ath9k: Revamp transmit control block
[deliverable/linux.git] / drivers / net / wireless / ath9k / xmit.c
CommitLineData
f078f209
LR
1/*
2 * Copyright (c) 2008 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17/*
18 * Implementation of transmit path.
19 */
20
21#include "core.h"
22
23#define BITS_PER_BYTE 8
24#define OFDM_PLCP_BITS 22
25#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
26#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
27#define L_STF 8
28#define L_LTF 8
29#define L_SIG 4
30#define HT_SIG 8
31#define HT_STF 4
32#define HT_LTF(_ns) (4 * (_ns))
33#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
34#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
35#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
36#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
37
38#define OFDM_SIFS_TIME 16
39
40static u32 bits_per_symbol[][2] = {
41 /* 20MHz 40MHz */
42 { 26, 54 }, /* 0: BPSK */
43 { 52, 108 }, /* 1: QPSK 1/2 */
44 { 78, 162 }, /* 2: QPSK 3/4 */
45 { 104, 216 }, /* 3: 16-QAM 1/2 */
46 { 156, 324 }, /* 4: 16-QAM 3/4 */
47 { 208, 432 }, /* 5: 64-QAM 2/3 */
48 { 234, 486 }, /* 6: 64-QAM 3/4 */
49 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 { 52, 108 }, /* 8: BPSK */
51 { 104, 216 }, /* 9: QPSK 1/2 */
52 { 156, 324 }, /* 10: QPSK 3/4 */
53 { 208, 432 }, /* 11: 16-QAM 1/2 */
54 { 312, 648 }, /* 12: 16-QAM 3/4 */
55 { 416, 864 }, /* 13: 64-QAM 2/3 */
56 { 468, 972 }, /* 14: 64-QAM 3/4 */
57 { 520, 1080 }, /* 15: 64-QAM 5/6 */
58};
59
60#define IS_HT_RATE(_rate) ((_rate) & 0x80)
61
f078f209
LR
62/*
63 * Insert a chain of ath_buf (descriptors) on a txq and
64 * assume the descriptors are already chained together by caller.
65 * NB: must be called with txq lock held
66 */
67
68static void ath_tx_txqaddbuf(struct ath_softc *sc,
69 struct ath_txq *txq, struct list_head *head)
70{
71 struct ath_hal *ah = sc->sc_ah;
72 struct ath_buf *bf;
73 /*
74 * Insert the frame on the outbound list and
75 * pass it on to the hardware.
76 */
77
78 if (list_empty(head))
79 return;
80
81 bf = list_first_entry(head, struct ath_buf, list);
82
83 list_splice_tail_init(head, &txq->axq_q);
84 txq->axq_depth++;
85 txq->axq_totalqueued++;
86 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
87
88 DPRINTF(sc, ATH_DBG_QUEUE,
89 "%s: txq depth = %d\n", __func__, txq->axq_depth);
90
91 if (txq->axq_link == NULL) {
92 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
93 DPRINTF(sc, ATH_DBG_XMIT,
94 "%s: TXDP[%u] = %llx (%p)\n",
95 __func__, txq->axq_qnum,
96 ito64(bf->bf_daddr), bf->bf_desc);
97 } else {
98 *txq->axq_link = bf->bf_daddr;
99 DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
100 __func__,
101 txq->axq_qnum, txq->axq_link,
102 ito64(bf->bf_daddr), bf->bf_desc);
103 }
104 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
105 ath9k_hw_txstart(ah, txq->axq_qnum);
106}
107
108/* Get transmit rate index using rate in Kbps */
109
110static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
111{
112 int i;
113 int ndx = 0;
114
115 for (i = 0; i < rt->rateCount; i++) {
116 if (rt->info[i].rateKbps == rate) {
117 ndx = i;
118 break;
119 }
120 }
121
122 return ndx;
123}
124
125/* Check if it's okay to send out aggregates */
126
127static int ath_aggr_query(struct ath_softc *sc,
128 struct ath_node *an, u8 tidno)
129{
130 struct ath_atx_tid *tid;
131 tid = ATH_AN_2_TID(an, tidno);
132
133 if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
134 return 1;
135 else
136 return 0;
137}
138
528f0c6b
S
139/* Calculate Atheros packet type from IEEE80211 packet header */
140
141static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
f078f209 142{
528f0c6b 143 struct ieee80211_hdr *hdr;
f078f209
LR
144 enum ath9k_pkt_type htype;
145 __le16 fc;
146
528f0c6b 147 hdr = (struct ieee80211_hdr *)skb->data;
f078f209
LR
148 fc = hdr->frame_control;
149
f078f209
LR
150 if (ieee80211_is_beacon(fc))
151 htype = ATH9K_PKT_TYPE_BEACON;
152 else if (ieee80211_is_probe_resp(fc))
153 htype = ATH9K_PKT_TYPE_PROBE_RESP;
154 else if (ieee80211_is_atim(fc))
155 htype = ATH9K_PKT_TYPE_ATIM;
156 else if (ieee80211_is_pspoll(fc))
157 htype = ATH9K_PKT_TYPE_PSPOLL;
158 else
159 htype = ATH9K_PKT_TYPE_NORMAL;
160
161 return htype;
162}
163
528f0c6b 164static bool check_min_rate(struct sk_buff *skb)
f078f209
LR
165{
166 struct ieee80211_hdr *hdr;
528f0c6b 167 bool use_minrate = false;
f078f209
LR
168 __le16 fc;
169
170 hdr = (struct ieee80211_hdr *)skb->data;
171 fc = hdr->frame_control;
e6a9854b 172
f078f209 173 if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
528f0c6b 174 use_minrate = true;
f078f209
LR
175 } else if (ieee80211_is_data(fc)) {
176 if (ieee80211_is_nullfunc(fc) ||
528f0c6b
S
177 /* Port Access Entity (IEEE 802.1X) */
178 (skb->protocol == cpu_to_be16(ETH_P_PAE))) {
179 use_minrate = true;
f078f209 180 }
f078f209
LR
181 }
182
528f0c6b 183 return use_minrate;
f078f209
LR
184}
185
528f0c6b 186static int get_hw_crypto_keytype(struct sk_buff *skb)
f078f209 187{
f078f209 188 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
f078f209
LR
189
190 if (tx_info->control.hw_key) {
d0be7cc7 191 if (tx_info->control.hw_key->alg == ALG_WEP)
528f0c6b 192 return ATH9K_KEY_TYPE_WEP;
d0be7cc7 193 else if (tx_info->control.hw_key->alg == ALG_TKIP)
528f0c6b 194 return ATH9K_KEY_TYPE_TKIP;
d0be7cc7 195 else if (tx_info->control.hw_key->alg == ALG_CCMP)
528f0c6b 196 return ATH9K_KEY_TYPE_AES;
f078f209
LR
197 }
198
528f0c6b
S
199 return ATH9K_KEY_TYPE_CLEAR;
200}
f078f209 201
528f0c6b
S
202static void setup_rate_retries(struct ath_softc *sc, struct sk_buff *skb)
203{
204 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
205 struct ath_tx_info_priv *tx_info_priv;
206 struct ath_rc_series *rcs;
207 struct ieee80211_hdr *hdr;
208 const struct ath9k_rate_table *rt;
209 bool use_minrate;
210 __le16 fc;
211 u8 rix;
f078f209 212
528f0c6b
S
213 rt = sc->sc_currates;
214 BUG_ON(!rt);
f078f209 215
528f0c6b
S
216 hdr = (struct ieee80211_hdr *)skb->data;
217 fc = hdr->frame_control;
218 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif; /* HACK */
219 rcs = tx_info_priv->rcs;
f078f209 220
528f0c6b
S
221 /* Check if min rates have to be used */
222 use_minrate = check_min_rate(skb);
f078f209 223
528f0c6b
S
224 if (ieee80211_is_data(fc) && !use_minrate) {
225 if (is_multicast_ether_addr(hdr->addr1)) {
226 rcs[0].rix =
227 ath_tx_findindex(rt, tx_info_priv->min_rate);
228 /* mcast packets are not re-tried */
229 rcs[0].tries = 1;
230 }
231 } else {
232 /* for management and control frames,
233 or for NULL and EAPOL frames */
234 if (use_minrate)
235 rcs[0].rix = ath_rate_findrateix(sc, tx_info_priv->min_rate);
236 else
237 rcs[0].rix = 0;
238 rcs[0].tries = ATH_MGT_TXMAXTRY;
239 }
f078f209 240
528f0c6b 241 rix = rcs[0].rix;
f078f209 242
528f0c6b
S
243 if (ieee80211_has_morefrags(fc) ||
244 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
245 rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
246 rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
247 /* reset tries but keep rate index */
248 rcs[0].tries = ATH_TXMAXTRY;
249 }
250}
f078f209 251
528f0c6b 252/* Called only when tx aggregation is enabled and HT is supported */
e6a9854b 253
528f0c6b
S
254static void assign_aggr_tid_seqno(struct sk_buff *skb,
255 struct ath_buf *bf)
256{
257 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
258 struct ieee80211_hdr *hdr;
259 struct ath_node *an;
260 struct ath_atx_tid *tid;
261 __le16 fc;
262 u8 *qc;
f078f209 263
528f0c6b
S
264 if (!tx_info->control.sta)
265 return;
e6a9854b 266
528f0c6b
S
267 an = (struct ath_node *)tx_info->control.sta->drv_priv;
268 hdr = (struct ieee80211_hdr *)skb->data;
269 fc = hdr->frame_control;
f078f209 270
528f0c6b 271 /* Get tidno */
f078f209 272
528f0c6b
S
273 if (ieee80211_is_data_qos(fc)) {
274 qc = ieee80211_get_qos_ctl(hdr);
275 bf->bf_tidno = qc[0] & 0xf;
276 }
f078f209 277
528f0c6b 278 /* Get seqno */
f078f209 279
528f0c6b 280 if (ieee80211_is_data(fc) && !check_min_rate(skb)) {
f078f209
LR
281 /* For HT capable stations, we save tidno for later use.
282 * We also override seqno set by upper layer with the one
283 * in tx aggregation state.
284 *
f078f209
LR
285 * If fragmentation is on, the sequence number is
286 * not overridden, since it has been
287 * incremented by the fragmentation routine.
528f0c6b
S
288 *
289 * FIXME: check if the fragmentation threshold exceeds
290 * IEEE80211 max.
f078f209 291 */
528f0c6b
S
292 tid = ATH_AN_2_TID(an, bf->bf_tidno);
293 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
294 IEEE80211_SEQ_SEQ_SHIFT);
295 bf->bf_seqno = tid->seq_next;
296 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
297 }
298}
f078f209 299
528f0c6b
S
300static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
301 struct ath_txq *txq)
302{
303 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
304 int flags = 0;
f078f209 305
528f0c6b
S
306 flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
307 flags |= ATH9K_TXDESC_INTREQ;
f078f209 308
528f0c6b
S
309 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
310 flags |= ATH9K_TXDESC_NOACK;
311 if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
312 flags |= ATH9K_TXDESC_RTSENA;
313
314 return flags;
315}
f078f209 316
528f0c6b
S
317static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
318{
319 struct ath_buf *bf = NULL;
320
321 spin_lock_bh(&sc->sc_txbuflock);
322
323 if (unlikely(list_empty(&sc->sc_txbuf))) {
324 spin_unlock_bh(&sc->sc_txbuflock);
325 return NULL;
98deeea0 326 }
f078f209 327
528f0c6b
S
328 bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
329 list_del(&bf->list);
330
331 spin_unlock_bh(&sc->sc_txbuflock);
332
333 return bf;
f078f209
LR
334}
335
336/* To complete a chain of buffers associated a frame */
337
338static void ath_tx_complete_buf(struct ath_softc *sc,
339 struct ath_buf *bf,
340 struct list_head *bf_q,
341 int txok, int sendbar)
342{
343 struct sk_buff *skb = bf->bf_mpdu;
344 struct ath_xmit_status tx_status;
f078f209
LR
345
346 /*
347 * Set retry information.
348 * NB: Don't use the information in the descriptor, because the frame
349 * could be software retried.
350 */
351 tx_status.retries = bf->bf_retries;
352 tx_status.flags = 0;
353
354 if (sendbar)
355 tx_status.flags = ATH_TX_BAR;
356
357 if (!txok) {
358 tx_status.flags |= ATH_TX_ERROR;
359
cd3d39a6 360 if (bf_isxretried(bf))
f078f209
LR
361 tx_status.flags |= ATH_TX_XRETRY;
362 }
363 /* Unmap this frame */
f078f209 364 pci_unmap_single(sc->pdev,
ff9b662d 365 bf->bf_dmacontext,
f078f209
LR
366 skb->len,
367 PCI_DMA_TODEVICE);
368 /* complete this frame */
528f0c6b 369 ath_tx_complete(sc, skb, &tx_status);
f078f209
LR
370
371 /*
372 * Return the list of ath_buf of this mpdu to free queue
373 */
374 spin_lock_bh(&sc->sc_txbuflock);
375 list_splice_tail_init(bf_q, &sc->sc_txbuf);
376 spin_unlock_bh(&sc->sc_txbuflock);
377}
378
379/*
380 * queue up a dest/ac pair for tx scheduling
381 * NB: must be called with txq lock held
382 */
383
384static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
385{
386 struct ath_atx_ac *ac = tid->ac;
387
388 /*
389 * if tid is paused, hold off
390 */
391 if (tid->paused)
392 return;
393
394 /*
395 * add tid to ac atmost once
396 */
397 if (tid->sched)
398 return;
399
400 tid->sched = true;
401 list_add_tail(&tid->list, &ac->tid_q);
402
403 /*
404 * add node ac to txq atmost once
405 */
406 if (ac->sched)
407 return;
408
409 ac->sched = true;
410 list_add_tail(&ac->list, &txq->axq_acq);
411}
412
413/* pause a tid */
414
415static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
416{
417 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
418
419 spin_lock_bh(&txq->axq_lock);
420
421 tid->paused++;
422
423 spin_unlock_bh(&txq->axq_lock);
424}
425
426/* resume a tid and schedule aggregate */
427
428void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
429{
430 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
431
432 ASSERT(tid->paused > 0);
433 spin_lock_bh(&txq->axq_lock);
434
435 tid->paused--;
436
437 if (tid->paused > 0)
438 goto unlock;
439
440 if (list_empty(&tid->buf_q))
441 goto unlock;
442
443 /*
444 * Add this TID to scheduler and try to send out aggregates
445 */
446 ath_tx_queue_tid(txq, tid);
447 ath_txq_schedule(sc, txq);
448unlock:
449 spin_unlock_bh(&txq->axq_lock);
450}
451
452/* Compute the number of bad frames */
453
b5aa9bf9
S
454static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
455 int txok)
f078f209 456{
f078f209
LR
457 struct ath_buf *bf_last = bf->bf_lastbf;
458 struct ath_desc *ds = bf_last->bf_desc;
459 u16 seq_st = 0;
460 u32 ba[WME_BA_BMP_SIZE >> 5];
461 int ba_index;
462 int nbad = 0;
463 int isaggr = 0;
464
b5aa9bf9 465 if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
f078f209
LR
466 return 0;
467
cd3d39a6 468 isaggr = bf_isaggr(bf);
f078f209
LR
469 if (isaggr) {
470 seq_st = ATH_DS_BA_SEQ(ds);
471 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
472 }
473
474 while (bf) {
475 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
476 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
477 nbad++;
478
479 bf = bf->bf_next;
480 }
481
482 return nbad;
483}
484
485static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
486{
487 struct sk_buff *skb;
488 struct ieee80211_hdr *hdr;
489
cd3d39a6 490 bf->bf_state.bf_type |= BUF_RETRY;
f078f209
LR
491 bf->bf_retries++;
492
493 skb = bf->bf_mpdu;
494 hdr = (struct ieee80211_hdr *)skb->data;
495 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
496}
497
498/* Update block ack window */
499
500static void ath_tx_update_baw(struct ath_softc *sc,
501 struct ath_atx_tid *tid, int seqno)
502{
503 int index, cindex;
504
505 index = ATH_BA_INDEX(tid->seq_start, seqno);
506 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
507
508 tid->tx_buf[cindex] = NULL;
509
510 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
511 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
512 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
513 }
514}
515
516/*
517 * ath_pkt_dur - compute packet duration (NB: not NAV)
518 *
519 * rix - rate index
520 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
521 * width - 0 for 20 MHz, 1 for 40 MHz
522 * half_gi - to use 4us v/s 3.6 us for symbol time
523 */
524
525static u32 ath_pkt_duration(struct ath_softc *sc,
526 u8 rix,
527 struct ath_buf *bf,
528 int width,
529 int half_gi,
530 bool shortPreamble)
531{
532 const struct ath9k_rate_table *rt = sc->sc_currates;
533 u32 nbits, nsymbits, duration, nsymbols;
534 u8 rc;
535 int streams, pktlen;
536
cd3d39a6 537 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
f078f209
LR
538 rc = rt->info[rix].rateCode;
539
540 /*
541 * for legacy rates, use old function to compute packet duration
542 */
543 if (!IS_HT_RATE(rc))
544 return ath9k_hw_computetxtime(sc->sc_ah,
545 rt,
546 pktlen,
547 rix,
548 shortPreamble);
549 /*
550 * find number of symbols: PLCP + data
551 */
552 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
553 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
554 nsymbols = (nbits + nsymbits - 1) / nsymbits;
555
556 if (!half_gi)
557 duration = SYMBOL_TIME(nsymbols);
558 else
559 duration = SYMBOL_TIME_HALFGI(nsymbols);
560
561 /*
562 * addup duration for legacy/ht training and signal fields
563 */
564 streams = HT_RC_2_STREAMS(rc);
565 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
566 return duration;
567}
568
569/* Rate module function to set rate related fields in tx descriptor */
570
571static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
572{
573 struct ath_hal *ah = sc->sc_ah;
574 const struct ath9k_rate_table *rt;
575 struct ath_desc *ds = bf->bf_desc;
576 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
577 struct ath9k_11n_rate_series series[4];
578 int i, flags, rtsctsena = 0, dynamic_mimops = 0;
579 u32 ctsduration = 0;
580 u8 rix = 0, cix, ctsrate = 0;
98deeea0 581 u32 aggr_limit_with_rts = ah->ah_caps.rts_aggr_limit;
528f0c6b
S
582 struct ath_node *an = NULL;
583 struct sk_buff *skb;
584 struct ieee80211_tx_info *tx_info;
585
586 skb = (struct sk_buff *)bf->bf_mpdu;
587 tx_info = IEEE80211_SKB_CB(skb);
588
589 if (tx_info->control.sta)
590 an = (struct ath_node *)tx_info->control.sta->drv_priv;
f078f209
LR
591
592 /*
593 * get the cix for the lowest valid rix.
594 */
595 rt = sc->sc_currates;
596 for (i = 4; i--;) {
597 if (bf->bf_rcs[i].tries) {
598 rix = bf->bf_rcs[i].rix;
599 break;
600 }
601 }
602 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
603 cix = rt->info[rix].controlRate;
604
605 /*
606 * If 802.11g protection is enabled, determine whether
607 * to use RTS/CTS or just CTS. Note that this is only
608 * done for OFDM/HT unicast frames.
609 */
610 if (sc->sc_protmode != PROT_M_NONE &&
611 (rt->info[rix].phy == PHY_OFDM ||
612 rt->info[rix].phy == PHY_HT) &&
613 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
614 if (sc->sc_protmode == PROT_M_RTSCTS)
615 flags = ATH9K_TXDESC_RTSENA;
616 else if (sc->sc_protmode == PROT_M_CTSONLY)
617 flags = ATH9K_TXDESC_CTSENA;
618
619 cix = rt->info[sc->sc_protrix].controlRate;
620 rtsctsena = 1;
621 }
622
623 /* For 11n, the default behavior is to enable RTS for
624 * hw retried frames. We enable the global flag here and
625 * let rate series flags determine which rates will actually
626 * use RTS.
627 */
cd3d39a6 628 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
f078f209
LR
629 /*
630 * 802.11g protection not needed, use our default behavior
631 */
632 if (!rtsctsena)
633 flags = ATH9K_TXDESC_RTSENA;
634 /*
635 * For dynamic MIMO PS, RTS needs to precede the first aggregate
636 * and the second aggregate should have any protection at all.
637 */
528f0c6b 638 if (an && an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
cd3d39a6 639 if (!bf_isaggrburst(bf)) {
f078f209
LR
640 flags = ATH9K_TXDESC_RTSENA;
641 dynamic_mimops = 1;
642 } else {
643 flags = 0;
644 }
645 }
646 }
647
648 /*
649 * Set protection if aggregate protection on
650 */
651 if (sc->sc_config.ath_aggr_prot &&
cd3d39a6 652 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
f078f209
LR
653 flags = ATH9K_TXDESC_RTSENA;
654 cix = rt->info[sc->sc_protrix].controlRate;
655 rtsctsena = 1;
656 }
657
658 /*
659 * For AR5416 - RTS cannot be followed by a frame larger than 8K.
660 */
cd3d39a6 661 if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) {
f078f209
LR
662 /*
663 * Ensure that in the case of SM Dynamic power save
664 * while we are bursting the second aggregate the
665 * RTS is cleared.
666 */
667 flags &= ~(ATH9K_TXDESC_RTSENA);
668 }
669
670 /*
671 * CTS transmit rate is derived from the transmit rate
672 * by looking in the h/w rate table. We must also factor
673 * in whether or not a short preamble is to be used.
674 */
675 /* NB: cix is set above where RTS/CTS is enabled */
676 BUG_ON(cix == 0xff);
677 ctsrate = rt->info[cix].rateCode |
cd3d39a6 678 (bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
f078f209
LR
679
680 /*
681 * Setup HAL rate series
682 */
0345f37b 683 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
f078f209
LR
684
685 for (i = 0; i < 4; i++) {
686 if (!bf->bf_rcs[i].tries)
687 continue;
688
689 rix = bf->bf_rcs[i].rix;
690
691 series[i].Rate = rt->info[rix].rateCode |
cd3d39a6 692 (bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
f078f209
LR
693
694 series[i].Tries = bf->bf_rcs[i].tries;
695
696 series[i].RateFlags = (
697 (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
698 ATH9K_RATESERIES_RTS_CTS : 0) |
699 ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
700 ATH9K_RATESERIES_2040 : 0) |
701 ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
702 ATH9K_RATESERIES_HALFGI : 0);
703
704 series[i].PktDuration = ath_pkt_duration(
705 sc, rix, bf,
706 (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
707 (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
cd3d39a6 708 bf_isshpreamble(bf));
f078f209 709
528f0c6b 710 if (an && (an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
f078f209
LR
711 (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
712 /*
713 * When sending to an HT node that has enabled static
714 * SM/MIMO power save, send at single stream rates but
715 * use maximum allowed transmit chains per user,
716 * hardware, regulatory, or country limits for
717 * better range.
718 */
719 series[i].ChSel = sc->sc_tx_chainmask;
720 } else {
cd3d39a6 721 if (bf_isht(bf))
f078f209
LR
722 series[i].ChSel =
723 ath_chainmask_sel_logic(sc, an);
724 else
725 series[i].ChSel = sc->sc_tx_chainmask;
726 }
727
728 if (rtsctsena)
729 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
730
731 /*
732 * Set RTS for all rates if node is in dynamic powersave
733 * mode and we are using dual stream rates.
734 */
735 if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
736 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
737 }
738
739 /*
740 * For non-HT devices, calculate RTS/CTS duration in software
741 * and disable multi-rate retry.
742 */
60b67f51 743 if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
f078f209
LR
744 /*
745 * Compute the transmit duration based on the frame
746 * size and the size of an ACK frame. We call into the
747 * HAL to do the computation since it depends on the
748 * characteristics of the actual PHY being used.
749 *
750 * NB: CTS is assumed the same size as an ACK so we can
751 * use the precalculated ACK durations.
752 */
753 if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
cd3d39a6 754 ctsduration += bf_isshpreamble(bf) ?
f078f209
LR
755 rt->info[cix].spAckDuration :
756 rt->info[cix].lpAckDuration;
757 }
758
759 ctsduration += series[0].PktDuration;
760
761 if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
cd3d39a6 762 ctsduration += bf_isshpreamble(bf) ?
f078f209
LR
763 rt->info[rix].spAckDuration :
764 rt->info[rix].lpAckDuration;
765 }
766
767 /*
768 * Disable multi-rate retry when using RTS/CTS by clearing
769 * series 1, 2 and 3.
770 */
0345f37b 771 memset(&series[1], 0, sizeof(struct ath9k_11n_rate_series) * 3);
f078f209
LR
772 }
773
774 /*
775 * set dur_update_en for l-sig computation except for PS-Poll frames
776 */
777 ath9k_hw_set11n_ratescenario(ah, ds, lastds,
cd3d39a6
S
778 !bf_ispspoll(bf),
779 ctsrate,
780 ctsduration,
781 series, 4, flags);
f078f209
LR
782 if (sc->sc_config.ath_aggr_prot && flags)
783 ath9k_hw_set11n_burstduration(ah, ds, 8192);
784}
785
786/*
787 * Function to send a normal HT (non-AMPDU) frame
788 * NB: must be called with txq lock held
789 */
790
791static int ath_tx_send_normal(struct ath_softc *sc,
792 struct ath_txq *txq,
793 struct ath_atx_tid *tid,
794 struct list_head *bf_head)
795{
796 struct ath_buf *bf;
797 struct sk_buff *skb;
798 struct ieee80211_tx_info *tx_info;
799 struct ath_tx_info_priv *tx_info_priv;
800
801 BUG_ON(list_empty(bf_head));
802
803 bf = list_first_entry(bf_head, struct ath_buf, list);
cd3d39a6 804 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
f078f209
LR
805
806 skb = (struct sk_buff *)bf->bf_mpdu;
807 tx_info = IEEE80211_SKB_CB(skb);
e6a9854b
JB
808
809 /* XXX: HACK! */
810 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
f078f209
LR
811 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
812
813 /* update starting sequence number for subsequent ADDBA request */
814 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
815
816 /* Queue to h/w without aggregation */
817 bf->bf_nframes = 1;
818 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
819 ath_buf_set_rate(sc, bf);
820 ath_tx_txqaddbuf(sc, txq, bf_head);
821
822 return 0;
823}
824
825/* flush tid's software queue and send frames as non-ampdu's */
826
827static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
828{
829 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
830 struct ath_buf *bf;
831 struct list_head bf_head;
832 INIT_LIST_HEAD(&bf_head);
833
834 ASSERT(tid->paused > 0);
835 spin_lock_bh(&txq->axq_lock);
836
837 tid->paused--;
838
839 if (tid->paused > 0) {
840 spin_unlock_bh(&txq->axq_lock);
841 return;
842 }
843
844 while (!list_empty(&tid->buf_q)) {
845 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
cd3d39a6 846 ASSERT(!bf_isretried(bf));
f078f209
LR
847 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
848 ath_tx_send_normal(sc, txq, tid, &bf_head);
849 }
850
851 spin_unlock_bh(&txq->axq_lock);
852}
853
854/* Completion routine of an aggregate */
855
856static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
857 struct ath_txq *txq,
858 struct ath_buf *bf,
859 struct list_head *bf_q,
860 int txok)
861{
528f0c6b
S
862 struct ath_node *an = NULL;
863 struct sk_buff *skb;
864 struct ieee80211_tx_info *tx_info;
865 struct ath_atx_tid *tid = NULL;
f078f209
LR
866 struct ath_buf *bf_last = bf->bf_lastbf;
867 struct ath_desc *ds = bf_last->bf_desc;
868 struct ath_buf *bf_next, *bf_lastq = NULL;
869 struct list_head bf_head, bf_pending;
870 u16 seq_st = 0;
871 u32 ba[WME_BA_BMP_SIZE >> 5];
872 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
f078f209 873
528f0c6b
S
874 skb = (struct sk_buff *)bf->bf_mpdu;
875 tx_info = IEEE80211_SKB_CB(skb);
876
877 if (tx_info->control.sta) {
878 an = (struct ath_node *)tx_info->control.sta->drv_priv;
879 tid = ATH_AN_2_TID(an, bf->bf_tidno);
880 }
881
cd3d39a6 882 isaggr = bf_isaggr(bf);
f078f209
LR
883 if (isaggr) {
884 if (txok) {
885 if (ATH_DS_TX_BA(ds)) {
886 /*
887 * extract starting sequence and
888 * block-ack bitmap
889 */
890 seq_st = ATH_DS_BA_SEQ(ds);
891 memcpy(ba,
892 ATH_DS_BA_BITMAP(ds),
893 WME_BA_BMP_SIZE >> 3);
894 } else {
0345f37b 895 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
f078f209
LR
896
897 /*
898 * AR5416 can become deaf/mute when BA
899 * issue happens. Chip needs to be reset.
900 * But AP code may have sychronization issues
901 * when perform internal reset in this routine.
902 * Only enable reset in STA mode for now.
903 */
b4696c8b 904 if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
f078f209
LR
905 needreset = 1;
906 }
907 } else {
0345f37b 908 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
f078f209
LR
909 }
910 }
911
912 INIT_LIST_HEAD(&bf_pending);
913 INIT_LIST_HEAD(&bf_head);
914
915 while (bf) {
916 txfail = txpending = 0;
917 bf_next = bf->bf_next;
918
919 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
920 /* transmit completion, subframe is
921 * acked by block ack */
922 } else if (!isaggr && txok) {
923 /* transmit completion */
924 } else {
925
b5aa9bf9 926 if (!tid->cleanup_inprogress &&
f078f209
LR
927 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
928 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
929 ath_tx_set_retry(sc, bf);
930 txpending = 1;
931 } else {
cd3d39a6 932 bf->bf_state.bf_type |= BUF_XRETRY;
f078f209
LR
933 txfail = 1;
934 sendbar = 1;
935 }
936 } else {
937 /*
938 * cleanup in progress, just fail
939 * the un-acked sub-frames
940 */
941 txfail = 1;
942 }
943 }
944 /*
945 * Remove ath_buf's of this sub-frame from aggregate queue.
946 */
947 if (bf_next == NULL) { /* last subframe in the aggregate */
948 ASSERT(bf->bf_lastfrm == bf_last);
949
950 /*
951 * The last descriptor of the last sub frame could be
952 * a holding descriptor for h/w. If that's the case,
953 * bf->bf_lastfrm won't be in the bf_q.
954 * Make sure we handle bf_q properly here.
955 */
956
957 if (!list_empty(bf_q)) {
958 bf_lastq = list_entry(bf_q->prev,
959 struct ath_buf, list);
960 list_cut_position(&bf_head,
961 bf_q, &bf_lastq->list);
962 } else {
963 /*
964 * XXX: if the last subframe only has one
965 * descriptor which is also being used as
966 * a holding descriptor. Then the ath_buf
967 * is not in the bf_q at all.
968 */
969 INIT_LIST_HEAD(&bf_head);
970 }
971 } else {
972 ASSERT(!list_empty(bf_q));
973 list_cut_position(&bf_head,
974 bf_q, &bf->bf_lastfrm->list);
975 }
976
977 if (!txpending) {
978 /*
979 * complete the acked-ones/xretried ones; update
980 * block-ack window
981 */
982 spin_lock_bh(&txq->axq_lock);
983 ath_tx_update_baw(sc, tid, bf->bf_seqno);
984 spin_unlock_bh(&txq->axq_lock);
985
986 /* complete this sub-frame */
987 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
988 } else {
989 /*
990 * retry the un-acked ones
991 */
992 /*
993 * XXX: if the last descriptor is holding descriptor,
994 * in order to requeue the frame to software queue, we
995 * need to allocate a new descriptor and
996 * copy the content of holding descriptor to it.
997 */
998 if (bf->bf_next == NULL &&
999 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
1000 struct ath_buf *tbf;
1001
1002 /* allocate new descriptor */
1003 spin_lock_bh(&sc->sc_txbuflock);
1004 ASSERT(!list_empty((&sc->sc_txbuf)));
1005 tbf = list_first_entry(&sc->sc_txbuf,
1006 struct ath_buf, list);
1007 list_del(&tbf->list);
1008 spin_unlock_bh(&sc->sc_txbuflock);
1009
1010 ATH_TXBUF_RESET(tbf);
1011
1012 /* copy descriptor content */
1013 tbf->bf_mpdu = bf_last->bf_mpdu;
f078f209
LR
1014 tbf->bf_buf_addr = bf_last->bf_buf_addr;
1015 *(tbf->bf_desc) = *(bf_last->bf_desc);
1016
1017 /* link it to the frame */
1018 if (bf_lastq) {
1019 bf_lastq->bf_desc->ds_link =
1020 tbf->bf_daddr;
1021 bf->bf_lastfrm = tbf;
1022 ath9k_hw_cleartxdesc(sc->sc_ah,
1023 bf->bf_lastfrm->bf_desc);
1024 } else {
1025 tbf->bf_state = bf_last->bf_state;
1026 tbf->bf_lastfrm = tbf;
1027 ath9k_hw_cleartxdesc(sc->sc_ah,
1028 tbf->bf_lastfrm->bf_desc);
1029
1030 /* copy the DMA context */
ff9b662d
S
1031 tbf->bf_dmacontext =
1032 bf_last->bf_dmacontext;
f078f209
LR
1033 }
1034 list_add_tail(&tbf->list, &bf_head);
1035 } else {
1036 /*
1037 * Clear descriptor status words for
1038 * software retry
1039 */
1040 ath9k_hw_cleartxdesc(sc->sc_ah,
ff9b662d 1041 bf->bf_lastfrm->bf_desc);
f078f209
LR
1042 }
1043
1044 /*
1045 * Put this buffer to the temporary pending
1046 * queue to retain ordering
1047 */
1048 list_splice_tail_init(&bf_head, &bf_pending);
1049 }
1050
1051 bf = bf_next;
1052 }
1053
f078f209
LR
1054 if (tid->cleanup_inprogress) {
1055 /* check to see if we're done with cleaning the h/w queue */
1056 spin_lock_bh(&txq->axq_lock);
1057
1058 if (tid->baw_head == tid->baw_tail) {
1059 tid->addba_exchangecomplete = 0;
1060 tid->addba_exchangeattempts = 0;
1061 spin_unlock_bh(&txq->axq_lock);
1062
1063 tid->cleanup_inprogress = false;
1064
1065 /* send buffered frames as singles */
1066 ath_tx_flush_tid(sc, tid);
1067 } else
1068 spin_unlock_bh(&txq->axq_lock);
1069
1070 return;
1071 }
1072
1073 /*
1074 * prepend un-acked frames to the beginning of the pending frame queue
1075 */
1076 if (!list_empty(&bf_pending)) {
1077 spin_lock_bh(&txq->axq_lock);
1078 /* Note: we _prepend_, we _do_not_ at to
1079 * the end of the queue ! */
1080 list_splice(&bf_pending, &tid->buf_q);
1081 ath_tx_queue_tid(txq, tid);
1082 spin_unlock_bh(&txq->axq_lock);
1083 }
1084
1085 if (needreset)
f45144ef 1086 ath_reset(sc, false);
f078f209
LR
1087
1088 return;
1089}
1090
1091/* Process completed xmit descriptors from the specified queue */
1092
1093static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1094{
1095 struct ath_hal *ah = sc->sc_ah;
1096 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1097 struct list_head bf_head;
1098 struct ath_desc *ds, *tmp_ds;
1099 struct sk_buff *skb;
1100 struct ieee80211_tx_info *tx_info;
1101 struct ath_tx_info_priv *tx_info_priv;
1102 int nacked, txok, nbad = 0, isrifs = 0;
1103 int status;
1104
1105 DPRINTF(sc, ATH_DBG_QUEUE,
1106 "%s: tx queue %d (%x), link %p\n", __func__,
1107 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1108 txq->axq_link);
1109
1110 nacked = 0;
1111 for (;;) {
1112 spin_lock_bh(&txq->axq_lock);
f078f209
LR
1113 if (list_empty(&txq->axq_q)) {
1114 txq->axq_link = NULL;
1115 txq->axq_linkbuf = NULL;
1116 spin_unlock_bh(&txq->axq_lock);
1117 break;
1118 }
1119 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1120
1121 /*
1122 * There is a race condition that a BH gets scheduled
1123 * after sw writes TxE and before hw re-load the last
1124 * descriptor to get the newly chained one.
1125 * Software must keep the last DONE descriptor as a
1126 * holding descriptor - software does so by marking
1127 * it with the STALE flag.
1128 */
1129 bf_held = NULL;
1130 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1131 bf_held = bf;
1132 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1133 /* FIXME:
1134 * The holding descriptor is the last
1135 * descriptor in queue. It's safe to remove
1136 * the last holding descriptor in BH context.
1137 */
1138 spin_unlock_bh(&txq->axq_lock);
1139 break;
1140 } else {
1141 /* Lets work with the next buffer now */
1142 bf = list_entry(bf_held->list.next,
1143 struct ath_buf, list);
1144 }
1145 }
1146
1147 lastbf = bf->bf_lastbf;
1148 ds = lastbf->bf_desc; /* NB: last decriptor */
1149
1150 status = ath9k_hw_txprocdesc(ah, ds);
1151 if (status == -EINPROGRESS) {
1152 spin_unlock_bh(&txq->axq_lock);
1153 break;
1154 }
1155 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1156 txq->axq_lastdsWithCTS = NULL;
1157 if (ds == txq->axq_gatingds)
1158 txq->axq_gatingds = NULL;
1159
1160 /*
1161 * Remove ath_buf's of the same transmit unit from txq,
1162 * however leave the last descriptor back as the holding
1163 * descriptor for hw.
1164 */
1165 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1166 INIT_LIST_HEAD(&bf_head);
1167
1168 if (!list_is_singular(&lastbf->list))
1169 list_cut_position(&bf_head,
1170 &txq->axq_q, lastbf->list.prev);
1171
1172 txq->axq_depth--;
1173
cd3d39a6 1174 if (bf_isaggr(bf))
f078f209
LR
1175 txq->axq_aggr_depth--;
1176
1177 txok = (ds->ds_txstat.ts_status == 0);
1178
1179 spin_unlock_bh(&txq->axq_lock);
1180
1181 if (bf_held) {
1182 list_del(&bf_held->list);
1183 spin_lock_bh(&sc->sc_txbuflock);
1184 list_add_tail(&bf_held->list, &sc->sc_txbuf);
1185 spin_unlock_bh(&sc->sc_txbuflock);
1186 }
1187
cd3d39a6 1188 if (!bf_isampdu(bf)) {
f078f209
LR
1189 /*
1190 * This frame is sent out as a single frame.
1191 * Use hardware retry status for this frame.
1192 */
1193 bf->bf_retries = ds->ds_txstat.ts_longretry;
1194 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
cd3d39a6 1195 bf->bf_state.bf_type |= BUF_XRETRY;
f078f209
LR
1196 nbad = 0;
1197 } else {
1198 nbad = ath_tx_num_badfrms(sc, bf, txok);
1199 }
1200 skb = bf->bf_mpdu;
1201 tx_info = IEEE80211_SKB_CB(skb);
e6a9854b
JB
1202
1203 /* XXX: HACK! */
1204 tx_info_priv = (struct ath_tx_info_priv *) tx_info->control.vif;
f078f209
LR
1205 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1206 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1207 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1208 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1209 if (ds->ds_txstat.ts_status == 0)
1210 nacked++;
1211
cd3d39a6 1212 if (bf_isdata(bf)) {
f078f209
LR
1213 if (isrifs)
1214 tmp_ds = bf->bf_rifslast->bf_desc;
1215 else
1216 tmp_ds = ds;
1217 memcpy(&tx_info_priv->tx,
1218 &tmp_ds->ds_txstat,
1219 sizeof(tx_info_priv->tx));
1220 tx_info_priv->n_frames = bf->bf_nframes;
1221 tx_info_priv->n_bad_frames = nbad;
1222 }
1223 }
1224
1225 /*
1226 * Complete this transmit unit
1227 */
cd3d39a6 1228 if (bf_isampdu(bf))
f078f209
LR
1229 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1230 else
1231 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1232
1233 /* Wake up mac80211 queue */
1234
1235 spin_lock_bh(&txq->axq_lock);
1236 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1237 (ATH_TXBUF - 20)) {
1238 int qnum;
1239 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1240 if (qnum != -1) {
1241 ieee80211_wake_queue(sc->hw, qnum);
1242 txq->stopped = 0;
1243 }
1244
1245 }
1246
1247 /*
1248 * schedule any pending packets if aggregation is enabled
1249 */
672840ac 1250 if (sc->sc_flags & SC_OP_TXAGGR)
f078f209
LR
1251 ath_txq_schedule(sc, txq);
1252 spin_unlock_bh(&txq->axq_lock);
1253 }
1254 return nacked;
1255}
1256
1257static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1258{
1259 struct ath_hal *ah = sc->sc_ah;
1260
1261 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1262 DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
1263 __func__, txq->axq_qnum,
1264 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
1265}
1266
1267/* Drain only the data queues */
1268
1269static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1270{
1271 struct ath_hal *ah = sc->sc_ah;
1272 int i;
1273 int npend = 0;
f078f209
LR
1274
1275 /* XXX return value */
672840ac 1276 if (!(sc->sc_flags & SC_OP_INVALID)) {
f078f209
LR
1277 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1278 if (ATH_TXQ_SETUP(sc, i)) {
1279 ath_tx_stopdma(sc, &sc->sc_txq[i]);
1280
1281 /* The TxDMA may not really be stopped.
1282 * Double check the hal tx pending count */
1283 npend += ath9k_hw_numtxpending(ah,
1284 sc->sc_txq[i].axq_qnum);
1285 }
1286 }
1287 }
1288
1289 if (npend) {
1290 int status;
1291
1292 /* TxDMA not stopped, reset the hal */
1293 DPRINTF(sc, ATH_DBG_XMIT,
1294 "%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
1295
1296 spin_lock_bh(&sc->sc_resetlock);
b4696c8b 1297 if (!ath9k_hw_reset(ah,
927e70e9
S
1298 sc->sc_ah->ah_curchan,
1299 sc->sc_ht_info.tx_chan_width,
1300 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1301 sc->sc_ht_extprotspacing, true, &status)) {
f078f209
LR
1302
1303 DPRINTF(sc, ATH_DBG_FATAL,
1304 "%s: unable to reset hardware; hal status %u\n",
1305 __func__,
1306 status);
1307 }
1308 spin_unlock_bh(&sc->sc_resetlock);
1309 }
1310
1311 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1312 if (ATH_TXQ_SETUP(sc, i))
1313 ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
1314 }
1315}
1316
1317/* Add a sub-frame to block ack window */
1318
1319static void ath_tx_addto_baw(struct ath_softc *sc,
1320 struct ath_atx_tid *tid,
1321 struct ath_buf *bf)
1322{
1323 int index, cindex;
1324
cd3d39a6 1325 if (bf_isretried(bf))
f078f209
LR
1326 return;
1327
1328 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1329 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1330
1331 ASSERT(tid->tx_buf[cindex] == NULL);
1332 tid->tx_buf[cindex] = bf;
1333
1334 if (index >= ((tid->baw_tail - tid->baw_head) &
1335 (ATH_TID_MAX_BUFS - 1))) {
1336 tid->baw_tail = cindex;
1337 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1338 }
1339}
1340
1341/*
1342 * Function to send an A-MPDU
1343 * NB: must be called with txq lock held
1344 */
1345
1346static int ath_tx_send_ampdu(struct ath_softc *sc,
f078f209
LR
1347 struct ath_atx_tid *tid,
1348 struct list_head *bf_head,
1349 struct ath_tx_control *txctl)
1350{
1351 struct ath_buf *bf;
1352 struct sk_buff *skb;
1353 struct ieee80211_tx_info *tx_info;
1354 struct ath_tx_info_priv *tx_info_priv;
1355
1356 BUG_ON(list_empty(bf_head));
1357
1358 bf = list_first_entry(bf_head, struct ath_buf, list);
cd3d39a6 1359 bf->bf_state.bf_type |= BUF_AMPDU;
f078f209
LR
1360
1361 /*
1362 * Do not queue to h/w when any of the following conditions is true:
1363 * - there are pending frames in software queue
1364 * - the TID is currently paused for ADDBA/BAR request
1365 * - seqno is not within block-ack window
1366 * - h/w queue depth exceeds low water mark
1367 */
1368 if (!list_empty(&tid->buf_q) || tid->paused ||
1369 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
528f0c6b 1370 txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
f078f209
LR
1371 /*
1372 * Add this frame to software queue for scheduling later
1373 * for aggregation.
1374 */
1375 list_splice_tail_init(bf_head, &tid->buf_q);
528f0c6b 1376 ath_tx_queue_tid(txctl->txq, tid);
f078f209
LR
1377 return 0;
1378 }
1379
1380 skb = (struct sk_buff *)bf->bf_mpdu;
1381 tx_info = IEEE80211_SKB_CB(skb);
e6a9854b
JB
1382 /* XXX: HACK! */
1383 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
f078f209
LR
1384 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1385
1386 /* Add sub-frame to BAW */
1387 ath_tx_addto_baw(sc, tid, bf);
1388
1389 /* Queue to h/w without aggregation */
1390 bf->bf_nframes = 1;
1391 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1392 ath_buf_set_rate(sc, bf);
528f0c6b 1393 ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
f078f209
LR
1394 return 0;
1395}
1396
1397/*
1398 * looks up the rate
1399 * returns aggr limit based on lowest of the rates
1400 */
1401
1402static u32 ath_lookup_rate(struct ath_softc *sc,
ae5eb026
JB
1403 struct ath_buf *bf,
1404 struct ath_atx_tid *tid)
f078f209
LR
1405{
1406 const struct ath9k_rate_table *rt = sc->sc_currates;
1407 struct sk_buff *skb;
1408 struct ieee80211_tx_info *tx_info;
1409 struct ath_tx_info_priv *tx_info_priv;
1410 u32 max_4ms_framelen, frame_length;
1411 u16 aggr_limit, legacy = 0, maxampdu;
1412 int i;
1413
1414
1415 skb = (struct sk_buff *)bf->bf_mpdu;
1416 tx_info = IEEE80211_SKB_CB(skb);
1417 tx_info_priv = (struct ath_tx_info_priv *)
e6a9854b 1418 tx_info->control.vif; /* XXX: HACK! */
f078f209
LR
1419 memcpy(bf->bf_rcs,
1420 tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1421
1422 /*
1423 * Find the lowest frame length among the rate series that will have a
1424 * 4ms transmit duration.
1425 * TODO - TXOP limit needs to be considered.
1426 */
1427 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1428
1429 for (i = 0; i < 4; i++) {
1430 if (bf->bf_rcs[i].tries) {
1431 frame_length = bf->bf_rcs[i].max_4ms_framelen;
1432
1433 if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
1434 legacy = 1;
1435 break;
1436 }
1437
1438 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1439 }
1440 }
1441
1442 /*
1443 * limit aggregate size by the minimum rate if rate selected is
1444 * not a probe rate, if rate selected is a probe rate then
1445 * avoid aggregation of this packet.
1446 */
1447 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1448 return 0;
1449
1450 aggr_limit = min(max_4ms_framelen,
1451 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1452
1453 /*
1454 * h/w can accept aggregates upto 16 bit lengths (65535).
1455 * The IE, however can hold upto 65536, which shows up here
1456 * as zero. Ignore 65536 since we are constrained by hw.
1457 */
ae5eb026 1458 maxampdu = tid->an->maxampdu;
f078f209
LR
1459 if (maxampdu)
1460 aggr_limit = min(aggr_limit, maxampdu);
1461
1462 return aggr_limit;
1463}
1464
1465/*
1466 * returns the number of delimiters to be added to
1467 * meet the minimum required mpdudensity.
1468 * caller should make sure that the rate is HT rate .
1469 */
1470
1471static int ath_compute_num_delims(struct ath_softc *sc,
ae5eb026 1472 struct ath_atx_tid *tid,
f078f209
LR
1473 struct ath_buf *bf,
1474 u16 frmlen)
1475{
1476 const struct ath9k_rate_table *rt = sc->sc_currates;
1477 u32 nsymbits, nsymbols, mpdudensity;
1478 u16 minlen;
1479 u8 rc, flags, rix;
1480 int width, half_gi, ndelim, mindelim;
1481
1482 /* Select standard number of delimiters based on frame length alone */
1483 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1484
1485 /*
1486 * If encryption enabled, hardware requires some more padding between
1487 * subframes.
1488 * TODO - this could be improved to be dependent on the rate.
1489 * The hardware can keep up at lower rates, but not higher rates
1490 */
1491 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1492 ndelim += ATH_AGGR_ENCRYPTDELIM;
1493
1494 /*
1495 * Convert desired mpdu density from microeconds to bytes based
1496 * on highest rate in rate series (i.e. first rate) to determine
1497 * required minimum length for subframe. Take into account
1498 * whether high rate is 20 or 40Mhz and half or full GI.
1499 */
ae5eb026 1500 mpdudensity = tid->an->mpdudensity;
f078f209
LR
1501
1502 /*
1503 * If there is no mpdu density restriction, no further calculation
1504 * is needed.
1505 */
1506 if (mpdudensity == 0)
1507 return ndelim;
1508
1509 rix = bf->bf_rcs[0].rix;
1510 flags = bf->bf_rcs[0].flags;
1511 rc = rt->info[rix].rateCode;
1512 width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
1513 half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
1514
1515 if (half_gi)
1516 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1517 else
1518 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1519
1520 if (nsymbols == 0)
1521 nsymbols = 1;
1522
1523 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1524 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1525
1526 /* Is frame shorter than required minimum length? */
1527 if (frmlen < minlen) {
1528 /* Get the minimum number of delimiters required. */
1529 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1530 ndelim = max(mindelim, ndelim);
1531 }
1532
1533 return ndelim;
1534}
1535
1536/*
1537 * For aggregation from software buffer queue.
1538 * NB: must be called with txq lock held
1539 */
1540
1541static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1542 struct ath_atx_tid *tid,
1543 struct list_head *bf_q,
1544 struct ath_buf **bf_last,
1545 struct aggr_rifs_param *param,
1546 int *prev_frames)
1547{
1548#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1549 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1550 struct list_head bf_head;
1551 int rl = 0, nframes = 0, ndelim;
1552 u16 aggr_limit = 0, al = 0, bpad = 0,
1553 al_delta, h_baw = tid->baw_size / 2;
1554 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1555 int prev_al = 0, is_ds_rate = 0;
1556 INIT_LIST_HEAD(&bf_head);
1557
1558 BUG_ON(list_empty(&tid->buf_q));
1559
1560 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1561
1562 do {
1563 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1564
1565 /*
1566 * do not step over block-ack window
1567 */
1568 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1569 status = ATH_AGGR_BAW_CLOSED;
1570 break;
1571 }
1572
1573 if (!rl) {
ae5eb026 1574 aggr_limit = ath_lookup_rate(sc, bf, tid);
f078f209
LR
1575 rl = 1;
1576 /*
1577 * Is rate dual stream
1578 */
1579 is_ds_rate =
1580 (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
1581 }
1582
1583 /*
1584 * do not exceed aggregation limit
1585 */
1586 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1587
1588 if (nframes && (aggr_limit <
1589 (al + bpad + al_delta + prev_al))) {
1590 status = ATH_AGGR_LIMITED;
1591 break;
1592 }
1593
1594 /*
1595 * do not exceed subframe limit
1596 */
1597 if ((nframes + *prev_frames) >=
1598 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1599 status = ATH_AGGR_LIMITED;
1600 break;
1601 }
1602
1603 /*
1604 * add padding for previous frame to aggregation length
1605 */
1606 al += bpad + al_delta;
1607
1608 /*
1609 * Get the delimiters needed to meet the MPDU
1610 * density for this node.
1611 */
ae5eb026 1612 ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
f078f209
LR
1613
1614 bpad = PADBYTES(al_delta) + (ndelim << 2);
1615
1616 bf->bf_next = NULL;
1617 bf->bf_lastfrm->bf_desc->ds_link = 0;
1618
1619 /*
1620 * this packet is part of an aggregate
1621 * - remove all descriptors belonging to this frame from
1622 * software queue
1623 * - add it to block ack window
1624 * - set up descriptors for aggregation
1625 */
1626 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1627 ath_tx_addto_baw(sc, tid, bf);
1628
1629 list_for_each_entry(tbf, &bf_head, list) {
1630 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1631 tbf->bf_desc, ndelim);
1632 }
1633
1634 /*
1635 * link buffers of this frame to the aggregate
1636 */
1637 list_splice_tail_init(&bf_head, bf_q);
1638 nframes++;
1639
1640 if (bf_prev) {
1641 bf_prev->bf_next = bf;
1642 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1643 }
1644 bf_prev = bf;
1645
1646#ifdef AGGR_NOSHORT
1647 /*
1648 * terminate aggregation on a small packet boundary
1649 */
1650 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1651 status = ATH_AGGR_SHORTPKT;
1652 break;
1653 }
1654#endif
1655 } while (!list_empty(&tid->buf_q));
1656
1657 bf_first->bf_al = al;
1658 bf_first->bf_nframes = nframes;
1659 *bf_last = bf_prev;
1660 return status;
1661#undef PADBYTES
1662}
1663
1664/*
1665 * process pending frames possibly doing a-mpdu aggregation
1666 * NB: must be called with txq lock held
1667 */
1668
1669static void ath_tx_sched_aggr(struct ath_softc *sc,
1670 struct ath_txq *txq, struct ath_atx_tid *tid)
1671{
1672 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1673 enum ATH_AGGR_STATUS status;
1674 struct list_head bf_q;
1675 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1676 int prev_frames = 0;
1677
1678 do {
1679 if (list_empty(&tid->buf_q))
1680 return;
1681
1682 INIT_LIST_HEAD(&bf_q);
1683
1684 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1685 &prev_frames);
1686
1687 /*
1688 * no frames picked up to be aggregated; block-ack
1689 * window is not open
1690 */
1691 if (list_empty(&bf_q))
1692 break;
1693
1694 bf = list_first_entry(&bf_q, struct ath_buf, list);
1695 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1696 bf->bf_lastbf = bf_last;
1697
1698 /*
1699 * if only one frame, send as non-aggregate
1700 */
1701 if (bf->bf_nframes == 1) {
1702 ASSERT(bf->bf_lastfrm == bf_last);
1703
cd3d39a6 1704 bf->bf_state.bf_type &= ~BUF_AGGR;
f078f209
LR
1705 /*
1706 * clear aggr bits for every descriptor
1707 * XXX TODO: is there a way to optimize it?
1708 */
1709 list_for_each_entry(tbf, &bf_q, list) {
1710 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1711 }
1712
1713 ath_buf_set_rate(sc, bf);
1714 ath_tx_txqaddbuf(sc, txq, &bf_q);
1715 continue;
1716 }
1717
1718 /*
1719 * setup first desc with rate and aggr info
1720 */
cd3d39a6 1721 bf->bf_state.bf_type |= BUF_AGGR;
f078f209
LR
1722 ath_buf_set_rate(sc, bf);
1723 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1724
1725 /*
1726 * anchor last frame of aggregate correctly
1727 */
1728 ASSERT(bf_lastaggr);
1729 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1730 tbf = bf_lastaggr;
1731 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1732
1733 /* XXX: We don't enter into this loop, consider removing this */
1734 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1735 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1736 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1737 }
1738
1739 txq->axq_aggr_depth++;
1740
1741 /*
1742 * Normal aggregate, queue to hardware
1743 */
1744 ath_tx_txqaddbuf(sc, txq, &bf_q);
1745
1746 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1747 status != ATH_AGGR_BAW_CLOSED);
1748}
1749
1750/* Called with txq lock held */
1751
1752static void ath_tid_drain(struct ath_softc *sc,
1753 struct ath_txq *txq,
b5aa9bf9
S
1754 struct ath_atx_tid *tid)
1755
f078f209
LR
1756{
1757 struct ath_buf *bf;
1758 struct list_head bf_head;
1759 INIT_LIST_HEAD(&bf_head);
1760
1761 for (;;) {
1762 if (list_empty(&tid->buf_q))
1763 break;
1764 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1765
1766 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1767
1768 /* update baw for software retried frame */
cd3d39a6 1769 if (bf_isretried(bf))
f078f209
LR
1770 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1771
1772 /*
1773 * do not indicate packets while holding txq spinlock.
1774 * unlock is intentional here
1775 */
b5aa9bf9 1776 spin_unlock(&txq->axq_lock);
f078f209
LR
1777
1778 /* complete this sub-frame */
1779 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1780
b5aa9bf9 1781 spin_lock(&txq->axq_lock);
f078f209
LR
1782 }
1783
1784 /*
1785 * TODO: For frame(s) that are in the retry state, we will reuse the
1786 * sequence number(s) without setting the retry bit. The
1787 * alternative is to give up on these and BAR the receiver's window
1788 * forward.
1789 */
1790 tid->seq_next = tid->seq_start;
1791 tid->baw_tail = tid->baw_head;
1792}
1793
1794/*
1795 * Drain all pending buffers
1796 * NB: must be called with txq lock held
1797 */
1798
1799static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
b5aa9bf9 1800 struct ath_txq *txq)
f078f209
LR
1801{
1802 struct ath_atx_ac *ac, *ac_tmp;
1803 struct ath_atx_tid *tid, *tid_tmp;
1804
1805 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1806 list_del(&ac->list);
1807 ac->sched = false;
1808 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1809 list_del(&tid->list);
1810 tid->sched = false;
b5aa9bf9 1811 ath_tid_drain(sc, txq, tid);
f078f209
LR
1812 }
1813 }
1814}
1815
528f0c6b
S
1816static void ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
1817 struct sk_buff *skb, struct scatterlist *sg,
1818 struct ath_tx_control *txctl)
f078f209 1819{
528f0c6b
S
1820 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1821 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
f078f209
LR
1822 struct ath_tx_info_priv *tx_info_priv;
1823 struct ath_rc_series *rcs;
528f0c6b
S
1824 int hdrlen;
1825 __le16 fc;
e022edbd 1826
528f0c6b
S
1827 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
1828 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1829 fc = hdr->frame_control;
1830 rcs = tx_info_priv->rcs;
f078f209 1831
528f0c6b 1832 ATH_TXBUF_RESET(bf);
f078f209 1833
528f0c6b 1834 /* Frame type */
f078f209 1835
528f0c6b 1836 bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
cd3d39a6
S
1837
1838 ieee80211_is_data(fc) ?
1839 (bf->bf_state.bf_type |= BUF_DATA) :
1840 (bf->bf_state.bf_type &= ~BUF_DATA);
1841 ieee80211_is_back_req(fc) ?
1842 (bf->bf_state.bf_type |= BUF_BAR) :
1843 (bf->bf_state.bf_type &= ~BUF_BAR);
1844 ieee80211_is_pspoll(fc) ?
1845 (bf->bf_state.bf_type |= BUF_PSPOLL) :
1846 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
672840ac 1847 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
cd3d39a6
S
1848 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
1849 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
528f0c6b
S
1850 (sc->hw->conf.ht.enabled &&
1851 (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
1852 (bf->bf_state.bf_type |= BUF_HT) :
1853 (bf->bf_state.bf_type &= ~BUF_HT);
1854
1855 bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
1856
1857 /* Crypto */
1858
1859 bf->bf_keytype = get_hw_crypto_keytype(skb);
1860
1861 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
1862 bf->bf_frmlen += tx_info->control.hw_key->icv_len;
1863 bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
1864 } else {
1865 bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
1866 }
1867
1868 /* Rate series */
1869
1870 setup_rate_retries(sc, skb);
cd3d39a6 1871
f078f209
LR
1872 bf->bf_rcs[0] = rcs[0];
1873 bf->bf_rcs[1] = rcs[1];
1874 bf->bf_rcs[2] = rcs[2];
1875 bf->bf_rcs[3] = rcs[3];
528f0c6b
S
1876
1877 /* Assign seqno, tidno */
1878
1879 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR))
1880 assign_aggr_tid_seqno(skb, bf);
1881
1882 /* DMA setup */
1883
f078f209 1884 bf->bf_mpdu = skb;
528f0c6b
S
1885 bf->bf_dmacontext = pci_map_single(sc->pdev, skb->data,
1886 skb->len, PCI_DMA_TODEVICE);
1887 bf->bf_buf_addr = bf->bf_dmacontext;
1888}
1889
1890/* FIXME: tx power */
1891static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
1892 struct scatterlist *sg, u32 n_sg,
1893 struct ath_tx_control *txctl)
1894{
1895 struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
1896 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1897 struct ath_node *an = NULL;
1898 struct list_head bf_head;
1899 struct ath_desc *ds;
1900 struct ath_atx_tid *tid;
1901 struct ath_hal *ah = sc->sc_ah;
1902 int frm_type;
1903
1904 if (tx_info->control.sta) {
1905 an = (struct ath_node *)tx_info->control.sta->drv_priv;
1906 tid = ATH_AN_2_TID(an, bf->bf_tidno);
1907 }
1908
1909 frm_type = get_hw_packet_type(skb);
1910
1911 INIT_LIST_HEAD(&bf_head);
1912 list_add_tail(&bf->list, &bf_head);
f078f209
LR
1913
1914 /* setup descriptor */
528f0c6b 1915
f078f209
LR
1916 ds = bf->bf_desc;
1917 ds->ds_link = 0;
1918 ds->ds_data = bf->bf_buf_addr;
1919
528f0c6b 1920 /* Formulate first tx descriptor with tx controls */
f078f209 1921
528f0c6b
S
1922 ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
1923 bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
1924
1925 ath9k_hw_filltxdesc(ah, ds,
1926 sg_dma_len(sg), /* segment length */
1927 true, /* first segment */
1928 (n_sg == 1) ? true : false, /* last segment */
1929 ds); /* first descriptor */
f078f209
LR
1930
1931 bf->bf_lastfrm = bf;
f078f209 1932
528f0c6b 1933 spin_lock_bh(&txctl->txq->axq_lock);
f078f209 1934
528f0c6b
S
1935 if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR)) {
1936 if (ath_aggr_query(sc, an, bf->bf_tidno)) {
f078f209
LR
1937 /*
1938 * Try aggregation if it's a unicast data frame
1939 * and the destination is HT capable.
1940 */
528f0c6b 1941 ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
f078f209
LR
1942 } else {
1943 /*
528f0c6b
S
1944 * Send this frame as regular when ADDBA
1945 * exchange is neither complete nor pending.
f078f209 1946 */
528f0c6b
S
1947 ath_tx_send_normal(sc, txctl->txq,
1948 tid, &bf_head);
f078f209
LR
1949 }
1950 } else {
1951 bf->bf_lastbf = bf;
1952 bf->bf_nframes = 1;
f078f209 1953
528f0c6b
S
1954 ath_buf_set_rate(sc, bf);
1955 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
f078f209 1956 }
528f0c6b
S
1957
1958 spin_unlock_bh(&txctl->txq->axq_lock);
f078f209
LR
1959}
1960
528f0c6b
S
1961int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
1962 struct ath_tx_control *txctl)
f078f209 1963{
528f0c6b 1964 struct ath_buf *bf;
f078f209
LR
1965 struct scatterlist sg;
1966
528f0c6b
S
1967 /* Check if a tx buffer is available */
1968
1969 bf = ath_tx_get_buffer(sc);
1970 if (!bf) {
1971 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX buffers are full\n",
1972 __func__);
1973 return -1;
1974 }
1975
1976 ath_tx_setup_buffer(sc, bf, skb, &sg, txctl);
1977
1978 /* Setup S/G */
f078f209 1979
f078f209 1980 memset(&sg, 0, sizeof(struct scatterlist));
528f0c6b 1981 sg_dma_address(&sg) = bf->bf_dmacontext;
f078f209
LR
1982 sg_dma_len(&sg) = skb->len;
1983
528f0c6b 1984 ath_tx_start_dma(sc, bf, &sg, 1, txctl);
f078f209 1985
528f0c6b 1986 return 0;
f078f209
LR
1987}
1988
1989/* Initialize TX queue and h/w */
1990
1991int ath_tx_init(struct ath_softc *sc, int nbufs)
1992{
1993 int error = 0;
1994
1995 do {
1996 spin_lock_init(&sc->sc_txbuflock);
1997
1998 /* Setup tx descriptors */
1999 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
556bb8f1 2000 "tx", nbufs, 1);
f078f209
LR
2001 if (error != 0) {
2002 DPRINTF(sc, ATH_DBG_FATAL,
2003 "%s: failed to allocate tx descriptors: %d\n",
2004 __func__, error);
2005 break;
2006 }
2007
2008 /* XXX allocate beacon state together with vap */
2009 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2010 "beacon", ATH_BCBUF, 1);
2011 if (error != 0) {
2012 DPRINTF(sc, ATH_DBG_FATAL,
2013 "%s: failed to allocate "
2014 "beacon descripotrs: %d\n",
2015 __func__, error);
2016 break;
2017 }
2018
2019 } while (0);
2020
2021 if (error != 0)
2022 ath_tx_cleanup(sc);
2023
2024 return error;
2025}
2026
2027/* Reclaim all tx queue resources */
2028
2029int ath_tx_cleanup(struct ath_softc *sc)
2030{
2031 /* cleanup beacon descriptors */
2032 if (sc->sc_bdma.dd_desc_len != 0)
2033 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2034
2035 /* cleanup tx descriptors */
2036 if (sc->sc_txdma.dd_desc_len != 0)
2037 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2038
2039 return 0;
2040}
2041
2042/* Setup a h/w transmit queue */
2043
2044struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2045{
2046 struct ath_hal *ah = sc->sc_ah;
ea9880fb 2047 struct ath9k_tx_queue_info qi;
f078f209
LR
2048 int qnum;
2049
0345f37b 2050 memset(&qi, 0, sizeof(qi));
f078f209
LR
2051 qi.tqi_subtype = subtype;
2052 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
2053 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
2054 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
ea9880fb 2055 qi.tqi_physCompBuf = 0;
f078f209
LR
2056
2057 /*
2058 * Enable interrupts only for EOL and DESC conditions.
2059 * We mark tx descriptors to receive a DESC interrupt
2060 * when a tx queue gets deep; otherwise waiting for the
2061 * EOL to reap descriptors. Note that this is done to
2062 * reduce interrupt load and this only defers reaping
2063 * descriptors, never transmitting frames. Aside from
2064 * reducing interrupts this also permits more concurrency.
2065 * The only potential downside is if the tx queue backs
2066 * up in which case the top half of the kernel may backup
2067 * due to a lack of tx descriptors.
2068 *
2069 * The UAPSD queue is an exception, since we take a desc-
2070 * based intr on the EOSP frames.
2071 */
2072 if (qtype == ATH9K_TX_QUEUE_UAPSD)
2073 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
2074 else
2075 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
2076 TXQ_FLAG_TXDESCINT_ENABLE;
2077 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
2078 if (qnum == -1) {
2079 /*
2080 * NB: don't print a message, this happens
2081 * normally on parts with too few tx queues
2082 */
2083 return NULL;
2084 }
2085 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
2086 DPRINTF(sc, ATH_DBG_FATAL,
2087 "%s: hal qnum %u out of range, max %u!\n",
2088 __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
2089 ath9k_hw_releasetxqueue(ah, qnum);
2090 return NULL;
2091 }
2092 if (!ATH_TXQ_SETUP(sc, qnum)) {
2093 struct ath_txq *txq = &sc->sc_txq[qnum];
2094
2095 txq->axq_qnum = qnum;
2096 txq->axq_link = NULL;
2097 INIT_LIST_HEAD(&txq->axq_q);
2098 INIT_LIST_HEAD(&txq->axq_acq);
2099 spin_lock_init(&txq->axq_lock);
2100 txq->axq_depth = 0;
2101 txq->axq_aggr_depth = 0;
2102 txq->axq_totalqueued = 0;
f078f209
LR
2103 txq->axq_linkbuf = NULL;
2104 sc->sc_txqsetup |= 1<<qnum;
2105 }
2106 return &sc->sc_txq[qnum];
2107}
2108
2109/* Reclaim resources for a setup queue */
2110
2111void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2112{
2113 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2114 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2115}
2116
2117/*
2118 * Setup a hardware data transmit queue for the specified
2119 * access control. The hal may not support all requested
2120 * queues in which case it will return a reference to a
2121 * previously setup queue. We record the mapping from ac's
2122 * to h/w queues for use by ath_tx_start and also track
2123 * the set of h/w queues being used to optimize work in the
2124 * transmit interrupt handler and related routines.
2125 */
2126
2127int ath_tx_setup(struct ath_softc *sc, int haltype)
2128{
2129 struct ath_txq *txq;
2130
2131 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2132 DPRINTF(sc, ATH_DBG_FATAL,
2133 "%s: HAL AC %u out of range, max %zu!\n",
2134 __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
2135 return 0;
2136 }
2137 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
2138 if (txq != NULL) {
2139 sc->sc_haltype2q[haltype] = txq->axq_qnum;
2140 return 1;
2141 } else
2142 return 0;
2143}
2144
2145int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2146{
2147 int qnum;
2148
2149 switch (qtype) {
2150 case ATH9K_TX_QUEUE_DATA:
2151 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2152 DPRINTF(sc, ATH_DBG_FATAL,
2153 "%s: HAL AC %u out of range, max %zu!\n",
2154 __func__,
2155 haltype, ARRAY_SIZE(sc->sc_haltype2q));
2156 return -1;
2157 }
2158 qnum = sc->sc_haltype2q[haltype];
2159 break;
2160 case ATH9K_TX_QUEUE_BEACON:
2161 qnum = sc->sc_bhalq;
2162 break;
2163 case ATH9K_TX_QUEUE_CAB:
2164 qnum = sc->sc_cabq->axq_qnum;
2165 break;
2166 default:
2167 qnum = -1;
2168 }
2169 return qnum;
2170}
2171
528f0c6b
S
2172/* Get a transmit queue, if available */
2173
2174struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
2175{
2176 struct ath_txq *txq = NULL;
2177 int qnum;
2178
2179 qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
2180 txq = &sc->sc_txq[qnum];
2181
2182 spin_lock_bh(&txq->axq_lock);
2183
2184 /* Try to avoid running out of descriptors */
2185 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
2186 DPRINTF(sc, ATH_DBG_FATAL,
2187 "%s: TX queue: %d is full, depth: %d\n",
2188 __func__, qnum, txq->axq_depth);
2189 ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
2190 txq->stopped = 1;
2191 spin_unlock_bh(&txq->axq_lock);
2192 return NULL;
2193 }
2194
2195 spin_unlock_bh(&txq->axq_lock);
2196
2197 return txq;
2198}
2199
f078f209
LR
2200/* Update parameters for a transmit queue */
2201
ea9880fb
S
2202int ath_txq_update(struct ath_softc *sc, int qnum,
2203 struct ath9k_tx_queue_info *qinfo)
f078f209
LR
2204{
2205 struct ath_hal *ah = sc->sc_ah;
2206 int error = 0;
ea9880fb 2207 struct ath9k_tx_queue_info qi;
f078f209
LR
2208
2209 if (qnum == sc->sc_bhalq) {
2210 /*
2211 * XXX: for beacon queue, we just save the parameter.
2212 * It will be picked up by ath_beaconq_config when
2213 * it's necessary.
2214 */
ea9880fb 2215 sc->sc_beacon_qi = *qinfo;
f078f209
LR
2216 return 0;
2217 }
2218
2219 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
2220
ea9880fb
S
2221 ath9k_hw_get_txq_props(ah, qnum, &qi);
2222 qi.tqi_aifs = qinfo->tqi_aifs;
2223 qi.tqi_cwmin = qinfo->tqi_cwmin;
2224 qi.tqi_cwmax = qinfo->tqi_cwmax;
2225 qi.tqi_burstTime = qinfo->tqi_burstTime;
2226 qi.tqi_readyTime = qinfo->tqi_readyTime;
f078f209 2227
ea9880fb 2228 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
f078f209
LR
2229 DPRINTF(sc, ATH_DBG_FATAL,
2230 "%s: unable to update hardware queue %u!\n",
2231 __func__, qnum);
2232 error = -EIO;
2233 } else {
2234 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2235 }
2236
2237 return error;
2238}
2239
2240int ath_cabq_update(struct ath_softc *sc)
2241{
ea9880fb 2242 struct ath9k_tx_queue_info qi;
f078f209
LR
2243 int qnum = sc->sc_cabq->axq_qnum;
2244 struct ath_beacon_config conf;
2245
ea9880fb 2246 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
f078f209
LR
2247 /*
2248 * Ensure the readytime % is within the bounds.
2249 */
2250 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2251 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2252 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2253 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2254
2255 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2256 qi.tqi_readyTime =
2257 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2258 ath_txq_update(sc, qnum, &qi);
2259
2260 return 0;
2261}
2262
f078f209
LR
2263/* Deferred processing of transmit interrupt */
2264
2265void ath_tx_tasklet(struct ath_softc *sc)
2266{
1fe1132b 2267 int i;
f078f209
LR
2268 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2269
2270 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2271
2272 /*
2273 * Process each active queue.
2274 */
2275 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2276 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
1fe1132b 2277 ath_tx_processq(sc, &sc->sc_txq[i]);
f078f209 2278 }
f078f209
LR
2279}
2280
2281void ath_tx_draintxq(struct ath_softc *sc,
2282 struct ath_txq *txq, bool retry_tx)
2283{
2284 struct ath_buf *bf, *lastbf;
2285 struct list_head bf_head;
2286
2287 INIT_LIST_HEAD(&bf_head);
2288
2289 /*
2290 * NB: this assumes output has been stopped and
2291 * we do not need to block ath_tx_tasklet
2292 */
2293 for (;;) {
2294 spin_lock_bh(&txq->axq_lock);
2295
2296 if (list_empty(&txq->axq_q)) {
2297 txq->axq_link = NULL;
2298 txq->axq_linkbuf = NULL;
2299 spin_unlock_bh(&txq->axq_lock);
2300 break;
2301 }
2302
2303 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2304
2305 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2306 list_del(&bf->list);
2307 spin_unlock_bh(&txq->axq_lock);
2308
2309 spin_lock_bh(&sc->sc_txbuflock);
2310 list_add_tail(&bf->list, &sc->sc_txbuf);
2311 spin_unlock_bh(&sc->sc_txbuflock);
2312 continue;
2313 }
2314
2315 lastbf = bf->bf_lastbf;
2316 if (!retry_tx)
2317 lastbf->bf_desc->ds_txstat.ts_flags =
2318 ATH9K_TX_SW_ABORTED;
2319
2320 /* remove ath_buf's of the same mpdu from txq */
2321 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2322 txq->axq_depth--;
2323
2324 spin_unlock_bh(&txq->axq_lock);
2325
cd3d39a6 2326 if (bf_isampdu(bf))
f078f209
LR
2327 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2328 else
2329 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2330 }
2331
2332 /* flush any pending frames if aggregation is enabled */
672840ac 2333 if (sc->sc_flags & SC_OP_TXAGGR) {
f078f209
LR
2334 if (!retry_tx) {
2335 spin_lock_bh(&txq->axq_lock);
b5aa9bf9 2336 ath_txq_drain_pending_buffers(sc, txq);
f078f209
LR
2337 spin_unlock_bh(&txq->axq_lock);
2338 }
2339 }
2340}
2341
2342/* Drain the transmit queues and reclaim resources */
2343
2344void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2345{
2346 /* stop beacon queue. The beacon will be freed when
2347 * we go to INIT state */
672840ac 2348 if (!(sc->sc_flags & SC_OP_INVALID)) {
f078f209
LR
2349 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2350 DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
2351 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
2352 }
2353
2354 ath_drain_txdataq(sc, retry_tx);
2355}
2356
2357u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2358{
2359 return sc->sc_txq[qnum].axq_depth;
2360}
2361
2362u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2363{
2364 return sc->sc_txq[qnum].axq_aggr_depth;
2365}
2366
2367/* Check if an ADDBA is required. A valid node must be passed. */
2368enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
2369 struct ath_node *an,
2370 u8 tidno)
2371{
2372 struct ath_atx_tid *txtid;
f078f209 2373
672840ac 2374 if (!(sc->sc_flags & SC_OP_TXAGGR))
f078f209
LR
2375 return AGGR_NOT_REQUIRED;
2376
2377 /* ADDBA exchange must be completed before sending aggregates */
2378 txtid = ATH_AN_2_TID(an, tidno);
2379
2380 if (txtid->addba_exchangecomplete)
2381 return AGGR_EXCHANGE_DONE;
2382
2383 if (txtid->cleanup_inprogress)
2384 return AGGR_CLEANUP_PROGRESS;
2385
2386 if (txtid->addba_exchangeinprogress)
2387 return AGGR_EXCHANGE_PROGRESS;
2388
2389 if (!txtid->addba_exchangecomplete) {
2390 if (!txtid->addba_exchangeinprogress &&
2391 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2392 txtid->addba_exchangeattempts++;
2393 return AGGR_REQUIRED;
2394 }
2395 }
2396
2397 return AGGR_NOT_REQUIRED;
2398}
2399
2400/* Start TX aggregation */
2401
b5aa9bf9
S
2402int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
2403 u16 tid, u16 *ssn)
f078f209
LR
2404{
2405 struct ath_atx_tid *txtid;
2406 struct ath_node *an;
2407
b5aa9bf9 2408 an = (struct ath_node *)sta->drv_priv;
f078f209 2409
672840ac 2410 if (sc->sc_flags & SC_OP_TXAGGR) {
f078f209
LR
2411 txtid = ATH_AN_2_TID(an, tid);
2412 txtid->addba_exchangeinprogress = 1;
2413 ath_tx_pause_tid(sc, txtid);
2414 }
2415
2416 return 0;
2417}
2418
2419/* Stop tx aggregation */
2420
b5aa9bf9 2421int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
f078f209 2422{
b5aa9bf9 2423 struct ath_node *an = (struct ath_node *)sta->drv_priv;
f078f209
LR
2424
2425 ath_tx_aggr_teardown(sc, an, tid);
2426 return 0;
2427}
2428
2429/*
2430 * Performs transmit side cleanup when TID changes from aggregated to
2431 * unaggregated.
2432 * - Pause the TID and mark cleanup in progress
2433 * - Discard all retry frames from the s/w queue.
2434 */
2435
b5aa9bf9 2436void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
f078f209
LR
2437{
2438 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2439 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
2440 struct ath_buf *bf;
2441 struct list_head bf_head;
2442 INIT_LIST_HEAD(&bf_head);
2443
2444 DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
2445
2446 if (txtid->cleanup_inprogress) /* cleanup is in progress */
2447 return;
2448
2449 if (!txtid->addba_exchangecomplete) {
2450 txtid->addba_exchangeattempts = 0;
2451 return;
2452 }
2453
2454 /* TID must be paused first */
2455 ath_tx_pause_tid(sc, txtid);
2456
2457 /* drop all software retried frames and mark this TID */
2458 spin_lock_bh(&txq->axq_lock);
2459 while (!list_empty(&txtid->buf_q)) {
2460 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
cd3d39a6 2461 if (!bf_isretried(bf)) {
f078f209
LR
2462 /*
2463 * NB: it's based on the assumption that
2464 * software retried frame will always stay
2465 * at the head of software queue.
2466 */
2467 break;
2468 }
2469 list_cut_position(&bf_head,
2470 &txtid->buf_q, &bf->bf_lastfrm->list);
2471 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2472
2473 /* complete this sub-frame */
2474 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2475 }
2476
2477 if (txtid->baw_head != txtid->baw_tail) {
2478 spin_unlock_bh(&txq->axq_lock);
2479 txtid->cleanup_inprogress = true;
2480 } else {
2481 txtid->addba_exchangecomplete = 0;
2482 txtid->addba_exchangeattempts = 0;
2483 spin_unlock_bh(&txq->axq_lock);
2484 ath_tx_flush_tid(sc, txtid);
2485 }
2486}
2487
2488/*
2489 * Tx scheduling logic
2490 * NB: must be called with txq lock held
2491 */
2492
2493void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2494{
2495 struct ath_atx_ac *ac;
2496 struct ath_atx_tid *tid;
2497
2498 /* nothing to schedule */
2499 if (list_empty(&txq->axq_acq))
2500 return;
2501 /*
2502 * get the first node/ac pair on the queue
2503 */
2504 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2505 list_del(&ac->list);
2506 ac->sched = false;
2507
2508 /*
2509 * process a single tid per destination
2510 */
2511 do {
2512 /* nothing to schedule */
2513 if (list_empty(&ac->tid_q))
2514 return;
2515
2516 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2517 list_del(&tid->list);
2518 tid->sched = false;
2519
2520 if (tid->paused) /* check next tid to keep h/w busy */
2521 continue;
2522
2523 if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
2524 ((txq->axq_depth % 2) == 0)) {
2525 ath_tx_sched_aggr(sc, txq, tid);
2526 }
2527
2528 /*
2529 * add tid to round-robin queue if more frames
2530 * are pending for the tid
2531 */
2532 if (!list_empty(&tid->buf_q))
2533 ath_tx_queue_tid(txq, tid);
2534
2535 /* only schedule one TID at a time */
2536 break;
2537 } while (!list_empty(&ac->tid_q));
2538
2539 /*
2540 * schedule AC if more TIDs need processing
2541 */
2542 if (!list_empty(&ac->tid_q)) {
2543 /*
2544 * add dest ac to txq if not already added
2545 */
2546 if (!ac->sched) {
2547 ac->sched = true;
2548 list_add_tail(&ac->list, &txq->axq_acq);
2549 }
2550 }
2551}
2552
2553/* Initialize per-node transmit state */
2554
2555void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2556{
c5170163
S
2557 struct ath_atx_tid *tid;
2558 struct ath_atx_ac *ac;
2559 int tidno, acno;
f078f209 2560
c5170163
S
2561 /*
2562 * Init per tid tx state
2563 */
2564 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2565 tidno < WME_NUM_TID;
2566 tidno++, tid++) {
2567 tid->an = an;
2568 tid->tidno = tidno;
2569 tid->seq_start = tid->seq_next = 0;
2570 tid->baw_size = WME_MAX_BA;
2571 tid->baw_head = tid->baw_tail = 0;
2572 tid->sched = false;
2573 tid->paused = false;
2574 tid->cleanup_inprogress = false;
2575 INIT_LIST_HEAD(&tid->buf_q);
2576
2577 acno = TID_TO_WME_AC(tidno);
2578 tid->ac = &an->an_aggr.tx.ac[acno];
2579
2580 /* ADDBA state */
2581 tid->addba_exchangecomplete = 0;
2582 tid->addba_exchangeinprogress = 0;
2583 tid->addba_exchangeattempts = 0;
2584 }
f078f209 2585
c5170163
S
2586 /*
2587 * Init per ac tx state
2588 */
2589 for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
2590 acno < WME_NUM_AC; acno++, ac++) {
2591 ac->sched = false;
2592 INIT_LIST_HEAD(&ac->tid_q);
2593
2594 switch (acno) {
2595 case WME_AC_BE:
2596 ac->qnum = ath_tx_get_qnum(sc,
2597 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2598 break;
2599 case WME_AC_BK:
2600 ac->qnum = ath_tx_get_qnum(sc,
2601 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2602 break;
2603 case WME_AC_VI:
2604 ac->qnum = ath_tx_get_qnum(sc,
2605 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2606 break;
2607 case WME_AC_VO:
2608 ac->qnum = ath_tx_get_qnum(sc,
2609 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2610 break;
f078f209
LR
2611 }
2612 }
2613}
2614
2615/* Cleanupthe pending buffers for the node. */
2616
b5aa9bf9 2617void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
f078f209
LR
2618{
2619 int i;
2620 struct ath_atx_ac *ac, *ac_tmp;
2621 struct ath_atx_tid *tid, *tid_tmp;
2622 struct ath_txq *txq;
2623 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2624 if (ATH_TXQ_SETUP(sc, i)) {
2625 txq = &sc->sc_txq[i];
2626
b5aa9bf9 2627 spin_lock(&txq->axq_lock);
f078f209
LR
2628
2629 list_for_each_entry_safe(ac,
2630 ac_tmp, &txq->axq_acq, list) {
2631 tid = list_first_entry(&ac->tid_q,
2632 struct ath_atx_tid, list);
2633 if (tid && tid->an != an)
2634 continue;
2635 list_del(&ac->list);
2636 ac->sched = false;
2637
2638 list_for_each_entry_safe(tid,
2639 tid_tmp, &ac->tid_q, list) {
2640 list_del(&tid->list);
2641 tid->sched = false;
b5aa9bf9 2642 ath_tid_drain(sc, txq, tid);
f078f209
LR
2643 tid->addba_exchangecomplete = 0;
2644 tid->addba_exchangeattempts = 0;
2645 tid->cleanup_inprogress = false;
2646 }
2647 }
2648
b5aa9bf9 2649 spin_unlock(&txq->axq_lock);
f078f209
LR
2650 }
2651 }
2652}
2653
e022edbd
JM
2654void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
2655{
2656 int hdrlen, padsize;
2657 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2658 struct ath_tx_control txctl;
2659
528f0c6b
S
2660 memset(&txctl, 0, sizeof(struct ath_tx_control));
2661
e022edbd
JM
2662 /*
2663 * As a temporary workaround, assign seq# here; this will likely need
2664 * to be cleaned up to work better with Beacon transmission and virtual
2665 * BSSes.
2666 */
2667 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2668 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2669 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2670 sc->seq_no += 0x10;
2671 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2672 hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
2673 }
2674
2675 /* Add the padding after the header if this is not already done */
2676 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2677 if (hdrlen & 3) {
2678 padsize = hdrlen % 4;
2679 if (skb_headroom(skb) < padsize) {
2680 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ padding "
2681 "failed\n", __func__);
2682 dev_kfree_skb_any(skb);
2683 return;
2684 }
2685 skb_push(skb, padsize);
2686 memmove(skb->data, skb->data + padsize, hdrlen);
2687 }
2688
528f0c6b
S
2689 txctl.txq = sc->sc_cabq;
2690
e022edbd
JM
2691 DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting CABQ packet, skb: %p\n",
2692 __func__,
2693 skb);
2694
528f0c6b
S
2695 if (ath_tx_start(sc, skb, &txctl) != 0) {
2696 DPRINTF(sc, ATH_DBG_XMIT, "%s: TX failed\n", __func__);
2697 goto exit;
e022edbd 2698 }
e022edbd 2699
528f0c6b
S
2700 return;
2701exit:
2702 dev_kfree_skb_any(skb);
2703}
This page took 0.177382 seconds and 5 git commands to generate.