brcm80211: fmac: cleanup receive path using proper skb_queue functions
[deliverable/linux.git] / drivers / net / wireless / brcm80211 / brcmsmac / dma.c
CommitLineData
5b435de0
AS
1/*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
8505a7e6
JP
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
5b435de0 19#include <linux/slab.h>
5b435de0
AS
20#include <linux/delay.h>
21#include <linux/pci.h>
22
23#include <brcmu_utils.h>
24#include <aiutils.h>
25#include "types.h"
26#include "dma.h"
23038214 27#include "soc.h"
5b435de0
AS
28
29/*
30 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
31 * a contiguous 8kB physical address.
32 */
33#define D64RINGALIGN_BITS 13
34#define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
35#define D64RINGALIGN (1 << D64RINGALIGN_BITS)
36
37#define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
38
39/* transmit channel control */
40#define D64_XC_XE 0x00000001 /* transmit enable */
41#define D64_XC_SE 0x00000002 /* transmit suspend request */
42#define D64_XC_LE 0x00000004 /* loopback enable */
43#define D64_XC_FL 0x00000010 /* flush request */
44#define D64_XC_PD 0x00000800 /* parity check disable */
45#define D64_XC_AE 0x00030000 /* address extension bits */
46#define D64_XC_AE_SHIFT 16
47
48/* transmit descriptor table pointer */
49#define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
50
51/* transmit channel status */
52#define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
53#define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
54#define D64_XS0_XS_SHIFT 28
55#define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
56#define D64_XS0_XS_ACTIVE 0x10000000 /* active */
57#define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
58#define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
59#define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
60
61#define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
62#define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
63#define D64_XS1_XE_SHIFT 28
64#define D64_XS1_XE_NOERR 0x00000000 /* no error */
65#define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
66#define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
67#define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
68#define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
69#define D64_XS1_XE_COREE 0x50000000 /* core error */
70
71/* receive channel control */
72/* receive enable */
73#define D64_RC_RE 0x00000001
74/* receive frame offset */
75#define D64_RC_RO_MASK 0x000000fe
76#define D64_RC_RO_SHIFT 1
77/* direct fifo receive (pio) mode */
78#define D64_RC_FM 0x00000100
79/* separate rx header descriptor enable */
80#define D64_RC_SH 0x00000200
81/* overflow continue */
82#define D64_RC_OC 0x00000400
83/* parity check disable */
84#define D64_RC_PD 0x00000800
85/* address extension bits */
86#define D64_RC_AE 0x00030000
87#define D64_RC_AE_SHIFT 16
88
89/* flags for dma controller */
90/* partity enable */
91#define DMA_CTRL_PEN (1 << 0)
92/* rx overflow continue */
93#define DMA_CTRL_ROC (1 << 1)
94/* allow rx scatter to multiple descriptors */
95#define DMA_CTRL_RXMULTI (1 << 2)
96/* Unframed Rx/Tx data */
97#define DMA_CTRL_UNFRAMED (1 << 3)
98
99/* receive descriptor table pointer */
100#define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
101
102/* receive channel status */
103#define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
104#define D64_RS0_RS_MASK 0xf0000000 /* receive state */
105#define D64_RS0_RS_SHIFT 28
106#define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
107#define D64_RS0_RS_ACTIVE 0x10000000 /* active */
108#define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
109#define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
110#define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
111
112#define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
113#define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
114#define D64_RS1_RE_SHIFT 28
115#define D64_RS1_RE_NOERR 0x00000000 /* no error */
116#define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
117#define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
118#define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
119#define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
120#define D64_RS1_RE_COREE 0x50000000 /* core error */
121
122/* fifoaddr */
123#define D64_FA_OFF_MASK 0xffff /* offset */
124#define D64_FA_SEL_MASK 0xf0000 /* select */
125#define D64_FA_SEL_SHIFT 16
126#define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
127#define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
128#define D64_FA_SEL_RDD 0x40000 /* receive dma data */
129#define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
130#define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
131#define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
132#define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
133#define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
134#define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
135#define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
136
137/* descriptor control flags 1 */
138#define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
139#define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
140#define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
141#define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
142#define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
143
144/* descriptor control flags 2 */
145/* buffer byte count. real data len must <= 16KB */
146#define D64_CTRL2_BC_MASK 0x00007fff
147/* address extension bits */
148#define D64_CTRL2_AE 0x00030000
149#define D64_CTRL2_AE_SHIFT 16
150/* parity bit */
151#define D64_CTRL2_PARITY 0x00040000
152
153/* control flags in the range [27:20] are core-specific and not defined here */
154#define D64_CTRL_CORE_MASK 0x0ff00000
155
156#define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
157#define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
158#define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
159#define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
160
161/*
162 * packet headroom necessary to accommodate the largest header
163 * in the system, (i.e TXOFF). By doing, we avoid the need to
164 * allocate an extra buffer for the header when bridging to WL.
165 * There is a compile time check in wlc.c which ensure that this
166 * value is at least as big as TXOFF. This value is used in
167 * dma_rxfill().
168 */
169
170#define BCMEXTRAHDROOM 172
171
172/* debug/trace */
173#ifdef BCMDBG
8505a7e6
JP
174#define DMA_ERROR(fmt, ...) \
175do { \
176 if (*di->msg_level & 1) \
177 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
178} while (0)
179#define DMA_TRACE(fmt, ...) \
180do { \
181 if (*di->msg_level & 2) \
182 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
183} while (0)
5b435de0 184#else
8505a7e6
JP
185#define DMA_ERROR(fmt, ...) \
186 no_printk(fmt, ##__VA_ARGS__)
187#define DMA_TRACE(fmt, ...) \
188 no_printk(fmt, ##__VA_ARGS__)
5b435de0
AS
189#endif /* BCMDBG */
190
8505a7e6
JP
191#define DMA_NONE(fmt, ...) \
192 no_printk(fmt, ##__VA_ARGS__)
5b435de0
AS
193
194#define MAXNAMEL 8 /* 8 char names */
195
196/* macros to convert between byte offsets and indexes */
197#define B2I(bytes, type) ((bytes) / sizeof(type))
198#define I2B(index, type) ((index) * sizeof(type))
199
200#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
201#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
202
203#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
204#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
205
206/*
207 * DMA Descriptor
208 * Descriptors are only read by the hardware, never written back.
209 */
210struct dma64desc {
211 __le32 ctrl1; /* misc control bits & bufcount */
212 __le32 ctrl2; /* buffer count and address extension */
213 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
214 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
215};
216
217/* dma engine software state */
218struct dma_info {
219 struct dma_pub dma; /* exported structure */
220 uint *msg_level; /* message level pointer */
221 char name[MAXNAMEL]; /* callers name for diag msgs */
222
223 struct pci_dev *pbus; /* bus handle */
224
225 bool dma64; /* this dma engine is operating in 64-bit mode */
226 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
227
228 /* 64-bit dma tx engine registers */
229 struct dma64regs __iomem *d64txregs;
230 /* 64-bit dma rx engine registers */
231 struct dma64regs __iomem *d64rxregs;
232 /* pointer to dma64 tx descriptor ring */
233 struct dma64desc *txd64;
234 /* pointer to dma64 rx descriptor ring */
235 struct dma64desc *rxd64;
236
237 u16 dmadesc_align; /* alignment requirement for dma descriptors */
238
239 u16 ntxd; /* # tx descriptors tunable */
240 u16 txin; /* index of next descriptor to reclaim */
241 u16 txout; /* index of next descriptor to post */
242 /* pointer to parallel array of pointers to packets */
243 struct sk_buff **txp;
244 /* Aligned physical address of descriptor ring */
245 dma_addr_t txdpa;
246 /* Original physical address of descriptor ring */
247 dma_addr_t txdpaorig;
248 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
249 u32 txdalloc; /* #bytes allocated for the ring */
250 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
251 * is not just an index, it needs all 13 bits to be
252 * an offset from the addr register.
253 */
254
255 u16 nrxd; /* # rx descriptors tunable */
256 u16 rxin; /* index of next descriptor to reclaim */
257 u16 rxout; /* index of next descriptor to post */
258 /* pointer to parallel array of pointers to packets */
259 struct sk_buff **rxp;
260 /* Aligned physical address of descriptor ring */
261 dma_addr_t rxdpa;
262 /* Original physical address of descriptor ring */
263 dma_addr_t rxdpaorig;
264 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
265 u32 rxdalloc; /* #bytes allocated for the ring */
266 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
267
268 /* tunables */
269 unsigned int rxbufsize; /* rx buffer size in bytes, not including
270 * the extra headroom
271 */
272 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
273 * stack, e.g. some rx pkt buffers will be
274 * bridged to tx side without byte copying.
275 * The extra headroom needs to be large enough
276 * to fit txheader needs. Some dongle driver may
277 * not need it.
278 */
279 uint nrxpost; /* # rx buffers to keep posted */
280 unsigned int rxoffset; /* rxcontrol offset */
281 /* add to get dma address of descriptor ring, low 32 bits */
282 uint ddoffsetlow;
283 /* high 32 bits */
284 uint ddoffsethigh;
285 /* add to get dma address of data buffer, low 32 bits */
286 uint dataoffsetlow;
287 /* high 32 bits */
288 uint dataoffsethigh;
289 /* descriptor base need to be aligned or not */
290 bool aligndesc_4k;
291};
292
293/*
294 * default dma message level (if input msg_level
295 * pointer is null in dma_attach())
296 */
297static uint dma_msg_level;
298
299/* Check for odd number of 1's */
300static u32 parity32(__le32 data)
301{
302 /* no swap needed for counting 1's */
303 u32 par_data = *(u32 *)&data;
304
305 par_data ^= par_data >> 16;
306 par_data ^= par_data >> 8;
307 par_data ^= par_data >> 4;
308 par_data ^= par_data >> 2;
309 par_data ^= par_data >> 1;
310
311 return par_data & 1;
312}
313
314static bool dma64_dd_parity(struct dma64desc *dd)
315{
316 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
317}
318
319/* descriptor bumping functions */
320
321static uint xxd(uint x, uint n)
322{
323 return x & (n - 1); /* faster than %, but n must be power of 2 */
324}
325
326static uint txd(struct dma_info *di, uint x)
327{
328 return xxd(x, di->ntxd);
329}
330
331static uint rxd(struct dma_info *di, uint x)
332{
333 return xxd(x, di->nrxd);
334}
335
336static uint nexttxd(struct dma_info *di, uint i)
337{
338 return txd(di, i + 1);
339}
340
341static uint prevtxd(struct dma_info *di, uint i)
342{
343 return txd(di, i - 1);
344}
345
346static uint nextrxd(struct dma_info *di, uint i)
347{
348 return txd(di, i + 1);
349}
350
351static uint ntxdactive(struct dma_info *di, uint h, uint t)
352{
353 return txd(di, t-h);
354}
355
356static uint nrxdactive(struct dma_info *di, uint h, uint t)
357{
358 return rxd(di, t-h);
359}
360
361static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
362{
ae8e4672 363 uint dmactrlflags;
5b435de0
AS
364
365 if (di == NULL) {
8505a7e6 366 DMA_ERROR("NULL dma handle\n");
5b435de0
AS
367 return 0;
368 }
369
ae8e4672 370 dmactrlflags = di->dma.dmactrlflags;
5b435de0
AS
371 dmactrlflags &= ~mask;
372 dmactrlflags |= flags;
373
374 /* If trying to enable parity, check if parity is actually supported */
375 if (dmactrlflags & DMA_CTRL_PEN) {
376 u32 control;
377
378 control = R_REG(&di->d64txregs->control);
379 W_REG(&di->d64txregs->control,
380 control | D64_XC_PD);
381 if (R_REG(&di->d64txregs->control) & D64_XC_PD)
382 /* We *can* disable it so it is supported,
383 * restore control register
384 */
385 W_REG(&di->d64txregs->control,
386 control);
387 else
388 /* Not supported, don't allow it to be enabled */
389 dmactrlflags &= ~DMA_CTRL_PEN;
390 }
391
392 di->dma.dmactrlflags = dmactrlflags;
393
394 return dmactrlflags;
395}
396
397static bool _dma64_addrext(struct dma64regs __iomem *dma64regs)
398{
399 u32 w;
400 OR_REG(&dma64regs->control, D64_XC_AE);
401 w = R_REG(&dma64regs->control);
402 AND_REG(&dma64regs->control, ~D64_XC_AE);
403 return (w & D64_XC_AE) == D64_XC_AE;
404}
405
406/*
407 * return true if this dma engine supports DmaExtendedAddrChanges,
408 * otherwise false
409 */
410static bool _dma_isaddrext(struct dma_info *di)
411{
412 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
413
414 /* not all tx or rx channel are available */
415 if (di->d64txregs != NULL) {
416 if (!_dma64_addrext(di->d64txregs))
8505a7e6
JP
417 DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
418 di->name);
5b435de0
AS
419 return true;
420 } else if (di->d64rxregs != NULL) {
421 if (!_dma64_addrext(di->d64rxregs))
8505a7e6
JP
422 DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
423 di->name);
5b435de0
AS
424 return true;
425 }
426
427 return false;
428}
429
430static bool _dma_descriptor_align(struct dma_info *di)
431{
432 u32 addrl;
433
434 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
435 if (di->d64txregs != NULL) {
436 W_REG(&di->d64txregs->addrlow, 0xff0);
437 addrl = R_REG(&di->d64txregs->addrlow);
438 if (addrl != 0)
439 return false;
440 } else if (di->d64rxregs != NULL) {
441 W_REG(&di->d64rxregs->addrlow, 0xff0);
442 addrl = R_REG(&di->d64rxregs->addrlow);
443 if (addrl != 0)
444 return false;
445 }
446 return true;
447}
448
449/*
450 * Descriptor table must start at the DMA hardware dictated alignment, so
451 * allocated memory must be large enough to support this requirement.
452 */
453static void *dma_alloc_consistent(struct pci_dev *pdev, uint size,
454 u16 align_bits, uint *alloced,
455 dma_addr_t *pap)
456{
457 if (align_bits) {
458 u16 align = (1 << align_bits);
459 if (!IS_ALIGNED(PAGE_SIZE, align))
460 size += align;
461 *alloced = size;
462 }
463 return pci_alloc_consistent(pdev, size, pap);
464}
465
466static
467u8 dma_align_sizetobits(uint size)
468{
469 u8 bitpos = 0;
470 while (size >>= 1)
471 bitpos++;
472 return bitpos;
473}
474
475/* This function ensures that the DMA descriptor ring will not get allocated
476 * across Page boundary. If the allocation is done across the page boundary
477 * at the first time, then it is freed and the allocation is done at
478 * descriptor ring size aligned location. This will ensure that the ring will
479 * not cross page boundary
480 */
481static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
482 u16 *alignbits, uint *alloced,
483 dma_addr_t *descpa)
484{
485 void *va;
486 u32 desc_strtaddr;
487 u32 alignbytes = 1 << *alignbits;
488
489 va = dma_alloc_consistent(di->pbus, size, *alignbits, alloced, descpa);
490
491 if (NULL == va)
492 return NULL;
493
494 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
495 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
496 & boundary)) {
497 *alignbits = dma_align_sizetobits(size);
498 pci_free_consistent(di->pbus, size, va, *descpa);
499 va = dma_alloc_consistent(di->pbus, size, *alignbits,
500 alloced, descpa);
501 }
502 return va;
503}
504
505static bool dma64_alloc(struct dma_info *di, uint direction)
506{
507 u16 size;
508 uint ddlen;
509 void *va;
510 uint alloced = 0;
511 u16 align;
512 u16 align_bits;
513
514 ddlen = sizeof(struct dma64desc);
515
516 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
517 align_bits = di->dmadesc_align;
518 align = (1 << align_bits);
519
520 if (direction == DMA_TX) {
521 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
522 &alloced, &di->txdpaorig);
523 if (va == NULL) {
8505a7e6
JP
524 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
525 di->name);
5b435de0
AS
526 return false;
527 }
528 align = (1 << align_bits);
529 di->txd64 = (struct dma64desc *)
530 roundup((unsigned long)va, align);
531 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
532 di->txdpa = di->txdpaorig + di->txdalign;
533 di->txdalloc = alloced;
534 } else {
535 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
536 &alloced, &di->rxdpaorig);
537 if (va == NULL) {
8505a7e6
JP
538 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
539 di->name);
5b435de0
AS
540 return false;
541 }
542 align = (1 << align_bits);
543 di->rxd64 = (struct dma64desc *)
544 roundup((unsigned long)va, align);
545 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
546 di->rxdpa = di->rxdpaorig + di->rxdalign;
547 di->rxdalloc = alloced;
548 }
549
550 return true;
551}
552
553static bool _dma_alloc(struct dma_info *di, uint direction)
554{
555 return dma64_alloc(di, direction);
556}
557
558struct dma_pub *dma_attach(char *name, struct si_pub *sih,
559 void __iomem *dmaregstx, void __iomem *dmaregsrx,
560 uint ntxd, uint nrxd,
561 uint rxbufsize, int rxextheadroom,
562 uint nrxpost, uint rxoffset, uint *msg_level)
563{
564 struct dma_info *di;
565 uint size;
566
567 /* allocate private info structure */
568 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
569 if (di == NULL)
570 return NULL;
571
572 di->msg_level = msg_level ? msg_level : &dma_msg_level;
573
574
575 di->dma64 = ((ai_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64);
576
577 /* init dma reg pointer */
578 di->d64txregs = (struct dma64regs __iomem *) dmaregstx;
579 di->d64rxregs = (struct dma64regs __iomem *) dmaregsrx;
580
581 /*
582 * Default flags (which can be changed by the driver calling
583 * dma_ctrlflags before enable): For backwards compatibility
584 * both Rx Overflow Continue and Parity are DISABLED.
585 */
586 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
587
8505a7e6
JP
588 DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d dmaregstx %p dmaregsrx %p\n",
589 name, "DMA64",
590 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
591 rxextheadroom, nrxpost, rxoffset, dmaregstx, dmaregsrx);
5b435de0
AS
592
593 /* make a private copy of our callers name */
594 strncpy(di->name, name, MAXNAMEL);
595 di->name[MAXNAMEL - 1] = '\0';
596
597 di->pbus = ((struct si_info *)sih)->pbus;
598
599 /* save tunables */
600 di->ntxd = (u16) ntxd;
601 di->nrxd = (u16) nrxd;
602
603 /* the actual dma size doesn't include the extra headroom */
604 di->rxextrahdrroom =
605 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
606 if (rxbufsize > BCMEXTRAHDROOM)
607 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
608 else
609 di->rxbufsize = (u16) rxbufsize;
610
611 di->nrxpost = (u16) nrxpost;
612 di->rxoffset = (u8) rxoffset;
613
614 /*
615 * figure out the DMA physical address offset for dd and data
616 * PCI/PCIE: they map silicon backplace address to zero
617 * based memory, need offset
618 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
619 * swapped region for data buffer, not descriptor
620 */
621 di->ddoffsetlow = 0;
622 di->dataoffsetlow = 0;
623 /* add offset for pcie with DMA64 bus */
624 di->ddoffsetlow = 0;
625 di->ddoffsethigh = SI_PCIE_DMA_H32;
626 di->dataoffsetlow = di->ddoffsetlow;
627 di->dataoffsethigh = di->ddoffsethigh;
628 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
629 if ((ai_coreid(sih) == SDIOD_CORE_ID)
630 && ((ai_corerev(sih) > 0) && (ai_corerev(sih) <= 2)))
631 di->addrext = 0;
632 else if ((ai_coreid(sih) == I2S_CORE_ID) &&
633 ((ai_corerev(sih) == 0) || (ai_corerev(sih) == 1)))
634 di->addrext = 0;
635 else
636 di->addrext = _dma_isaddrext(di);
637
638 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
639 di->aligndesc_4k = _dma_descriptor_align(di);
640 if (di->aligndesc_4k) {
641 di->dmadesc_align = D64RINGALIGN_BITS;
642 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
643 /* for smaller dd table, HW relax alignment reqmnt */
644 di->dmadesc_align = D64RINGALIGN_BITS - 1;
645 } else {
646 di->dmadesc_align = 4; /* 16 byte alignment */
647 }
648
8505a7e6
JP
649 DMA_NONE("DMA descriptor align_needed %d, align %d\n",
650 di->aligndesc_4k, di->dmadesc_align);
5b435de0
AS
651
652 /* allocate tx packet pointer vector */
653 if (ntxd) {
654 size = ntxd * sizeof(void *);
655 di->txp = kzalloc(size, GFP_ATOMIC);
656 if (di->txp == NULL)
657 goto fail;
658 }
659
660 /* allocate rx packet pointer vector */
661 if (nrxd) {
662 size = nrxd * sizeof(void *);
663 di->rxp = kzalloc(size, GFP_ATOMIC);
664 if (di->rxp == NULL)
665 goto fail;
666 }
667
668 /*
669 * allocate transmit descriptor ring, only need ntxd descriptors
670 * but it must be aligned
671 */
672 if (ntxd) {
673 if (!_dma_alloc(di, DMA_TX))
674 goto fail;
675 }
676
677 /*
678 * allocate receive descriptor ring, only need nrxd descriptors
679 * but it must be aligned
680 */
681 if (nrxd) {
682 if (!_dma_alloc(di, DMA_RX))
683 goto fail;
684 }
685
686 if ((di->ddoffsetlow != 0) && !di->addrext) {
687 if (di->txdpa > SI_PCI_DMA_SZ) {
8505a7e6
JP
688 DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
689 di->name, (u32)di->txdpa);
5b435de0
AS
690 goto fail;
691 }
692 if (di->rxdpa > SI_PCI_DMA_SZ) {
8505a7e6
JP
693 DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
694 di->name, (u32)di->rxdpa);
5b435de0
AS
695 goto fail;
696 }
697 }
698
8505a7e6
JP
699 DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
700 di->ddoffsetlow, di->ddoffsethigh,
701 di->dataoffsetlow, di->dataoffsethigh,
702 di->addrext);
5b435de0
AS
703
704 return (struct dma_pub *) di;
705
706 fail:
707 dma_detach((struct dma_pub *)di);
708 return NULL;
709}
710
711static inline void
712dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
713 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
714{
715 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
716
717 /* PCI bus with big(>1G) physical address, use address extension */
718 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
719 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
720 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
721 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
722 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
723 } else {
724 /* address extension for 32-bit PCI */
725 u32 ae;
726
727 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
728 pa &= ~PCI32ADDR_HIGH;
729
730 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
731 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
732 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
733 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
734 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
735 }
736 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
737 if (dma64_dd_parity(&ddring[outidx]))
738 ddring[outidx].ctrl2 =
739 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
740 }
741}
742
743/* !! may be called with core in reset */
744void dma_detach(struct dma_pub *pub)
745{
746 struct dma_info *di = (struct dma_info *)pub;
747
8505a7e6 748 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
749
750 /* free dma descriptor rings */
751 if (di->txd64)
752 pci_free_consistent(di->pbus, di->txdalloc,
753 ((s8 *)di->txd64 - di->txdalign),
754 (di->txdpaorig));
755 if (di->rxd64)
756 pci_free_consistent(di->pbus, di->rxdalloc,
757 ((s8 *)di->rxd64 - di->rxdalign),
758 (di->rxdpaorig));
759
760 /* free packet pointer vectors */
761 kfree(di->txp);
762 kfree(di->rxp);
763
764 /* free our private info structure */
765 kfree(di);
766
767}
768
769/* initialize descriptor table base address */
770static void
771_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
772{
773 if (!di->aligndesc_4k) {
774 if (direction == DMA_TX)
775 di->xmtptrbase = pa;
776 else
777 di->rcvptrbase = pa;
778 }
779
780 if ((di->ddoffsetlow == 0)
781 || !(pa & PCI32ADDR_HIGH)) {
782 if (direction == DMA_TX) {
783 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
784 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
785 } else {
786 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
787 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
788 }
789 } else {
790 /* DMA64 32bits address extension */
791 u32 ae;
792
793 /* shift the high bit(s) from pa to ae */
794 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
795 pa &= ~PCI32ADDR_HIGH;
796
797 if (direction == DMA_TX) {
798 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
799 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
800 SET_REG(&di->d64txregs->control,
801 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
802 } else {
803 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
804 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
805 SET_REG(&di->d64rxregs->control,
806 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
807 }
808 }
809}
810
811static void _dma_rxenable(struct dma_info *di)
812{
813 uint dmactrlflags = di->dma.dmactrlflags;
814 u32 control;
815
8505a7e6 816 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
817
818 control =
819 (R_REG(&di->d64rxregs->control) & D64_RC_AE) |
820 D64_RC_RE;
821
822 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
823 control |= D64_RC_PD;
824
825 if (dmactrlflags & DMA_CTRL_ROC)
826 control |= D64_RC_OC;
827
828 W_REG(&di->d64rxregs->control,
829 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
830}
831
832void dma_rxinit(struct dma_pub *pub)
833{
834 struct dma_info *di = (struct dma_info *)pub;
835
8505a7e6 836 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
837
838 if (di->nrxd == 0)
839 return;
840
841 di->rxin = di->rxout = 0;
842
843 /* clear rx descriptor ring */
844 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
845
846 /* DMA engine with out alignment requirement requires table to be inited
847 * before enabling the engine
848 */
849 if (!di->aligndesc_4k)
850 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
851
852 _dma_rxenable(di);
853
854 if (di->aligndesc_4k)
855 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
856}
857
858static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
859{
860 uint i, curr;
861 struct sk_buff *rxp;
862 dma_addr_t pa;
863
864 i = di->rxin;
865
866 /* return if no packets posted */
867 if (i == di->rxout)
868 return NULL;
869
870 curr =
871 B2I(((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) -
872 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
873
874 /* ignore curr if forceall */
875 if (!forceall && (i == curr))
876 return NULL;
877
878 /* get the packet pointer that corresponds to the rx descriptor */
879 rxp = di->rxp[i];
880 di->rxp[i] = NULL;
881
882 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
883
884 /* clear this packet from the descriptor ring */
885 pci_unmap_single(di->pbus, pa, di->rxbufsize, PCI_DMA_FROMDEVICE);
886
887 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
888 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
889
890 di->rxin = nextrxd(di, i);
891
892 return rxp;
893}
894
895static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
896{
897 if (di->nrxd == 0)
898 return NULL;
899
900 return dma64_getnextrxp(di, forceall);
901}
902
903/*
904 * !! rx entry routine
3fd172d3 905 * returns the number packages in the next frame, or 0 if there are no more
5b435de0
AS
906 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
907 * supported with pkts chain
908 * otherwise, it's treated as giant pkt and will be tossed.
909 * The DMA scattering starts with normal DMA header, followed by first
910 * buffer data. After it reaches the max size of buffer, the data continues
911 * in next DMA descriptor buffer WITHOUT DMA header
912 */
3fd172d3 913int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
5b435de0
AS
914{
915 struct dma_info *di = (struct dma_info *)pub;
3fd172d3
AS
916 struct sk_buff_head dma_frames;
917 struct sk_buff *p, *next;
5b435de0
AS
918 uint len;
919 uint pkt_len;
920 int resid = 0;
3fd172d3 921 int pktcnt = 1;
5b435de0 922
3fd172d3 923 skb_queue_head_init(&dma_frames);
5b435de0 924 next_frame:
3fd172d3
AS
925 p = _dma_getnextrxp(di, false);
926 if (p == NULL)
927 return 0;
5b435de0 928
3fd172d3 929 len = le16_to_cpu(*(__le16 *) (p->data));
8505a7e6 930 DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
3fd172d3 931 dma_spin_for_len(len, p);
5b435de0
AS
932
933 /* set actual length */
934 pkt_len = min((di->rxoffset + len), di->rxbufsize);
3fd172d3
AS
935 __skb_trim(p, pkt_len);
936 skb_queue_tail(&dma_frames, p);
5b435de0
AS
937 resid = len - (di->rxbufsize - di->rxoffset);
938
939 /* check for single or multi-buffer rx */
940 if (resid > 0) {
5b435de0 941 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
5b435de0
AS
942 pkt_len = min_t(uint, resid, di->rxbufsize);
943 __skb_trim(p, pkt_len);
3fd172d3 944 skb_queue_tail(&dma_frames, p);
5b435de0 945 resid -= di->rxbufsize;
3fd172d3 946 pktcnt++;
5b435de0
AS
947 }
948
949#ifdef BCMDBG
950 if (resid > 0) {
951 uint cur;
952 cur =
953 B2I(((R_REG(&di->d64rxregs->status0) &
954 D64_RS0_CD_MASK) -
955 di->rcvptrbase) & D64_RS0_CD_MASK,
956 struct dma64desc);
8505a7e6
JP
957 DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
958 di->rxin, di->rxout, cur);
5b435de0
AS
959 }
960#endif /* BCMDBG */
961
962 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
8505a7e6
JP
963 DMA_ERROR("%s: bad frame length (%d)\n",
964 di->name, len);
3fd172d3
AS
965 skb_queue_walk_safe(&dma_frames, p, next) {
966 skb_unlink(p, &dma_frames);
967 brcmu_pkt_buf_free_skb(p);
968 }
5b435de0 969 di->dma.rxgiants++;
3fd172d3 970 pktcnt = 1;
5b435de0
AS
971 goto next_frame;
972 }
973 }
974
3fd172d3
AS
975 skb_queue_splice_tail(&dma_frames, skb_list);
976 return pktcnt;
5b435de0
AS
977}
978
979static bool dma64_rxidle(struct dma_info *di)
980{
8505a7e6 981 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
982
983 if (di->nrxd == 0)
984 return true;
985
986 return ((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) ==
987 (R_REG(&di->d64rxregs->ptr) & D64_RS0_CD_MASK));
988}
989
990/*
991 * post receive buffers
992 * return false is refill failed completely and ring is empty this will stall
993 * the rx dma and user might want to call rxfill again asap. This unlikely
994 * happens on memory-rich NIC, but often on memory-constrained dongle
995 */
996bool dma_rxfill(struct dma_pub *pub)
997{
998 struct dma_info *di = (struct dma_info *)pub;
999 struct sk_buff *p;
1000 u16 rxin, rxout;
1001 u32 flags = 0;
1002 uint n;
1003 uint i;
1004 dma_addr_t pa;
1005 uint extra_offset = 0;
1006 bool ring_empty;
1007
1008 ring_empty = false;
1009
1010 /*
1011 * Determine how many receive buffers we're lacking
1012 * from the full complement, allocate, initialize,
1013 * and post them, then update the chip rx lastdscr.
1014 */
1015
1016 rxin = di->rxin;
1017 rxout = di->rxout;
1018
1019 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1020
8505a7e6 1021 DMA_TRACE("%s: post %d\n", di->name, n);
5b435de0
AS
1022
1023 if (di->rxbufsize > BCMEXTRAHDROOM)
1024 extra_offset = di->rxextrahdrroom;
1025
1026 for (i = 0; i < n; i++) {
1027 /*
1028 * the di->rxbufsize doesn't include the extra headroom,
1029 * we need to add it to the size to be allocated
1030 */
1031 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1032
1033 if (p == NULL) {
8505a7e6 1034 DMA_ERROR("%s: out of rxbufs\n", di->name);
5b435de0 1035 if (i == 0 && dma64_rxidle(di)) {
8505a7e6 1036 DMA_ERROR("%s: ring is empty !\n", di->name);
5b435de0
AS
1037 ring_empty = true;
1038 }
1039 di->dma.rxnobuf++;
1040 break;
1041 }
1042 /* reserve an extra headroom, if applicable */
1043 if (extra_offset)
1044 skb_pull(p, extra_offset);
1045
1046 /* Do a cached write instead of uncached write since DMA_MAP
1047 * will flush the cache.
1048 */
1049 *(u32 *) (p->data) = 0;
1050
1051 pa = pci_map_single(di->pbus, p->data,
1052 di->rxbufsize, PCI_DMA_FROMDEVICE);
1053
1054 /* save the free packet pointer */
1055 di->rxp[rxout] = p;
1056
1057 /* reset flags for each descriptor */
1058 flags = 0;
1059 if (rxout == (di->nrxd - 1))
1060 flags = D64_CTRL1_EOT;
1061
1062 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1063 di->rxbufsize);
1064 rxout = nextrxd(di, rxout);
1065 }
1066
1067 di->rxout = rxout;
1068
1069 /* update the chip lastdscr pointer */
1070 W_REG(&di->d64rxregs->ptr,
1071 di->rcvptrbase + I2B(rxout, struct dma64desc));
1072
1073 return ring_empty;
1074}
1075
1076void dma_rxreclaim(struct dma_pub *pub)
1077{
1078 struct dma_info *di = (struct dma_info *)pub;
1079 struct sk_buff *p;
1080
8505a7e6 1081 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1082
1083 while ((p = _dma_getnextrxp(di, true)))
1084 brcmu_pkt_buf_free_skb(p);
1085}
1086
1087void dma_counterreset(struct dma_pub *pub)
1088{
1089 /* reset all software counters */
1090 pub->rxgiants = 0;
1091 pub->rxnobuf = 0;
1092 pub->txnobuf = 0;
1093}
1094
1095/* get the address of the var in order to change later */
1096unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1097{
1098 struct dma_info *di = (struct dma_info *)pub;
1099
1100 if (!strcmp(name, "&txavail"))
1101 return (unsigned long)&(di->dma.txavail);
1102 return 0;
1103}
1104
1105/* 64-bit DMA functions */
1106
1107void dma_txinit(struct dma_pub *pub)
1108{
1109 struct dma_info *di = (struct dma_info *)pub;
1110 u32 control = D64_XC_XE;
1111
8505a7e6 1112 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1113
1114 if (di->ntxd == 0)
1115 return;
1116
1117 di->txin = di->txout = 0;
1118 di->dma.txavail = di->ntxd - 1;
1119
1120 /* clear tx descriptor ring */
1121 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1122
1123 /* DMA engine with out alignment requirement requires table to be inited
1124 * before enabling the engine
1125 */
1126 if (!di->aligndesc_4k)
1127 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1128
1129 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1130 control |= D64_XC_PD;
1131 OR_REG(&di->d64txregs->control, control);
1132
1133 /* DMA engine with alignment requirement requires table to be inited
1134 * before enabling the engine
1135 */
1136 if (di->aligndesc_4k)
1137 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1138}
1139
1140void dma_txsuspend(struct dma_pub *pub)
1141{
1142 struct dma_info *di = (struct dma_info *)pub;
1143
8505a7e6 1144 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1145
1146 if (di->ntxd == 0)
1147 return;
1148
1149 OR_REG(&di->d64txregs->control, D64_XC_SE);
1150}
1151
1152void dma_txresume(struct dma_pub *pub)
1153{
1154 struct dma_info *di = (struct dma_info *)pub;
1155
8505a7e6 1156 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1157
1158 if (di->ntxd == 0)
1159 return;
1160
1161 AND_REG(&di->d64txregs->control, ~D64_XC_SE);
1162}
1163
1164bool dma_txsuspended(struct dma_pub *pub)
1165{
1166 struct dma_info *di = (struct dma_info *)pub;
1167
1168 return (di->ntxd == 0) ||
1169 ((R_REG(&di->d64txregs->control) & D64_XC_SE) ==
1170 D64_XC_SE);
1171}
1172
1173void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1174{
1175 struct dma_info *di = (struct dma_info *)pub;
1176 struct sk_buff *p;
1177
8505a7e6
JP
1178 DMA_TRACE("%s: %s\n",
1179 di->name,
1180 range == DMA_RANGE_ALL ? "all" :
1181 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1182 "transferred");
5b435de0
AS
1183
1184 if (di->txin == di->txout)
1185 return;
1186
1187 while ((p = dma_getnexttxp(pub, range))) {
1188 /* For unframed data, we don't have any packets to free */
1189 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1190 brcmu_pkt_buf_free_skb(p);
1191 }
1192}
1193
1194bool dma_txreset(struct dma_pub *pub)
1195{
1196 struct dma_info *di = (struct dma_info *)pub;
1197 u32 status;
1198
1199 if (di->ntxd == 0)
1200 return true;
1201
1202 /* suspend tx DMA first */
1203 W_REG(&di->d64txregs->control, D64_XC_SE);
1204 SPINWAIT(((status =
1205 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1206 != D64_XS0_XS_DISABLED) && (status != D64_XS0_XS_IDLE)
1207 && (status != D64_XS0_XS_STOPPED), 10000);
1208
1209 W_REG(&di->d64txregs->control, 0);
1210 SPINWAIT(((status =
1211 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1212 != D64_XS0_XS_DISABLED), 10000);
1213
1214 /* wait for the last transaction to complete */
1215 udelay(300);
1216
1217 return status == D64_XS0_XS_DISABLED;
1218}
1219
1220bool dma_rxreset(struct dma_pub *pub)
1221{
1222 struct dma_info *di = (struct dma_info *)pub;
1223 u32 status;
1224
1225 if (di->nrxd == 0)
1226 return true;
1227
1228 W_REG(&di->d64rxregs->control, 0);
1229 SPINWAIT(((status =
1230 (R_REG(&di->d64rxregs->status0) & D64_RS0_RS_MASK))
1231 != D64_RS0_RS_DISABLED), 10000);
1232
1233 return status == D64_RS0_RS_DISABLED;
1234}
1235
1236/*
1237 * !! tx entry routine
1238 * WARNING: call must check the return value for error.
1239 * the error(toss frames) could be fatal and cause many subsequent hard
1240 * to debug problems
1241 */
1242int dma_txfast(struct dma_pub *pub, struct sk_buff *p0, bool commit)
1243{
1244 struct dma_info *di = (struct dma_info *)pub;
1245 struct sk_buff *p, *next;
1246 unsigned char *data;
1247 uint len;
1248 u16 txout;
1249 u32 flags = 0;
1250 dma_addr_t pa;
1251
8505a7e6 1252 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1253
1254 txout = di->txout;
1255
1256 /*
1257 * Walk the chain of packet buffers
1258 * allocating and initializing transmit descriptor entries.
1259 */
1260 for (p = p0; p; p = next) {
1261 data = p->data;
1262 len = p->len;
1263 next = p->next;
1264
1265 /* return nonzero if out of tx descriptors */
1266 if (nexttxd(di, txout) == di->txin)
1267 goto outoftxd;
1268
1269 if (len == 0)
1270 continue;
1271
1272 /* get physical address of buffer start */
1273 pa = pci_map_single(di->pbus, data, len, PCI_DMA_TODEVICE);
1274
1275 flags = 0;
1276 if (p == p0)
1277 flags |= D64_CTRL1_SOF;
1278
1279 /* With a DMA segment list, Descriptor table is filled
1280 * using the segment list instead of looping over
1281 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1282 * is when end of segment list is reached.
1283 */
1284 if (next == NULL)
1285 flags |= (D64_CTRL1_IOC | D64_CTRL1_EOF);
1286 if (txout == (di->ntxd - 1))
1287 flags |= D64_CTRL1_EOT;
1288
1289 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
1290
1291 txout = nexttxd(di, txout);
1292 }
1293
1294 /* if last txd eof not set, fix it */
1295 if (!(flags & D64_CTRL1_EOF))
1296 di->txd64[prevtxd(di, txout)].ctrl1 =
1297 cpu_to_le32(flags | D64_CTRL1_IOC | D64_CTRL1_EOF);
1298
1299 /* save the packet */
1300 di->txp[prevtxd(di, txout)] = p0;
1301
1302 /* bump the tx descriptor index */
1303 di->txout = txout;
1304
1305 /* kick the chip */
1306 if (commit)
1307 W_REG(&di->d64txregs->ptr,
1308 di->xmtptrbase + I2B(txout, struct dma64desc));
1309
1310 /* tx flow control */
1311 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1312
1313 return 0;
1314
1315 outoftxd:
8505a7e6 1316 DMA_ERROR("%s: out of txds !!!\n", di->name);
5b435de0
AS
1317 brcmu_pkt_buf_free_skb(p0);
1318 di->dma.txavail = 0;
1319 di->dma.txnobuf++;
1320 return -1;
1321}
1322
1323/*
1324 * Reclaim next completed txd (txds if using chained buffers) in the range
1325 * specified and return associated packet.
1326 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1327 * transmitted as noted by the hardware "CurrDescr" pointer.
1328 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1329 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1330 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1331 * return associated packet regardless of the value of hardware pointers.
1332 */
1333struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1334{
1335 struct dma_info *di = (struct dma_info *)pub;
1336 u16 start, end, i;
1337 u16 active_desc;
1338 struct sk_buff *txp;
1339
8505a7e6
JP
1340 DMA_TRACE("%s: %s\n",
1341 di->name,
1342 range == DMA_RANGE_ALL ? "all" :
1343 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1344 "transferred");
5b435de0
AS
1345
1346 if (di->ntxd == 0)
1347 return NULL;
1348
1349 txp = NULL;
1350
1351 start = di->txin;
1352 if (range == DMA_RANGE_ALL)
1353 end = di->txout;
1354 else {
1355 struct dma64regs __iomem *dregs = di->d64txregs;
1356
1357 end = (u16) (B2I(((R_REG(&dregs->status0) &
1358 D64_XS0_CD_MASK) -
1359 di->xmtptrbase) & D64_XS0_CD_MASK,
1360 struct dma64desc));
1361
1362 if (range == DMA_RANGE_TRANSFERED) {
1363 active_desc =
1364 (u16) (R_REG(&dregs->status1) &
1365 D64_XS1_AD_MASK);
1366 active_desc =
1367 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1368 active_desc = B2I(active_desc, struct dma64desc);
1369 if (end != active_desc)
1370 end = prevtxd(di, active_desc);
1371 }
1372 }
1373
1374 if ((start == 0) && (end > di->txout))
1375 goto bogus;
1376
1377 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1378 dma_addr_t pa;
1379 uint size;
1380
1381 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1382
1383 size =
1384 (le32_to_cpu(di->txd64[i].ctrl2) &
1385 D64_CTRL2_BC_MASK);
1386
1387 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1388 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1389
1390 txp = di->txp[i];
1391 di->txp[i] = NULL;
1392
1393 pci_unmap_single(di->pbus, pa, size, PCI_DMA_TODEVICE);
1394 }
1395
1396 di->txin = i;
1397
1398 /* tx flow control */
1399 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1400
1401 return txp;
1402
1403 bogus:
8505a7e6
JP
1404 DMA_NONE("bogus curr: start %d end %d txout %d\n",
1405 start, end, di->txout);
5b435de0
AS
1406 return NULL;
1407}
1408
1409/*
1410 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1411 * modified. The modified portion of the packet is not under control of the DMA
1412 * engine. This function calls a caller-supplied function for each packet in
1413 * the caller specified dma chain.
1414 */
1415void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1416 (void *pkt, void *arg_a), void *arg_a)
1417{
1418 struct dma_info *di = (struct dma_info *) dmah;
1419 uint i = di->txin;
1420 uint end = di->txout;
1421 struct sk_buff *skb;
1422 struct ieee80211_tx_info *tx_info;
1423
1424 while (i != end) {
1425 skb = (struct sk_buff *)di->txp[i];
1426 if (skb != NULL) {
1427 tx_info = (struct ieee80211_tx_info *)skb->cb;
1428 (callback_fnc)(tx_info, arg_a);
1429 }
1430 i = nexttxd(di, i);
1431 }
1432}
This page took 0.099087 seconds and 5 git commands to generate.