1087 pEepData->calTargetPower2G,
1088 AR5416_NUM_2G_20_TARGET_POWERS,
1089 &targetPowerOfdm, 4, false);
1090 ath9k_hw_get_target_powers(ah, chan,
1091 pEepData->calTargetPower2GHT20,
1092 AR5416_NUM_2G_20_TARGET_POWERS,
1093 &targetPowerHt20, 8, false);
1094
1095 if (IS_CHAN_HT40(chan)) {
1096 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1097 ath9k_hw_get_target_powers(ah, chan,
1098 pEepData->calTargetPower2GHT40,
1099 AR5416_NUM_2G_40_TARGET_POWERS,
1100 &targetPowerHt40, 8, true);
1101 ath9k_hw_get_legacy_target_powers(ah, chan,
1102 pEepData->calTargetPowerCck,
1103 AR5416_NUM_2G_CCK_TARGET_POWERS,
1104 &targetPowerCckExt, 4, true);
1105 ath9k_hw_get_legacy_target_powers(ah, chan,
1106 pEepData->calTargetPower2G,
1107 AR5416_NUM_2G_20_TARGET_POWERS,
1108 &targetPowerOfdmExt, 4, true);
1109 }
1110 } else {
1111 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1112 SUB_NUM_CTL_MODES_AT_5G_40;
1113 pCtlMode = ctlModesFor11a;
1114
1115 ath9k_hw_get_legacy_target_powers(ah, chan,
1116 pEepData->calTargetPower5G,
1117 AR5416_NUM_5G_20_TARGET_POWERS,
1118 &targetPowerOfdm, 4, false);
1119 ath9k_hw_get_target_powers(ah, chan,
1120 pEepData->calTargetPower5GHT20,
1121 AR5416_NUM_5G_20_TARGET_POWERS,
1122 &targetPowerHt20, 8, false);
1123
1124 if (IS_CHAN_HT40(chan)) {
1125 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1126 ath9k_hw_get_target_powers(ah, chan,
1127 pEepData->calTargetPower5GHT40,
1128 AR5416_NUM_5G_40_TARGET_POWERS,
1129 &targetPowerHt40, 8, true);
1130 ath9k_hw_get_legacy_target_powers(ah, chan,
1131 pEepData->calTargetPower5G,
1132 AR5416_NUM_5G_20_TARGET_POWERS,
1133 &targetPowerOfdmExt, 4, true);
1134 }
1135 }
1136
1137 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1138 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1139 (pCtlMode[ctlMode] == CTL_2GHT40);
1140 if (isHt40CtlMode)
1141 freq = centers.synth_center;
1142 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1143 freq = centers.ext_center;
1144 else
1145 freq = centers.ctl_center;
1146
1147 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1148 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1149 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1150
1151 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1152 if ((((cfgCtl & ~CTL_MODE_M) |
1153 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1154 pEepData->ctlIndex[i]) ||
1155 (((cfgCtl & ~CTL_MODE_M) |
1156 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1157 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1158 rep = &(pEepData->ctlData[i]);
1159
1160 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1161 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1162 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1163
1164 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1165 twiceMaxEdgePower = min(twiceMaxEdgePower,
1166 twiceMinEdgePower);
1167 } else {
1168 twiceMaxEdgePower = twiceMinEdgePower;
1169 break;
1170 }
1171 }
1172 }
1173
1174 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1175
1176 switch (pCtlMode[ctlMode]) {
1177 case CTL_11B:
1178 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1179 targetPowerCck.tPow2x[i] =
1180 min((u16)targetPowerCck.tPow2x[i],
1181 minCtlPower);
1182 }
1183 break;
1184 case CTL_11A:
1185 case CTL_11G:
1186 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1187 targetPowerOfdm.tPow2x[i] =
1188 min((u16)targetPowerOfdm.tPow2x[i],
1189 minCtlPower);
1190 }
1191 break;
1192 case CTL_5GHT20:
1193 case CTL_2GHT20:
1194 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1195 targetPowerHt20.tPow2x[i] =
1196 min((u16)targetPowerHt20.tPow2x[i],
1197 minCtlPower);
1198 }
1199 break;
1200 case CTL_11B_EXT:
1201 targetPowerCckExt.tPow2x[0] = min((u16)
1202 targetPowerCckExt.tPow2x[0],
1203 minCtlPower);
1204 break;
1205 case CTL_11A_EXT:
1206 case CTL_11G_EXT:
1207 targetPowerOfdmExt.tPow2x[0] = min((u16)
1208 targetPowerOfdmExt.tPow2x[0],
1209 minCtlPower);
1210 break;
1211 case CTL_5GHT40:
1212 case CTL_2GHT40:
1213 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1214 targetPowerHt40.tPow2x[i] =
1215 min((u16)targetPowerHt40.tPow2x[i],
1216 minCtlPower);
1217 }
1218 break;
1219 default:
1220 break;
1221 }
1222 }
1223
1224 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1225 ratesArray[rate18mb] = ratesArray[rate24mb] =
1226 targetPowerOfdm.tPow2x[0];
1227 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1228 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1229 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1230 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1231
1232 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1233 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1234
1235 if (IS_CHAN_2GHZ(chan)) {
1236 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1237 ratesArray[rate2s] = ratesArray[rate2l] =
1238 targetPowerCck.tPow2x[1];
1239 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1240 targetPowerCck.tPow2x[2];
1241 ratesArray[rate11s] = ratesArray[rate11l] =
1242 targetPowerCck.tPow2x[3];
1243 }
1244 if (IS_CHAN_HT40(chan)) {
1245 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1246 ratesArray[rateHt40_0 + i] =
1247 targetPowerHt40.tPow2x[i];
1248 }
1249 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1250 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1251 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1252 if (IS_CHAN_2GHZ(chan)) {
1253 ratesArray[rateExtCck] =
1254 targetPowerCckExt.tPow2x[0];
1255 }
1256 }
1257}
1258
1259static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1260 struct ath9k_channel *chan,
1261 u16 cfgCtl,
1262 u8 twiceAntennaReduction,
1263 u8 twiceMaxRegulatoryPower,
1264 u8 powerLimit)
1265{
1266#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
608b88cb 1267 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
b5aec950
S
1268 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1269 struct modal_eep_header *pModal =
1270 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1271 int16_t ratesArray[Ar5416RateSize];
1272 int16_t txPowerIndexOffset = 0;
1273 u8 ht40PowerIncForPdadc = 2;
1274 int i, cck_ofdm_delta = 0;
1275
1276 memset(ratesArray, 0, sizeof(ratesArray));
1277
1278 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1279 AR5416_EEP_MINOR_VER_2) {
1280 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1281 }
1282
1283 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1284 &ratesArray[0], cfgCtl,
1285 twiceAntennaReduction,
1286 twiceMaxRegulatoryPower,
1287 powerLimit);
1288
1289 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1290
1291 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1292 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1293 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1294 ratesArray[i] = AR5416_MAX_RATE_POWER;
1295 }
1296
1297 if (AR_SREV_9280_10_OR_LATER(ah)) {
e41f0bfc
SB
1298 for (i = 0; i < Ar5416RateSize; i++) {
1299 int8_t pwr_table_offset;
1300
1301 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1302 EEP_PWR_TABLE_OFFSET);
1303 ratesArray[i] -= pwr_table_offset * 2;
1304 }
b5aec950
S
1305 }
1306
1307 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1308 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1309 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1310 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1311 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1312 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1313 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1314 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1315 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1316 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1317
1318 if (IS_CHAN_2GHZ(chan)) {
1319 if (OLC_FOR_AR9280_20_LATER) {
1320 cck_ofdm_delta = 2;
1321 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1322 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1323 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1324 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1325 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1326 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1327 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1328 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1329 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1330 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1331 } else {
1332 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1333 ATH9K_POW_SM(ratesArray[rate2s], 24)
1334 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1335 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1336 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1337 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1338 ATH9K_POW_SM(ratesArray[rate11s], 24)
1339 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1340 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1341 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1342 }
1343 }
1344
1345 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1346 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1347 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1348 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1349 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1350 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1351 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1352 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1353 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1354 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1355
1356 if (IS_CHAN_HT40(chan)) {
1357 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1358 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1359 ht40PowerIncForPdadc, 24)
1360 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1361 ht40PowerIncForPdadc, 16)
1362 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1363 ht40PowerIncForPdadc, 8)
1364 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1365 ht40PowerIncForPdadc, 0));
1366 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1367 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1368 ht40PowerIncForPdadc, 24)
1369 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1370 ht40PowerIncForPdadc, 16)
1371 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1372 ht40PowerIncForPdadc, 8)
1373 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1374 ht40PowerIncForPdadc, 0));
1375 if (OLC_FOR_AR9280_20_LATER) {
1376 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1377 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1378 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1379 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1380 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1381 } else {
1382 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1383 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1384 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1385 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1386 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1387 }
1388 }
1389
1390 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1391 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1392 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1393
1394 i = rate6mb;
1395
1396 if (IS_CHAN_HT40(chan))
1397 i = rateHt40_0;
1398 else if (IS_CHAN_HT20(chan))
1399 i = rateHt20_0;
1400
1401 if (AR_SREV_9280_10_OR_LATER(ah))
608b88cb 1402 regulatory->max_power_level =
e41f0bfc 1403 ratesArray[i] + AR5416_PWR_TABLE_OFFSET_DB * 2;
b5aec950 1404 else
608b88cb 1405 regulatory->max_power_level = ratesArray[i];
b5aec950
S
1406
1407 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1408 case 1:
1409 break;
1410 case 2:
608b88cb 1411 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
b5aec950
S
1412 break;
1413 case 3:
608b88cb 1414 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
b5aec950
S
1415 break;
1416 default:
c46917bb
LR
1417 ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1418 "Invalid chainmask configuration\n");
b5aec950
S
1419 break;
1420 }
1421}
1422
1423static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1424 enum ieee80211_band freq_band)
1425{
1426 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1427 struct modal_eep_header *pModal =
1428 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1429 struct base_eep_header *pBase = &eep->baseEepHeader;
1430 u8 num_ant_config;
1431
1432 num_ant_config = 1;
1433
1434 if (pBase->version >= 0x0E0D)
1435 if (pModal->useAnt1)
1436 num_ant_config += 1;
1437
1438 return num_ant_config;
1439}
1440
1441static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1442 struct ath9k_channel *chan)
1443{
1444 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1445 struct modal_eep_header *pModal =
1446 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1447
1448 return pModal->antCtrlCommon & 0xFFFF;
1449}
1450
1451static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1452{
1453#define EEP_DEF_SPURCHAN \
1454 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
c46917bb 1455 struct ath_common *common = ath9k_hw_common(ah);
b5aec950
S
1456
1457 u16 spur_val = AR_NO_SPUR;
1458
c46917bb
LR
1459 ath_print(common, ATH_DBG_ANI,
1460 "Getting spur idx %d is2Ghz. %d val %x\n",
1461 i, is2GHz, ah->config.spurchans[i][is2GHz]);
b5aec950
S
1462
1463 switch (ah->config.spurmode) {
1464 case SPUR_DISABLE:
1465 break;
1466 case SPUR_ENABLE_IOCTL:
1467 spur_val = ah->config.spurchans[i][is2GHz];
c46917bb
LR
1468 ath_print(common, ATH_DBG_ANI,
1469 "Getting spur val from new loc. %d\n", spur_val);
b5aec950
S
1470 break;
1471 case SPUR_ENABLE_EEPROM:
1472 spur_val = EEP_DEF_SPURCHAN;
1473 break;
1474 }
1475
1476 return spur_val;
1477
1478#undef EEP_DEF_SPURCHAN
1479}
1480
1481const struct eeprom_ops eep_def_ops = {
1482 .check_eeprom = ath9k_hw_def_check_eeprom,
1483 .get_eeprom = ath9k_hw_def_get_eeprom,
1484 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1485 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1486 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1487 .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
1488 .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
1489 .set_board_values = ath9k_hw_def_set_board_values,
1490 .set_addac = ath9k_hw_def_set_addac,
1491 .set_txpower = ath9k_hw_def_set_txpower,
1492 .get_spur_channel = ath9k_hw_def_get_spur_channel
1493};
This page took 0.17926 seconds and 5 git commands to generate.