brcm80211: smac: use DMA-API calls for descriptor allocations
[deliverable/linux.git] / drivers / net / wireless / brcm80211 / brcmsmac / dma.c
CommitLineData
5b435de0
AS
1/*
2 * Copyright (c) 2010 Broadcom Corporation
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
8505a7e6
JP
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
5b435de0 19#include <linux/slab.h>
5b435de0
AS
20#include <linux/delay.h>
21#include <linux/pci.h>
22
23#include <brcmu_utils.h>
24#include <aiutils.h>
25#include "types.h"
26#include "dma.h"
23038214 27#include "soc.h"
5b435de0
AS
28
29/*
30 * DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
31 * a contiguous 8kB physical address.
32 */
33#define D64RINGALIGN_BITS 13
34#define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
35#define D64RINGALIGN (1 << D64RINGALIGN_BITS)
36
37#define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
38
39/* transmit channel control */
40#define D64_XC_XE 0x00000001 /* transmit enable */
41#define D64_XC_SE 0x00000002 /* transmit suspend request */
42#define D64_XC_LE 0x00000004 /* loopback enable */
43#define D64_XC_FL 0x00000010 /* flush request */
44#define D64_XC_PD 0x00000800 /* parity check disable */
45#define D64_XC_AE 0x00030000 /* address extension bits */
46#define D64_XC_AE_SHIFT 16
47
48/* transmit descriptor table pointer */
49#define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
50
51/* transmit channel status */
52#define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
53#define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
54#define D64_XS0_XS_SHIFT 28
55#define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
56#define D64_XS0_XS_ACTIVE 0x10000000 /* active */
57#define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
58#define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
59#define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
60
61#define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
62#define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
63#define D64_XS1_XE_SHIFT 28
64#define D64_XS1_XE_NOERR 0x00000000 /* no error */
65#define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
66#define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
67#define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
68#define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
69#define D64_XS1_XE_COREE 0x50000000 /* core error */
70
71/* receive channel control */
72/* receive enable */
73#define D64_RC_RE 0x00000001
74/* receive frame offset */
75#define D64_RC_RO_MASK 0x000000fe
76#define D64_RC_RO_SHIFT 1
77/* direct fifo receive (pio) mode */
78#define D64_RC_FM 0x00000100
79/* separate rx header descriptor enable */
80#define D64_RC_SH 0x00000200
81/* overflow continue */
82#define D64_RC_OC 0x00000400
83/* parity check disable */
84#define D64_RC_PD 0x00000800
85/* address extension bits */
86#define D64_RC_AE 0x00030000
87#define D64_RC_AE_SHIFT 16
88
89/* flags for dma controller */
90/* partity enable */
91#define DMA_CTRL_PEN (1 << 0)
92/* rx overflow continue */
93#define DMA_CTRL_ROC (1 << 1)
94/* allow rx scatter to multiple descriptors */
95#define DMA_CTRL_RXMULTI (1 << 2)
96/* Unframed Rx/Tx data */
97#define DMA_CTRL_UNFRAMED (1 << 3)
98
99/* receive descriptor table pointer */
100#define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
101
102/* receive channel status */
103#define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
104#define D64_RS0_RS_MASK 0xf0000000 /* receive state */
105#define D64_RS0_RS_SHIFT 28
106#define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
107#define D64_RS0_RS_ACTIVE 0x10000000 /* active */
108#define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
109#define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
110#define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
111
112#define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
113#define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
114#define D64_RS1_RE_SHIFT 28
115#define D64_RS1_RE_NOERR 0x00000000 /* no error */
116#define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
117#define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
118#define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
119#define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
120#define D64_RS1_RE_COREE 0x50000000 /* core error */
121
122/* fifoaddr */
123#define D64_FA_OFF_MASK 0xffff /* offset */
124#define D64_FA_SEL_MASK 0xf0000 /* select */
125#define D64_FA_SEL_SHIFT 16
126#define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
127#define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
128#define D64_FA_SEL_RDD 0x40000 /* receive dma data */
129#define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
130#define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
131#define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
132#define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
133#define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
134#define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
135#define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
136
137/* descriptor control flags 1 */
138#define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
139#define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
140#define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
141#define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
142#define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
143
144/* descriptor control flags 2 */
145/* buffer byte count. real data len must <= 16KB */
146#define D64_CTRL2_BC_MASK 0x00007fff
147/* address extension bits */
148#define D64_CTRL2_AE 0x00030000
149#define D64_CTRL2_AE_SHIFT 16
150/* parity bit */
151#define D64_CTRL2_PARITY 0x00040000
152
153/* control flags in the range [27:20] are core-specific and not defined here */
154#define D64_CTRL_CORE_MASK 0x0ff00000
155
156#define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
157#define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
158#define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
159#define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
160
161/*
162 * packet headroom necessary to accommodate the largest header
163 * in the system, (i.e TXOFF). By doing, we avoid the need to
164 * allocate an extra buffer for the header when bridging to WL.
165 * There is a compile time check in wlc.c which ensure that this
166 * value is at least as big as TXOFF. This value is used in
167 * dma_rxfill().
168 */
169
170#define BCMEXTRAHDROOM 172
171
172/* debug/trace */
173#ifdef BCMDBG
8505a7e6
JP
174#define DMA_ERROR(fmt, ...) \
175do { \
176 if (*di->msg_level & 1) \
177 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
178} while (0)
179#define DMA_TRACE(fmt, ...) \
180do { \
181 if (*di->msg_level & 2) \
182 pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
183} while (0)
5b435de0 184#else
8505a7e6
JP
185#define DMA_ERROR(fmt, ...) \
186 no_printk(fmt, ##__VA_ARGS__)
187#define DMA_TRACE(fmt, ...) \
188 no_printk(fmt, ##__VA_ARGS__)
5b435de0
AS
189#endif /* BCMDBG */
190
8505a7e6
JP
191#define DMA_NONE(fmt, ...) \
192 no_printk(fmt, ##__VA_ARGS__)
5b435de0
AS
193
194#define MAXNAMEL 8 /* 8 char names */
195
196/* macros to convert between byte offsets and indexes */
197#define B2I(bytes, type) ((bytes) / sizeof(type))
198#define I2B(index, type) ((index) * sizeof(type))
199
200#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
201#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
202
203#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
204#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
205
206/*
207 * DMA Descriptor
208 * Descriptors are only read by the hardware, never written back.
209 */
210struct dma64desc {
211 __le32 ctrl1; /* misc control bits & bufcount */
212 __le32 ctrl2; /* buffer count and address extension */
213 __le32 addrlow; /* memory address of the date buffer, bits 31:0 */
214 __le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
215};
216
217/* dma engine software state */
218struct dma_info {
219 struct dma_pub dma; /* exported structure */
220 uint *msg_level; /* message level pointer */
221 char name[MAXNAMEL]; /* callers name for diag msgs */
222
2e81b9b1
AS
223 struct bcma_device *d11core;
224 struct device *dmadev;
5b435de0
AS
225
226 bool dma64; /* this dma engine is operating in 64-bit mode */
227 bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
228
229 /* 64-bit dma tx engine registers */
230 struct dma64regs __iomem *d64txregs;
231 /* 64-bit dma rx engine registers */
232 struct dma64regs __iomem *d64rxregs;
233 /* pointer to dma64 tx descriptor ring */
234 struct dma64desc *txd64;
235 /* pointer to dma64 rx descriptor ring */
236 struct dma64desc *rxd64;
237
238 u16 dmadesc_align; /* alignment requirement for dma descriptors */
239
240 u16 ntxd; /* # tx descriptors tunable */
241 u16 txin; /* index of next descriptor to reclaim */
242 u16 txout; /* index of next descriptor to post */
243 /* pointer to parallel array of pointers to packets */
244 struct sk_buff **txp;
245 /* Aligned physical address of descriptor ring */
246 dma_addr_t txdpa;
247 /* Original physical address of descriptor ring */
248 dma_addr_t txdpaorig;
249 u16 txdalign; /* #bytes added to alloc'd mem to align txd */
250 u32 txdalloc; /* #bytes allocated for the ring */
251 u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
252 * is not just an index, it needs all 13 bits to be
253 * an offset from the addr register.
254 */
255
256 u16 nrxd; /* # rx descriptors tunable */
257 u16 rxin; /* index of next descriptor to reclaim */
258 u16 rxout; /* index of next descriptor to post */
259 /* pointer to parallel array of pointers to packets */
260 struct sk_buff **rxp;
261 /* Aligned physical address of descriptor ring */
262 dma_addr_t rxdpa;
263 /* Original physical address of descriptor ring */
264 dma_addr_t rxdpaorig;
265 u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
266 u32 rxdalloc; /* #bytes allocated for the ring */
267 u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
268
269 /* tunables */
270 unsigned int rxbufsize; /* rx buffer size in bytes, not including
271 * the extra headroom
272 */
273 uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
274 * stack, e.g. some rx pkt buffers will be
275 * bridged to tx side without byte copying.
276 * The extra headroom needs to be large enough
277 * to fit txheader needs. Some dongle driver may
278 * not need it.
279 */
280 uint nrxpost; /* # rx buffers to keep posted */
281 unsigned int rxoffset; /* rxcontrol offset */
282 /* add to get dma address of descriptor ring, low 32 bits */
283 uint ddoffsetlow;
284 /* high 32 bits */
285 uint ddoffsethigh;
286 /* add to get dma address of data buffer, low 32 bits */
287 uint dataoffsetlow;
288 /* high 32 bits */
289 uint dataoffsethigh;
290 /* descriptor base need to be aligned or not */
291 bool aligndesc_4k;
292};
293
294/*
295 * default dma message level (if input msg_level
296 * pointer is null in dma_attach())
297 */
298static uint dma_msg_level;
299
300/* Check for odd number of 1's */
301static u32 parity32(__le32 data)
302{
303 /* no swap needed for counting 1's */
304 u32 par_data = *(u32 *)&data;
305
306 par_data ^= par_data >> 16;
307 par_data ^= par_data >> 8;
308 par_data ^= par_data >> 4;
309 par_data ^= par_data >> 2;
310 par_data ^= par_data >> 1;
311
312 return par_data & 1;
313}
314
315static bool dma64_dd_parity(struct dma64desc *dd)
316{
317 return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
318}
319
320/* descriptor bumping functions */
321
322static uint xxd(uint x, uint n)
323{
324 return x & (n - 1); /* faster than %, but n must be power of 2 */
325}
326
327static uint txd(struct dma_info *di, uint x)
328{
329 return xxd(x, di->ntxd);
330}
331
332static uint rxd(struct dma_info *di, uint x)
333{
334 return xxd(x, di->nrxd);
335}
336
337static uint nexttxd(struct dma_info *di, uint i)
338{
339 return txd(di, i + 1);
340}
341
342static uint prevtxd(struct dma_info *di, uint i)
343{
344 return txd(di, i - 1);
345}
346
347static uint nextrxd(struct dma_info *di, uint i)
348{
349 return txd(di, i + 1);
350}
351
352static uint ntxdactive(struct dma_info *di, uint h, uint t)
353{
354 return txd(di, t-h);
355}
356
357static uint nrxdactive(struct dma_info *di, uint h, uint t)
358{
359 return rxd(di, t-h);
360}
361
362static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
363{
ae8e4672 364 uint dmactrlflags;
5b435de0
AS
365
366 if (di == NULL) {
8505a7e6 367 DMA_ERROR("NULL dma handle\n");
5b435de0
AS
368 return 0;
369 }
370
ae8e4672 371 dmactrlflags = di->dma.dmactrlflags;
5b435de0
AS
372 dmactrlflags &= ~mask;
373 dmactrlflags |= flags;
374
375 /* If trying to enable parity, check if parity is actually supported */
376 if (dmactrlflags & DMA_CTRL_PEN) {
377 u32 control;
378
379 control = R_REG(&di->d64txregs->control);
380 W_REG(&di->d64txregs->control,
381 control | D64_XC_PD);
382 if (R_REG(&di->d64txregs->control) & D64_XC_PD)
383 /* We *can* disable it so it is supported,
384 * restore control register
385 */
386 W_REG(&di->d64txregs->control,
387 control);
388 else
389 /* Not supported, don't allow it to be enabled */
390 dmactrlflags &= ~DMA_CTRL_PEN;
391 }
392
393 di->dma.dmactrlflags = dmactrlflags;
394
395 return dmactrlflags;
396}
397
398static bool _dma64_addrext(struct dma64regs __iomem *dma64regs)
399{
400 u32 w;
401 OR_REG(&dma64regs->control, D64_XC_AE);
402 w = R_REG(&dma64regs->control);
403 AND_REG(&dma64regs->control, ~D64_XC_AE);
404 return (w & D64_XC_AE) == D64_XC_AE;
405}
406
407/*
408 * return true if this dma engine supports DmaExtendedAddrChanges,
409 * otherwise false
410 */
411static bool _dma_isaddrext(struct dma_info *di)
412{
413 /* DMA64 supports full 32- or 64-bit operation. AE is always valid */
414
415 /* not all tx or rx channel are available */
416 if (di->d64txregs != NULL) {
417 if (!_dma64_addrext(di->d64txregs))
8505a7e6
JP
418 DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
419 di->name);
5b435de0
AS
420 return true;
421 } else if (di->d64rxregs != NULL) {
422 if (!_dma64_addrext(di->d64rxregs))
8505a7e6
JP
423 DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
424 di->name);
5b435de0
AS
425 return true;
426 }
427
428 return false;
429}
430
431static bool _dma_descriptor_align(struct dma_info *di)
432{
433 u32 addrl;
434
435 /* Check to see if the descriptors need to be aligned on 4K/8K or not */
436 if (di->d64txregs != NULL) {
437 W_REG(&di->d64txregs->addrlow, 0xff0);
438 addrl = R_REG(&di->d64txregs->addrlow);
439 if (addrl != 0)
440 return false;
441 } else if (di->d64rxregs != NULL) {
442 W_REG(&di->d64rxregs->addrlow, 0xff0);
443 addrl = R_REG(&di->d64rxregs->addrlow);
444 if (addrl != 0)
445 return false;
446 }
447 return true;
448}
449
450/*
451 * Descriptor table must start at the DMA hardware dictated alignment, so
452 * allocated memory must be large enough to support this requirement.
453 */
2e81b9b1 454static void *dma_alloc_consistent(struct dma_info *di, uint size,
5b435de0
AS
455 u16 align_bits, uint *alloced,
456 dma_addr_t *pap)
457{
458 if (align_bits) {
459 u16 align = (1 << align_bits);
460 if (!IS_ALIGNED(PAGE_SIZE, align))
461 size += align;
462 *alloced = size;
463 }
2e81b9b1 464 return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
5b435de0
AS
465}
466
467static
468u8 dma_align_sizetobits(uint size)
469{
470 u8 bitpos = 0;
471 while (size >>= 1)
472 bitpos++;
473 return bitpos;
474}
475
476/* This function ensures that the DMA descriptor ring will not get allocated
477 * across Page boundary. If the allocation is done across the page boundary
478 * at the first time, then it is freed and the allocation is done at
479 * descriptor ring size aligned location. This will ensure that the ring will
480 * not cross page boundary
481 */
482static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
483 u16 *alignbits, uint *alloced,
484 dma_addr_t *descpa)
485{
486 void *va;
487 u32 desc_strtaddr;
488 u32 alignbytes = 1 << *alignbits;
489
2e81b9b1 490 va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
5b435de0
AS
491
492 if (NULL == va)
493 return NULL;
494
495 desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
496 if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
497 & boundary)) {
498 *alignbits = dma_align_sizetobits(size);
2e81b9b1
AS
499 dma_free_coherent(di->dmadev, size, va, *descpa);
500 va = dma_alloc_consistent(di, size, *alignbits,
5b435de0
AS
501 alloced, descpa);
502 }
503 return va;
504}
505
506static bool dma64_alloc(struct dma_info *di, uint direction)
507{
508 u16 size;
509 uint ddlen;
510 void *va;
511 uint alloced = 0;
512 u16 align;
513 u16 align_bits;
514
515 ddlen = sizeof(struct dma64desc);
516
517 size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
518 align_bits = di->dmadesc_align;
519 align = (1 << align_bits);
520
521 if (direction == DMA_TX) {
522 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
523 &alloced, &di->txdpaorig);
524 if (va == NULL) {
8505a7e6
JP
525 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
526 di->name);
5b435de0
AS
527 return false;
528 }
529 align = (1 << align_bits);
530 di->txd64 = (struct dma64desc *)
531 roundup((unsigned long)va, align);
532 di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
533 di->txdpa = di->txdpaorig + di->txdalign;
534 di->txdalloc = alloced;
535 } else {
536 va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
537 &alloced, &di->rxdpaorig);
538 if (va == NULL) {
8505a7e6
JP
539 DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
540 di->name);
5b435de0
AS
541 return false;
542 }
543 align = (1 << align_bits);
544 di->rxd64 = (struct dma64desc *)
545 roundup((unsigned long)va, align);
546 di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
547 di->rxdpa = di->rxdpaorig + di->rxdalign;
548 di->rxdalloc = alloced;
549 }
550
551 return true;
552}
553
554static bool _dma_alloc(struct dma_info *di, uint direction)
555{
556 return dma64_alloc(di, direction);
557}
558
559struct dma_pub *dma_attach(char *name, struct si_pub *sih,
2e81b9b1
AS
560 struct bcma_device *d11core,
561 void __iomem *dmaregstx, void __iomem *dmaregsrx,
562 uint ntxd, uint nrxd,
563 uint rxbufsize, int rxextheadroom,
564 uint nrxpost, uint rxoffset, uint *msg_level)
5b435de0
AS
565{
566 struct dma_info *di;
567 uint size;
568
569 /* allocate private info structure */
570 di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
571 if (di == NULL)
572 return NULL;
573
574 di->msg_level = msg_level ? msg_level : &dma_msg_level;
575
576
577 di->dma64 = ((ai_core_sflags(sih, 0, 0) & SISF_DMA64) == SISF_DMA64);
578
579 /* init dma reg pointer */
2e81b9b1 580 di->d11core = d11core;
5b435de0
AS
581 di->d64txregs = (struct dma64regs __iomem *) dmaregstx;
582 di->d64rxregs = (struct dma64regs __iomem *) dmaregsrx;
583
584 /*
585 * Default flags (which can be changed by the driver calling
586 * dma_ctrlflags before enable): For backwards compatibility
587 * both Rx Overflow Continue and Parity are DISABLED.
588 */
589 _dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
590
8505a7e6
JP
591 DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d dmaregstx %p dmaregsrx %p\n",
592 name, "DMA64",
593 di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
594 rxextheadroom, nrxpost, rxoffset, dmaregstx, dmaregsrx);
5b435de0
AS
595
596 /* make a private copy of our callers name */
597 strncpy(di->name, name, MAXNAMEL);
598 di->name[MAXNAMEL - 1] = '\0';
599
2e81b9b1 600 di->dmadev = d11core->dma_dev;
5b435de0
AS
601
602 /* save tunables */
603 di->ntxd = (u16) ntxd;
604 di->nrxd = (u16) nrxd;
605
606 /* the actual dma size doesn't include the extra headroom */
607 di->rxextrahdrroom =
608 (rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
609 if (rxbufsize > BCMEXTRAHDROOM)
610 di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
611 else
612 di->rxbufsize = (u16) rxbufsize;
613
614 di->nrxpost = (u16) nrxpost;
615 di->rxoffset = (u8) rxoffset;
616
617 /*
618 * figure out the DMA physical address offset for dd and data
619 * PCI/PCIE: they map silicon backplace address to zero
620 * based memory, need offset
621 * Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
622 * swapped region for data buffer, not descriptor
623 */
624 di->ddoffsetlow = 0;
625 di->dataoffsetlow = 0;
626 /* add offset for pcie with DMA64 bus */
627 di->ddoffsetlow = 0;
628 di->ddoffsethigh = SI_PCIE_DMA_H32;
629 di->dataoffsetlow = di->ddoffsetlow;
630 di->dataoffsethigh = di->ddoffsethigh;
631 /* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
632 if ((ai_coreid(sih) == SDIOD_CORE_ID)
633 && ((ai_corerev(sih) > 0) && (ai_corerev(sih) <= 2)))
634 di->addrext = 0;
635 else if ((ai_coreid(sih) == I2S_CORE_ID) &&
636 ((ai_corerev(sih) == 0) || (ai_corerev(sih) == 1)))
637 di->addrext = 0;
638 else
639 di->addrext = _dma_isaddrext(di);
640
641 /* does the descriptor need to be aligned and if yes, on 4K/8K or not */
642 di->aligndesc_4k = _dma_descriptor_align(di);
643 if (di->aligndesc_4k) {
644 di->dmadesc_align = D64RINGALIGN_BITS;
645 if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
646 /* for smaller dd table, HW relax alignment reqmnt */
647 di->dmadesc_align = D64RINGALIGN_BITS - 1;
648 } else {
649 di->dmadesc_align = 4; /* 16 byte alignment */
650 }
651
8505a7e6
JP
652 DMA_NONE("DMA descriptor align_needed %d, align %d\n",
653 di->aligndesc_4k, di->dmadesc_align);
5b435de0
AS
654
655 /* allocate tx packet pointer vector */
656 if (ntxd) {
657 size = ntxd * sizeof(void *);
658 di->txp = kzalloc(size, GFP_ATOMIC);
659 if (di->txp == NULL)
660 goto fail;
661 }
662
663 /* allocate rx packet pointer vector */
664 if (nrxd) {
665 size = nrxd * sizeof(void *);
666 di->rxp = kzalloc(size, GFP_ATOMIC);
667 if (di->rxp == NULL)
668 goto fail;
669 }
670
671 /*
672 * allocate transmit descriptor ring, only need ntxd descriptors
673 * but it must be aligned
674 */
675 if (ntxd) {
676 if (!_dma_alloc(di, DMA_TX))
677 goto fail;
678 }
679
680 /*
681 * allocate receive descriptor ring, only need nrxd descriptors
682 * but it must be aligned
683 */
684 if (nrxd) {
685 if (!_dma_alloc(di, DMA_RX))
686 goto fail;
687 }
688
689 if ((di->ddoffsetlow != 0) && !di->addrext) {
690 if (di->txdpa > SI_PCI_DMA_SZ) {
8505a7e6
JP
691 DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
692 di->name, (u32)di->txdpa);
5b435de0
AS
693 goto fail;
694 }
695 if (di->rxdpa > SI_PCI_DMA_SZ) {
8505a7e6
JP
696 DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
697 di->name, (u32)di->rxdpa);
5b435de0
AS
698 goto fail;
699 }
700 }
701
8505a7e6
JP
702 DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
703 di->ddoffsetlow, di->ddoffsethigh,
704 di->dataoffsetlow, di->dataoffsethigh,
705 di->addrext);
5b435de0
AS
706
707 return (struct dma_pub *) di;
708
709 fail:
710 dma_detach((struct dma_pub *)di);
711 return NULL;
712}
713
714static inline void
715dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
716 dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
717{
718 u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
719
720 /* PCI bus with big(>1G) physical address, use address extension */
721 if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
722 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
723 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
724 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
725 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
726 } else {
727 /* address extension for 32-bit PCI */
728 u32 ae;
729
730 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
731 pa &= ~PCI32ADDR_HIGH;
732
733 ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
734 ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
735 ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
736 ddring[outidx].ctrl1 = cpu_to_le32(*flags);
737 ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
738 }
739 if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
740 if (dma64_dd_parity(&ddring[outidx]))
741 ddring[outidx].ctrl2 =
742 cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
743 }
744}
745
746/* !! may be called with core in reset */
747void dma_detach(struct dma_pub *pub)
748{
749 struct dma_info *di = (struct dma_info *)pub;
750
8505a7e6 751 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
752
753 /* free dma descriptor rings */
754 if (di->txd64)
2e81b9b1
AS
755 dma_free_coherent(di->dmadev, di->txdalloc,
756 ((s8 *)di->txd64 - di->txdalign),
757 (di->txdpaorig));
5b435de0 758 if (di->rxd64)
2e81b9b1
AS
759 dma_free_coherent(di->dmadev, di->rxdalloc,
760 ((s8 *)di->rxd64 - di->rxdalign),
761 (di->rxdpaorig));
5b435de0
AS
762
763 /* free packet pointer vectors */
764 kfree(di->txp);
765 kfree(di->rxp);
766
767 /* free our private info structure */
768 kfree(di);
769
770}
771
772/* initialize descriptor table base address */
773static void
774_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
775{
776 if (!di->aligndesc_4k) {
777 if (direction == DMA_TX)
778 di->xmtptrbase = pa;
779 else
780 di->rcvptrbase = pa;
781 }
782
783 if ((di->ddoffsetlow == 0)
784 || !(pa & PCI32ADDR_HIGH)) {
785 if (direction == DMA_TX) {
786 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
787 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
788 } else {
789 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
790 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
791 }
792 } else {
793 /* DMA64 32bits address extension */
794 u32 ae;
795
796 /* shift the high bit(s) from pa to ae */
797 ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
798 pa &= ~PCI32ADDR_HIGH;
799
800 if (direction == DMA_TX) {
801 W_REG(&di->d64txregs->addrlow, pa + di->ddoffsetlow);
802 W_REG(&di->d64txregs->addrhigh, di->ddoffsethigh);
803 SET_REG(&di->d64txregs->control,
804 D64_XC_AE, (ae << D64_XC_AE_SHIFT));
805 } else {
806 W_REG(&di->d64rxregs->addrlow, pa + di->ddoffsetlow);
807 W_REG(&di->d64rxregs->addrhigh, di->ddoffsethigh);
808 SET_REG(&di->d64rxregs->control,
809 D64_RC_AE, (ae << D64_RC_AE_SHIFT));
810 }
811 }
812}
813
814static void _dma_rxenable(struct dma_info *di)
815{
816 uint dmactrlflags = di->dma.dmactrlflags;
817 u32 control;
818
8505a7e6 819 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
820
821 control =
822 (R_REG(&di->d64rxregs->control) & D64_RC_AE) |
823 D64_RC_RE;
824
825 if ((dmactrlflags & DMA_CTRL_PEN) == 0)
826 control |= D64_RC_PD;
827
828 if (dmactrlflags & DMA_CTRL_ROC)
829 control |= D64_RC_OC;
830
831 W_REG(&di->d64rxregs->control,
832 ((di->rxoffset << D64_RC_RO_SHIFT) | control));
833}
834
835void dma_rxinit(struct dma_pub *pub)
836{
837 struct dma_info *di = (struct dma_info *)pub;
838
8505a7e6 839 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
840
841 if (di->nrxd == 0)
842 return;
843
844 di->rxin = di->rxout = 0;
845
846 /* clear rx descriptor ring */
847 memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
848
849 /* DMA engine with out alignment requirement requires table to be inited
850 * before enabling the engine
851 */
852 if (!di->aligndesc_4k)
853 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
854
855 _dma_rxenable(di);
856
857 if (di->aligndesc_4k)
858 _dma_ddtable_init(di, DMA_RX, di->rxdpa);
859}
860
861static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
862{
863 uint i, curr;
864 struct sk_buff *rxp;
865 dma_addr_t pa;
866
867 i = di->rxin;
868
869 /* return if no packets posted */
870 if (i == di->rxout)
871 return NULL;
872
873 curr =
874 B2I(((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) -
875 di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
876
877 /* ignore curr if forceall */
878 if (!forceall && (i == curr))
879 return NULL;
880
881 /* get the packet pointer that corresponds to the rx descriptor */
882 rxp = di->rxp[i];
883 di->rxp[i] = NULL;
884
885 pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
886
887 /* clear this packet from the descriptor ring */
2e81b9b1 888 dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
5b435de0
AS
889
890 di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
891 di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
892
893 di->rxin = nextrxd(di, i);
894
895 return rxp;
896}
897
898static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
899{
900 if (di->nrxd == 0)
901 return NULL;
902
903 return dma64_getnextrxp(di, forceall);
904}
905
906/*
907 * !! rx entry routine
3fd172d3 908 * returns the number packages in the next frame, or 0 if there are no more
5b435de0
AS
909 * if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
910 * supported with pkts chain
911 * otherwise, it's treated as giant pkt and will be tossed.
912 * The DMA scattering starts with normal DMA header, followed by first
913 * buffer data. After it reaches the max size of buffer, the data continues
914 * in next DMA descriptor buffer WITHOUT DMA header
915 */
3fd172d3 916int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
5b435de0
AS
917{
918 struct dma_info *di = (struct dma_info *)pub;
3fd172d3
AS
919 struct sk_buff_head dma_frames;
920 struct sk_buff *p, *next;
5b435de0
AS
921 uint len;
922 uint pkt_len;
923 int resid = 0;
3fd172d3 924 int pktcnt = 1;
5b435de0 925
3fd172d3 926 skb_queue_head_init(&dma_frames);
5b435de0 927 next_frame:
3fd172d3
AS
928 p = _dma_getnextrxp(di, false);
929 if (p == NULL)
930 return 0;
5b435de0 931
3fd172d3 932 len = le16_to_cpu(*(__le16 *) (p->data));
8505a7e6 933 DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
3fd172d3 934 dma_spin_for_len(len, p);
5b435de0
AS
935
936 /* set actual length */
937 pkt_len = min((di->rxoffset + len), di->rxbufsize);
3fd172d3
AS
938 __skb_trim(p, pkt_len);
939 skb_queue_tail(&dma_frames, p);
5b435de0
AS
940 resid = len - (di->rxbufsize - di->rxoffset);
941
942 /* check for single or multi-buffer rx */
943 if (resid > 0) {
5b435de0 944 while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
5b435de0
AS
945 pkt_len = min_t(uint, resid, di->rxbufsize);
946 __skb_trim(p, pkt_len);
3fd172d3 947 skb_queue_tail(&dma_frames, p);
5b435de0 948 resid -= di->rxbufsize;
3fd172d3 949 pktcnt++;
5b435de0
AS
950 }
951
952#ifdef BCMDBG
953 if (resid > 0) {
954 uint cur;
955 cur =
956 B2I(((R_REG(&di->d64rxregs->status0) &
957 D64_RS0_CD_MASK) -
958 di->rcvptrbase) & D64_RS0_CD_MASK,
959 struct dma64desc);
8505a7e6
JP
960 DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
961 di->rxin, di->rxout, cur);
5b435de0
AS
962 }
963#endif /* BCMDBG */
964
965 if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
8505a7e6
JP
966 DMA_ERROR("%s: bad frame length (%d)\n",
967 di->name, len);
3fd172d3
AS
968 skb_queue_walk_safe(&dma_frames, p, next) {
969 skb_unlink(p, &dma_frames);
970 brcmu_pkt_buf_free_skb(p);
971 }
5b435de0 972 di->dma.rxgiants++;
3fd172d3 973 pktcnt = 1;
5b435de0
AS
974 goto next_frame;
975 }
976 }
977
3fd172d3
AS
978 skb_queue_splice_tail(&dma_frames, skb_list);
979 return pktcnt;
5b435de0
AS
980}
981
982static bool dma64_rxidle(struct dma_info *di)
983{
8505a7e6 984 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
985
986 if (di->nrxd == 0)
987 return true;
988
989 return ((R_REG(&di->d64rxregs->status0) & D64_RS0_CD_MASK) ==
990 (R_REG(&di->d64rxregs->ptr) & D64_RS0_CD_MASK));
991}
992
993/*
994 * post receive buffers
995 * return false is refill failed completely and ring is empty this will stall
996 * the rx dma and user might want to call rxfill again asap. This unlikely
997 * happens on memory-rich NIC, but often on memory-constrained dongle
998 */
999bool dma_rxfill(struct dma_pub *pub)
1000{
1001 struct dma_info *di = (struct dma_info *)pub;
1002 struct sk_buff *p;
1003 u16 rxin, rxout;
1004 u32 flags = 0;
1005 uint n;
1006 uint i;
1007 dma_addr_t pa;
1008 uint extra_offset = 0;
1009 bool ring_empty;
1010
1011 ring_empty = false;
1012
1013 /*
1014 * Determine how many receive buffers we're lacking
1015 * from the full complement, allocate, initialize,
1016 * and post them, then update the chip rx lastdscr.
1017 */
1018
1019 rxin = di->rxin;
1020 rxout = di->rxout;
1021
1022 n = di->nrxpost - nrxdactive(di, rxin, rxout);
1023
8505a7e6 1024 DMA_TRACE("%s: post %d\n", di->name, n);
5b435de0
AS
1025
1026 if (di->rxbufsize > BCMEXTRAHDROOM)
1027 extra_offset = di->rxextrahdrroom;
1028
1029 for (i = 0; i < n; i++) {
1030 /*
1031 * the di->rxbufsize doesn't include the extra headroom,
1032 * we need to add it to the size to be allocated
1033 */
1034 p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
1035
1036 if (p == NULL) {
8505a7e6 1037 DMA_ERROR("%s: out of rxbufs\n", di->name);
5b435de0 1038 if (i == 0 && dma64_rxidle(di)) {
8505a7e6 1039 DMA_ERROR("%s: ring is empty !\n", di->name);
5b435de0
AS
1040 ring_empty = true;
1041 }
1042 di->dma.rxnobuf++;
1043 break;
1044 }
1045 /* reserve an extra headroom, if applicable */
1046 if (extra_offset)
1047 skb_pull(p, extra_offset);
1048
1049 /* Do a cached write instead of uncached write since DMA_MAP
1050 * will flush the cache.
1051 */
1052 *(u32 *) (p->data) = 0;
1053
2e81b9b1
AS
1054 pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
1055 DMA_FROM_DEVICE);
5b435de0
AS
1056
1057 /* save the free packet pointer */
1058 di->rxp[rxout] = p;
1059
1060 /* reset flags for each descriptor */
1061 flags = 0;
1062 if (rxout == (di->nrxd - 1))
1063 flags = D64_CTRL1_EOT;
1064
1065 dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
1066 di->rxbufsize);
1067 rxout = nextrxd(di, rxout);
1068 }
1069
1070 di->rxout = rxout;
1071
1072 /* update the chip lastdscr pointer */
1073 W_REG(&di->d64rxregs->ptr,
1074 di->rcvptrbase + I2B(rxout, struct dma64desc));
1075
1076 return ring_empty;
1077}
1078
1079void dma_rxreclaim(struct dma_pub *pub)
1080{
1081 struct dma_info *di = (struct dma_info *)pub;
1082 struct sk_buff *p;
1083
8505a7e6 1084 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1085
1086 while ((p = _dma_getnextrxp(di, true)))
1087 brcmu_pkt_buf_free_skb(p);
1088}
1089
1090void dma_counterreset(struct dma_pub *pub)
1091{
1092 /* reset all software counters */
1093 pub->rxgiants = 0;
1094 pub->rxnobuf = 0;
1095 pub->txnobuf = 0;
1096}
1097
1098/* get the address of the var in order to change later */
1099unsigned long dma_getvar(struct dma_pub *pub, const char *name)
1100{
1101 struct dma_info *di = (struct dma_info *)pub;
1102
1103 if (!strcmp(name, "&txavail"))
1104 return (unsigned long)&(di->dma.txavail);
1105 return 0;
1106}
1107
1108/* 64-bit DMA functions */
1109
1110void dma_txinit(struct dma_pub *pub)
1111{
1112 struct dma_info *di = (struct dma_info *)pub;
1113 u32 control = D64_XC_XE;
1114
8505a7e6 1115 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1116
1117 if (di->ntxd == 0)
1118 return;
1119
1120 di->txin = di->txout = 0;
1121 di->dma.txavail = di->ntxd - 1;
1122
1123 /* clear tx descriptor ring */
1124 memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
1125
1126 /* DMA engine with out alignment requirement requires table to be inited
1127 * before enabling the engine
1128 */
1129 if (!di->aligndesc_4k)
1130 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1131
1132 if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
1133 control |= D64_XC_PD;
1134 OR_REG(&di->d64txregs->control, control);
1135
1136 /* DMA engine with alignment requirement requires table to be inited
1137 * before enabling the engine
1138 */
1139 if (di->aligndesc_4k)
1140 _dma_ddtable_init(di, DMA_TX, di->txdpa);
1141}
1142
1143void dma_txsuspend(struct dma_pub *pub)
1144{
1145 struct dma_info *di = (struct dma_info *)pub;
1146
8505a7e6 1147 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1148
1149 if (di->ntxd == 0)
1150 return;
1151
1152 OR_REG(&di->d64txregs->control, D64_XC_SE);
1153}
1154
1155void dma_txresume(struct dma_pub *pub)
1156{
1157 struct dma_info *di = (struct dma_info *)pub;
1158
8505a7e6 1159 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1160
1161 if (di->ntxd == 0)
1162 return;
1163
1164 AND_REG(&di->d64txregs->control, ~D64_XC_SE);
1165}
1166
1167bool dma_txsuspended(struct dma_pub *pub)
1168{
1169 struct dma_info *di = (struct dma_info *)pub;
1170
1171 return (di->ntxd == 0) ||
1172 ((R_REG(&di->d64txregs->control) & D64_XC_SE) ==
1173 D64_XC_SE);
1174}
1175
1176void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
1177{
1178 struct dma_info *di = (struct dma_info *)pub;
1179 struct sk_buff *p;
1180
8505a7e6
JP
1181 DMA_TRACE("%s: %s\n",
1182 di->name,
1183 range == DMA_RANGE_ALL ? "all" :
1184 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1185 "transferred");
5b435de0
AS
1186
1187 if (di->txin == di->txout)
1188 return;
1189
1190 while ((p = dma_getnexttxp(pub, range))) {
1191 /* For unframed data, we don't have any packets to free */
1192 if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
1193 brcmu_pkt_buf_free_skb(p);
1194 }
1195}
1196
1197bool dma_txreset(struct dma_pub *pub)
1198{
1199 struct dma_info *di = (struct dma_info *)pub;
1200 u32 status;
1201
1202 if (di->ntxd == 0)
1203 return true;
1204
1205 /* suspend tx DMA first */
1206 W_REG(&di->d64txregs->control, D64_XC_SE);
1207 SPINWAIT(((status =
1208 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1209 != D64_XS0_XS_DISABLED) && (status != D64_XS0_XS_IDLE)
1210 && (status != D64_XS0_XS_STOPPED), 10000);
1211
1212 W_REG(&di->d64txregs->control, 0);
1213 SPINWAIT(((status =
1214 (R_REG(&di->d64txregs->status0) & D64_XS0_XS_MASK))
1215 != D64_XS0_XS_DISABLED), 10000);
1216
1217 /* wait for the last transaction to complete */
1218 udelay(300);
1219
1220 return status == D64_XS0_XS_DISABLED;
1221}
1222
1223bool dma_rxreset(struct dma_pub *pub)
1224{
1225 struct dma_info *di = (struct dma_info *)pub;
1226 u32 status;
1227
1228 if (di->nrxd == 0)
1229 return true;
1230
1231 W_REG(&di->d64rxregs->control, 0);
1232 SPINWAIT(((status =
1233 (R_REG(&di->d64rxregs->status0) & D64_RS0_RS_MASK))
1234 != D64_RS0_RS_DISABLED), 10000);
1235
1236 return status == D64_RS0_RS_DISABLED;
1237}
1238
1239/*
1240 * !! tx entry routine
1241 * WARNING: call must check the return value for error.
1242 * the error(toss frames) could be fatal and cause many subsequent hard
1243 * to debug problems
1244 */
3030794f 1245int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
5b435de0
AS
1246{
1247 struct dma_info *di = (struct dma_info *)pub;
5b435de0
AS
1248 unsigned char *data;
1249 uint len;
1250 u16 txout;
1251 u32 flags = 0;
1252 dma_addr_t pa;
1253
8505a7e6 1254 DMA_TRACE("%s:\n", di->name);
5b435de0
AS
1255
1256 txout = di->txout;
1257
1258 /*
3030794f 1259 * obtain and initialize transmit descriptor entry.
5b435de0 1260 */
3030794f
AS
1261 data = p->data;
1262 len = p->len;
5b435de0 1263
3030794f
AS
1264 /* no use to transmit a zero length packet */
1265 if (len == 0)
1266 return 0;
5b435de0 1267
3030794f
AS
1268 /* return nonzero if out of tx descriptors */
1269 if (nexttxd(di, txout) == di->txin)
1270 goto outoftxd;
5b435de0 1271
3030794f 1272 /* get physical address of buffer start */
2e81b9b1 1273 pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
5b435de0 1274
3030794f
AS
1275 /* With a DMA segment list, Descriptor table is filled
1276 * using the segment list instead of looping over
1277 * buffers in multi-chain DMA. Therefore, EOF for SGLIST
1278 * is when end of segment list is reached.
1279 */
1280 flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
1281 if (txout == (di->ntxd - 1))
1282 flags |= D64_CTRL1_EOT;
5b435de0 1283
3030794f 1284 dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
5b435de0 1285
3030794f 1286 txout = nexttxd(di, txout);
5b435de0
AS
1287
1288 /* save the packet */
3030794f 1289 di->txp[prevtxd(di, txout)] = p;
5b435de0
AS
1290
1291 /* bump the tx descriptor index */
1292 di->txout = txout;
1293
1294 /* kick the chip */
1295 if (commit)
1296 W_REG(&di->d64txregs->ptr,
1297 di->xmtptrbase + I2B(txout, struct dma64desc));
1298
1299 /* tx flow control */
1300 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1301
1302 return 0;
1303
1304 outoftxd:
8505a7e6 1305 DMA_ERROR("%s: out of txds !!!\n", di->name);
3030794f 1306 brcmu_pkt_buf_free_skb(p);
5b435de0
AS
1307 di->dma.txavail = 0;
1308 di->dma.txnobuf++;
1309 return -1;
1310}
1311
1312/*
1313 * Reclaim next completed txd (txds if using chained buffers) in the range
1314 * specified and return associated packet.
1315 * If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
1316 * transmitted as noted by the hardware "CurrDescr" pointer.
1317 * If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
1318 * transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
1319 * If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
1320 * return associated packet regardless of the value of hardware pointers.
1321 */
1322struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
1323{
1324 struct dma_info *di = (struct dma_info *)pub;
1325 u16 start, end, i;
1326 u16 active_desc;
1327 struct sk_buff *txp;
1328
8505a7e6
JP
1329 DMA_TRACE("%s: %s\n",
1330 di->name,
1331 range == DMA_RANGE_ALL ? "all" :
1332 range == DMA_RANGE_TRANSMITTED ? "transmitted" :
1333 "transferred");
5b435de0
AS
1334
1335 if (di->ntxd == 0)
1336 return NULL;
1337
1338 txp = NULL;
1339
1340 start = di->txin;
1341 if (range == DMA_RANGE_ALL)
1342 end = di->txout;
1343 else {
1344 struct dma64regs __iomem *dregs = di->d64txregs;
1345
1346 end = (u16) (B2I(((R_REG(&dregs->status0) &
1347 D64_XS0_CD_MASK) -
1348 di->xmtptrbase) & D64_XS0_CD_MASK,
1349 struct dma64desc));
1350
1351 if (range == DMA_RANGE_TRANSFERED) {
1352 active_desc =
1353 (u16) (R_REG(&dregs->status1) &
1354 D64_XS1_AD_MASK);
1355 active_desc =
1356 (active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
1357 active_desc = B2I(active_desc, struct dma64desc);
1358 if (end != active_desc)
1359 end = prevtxd(di, active_desc);
1360 }
1361 }
1362
1363 if ((start == 0) && (end > di->txout))
1364 goto bogus;
1365
1366 for (i = start; i != end && !txp; i = nexttxd(di, i)) {
1367 dma_addr_t pa;
1368 uint size;
1369
1370 pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
1371
1372 size =
1373 (le32_to_cpu(di->txd64[i].ctrl2) &
1374 D64_CTRL2_BC_MASK);
1375
1376 di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
1377 di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
1378
1379 txp = di->txp[i];
1380 di->txp[i] = NULL;
1381
2e81b9b1 1382 dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
5b435de0
AS
1383 }
1384
1385 di->txin = i;
1386
1387 /* tx flow control */
1388 di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
1389
1390 return txp;
1391
1392 bogus:
8505a7e6
JP
1393 DMA_NONE("bogus curr: start %d end %d txout %d\n",
1394 start, end, di->txout);
5b435de0
AS
1395 return NULL;
1396}
1397
1398/*
1399 * Mac80211 initiated actions sometimes require packets in the DMA queue to be
1400 * modified. The modified portion of the packet is not under control of the DMA
1401 * engine. This function calls a caller-supplied function for each packet in
1402 * the caller specified dma chain.
1403 */
1404void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
1405 (void *pkt, void *arg_a), void *arg_a)
1406{
1407 struct dma_info *di = (struct dma_info *) dmah;
1408 uint i = di->txin;
1409 uint end = di->txout;
1410 struct sk_buff *skb;
1411 struct ieee80211_tx_info *tx_info;
1412
1413 while (i != end) {
1414 skb = (struct sk_buff *)di->txp[i];
1415 if (skb != NULL) {
1416 tx_info = (struct ieee80211_tx_info *)skb->cb;
1417 (callback_fnc)(tx_info, arg_a);
1418 }
1419 i = nexttxd(di, i);
1420 }
1421}
This page took 0.100855 seconds and 5 git commands to generate.