ath: Copy key cache management functions from ath9k to ath
[deliverable/linux.git] / drivers / net / wireless / ath / key.c
CommitLineData
1bba5b73
BR
1/*
2 * Copyright (c) 2009 Atheros Communications Inc.
3 * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <asm/unaligned.h>
19#include <net/mac80211.h>
20
21#include "ath.h"
22#include "reg.h"
23#include "debug.h"
24
25#define REG_READ (common->ops->read)
26#define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
27
28#define IEEE80211_WEP_NKID 4 /* number of key ids */
29
30/************************/
31/* Key Cache Management */
32/************************/
33
34bool ath_hw_keyreset(struct ath_common *common, u16 entry)
35{
36 u32 keyType;
37 void *ah = common->ah;
38
39 if (entry >= common->keymax) {
40 ath_print(common, ATH_DBG_FATAL,
41 "keychache entry %u out of range\n", entry);
42 return false;
43 }
44
45 keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
46
47 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
48 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
49 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
50 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
51 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
52 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
53 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
54 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
55
56 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
57 u16 micentry = entry + 64;
58
59 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
60 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
61 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
62 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
63
64 }
65
66 return true;
67}
68EXPORT_SYMBOL(ath_hw_keyreset);
69
70bool ath_hw_keysetmac(struct ath_common *common, u16 entry, const u8 *mac)
71{
72 u32 macHi, macLo;
73 u32 unicast_flag = AR_KEYTABLE_VALID;
74 void *ah = common->ah;
75
76 if (entry >= common->keymax) {
77 ath_print(common, ATH_DBG_FATAL,
78 "keychache entry %u out of range\n", entry);
79 return false;
80 }
81
82 if (mac != NULL) {
83 /*
84 * AR_KEYTABLE_VALID indicates that the address is a unicast
85 * address, which must match the transmitter address for
86 * decrypting frames.
87 * Not setting this bit allows the hardware to use the key
88 * for multicast frame decryption.
89 */
90 if (mac[0] & 0x01)
91 unicast_flag = 0;
92
93 macHi = (mac[5] << 8) | mac[4];
94 macLo = (mac[3] << 24) |
95 (mac[2] << 16) |
96 (mac[1] << 8) |
97 mac[0];
98 macLo >>= 1;
99 macLo |= (macHi & 1) << 31;
100 macHi >>= 1;
101 } else {
102 macLo = macHi = 0;
103 }
104 REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
105 REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
106
107 return true;
108}
109
110bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
111 const struct ath_keyval *k,
112 const u8 *mac)
113{
114 void *ah = common->ah;
115 u32 key0, key1, key2, key3, key4;
116 u32 keyType;
117
118 if (entry >= common->keymax) {
119 ath_print(common, ATH_DBG_FATAL,
120 "keycache entry %u out of range\n", entry);
121 return false;
122 }
123
124 switch (k->kv_type) {
125 case ATH_CIPHER_AES_OCB:
126 keyType = AR_KEYTABLE_TYPE_AES;
127 break;
128 case ATH_CIPHER_AES_CCM:
129 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
130 ath_print(common, ATH_DBG_ANY,
131 "AES-CCM not supported by this mac rev\n");
132 return false;
133 }
134 keyType = AR_KEYTABLE_TYPE_CCM;
135 break;
136 case ATH_CIPHER_TKIP:
137 keyType = AR_KEYTABLE_TYPE_TKIP;
138 if (entry + 64 >= common->keymax) {
139 ath_print(common, ATH_DBG_ANY,
140 "entry %u inappropriate for TKIP\n", entry);
141 return false;
142 }
143 break;
144 case ATH_CIPHER_WEP:
145 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
146 ath_print(common, ATH_DBG_ANY,
147 "WEP key length %u too small\n", k->kv_len);
148 return false;
149 }
150 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
151 keyType = AR_KEYTABLE_TYPE_40;
152 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
153 keyType = AR_KEYTABLE_TYPE_104;
154 else
155 keyType = AR_KEYTABLE_TYPE_128;
156 break;
157 case ATH_CIPHER_CLR:
158 keyType = AR_KEYTABLE_TYPE_CLR;
159 break;
160 default:
161 ath_print(common, ATH_DBG_FATAL,
162 "cipher %u not supported\n", k->kv_type);
163 return false;
164 }
165
166 key0 = get_unaligned_le32(k->kv_val + 0);
167 key1 = get_unaligned_le16(k->kv_val + 4);
168 key2 = get_unaligned_le32(k->kv_val + 6);
169 key3 = get_unaligned_le16(k->kv_val + 10);
170 key4 = get_unaligned_le32(k->kv_val + 12);
171 if (k->kv_len <= WLAN_KEY_LEN_WEP104)
172 key4 &= 0xff;
173
174 /*
175 * Note: Key cache registers access special memory area that requires
176 * two 32-bit writes to actually update the values in the internal
177 * memory. Consequently, the exact order and pairs used here must be
178 * maintained.
179 */
180
181 if (keyType == AR_KEYTABLE_TYPE_TKIP) {
182 u16 micentry = entry + 64;
183
184 /*
185 * Write inverted key[47:0] first to avoid Michael MIC errors
186 * on frames that could be sent or received at the same time.
187 * The correct key will be written in the end once everything
188 * else is ready.
189 */
190 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
191 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
192
193 /* Write key[95:48] */
194 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
195 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
196
197 /* Write key[127:96] and key type */
198 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
199 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
200
201 /* Write MAC address for the entry */
202 (void) ath_hw_keysetmac(common, entry, mac);
203
204 if (common->splitmic == 0) {
205 /*
206 * TKIP uses two key cache entries:
207 * Michael MIC TX/RX keys in the same key cache entry
208 * (idx = main index + 64):
209 * key0 [31:0] = RX key [31:0]
210 * key1 [15:0] = TX key [31:16]
211 * key1 [31:16] = reserved
212 * key2 [31:0] = RX key [63:32]
213 * key3 [15:0] = TX key [15:0]
214 * key3 [31:16] = reserved
215 * key4 [31:0] = TX key [63:32]
216 */
217 u32 mic0, mic1, mic2, mic3, mic4;
218
219 mic0 = get_unaligned_le32(k->kv_mic + 0);
220 mic2 = get_unaligned_le32(k->kv_mic + 4);
221 mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
222 mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
223 mic4 = get_unaligned_le32(k->kv_txmic + 4);
224
225 /* Write RX[31:0] and TX[31:16] */
226 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
227 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
228
229 /* Write RX[63:32] and TX[15:0] */
230 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
231 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
232
233 /* Write TX[63:32] and keyType(reserved) */
234 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
235 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
236 AR_KEYTABLE_TYPE_CLR);
237
238 } else {
239 /*
240 * TKIP uses four key cache entries (two for group
241 * keys):
242 * Michael MIC TX/RX keys are in different key cache
243 * entries (idx = main index + 64 for TX and
244 * main index + 32 + 96 for RX):
245 * key0 [31:0] = TX/RX MIC key [31:0]
246 * key1 [31:0] = reserved
247 * key2 [31:0] = TX/RX MIC key [63:32]
248 * key3 [31:0] = reserved
249 * key4 [31:0] = reserved
250 *
251 * Upper layer code will call this function separately
252 * for TX and RX keys when these registers offsets are
253 * used.
254 */
255 u32 mic0, mic2;
256
257 mic0 = get_unaligned_le32(k->kv_mic + 0);
258 mic2 = get_unaligned_le32(k->kv_mic + 4);
259
260 /* Write MIC key[31:0] */
261 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
262 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
263
264 /* Write MIC key[63:32] */
265 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
266 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
267
268 /* Write TX[63:32] and keyType(reserved) */
269 REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
270 REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
271 AR_KEYTABLE_TYPE_CLR);
272 }
273
274 /* MAC address registers are reserved for the MIC entry */
275 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
276 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
277
278 /*
279 * Write the correct (un-inverted) key[47:0] last to enable
280 * TKIP now that all other registers are set with correct
281 * values.
282 */
283 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
284 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
285 } else {
286 /* Write key[47:0] */
287 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
288 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
289
290 /* Write key[95:48] */
291 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
292 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
293
294 /* Write key[127:96] and key type */
295 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
296 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
297
298 /* Write MAC address for the entry */
299 (void) ath_hw_keysetmac(common, entry, mac);
300 }
301
302 return true;
303}
304
305static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
306 struct ath_keyval *hk, const u8 *addr,
307 bool authenticator)
308{
309 const u8 *key_rxmic;
310 const u8 *key_txmic;
311
312 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
313 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
314
315 if (addr == NULL) {
316 /*
317 * Group key installation - only two key cache entries are used
318 * regardless of splitmic capability since group key is only
319 * used either for TX or RX.
320 */
321 if (authenticator) {
322 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
323 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
324 } else {
325 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
326 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
327 }
328 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
329 }
330 if (!common->splitmic) {
331 /* TX and RX keys share the same key cache entry. */
332 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
333 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
334 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
335 }
336
337 /* Separate key cache entries for TX and RX */
338
339 /* TX key goes at first index, RX key at +32. */
340 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
341 if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
342 /* TX MIC entry failed. No need to proceed further */
343 ath_print(common, ATH_DBG_FATAL,
344 "Setting TX MIC Key Failed\n");
345 return 0;
346 }
347
348 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
349 /* XXX delete tx key on failure? */
350 return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
351}
352
353static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
354{
355 int i;
356
357 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
358 if (test_bit(i, common->keymap) ||
359 test_bit(i + 64, common->keymap))
360 continue; /* At least one part of TKIP key allocated */
361 if (common->splitmic &&
362 (test_bit(i + 32, common->keymap) ||
363 test_bit(i + 64 + 32, common->keymap)))
364 continue; /* At least one part of TKIP key allocated */
365
366 /* Found a free slot for a TKIP key */
367 return i;
368 }
369 return -1;
370}
371
372static int ath_reserve_key_cache_slot(struct ath_common *common,
373 u32 cipher)
374{
375 int i;
376
377 if (cipher == WLAN_CIPHER_SUITE_TKIP)
378 return ath_reserve_key_cache_slot_tkip(common);
379
380 /* First, try to find slots that would not be available for TKIP. */
381 if (common->splitmic) {
382 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
383 if (!test_bit(i, common->keymap) &&
384 (test_bit(i + 32, common->keymap) ||
385 test_bit(i + 64, common->keymap) ||
386 test_bit(i + 64 + 32, common->keymap)))
387 return i;
388 if (!test_bit(i + 32, common->keymap) &&
389 (test_bit(i, common->keymap) ||
390 test_bit(i + 64, common->keymap) ||
391 test_bit(i + 64 + 32, common->keymap)))
392 return i + 32;
393 if (!test_bit(i + 64, common->keymap) &&
394 (test_bit(i , common->keymap) ||
395 test_bit(i + 32, common->keymap) ||
396 test_bit(i + 64 + 32, common->keymap)))
397 return i + 64;
398 if (!test_bit(i + 64 + 32, common->keymap) &&
399 (test_bit(i, common->keymap) ||
400 test_bit(i + 32, common->keymap) ||
401 test_bit(i + 64, common->keymap)))
402 return i + 64 + 32;
403 }
404 } else {
405 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
406 if (!test_bit(i, common->keymap) &&
407 test_bit(i + 64, common->keymap))
408 return i;
409 if (test_bit(i, common->keymap) &&
410 !test_bit(i + 64, common->keymap))
411 return i + 64;
412 }
413 }
414
415 /* No partially used TKIP slots, pick any available slot */
416 for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
417 /* Do not allow slots that could be needed for TKIP group keys
418 * to be used. This limitation could be removed if we know that
419 * TKIP will not be used. */
420 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
421 continue;
422 if (common->splitmic) {
423 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
424 continue;
425 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
426 continue;
427 }
428
429 if (!test_bit(i, common->keymap))
430 return i; /* Found a free slot for a key */
431 }
432
433 /* No free slot found */
434 return -1;
435}
436
437/*
438 * Configure encryption in the HW.
439 */
440int ath_key_config(struct ath_common *common,
441 struct ieee80211_vif *vif,
442 struct ieee80211_sta *sta,
443 struct ieee80211_key_conf *key)
444{
445 struct ath_keyval hk;
446 const u8 *mac = NULL;
447 u8 gmac[ETH_ALEN];
448 int ret = 0;
449 int idx;
450
451 memset(&hk, 0, sizeof(hk));
452
453 switch (key->cipher) {
454 case WLAN_CIPHER_SUITE_WEP40:
455 case WLAN_CIPHER_SUITE_WEP104:
456 hk.kv_type = ATH_CIPHER_WEP;
457 break;
458 case WLAN_CIPHER_SUITE_TKIP:
459 hk.kv_type = ATH_CIPHER_TKIP;
460 break;
461 case WLAN_CIPHER_SUITE_CCMP:
462 hk.kv_type = ATH_CIPHER_AES_CCM;
463 break;
464 default:
465 return -EOPNOTSUPP;
466 }
467
468 hk.kv_len = key->keylen;
469 memcpy(hk.kv_val, key->key, key->keylen);
470
471 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
472 switch (vif->type) {
473 case NL80211_IFTYPE_AP:
474 memcpy(gmac, vif->addr, ETH_ALEN);
475 gmac[0] |= 0x01;
476 mac = gmac;
477 idx = ath_reserve_key_cache_slot(common, key->cipher);
478 break;
479 case NL80211_IFTYPE_ADHOC:
480 if (!sta) {
481 idx = key->keyidx;
482 break;
483 }
484 memcpy(gmac, sta->addr, ETH_ALEN);
485 gmac[0] |= 0x01;
486 mac = gmac;
487 idx = ath_reserve_key_cache_slot(common, key->cipher);
488 break;
489 default:
490 idx = key->keyidx;
491 break;
492 }
493 } else if (key->keyidx) {
494 if (WARN_ON(!sta))
495 return -EOPNOTSUPP;
496 mac = sta->addr;
497
498 if (vif->type != NL80211_IFTYPE_AP) {
499 /* Only keyidx 0 should be used with unicast key, but
500 * allow this for client mode for now. */
501 idx = key->keyidx;
502 } else
503 return -EIO;
504 } else {
505 if (WARN_ON(!sta))
506 return -EOPNOTSUPP;
507 mac = sta->addr;
508
509 idx = ath_reserve_key_cache_slot(common, key->cipher);
510 }
511
512 if (idx < 0)
513 return -ENOSPC; /* no free key cache entries */
514
515 if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
516 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
517 vif->type == NL80211_IFTYPE_AP);
518 else
519 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
520
521 if (!ret)
522 return -EIO;
523
524 set_bit(idx, common->keymap);
525 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
526 set_bit(idx + 64, common->keymap);
527 set_bit(idx, common->tkip_keymap);
528 set_bit(idx + 64, common->tkip_keymap);
529 if (common->splitmic) {
530 set_bit(idx + 32, common->keymap);
531 set_bit(idx + 64 + 32, common->keymap);
532 set_bit(idx + 32, common->tkip_keymap);
533 set_bit(idx + 64 + 32, common->tkip_keymap);
534 }
535 }
536
537 return idx;
538}
539EXPORT_SYMBOL(ath_key_config);
540
541/*
542 * Delete Key.
543 */
544void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
545{
546 ath_hw_keyreset(common, key->hw_key_idx);
547 if (key->hw_key_idx < IEEE80211_WEP_NKID)
548 return;
549
550 clear_bit(key->hw_key_idx, common->keymap);
551 if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
552 return;
553
554 clear_bit(key->hw_key_idx + 64, common->keymap);
555
556 clear_bit(key->hw_key_idx, common->tkip_keymap);
557 clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
558
559 if (common->splitmic) {
560 ath_hw_keyreset(common, key->hw_key_idx + 32);
561 clear_bit(key->hw_key_idx + 32, common->keymap);
562 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
563
564 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
565 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
566 }
567}
568EXPORT_SYMBOL(ath_key_delete);
This page took 0.043976 seconds and 5 git commands to generate.