iwlwifi: pcie: workaround HW shadow registers bug
[deliverable/linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
CommitLineData
ab697a9f
EG
1/******************************************************************************
2 *
51368bf7 3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
26d535ae 4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
bce97731 5 * Copyright(c) 2016 Intel Deutschland GmbH
ab697a9f
EG
6 *
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called LICENSE.
25 *
26 * Contact Information:
d01c5366 27 * Intel Linux Wireless <linuxwifi@intel.com>
ab697a9f
EG
28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29 *
30 *****************************************************************************/
31#include <linux/sched.h>
32#include <linux/wait.h>
1a361cd8 33#include <linux/gfp.h>
ab697a9f 34
1b29dc94 35#include "iwl-prph.h"
ab697a9f 36#include "iwl-io.h"
6468a01a 37#include "internal.h"
db70f290 38#include "iwl-op-mode.h"
ab697a9f
EG
39
40/******************************************************************************
41 *
42 * RX path functions
43 *
44 ******************************************************************************/
45
46/*
47 * Rx theory of operation
48 *
49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
50 * each of which point to Receive Buffers to be filled by the NIC. These get
51 * used not only for Rx frames, but for any command response or notification
52 * from the NIC. The driver and NIC manage the Rx buffers by means
53 * of indexes into the circular buffer.
54 *
55 * Rx Queue Indexes
56 * The host/firmware share two index registers for managing the Rx buffers.
57 *
58 * The READ index maps to the first position that the firmware may be writing
59 * to -- the driver can read up to (but not including) this position and get
60 * good data.
61 * The READ index is managed by the firmware once the card is enabled.
62 *
63 * The WRITE index maps to the last position the driver has read from -- the
64 * position preceding WRITE is the last slot the firmware can place a packet.
65 *
66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * WRITE = READ.
68 *
69 * During initialization, the host sets up the READ queue position to the first
70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
71 *
72 * When the firmware places a packet in a buffer, it will advance the READ index
73 * and fire the RX interrupt. The driver can then query the READ index and
74 * process as many packets as possible, moving the WRITE index forward as it
75 * resets the Rx queue buffers with new memory.
76 *
77 * The management in the driver is as follows:
26d535ae
SS
78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
79 * When the interrupt handler is called, the request is processed.
80 * The page is either stolen - transferred to the upper layer
81 * or reused - added immediately to the iwl->rxq->rx_free list.
82 * + When the page is stolen - the driver updates the matching queue's used
83 * count, detaches the RBD and transfers it to the queue used list.
84 * When there are two used RBDs - they are transferred to the allocator empty
85 * list. Work is then scheduled for the allocator to start allocating
86 * eight buffers.
87 * When there are another 6 used RBDs - they are transferred to the allocator
88 * empty list and the driver tries to claim the pre-allocated buffers and
89 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them
90 * until ready.
91 * When there are 8+ buffers in the free list - either from allocation or from
92 * 8 reused unstolen pages - restock is called to update the FW and indexes.
93 * + In order to make sure the allocator always has RBDs to use for allocation
94 * the allocator has initial pool in the size of num_queues*(8-2) - the
95 * maximum missing RBDs per allocation request (request posted with 2
96 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
97 * The queues supplies the recycle of the rest of the RBDs.
ab697a9f
EG
98 * + A received packet is processed and handed to the kernel network stack,
99 * detached from the iwl->rxq. The driver 'processed' index is updated.
26d535ae 100 * + If there are no allocated buffers in iwl->rxq->rx_free,
2bfb5092
JB
101 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
102 * If there were enough free buffers and RX_STALLED is set it is cleared.
ab697a9f
EG
103 *
104 *
105 * Driver sequence:
106 *
990aa6d7
EG
107 * iwl_rxq_alloc() Allocates rx_free
108 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
26d535ae
SS
109 * iwl_pcie_rxq_restock.
110 * Used only during initialization.
990aa6d7 111 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
ab697a9f 112 * queue, updates firmware pointers, and updates
26d535ae
SS
113 * the WRITE index.
114 * iwl_pcie_rx_allocator() Background work for allocating pages.
ab697a9f
EG
115 *
116 * -- enable interrupts --
990aa6d7 117 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
ab697a9f
EG
118 * READ INDEX, detaching the SKB from the pool.
119 * Moves the packet buffer from queue to rx_used.
26d535ae 120 * Posts and claims requests to the allocator.
990aa6d7 121 * Calls iwl_pcie_rxq_restock to refill any empty
ab697a9f 122 * slots.
26d535ae
SS
123 *
124 * RBD life-cycle:
125 *
126 * Init:
127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
128 *
129 * Regular Receive interrupt:
130 * Page Stolen:
131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
133 * Page not Stolen:
134 * rxq.queue -> rxq.rx_free -> rxq.queue
ab697a9f
EG
135 * ...
136 *
137 */
138
990aa6d7
EG
139/*
140 * iwl_rxq_space - Return number of free slots available in queue.
ab697a9f 141 */
fecba09e 142static int iwl_rxq_space(const struct iwl_rxq *rxq)
ab697a9f 143{
96a6497b
SS
144 /* Make sure rx queue size is a power of 2 */
145 WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
fecba09e 146
351746c9
IY
147 /*
148 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
149 * between empty and completely full queues.
150 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
151 * defined for negative dividends.
152 */
96a6497b 153 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
ab697a9f
EG
154}
155
9805c446
EG
156/*
157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
158 */
159static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
160{
161 return cpu_to_le32((u32)(dma_addr >> 8));
162}
163
dfcfeef9
SS
164static void iwl_pcie_write_prph_64_no_grab(struct iwl_trans *trans, u64 ofs,
165 u64 val)
96a6497b 166{
dfcfeef9
SS
167 iwl_write_prph_no_grab(trans, ofs, val & 0xffffffff);
168 iwl_write_prph_no_grab(trans, ofs + 4, val >> 32);
96a6497b
SS
169}
170
49bd072d
EG
171/*
172 * iwl_pcie_rx_stop - stops the Rx DMA
173 */
9805c446
EG
174int iwl_pcie_rx_stop(struct iwl_trans *trans)
175{
9805c446
EG
176 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
177 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
178 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
179}
180
990aa6d7
EG
181/*
182 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
ab697a9f 183 */
78485054
SS
184static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
185 struct iwl_rxq *rxq)
ab697a9f 186{
ab697a9f
EG
187 u32 reg;
188
5d63f926 189 lockdep_assert_held(&rxq->lock);
ab697a9f 190
5045388c
EP
191 /*
192 * explicitly wake up the NIC if:
193 * 1. shadow registers aren't enabled
194 * 2. there is a chance that the NIC is asleep
195 */
196 if (!trans->cfg->base_params->shadow_reg_enable &&
197 test_bit(STATUS_TPOWER_PMI, &trans->status)) {
198 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
199
200 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
201 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
202 reg);
203 iwl_set_bit(trans, CSR_GP_CNTRL,
204 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5d63f926
JB
205 rxq->need_update = true;
206 return;
ab697a9f
EG
207 }
208 }
5045388c
EP
209
210 rxq->write_actual = round_down(rxq->write, 8);
96a6497b 211 if (trans->cfg->mq_rx_supported)
1554ed20
SS
212 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
213 rxq->write_actual);
1316d595
SS
214 else
215 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
5d63f926
JB
216}
217
218static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
219{
220 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
78485054 221 int i;
5d63f926 222
78485054
SS
223 for (i = 0; i < trans->num_rx_queues; i++) {
224 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
ab697a9f 225
78485054
SS
226 if (!rxq->need_update)
227 continue;
228 spin_lock(&rxq->lock);
229 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
230 rxq->need_update = false;
231 spin_unlock(&rxq->lock);
232 }
ab697a9f
EG
233}
234
e0e168dc
GG
235/*
236 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
237 */
96a6497b
SS
238static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
239 struct iwl_rxq *rxq)
240{
241 struct iwl_rx_mem_buffer *rxb;
242
243 /*
244 * If the device isn't enabled - no need to try to add buffers...
245 * This can happen when we stop the device and still have an interrupt
246 * pending. We stop the APM before we sync the interrupts because we
247 * have to (see comment there). On the other hand, since the APM is
248 * stopped, we cannot access the HW (in particular not prph).
249 * So don't try to restock if the APM has been already stopped.
250 */
251 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
252 return;
253
254 spin_lock(&rxq->lock);
255 while (rxq->free_count) {
256 __le64 *bd = (__le64 *)rxq->bd;
257
258 /* Get next free Rx buffer, remove from free list */
259 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
260 list);
261 list_del(&rxb->list);
262
263 /* 12 first bits are expected to be empty */
264 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
265 /* Point to Rx buffer via next RBD in circular buffer */
266 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
267 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
268 rxq->free_count--;
269 }
270 spin_unlock(&rxq->lock);
271
272 /*
273 * If we've added more space for the firmware to place data, tell it.
274 * Increment device's write pointer in multiples of 8.
275 */
276 if (rxq->write_actual != (rxq->write & ~0x7)) {
277 spin_lock(&rxq->lock);
278 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
279 spin_unlock(&rxq->lock);
280 }
281}
282
990aa6d7 283/*
e0e168dc 284 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
ab697a9f 285 */
e0e168dc
GG
286static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
287 struct iwl_rxq *rxq)
ab697a9f 288{
ab697a9f 289 struct iwl_rx_mem_buffer *rxb;
ab697a9f 290
7439046d
EG
291 /*
292 * If the device isn't enabled - not need to try to add buffers...
293 * This can happen when we stop the device and still have an interrupt
2bfb5092
JB
294 * pending. We stop the APM before we sync the interrupts because we
295 * have to (see comment there). On the other hand, since the APM is
296 * stopped, we cannot access the HW (in particular not prph).
7439046d
EG
297 * So don't try to restock if the APM has been already stopped.
298 */
eb7ff77e 299 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
7439046d
EG
300 return;
301
51232f7e 302 spin_lock(&rxq->lock);
990aa6d7 303 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
96a6497b 304 __le32 *bd = (__le32 *)rxq->bd;
ab697a9f
EG
305 /* The overwritten rxb must be a used one */
306 rxb = rxq->queue[rxq->write];
307 BUG_ON(rxb && rxb->page);
308
309 /* Get next free Rx buffer, remove from free list */
e2b1930e
JB
310 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
311 list);
312 list_del(&rxb->list);
ab697a9f
EG
313
314 /* Point to Rx buffer via next RBD in circular buffer */
96a6497b 315 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
ab697a9f
EG
316 rxq->queue[rxq->write] = rxb;
317 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
318 rxq->free_count--;
319 }
51232f7e 320 spin_unlock(&rxq->lock);
ab697a9f 321
ab697a9f
EG
322 /* If we've added more space for the firmware to place data, tell it.
323 * Increment device's write pointer in multiples of 8. */
324 if (rxq->write_actual != (rxq->write & ~0x7)) {
51232f7e 325 spin_lock(&rxq->lock);
78485054 326 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
51232f7e 327 spin_unlock(&rxq->lock);
ab697a9f
EG
328 }
329}
330
e0e168dc
GG
331/*
332 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
333 *
334 * If there are slots in the RX queue that need to be restocked,
335 * and we have free pre-allocated buffers, fill the ranks as much
336 * as we can, pulling from rx_free.
337 *
338 * This moves the 'write' index forward to catch up with 'processed', and
339 * also updates the memory address in the firmware to reference the new
340 * target buffer.
341 */
342static
343void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
344{
345 if (trans->cfg->mq_rx_supported)
346 iwl_pcie_rxq_mq_restock(trans, rxq);
347 else
348 iwl_pcie_rxq_sq_restock(trans, rxq);
349}
350
26d535ae
SS
351/*
352 * iwl_pcie_rx_alloc_page - allocates and returns a page.
353 *
354 */
355static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
356 gfp_t priority)
357{
358 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
26d535ae
SS
359 struct page *page;
360 gfp_t gfp_mask = priority;
361
26d535ae
SS
362 if (trans_pcie->rx_page_order > 0)
363 gfp_mask |= __GFP_COMP;
364
365 /* Alloc a new receive buffer */
366 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
367 if (!page) {
368 if (net_ratelimit())
369 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
370 trans_pcie->rx_page_order);
78485054
SS
371 /*
372 * Issue an error if we don't have enough pre-allocated
373 * buffers.
26d535ae 374` */
78485054 375 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
26d535ae 376 IWL_CRIT(trans,
78485054 377 "Failed to alloc_pages\n");
26d535ae
SS
378 return NULL;
379 }
380 return page;
381}
382
358a46d4 383/*
9805c446 384 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
ab697a9f 385 *
358a46d4
EG
386 * A used RBD is an Rx buffer that has been given to the stack. To use it again
387 * a page must be allocated and the RBD must point to the page. This function
388 * doesn't change the HW pointer but handles the list of pages that is used by
990aa6d7 389 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
358a46d4 390 * allocated buffers.
ab697a9f 391 */
78485054
SS
392static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
393 struct iwl_rxq *rxq)
ab697a9f 394{
20d3b647 395 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
ab697a9f
EG
396 struct iwl_rx_mem_buffer *rxb;
397 struct page *page;
ab697a9f
EG
398
399 while (1) {
51232f7e 400 spin_lock(&rxq->lock);
ab697a9f 401 if (list_empty(&rxq->rx_used)) {
51232f7e 402 spin_unlock(&rxq->lock);
ab697a9f
EG
403 return;
404 }
51232f7e 405 spin_unlock(&rxq->lock);
ab697a9f 406
ab697a9f 407 /* Alloc a new receive buffer */
26d535ae
SS
408 page = iwl_pcie_rx_alloc_page(trans, priority);
409 if (!page)
ab697a9f 410 return;
ab697a9f 411
51232f7e 412 spin_lock(&rxq->lock);
ab697a9f
EG
413
414 if (list_empty(&rxq->rx_used)) {
51232f7e 415 spin_unlock(&rxq->lock);
b2cf410c 416 __free_pages(page, trans_pcie->rx_page_order);
ab697a9f
EG
417 return;
418 }
e2b1930e
JB
419 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
420 list);
421 list_del(&rxb->list);
51232f7e 422 spin_unlock(&rxq->lock);
ab697a9f
EG
423
424 BUG_ON(rxb->page);
425 rxb->page = page;
426 /* Get physical address of the RB */
20d3b647
JB
427 rxb->page_dma =
428 dma_map_page(trans->dev, page, 0,
429 PAGE_SIZE << trans_pcie->rx_page_order,
430 DMA_FROM_DEVICE);
7c341582
JB
431 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
432 rxb->page = NULL;
51232f7e 433 spin_lock(&rxq->lock);
7c341582 434 list_add(&rxb->list, &rxq->rx_used);
51232f7e 435 spin_unlock(&rxq->lock);
7c341582
JB
436 __free_pages(page, trans_pcie->rx_page_order);
437 return;
438 }
ab697a9f 439
51232f7e 440 spin_lock(&rxq->lock);
ab697a9f
EG
441
442 list_add_tail(&rxb->list, &rxq->rx_free);
443 rxq->free_count++;
444
51232f7e 445 spin_unlock(&rxq->lock);
ab697a9f
EG
446 }
447}
448
78485054 449static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
9805c446
EG
450{
451 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
9805c446
EG
452 int i;
453
7b542436 454 for (i = 0; i < RX_POOL_SIZE; i++) {
78485054 455 if (!trans_pcie->rx_pool[i].page)
c7df1f4b 456 continue;
78485054 457 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
c7df1f4b
JB
458 PAGE_SIZE << trans_pcie->rx_page_order,
459 DMA_FROM_DEVICE);
78485054
SS
460 __free_pages(trans_pcie->rx_pool[i].page,
461 trans_pcie->rx_page_order);
462 trans_pcie->rx_pool[i].page = NULL;
9805c446
EG
463 }
464}
465
26d535ae
SS
466/*
467 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
468 *
469 * Allocates for each received request 8 pages
470 * Called as a scheduled work item.
471 */
472static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
473{
474 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
475 struct iwl_rb_allocator *rba = &trans_pcie->rba;
476 struct list_head local_empty;
477 int pending = atomic_xchg(&rba->req_pending, 0);
478
479 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
480
481 /* If we were scheduled - there is at least one request */
482 spin_lock(&rba->lock);
483 /* swap out the rba->rbd_empty to a local list */
484 list_replace_init(&rba->rbd_empty, &local_empty);
485 spin_unlock(&rba->lock);
486
487 while (pending) {
488 int i;
489 struct list_head local_allocated;
78485054
SS
490 gfp_t gfp_mask = GFP_KERNEL;
491
492 /* Do not post a warning if there are only a few requests */
493 if (pending < RX_PENDING_WATERMARK)
494 gfp_mask |= __GFP_NOWARN;
26d535ae
SS
495
496 INIT_LIST_HEAD(&local_allocated);
497
498 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
499 struct iwl_rx_mem_buffer *rxb;
500 struct page *page;
501
502 /* List should never be empty - each reused RBD is
503 * returned to the list, and initial pool covers any
504 * possible gap between the time the page is allocated
505 * to the time the RBD is added.
506 */
507 BUG_ON(list_empty(&local_empty));
508 /* Get the first rxb from the rbd list */
509 rxb = list_first_entry(&local_empty,
510 struct iwl_rx_mem_buffer, list);
511 BUG_ON(rxb->page);
512
513 /* Alloc a new receive buffer */
78485054 514 page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
26d535ae
SS
515 if (!page)
516 continue;
517 rxb->page = page;
518
519 /* Get physical address of the RB */
520 rxb->page_dma = dma_map_page(trans->dev, page, 0,
521 PAGE_SIZE << trans_pcie->rx_page_order,
522 DMA_FROM_DEVICE);
523 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
524 rxb->page = NULL;
525 __free_pages(page, trans_pcie->rx_page_order);
526 continue;
527 }
26d535ae
SS
528
529 /* move the allocated entry to the out list */
530 list_move(&rxb->list, &local_allocated);
531 i++;
532 }
533
534 pending--;
535 if (!pending) {
536 pending = atomic_xchg(&rba->req_pending, 0);
537 IWL_DEBUG_RX(trans,
538 "Pending allocation requests = %d\n",
539 pending);
540 }
541
542 spin_lock(&rba->lock);
543 /* add the allocated rbds to the allocator allocated list */
544 list_splice_tail(&local_allocated, &rba->rbd_allocated);
545 /* get more empty RBDs for current pending requests */
546 list_splice_tail_init(&rba->rbd_empty, &local_empty);
547 spin_unlock(&rba->lock);
548
549 atomic_inc(&rba->req_ready);
550 }
551
552 spin_lock(&rba->lock);
553 /* return unused rbds to the allocator empty list */
554 list_splice_tail(&local_empty, &rba->rbd_empty);
555 spin_unlock(&rba->lock);
556}
557
558/*
d56daea4 559 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
26d535ae
SS
560.*
561.* Called by queue when the queue posted allocation request and
562 * has freed 8 RBDs in order to restock itself.
d56daea4
SS
563 * This function directly moves the allocated RBs to the queue's ownership
564 * and updates the relevant counters.
26d535ae 565 */
d56daea4
SS
566static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
567 struct iwl_rxq *rxq)
26d535ae
SS
568{
569 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
570 struct iwl_rb_allocator *rba = &trans_pcie->rba;
571 int i;
572
d56daea4
SS
573 lockdep_assert_held(&rxq->lock);
574
26d535ae
SS
575 /*
576 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
577 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
d56daea4 578 * function will return early, as there are no ready requests.
26d535ae
SS
579 * atomic_dec_if_positive will perofrm the *actual* decrement only if
580 * req_ready > 0, i.e. - there are ready requests and the function
581 * hands one request to the caller.
582 */
583 if (atomic_dec_if_positive(&rba->req_ready) < 0)
d56daea4 584 return;
26d535ae
SS
585
586 spin_lock(&rba->lock);
587 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
588 /* Get next free Rx buffer, remove it from free list */
d56daea4
SS
589 struct iwl_rx_mem_buffer *rxb =
590 list_first_entry(&rba->rbd_allocated,
591 struct iwl_rx_mem_buffer, list);
592
593 list_move(&rxb->list, &rxq->rx_free);
26d535ae
SS
594 }
595 spin_unlock(&rba->lock);
596
d56daea4
SS
597 rxq->used_count -= RX_CLAIM_REQ_ALLOC;
598 rxq->free_count += RX_CLAIM_REQ_ALLOC;
26d535ae
SS
599}
600
601static void iwl_pcie_rx_allocator_work(struct work_struct *data)
ab697a9f 602{
26d535ae
SS
603 struct iwl_rb_allocator *rba_p =
604 container_of(data, struct iwl_rb_allocator, rx_alloc);
5a878bf6 605 struct iwl_trans_pcie *trans_pcie =
26d535ae 606 container_of(rba_p, struct iwl_trans_pcie, rba);
ab697a9f 607
26d535ae 608 iwl_pcie_rx_allocator(trans_pcie->trans);
ab697a9f
EG
609}
610
9805c446
EG
611static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
612{
613 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
26d535ae 614 struct iwl_rb_allocator *rba = &trans_pcie->rba;
9805c446 615 struct device *dev = trans->dev;
78485054 616 int i;
96a6497b
SS
617 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
618 sizeof(__le32);
9805c446 619
78485054
SS
620 if (WARN_ON(trans_pcie->rxq))
621 return -EINVAL;
622
623 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
624 GFP_KERNEL);
625 if (!trans_pcie->rxq)
626 return -EINVAL;
9805c446 627
26d535ae 628 spin_lock_init(&rba->lock);
9805c446 629
78485054
SS
630 for (i = 0; i < trans->num_rx_queues; i++) {
631 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
9805c446 632
78485054 633 spin_lock_init(&rxq->lock);
96a6497b
SS
634 if (trans->cfg->mq_rx_supported)
635 rxq->queue_size = MQ_RX_TABLE_SIZE;
636 else
637 rxq->queue_size = RX_QUEUE_SIZE;
638
78485054
SS
639 /*
640 * Allocate the circular buffer of Read Buffer Descriptors
641 * (RBDs)
642 */
643 rxq->bd = dma_zalloc_coherent(dev,
96a6497b
SS
644 free_size * rxq->queue_size,
645 &rxq->bd_dma, GFP_KERNEL);
78485054
SS
646 if (!rxq->bd)
647 goto err;
9805c446 648
96a6497b
SS
649 if (trans->cfg->mq_rx_supported) {
650 rxq->used_bd = dma_zalloc_coherent(dev,
651 sizeof(__le32) *
652 rxq->queue_size,
653 &rxq->used_bd_dma,
654 GFP_KERNEL);
655 if (!rxq->used_bd)
656 goto err;
657 }
9805c446 658
78485054
SS
659 /*Allocate the driver's pointer to receive buffer status */
660 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
661 &rxq->rb_stts_dma,
662 GFP_KERNEL);
663 if (!rxq->rb_stts)
664 goto err;
665 }
9805c446
EG
666 return 0;
667
78485054
SS
668err:
669 for (i = 0; i < trans->num_rx_queues; i++) {
670 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
671
672 if (rxq->bd)
96a6497b 673 dma_free_coherent(dev, free_size * rxq->queue_size,
78485054
SS
674 rxq->bd, rxq->bd_dma);
675 rxq->bd_dma = 0;
676 rxq->bd = NULL;
677
678 if (rxq->rb_stts)
679 dma_free_coherent(trans->dev,
680 sizeof(struct iwl_rb_status),
681 rxq->rb_stts, rxq->rb_stts_dma);
96a6497b
SS
682
683 if (rxq->used_bd)
684 dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
685 rxq->used_bd, rxq->used_bd_dma);
686 rxq->used_bd_dma = 0;
687 rxq->used_bd = NULL;
78485054
SS
688 }
689 kfree(trans_pcie->rxq);
96a6497b 690
9805c446 691 return -ENOMEM;
ab697a9f
EG
692}
693
9805c446
EG
694static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
695{
696 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
697 u32 rb_size;
dfcfeef9 698 unsigned long flags;
9805c446
EG
699 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
700
6c4fbcbc
EG
701 switch (trans_pcie->rx_buf_size) {
702 case IWL_AMSDU_4K:
703 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
704 break;
705 case IWL_AMSDU_8K:
9805c446 706 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
6c4fbcbc
EG
707 break;
708 case IWL_AMSDU_12K:
709 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
710 break;
711 default:
712 WARN_ON(1);
9805c446 713 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
6c4fbcbc 714 }
9805c446 715
dfcfeef9
SS
716 if (!iwl_trans_grab_nic_access(trans, &flags))
717 return;
718
9805c446 719 /* Stop Rx DMA */
dfcfeef9 720 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
ddaf5a5b 721 /* reset and flush pointers */
dfcfeef9
SS
722 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
723 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
724 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
9805c446
EG
725
726 /* Reset driver's Rx queue write index */
dfcfeef9 727 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
9805c446
EG
728
729 /* Tell device where to find RBD circular buffer in DRAM */
dfcfeef9
SS
730 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
731 (u32)(rxq->bd_dma >> 8));
9805c446
EG
732
733 /* Tell device where in DRAM to update its Rx status */
dfcfeef9
SS
734 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
735 rxq->rb_stts_dma >> 4);
9805c446
EG
736
737 /* Enable Rx DMA
738 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
739 * the credit mechanism in 5000 HW RX FIFO
740 * Direct rx interrupts to hosts
6c4fbcbc 741 * Rx buffer size 4 or 8k or 12k
9805c446
EG
742 * RB timeout 0x10
743 * 256 RBDs
744 */
dfcfeef9
SS
745 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
746 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
747 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
748 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
749 rb_size |
750 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
751 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
752
753 iwl_trans_release_nic_access(trans, &flags);
9805c446
EG
754
755 /* Set interrupt coalescing timer to default (2048 usecs) */
756 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
6960a059
EG
757
758 /* W/A for interrupt coalescing bug in 7260 and 3160 */
759 if (trans->cfg->host_interrupt_operation_mode)
760 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
9805c446
EG
761}
762
1316d595
SS
763void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
764{
765 /*
766 * Turn on the chicken-bits that cause MAC wakeup for RX-related
767 * values.
768 * This costs some power, but needed for W/A 9000 integrated A-step
769 * bug where shadow registers are not in the retention list and their
770 * value is lost when NIC powers down
771 */
772 if (trans->cfg->integrated) {
773 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
774 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
775 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
776 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
777 }
778}
779
bce97731 780static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
c7df1f4b 781{
96a6497b
SS
782 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
783 u32 rb_size, enabled = 0;
dfcfeef9 784 unsigned long flags;
96a6497b 785 int i;
c7df1f4b 786
96a6497b
SS
787 switch (trans_pcie->rx_buf_size) {
788 case IWL_AMSDU_4K:
789 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
790 break;
791 case IWL_AMSDU_8K:
792 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
793 break;
794 case IWL_AMSDU_12K:
795 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
796 break;
797 default:
798 WARN_ON(1);
799 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
800 }
c7df1f4b 801
dfcfeef9
SS
802 if (!iwl_trans_grab_nic_access(trans, &flags))
803 return;
804
96a6497b 805 /* Stop Rx DMA */
dfcfeef9 806 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
96a6497b 807 /* disable free amd used rx queue operation */
dfcfeef9 808 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
26d535ae 809
96a6497b
SS
810 for (i = 0; i < trans->num_rx_queues; i++) {
811 /* Tell device where to find RBD free table in DRAM */
dfcfeef9
SS
812 iwl_pcie_write_prph_64_no_grab(trans,
813 RFH_Q_FRBDCB_BA_LSB(i),
814 trans_pcie->rxq[i].bd_dma);
96a6497b 815 /* Tell device where to find RBD used table in DRAM */
dfcfeef9
SS
816 iwl_pcie_write_prph_64_no_grab(trans,
817 RFH_Q_URBDCB_BA_LSB(i),
818 trans_pcie->rxq[i].used_bd_dma);
96a6497b 819 /* Tell device where in DRAM to update its Rx status */
dfcfeef9
SS
820 iwl_pcie_write_prph_64_no_grab(trans,
821 RFH_Q_URBD_STTS_WPTR_LSB(i),
822 trans_pcie->rxq[i].rb_stts_dma);
96a6497b 823 /* Reset device indice tables */
dfcfeef9
SS
824 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
825 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
826 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
96a6497b
SS
827
828 enabled |= BIT(i) | BIT(i + 16);
829 }
26d535ae 830
96a6497b
SS
831 /* restock default queue */
832 iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
833
834 /*
835 * Enable Rx DMA
836 * Single frame mode
837 * Rx buffer size 4 or 8k or 12k
838 * Min RB size 4 or 8
88076015 839 * Drop frames that exceed RB size
96a6497b
SS
840 * 512 RBDs
841 */
dfcfeef9
SS
842 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
843 RFH_DMA_EN_ENABLE_VAL |
844 rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
845 RFH_RXF_DMA_MIN_RB_4_8 |
846 RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
847 RFH_RXF_DMA_RBDCB_SIZE_512);
96a6497b 848
88076015
SS
849 /*
850 * Activate DMA snooping.
e5f91d91 851 * Set RX DMA chunk size to 64B
88076015
SS
852 * Default queue is 0
853 */
dfcfeef9
SS
854 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
855 (DEFAULT_RXQ_NUM <<
856 RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
857 RFH_GEN_CFG_SERVICE_DMA_SNOOP);
88076015 858 /* Enable the relevant rx queues */
dfcfeef9
SS
859 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
860
861 iwl_trans_release_nic_access(trans, &flags);
26d535ae 862
96a6497b
SS
863 /* Set interrupt coalescing timer to default (2048 usecs) */
864 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1316d595
SS
865
866 iwl_pcie_enable_rx_wake(trans, true);
26d535ae
SS
867}
868
96a6497b 869static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
26d535ae 870{
96a6497b 871 lockdep_assert_held(&rxq->lock);
26d535ae 872
96a6497b
SS
873 INIT_LIST_HEAD(&rxq->rx_free);
874 INIT_LIST_HEAD(&rxq->rx_used);
875 rxq->free_count = 0;
876 rxq->used_count = 0;
26d535ae
SS
877}
878
bce97731
SS
879static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
880{
881 WARN_ON(1);
882 return 0;
883}
884
9805c446
EG
885int iwl_pcie_rx_init(struct iwl_trans *trans)
886{
887 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
78485054 888 struct iwl_rxq *def_rxq;
26d535ae 889 struct iwl_rb_allocator *rba = &trans_pcie->rba;
7b542436 890 int i, err, queue_size, allocator_pool_size, num_alloc;
9805c446 891
78485054 892 if (!trans_pcie->rxq) {
9805c446
EG
893 err = iwl_pcie_rx_alloc(trans);
894 if (err)
895 return err;
896 }
78485054 897 def_rxq = trans_pcie->rxq;
26d535ae
SS
898 if (!rba->alloc_wq)
899 rba->alloc_wq = alloc_workqueue("rb_allocator",
900 WQ_HIGHPRI | WQ_UNBOUND, 1);
901 INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
902
903 spin_lock(&rba->lock);
904 atomic_set(&rba->req_pending, 0);
905 atomic_set(&rba->req_ready, 0);
96a6497b
SS
906 INIT_LIST_HEAD(&rba->rbd_allocated);
907 INIT_LIST_HEAD(&rba->rbd_empty);
26d535ae 908 spin_unlock(&rba->lock);
9805c446 909
c7df1f4b 910 /* free all first - we might be reconfigured for a different size */
78485054 911 iwl_pcie_free_rbs_pool(trans);
9805c446
EG
912
913 for (i = 0; i < RX_QUEUE_SIZE; i++)
78485054 914 def_rxq->queue[i] = NULL;
9805c446 915
78485054
SS
916 for (i = 0; i < trans->num_rx_queues; i++) {
917 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
918
96a6497b
SS
919 rxq->id = i;
920
78485054
SS
921 spin_lock(&rxq->lock);
922 /*
923 * Set read write pointer to reflect that we have processed
924 * and used all buffers, but have not restocked the Rx queue
925 * with fresh buffers
926 */
927 rxq->read = 0;
928 rxq->write = 0;
929 rxq->write_actual = 0;
930 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
9805c446 931
78485054
SS
932 iwl_pcie_rx_init_rxb_lists(rxq);
933
bce97731
SS
934 if (!rxq->napi.poll)
935 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
936 iwl_pcie_dummy_napi_poll, 64);
937
78485054
SS
938 spin_unlock(&rxq->lock);
939 }
9805c446 940
96a6497b 941 /* move the pool to the default queue and allocator ownerships */
7b542436
SS
942 queue_size = trans->cfg->mq_rx_supported ?
943 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
96a6497b
SS
944 allocator_pool_size = trans->num_rx_queues *
945 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
7b542436 946 num_alloc = queue_size + allocator_pool_size;
43146925
SS
947 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
948 ARRAY_SIZE(trans_pcie->rx_pool));
7b542436 949 for (i = 0; i < num_alloc; i++) {
96a6497b
SS
950 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
951
952 if (i < allocator_pool_size)
953 list_add(&rxb->list, &rba->rbd_empty);
954 else
955 list_add(&rxb->list, &def_rxq->rx_used);
956 trans_pcie->global_table[i] = rxb;
957 rxb->vid = (u16)i;
958 }
9805c446 959
78485054 960 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
96a6497b 961 if (trans->cfg->mq_rx_supported) {
bce97731 962 iwl_pcie_rx_mq_hw_init(trans);
96a6497b 963 } else {
e0e168dc 964 iwl_pcie_rxq_sq_restock(trans, def_rxq);
96a6497b
SS
965 iwl_pcie_rx_hw_init(trans, def_rxq);
966 }
78485054
SS
967
968 spin_lock(&def_rxq->lock);
969 iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
970 spin_unlock(&def_rxq->lock);
9805c446
EG
971
972 return 0;
973}
974
975void iwl_pcie_rx_free(struct iwl_trans *trans)
976{
977 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
26d535ae 978 struct iwl_rb_allocator *rba = &trans_pcie->rba;
96a6497b
SS
979 int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
980 sizeof(__le32);
78485054 981 int i;
9805c446 982
78485054
SS
983 /*
984 * if rxq is NULL, it means that nothing has been allocated,
985 * exit now
986 */
987 if (!trans_pcie->rxq) {
9805c446
EG
988 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
989 return;
990 }
991
26d535ae
SS
992 cancel_work_sync(&rba->rx_alloc);
993 if (rba->alloc_wq) {
994 destroy_workqueue(rba->alloc_wq);
995 rba->alloc_wq = NULL;
996 }
997
78485054
SS
998 iwl_pcie_free_rbs_pool(trans);
999
1000 for (i = 0; i < trans->num_rx_queues; i++) {
1001 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1002
1003 if (rxq->bd)
1004 dma_free_coherent(trans->dev,
96a6497b 1005 free_size * rxq->queue_size,
78485054
SS
1006 rxq->bd, rxq->bd_dma);
1007 rxq->bd_dma = 0;
1008 rxq->bd = NULL;
1009
1010 if (rxq->rb_stts)
1011 dma_free_coherent(trans->dev,
1012 sizeof(struct iwl_rb_status),
1013 rxq->rb_stts, rxq->rb_stts_dma);
1014 else
1015 IWL_DEBUG_INFO(trans,
1016 "Free rxq->rb_stts which is NULL\n");
9805c446 1017
96a6497b
SS
1018 if (rxq->used_bd)
1019 dma_free_coherent(trans->dev,
1020 sizeof(__le32) * rxq->queue_size,
1021 rxq->used_bd, rxq->used_bd_dma);
1022 rxq->used_bd_dma = 0;
1023 rxq->used_bd = NULL;
bce97731
SS
1024
1025 if (rxq->napi.poll)
1026 netif_napi_del(&rxq->napi);
96a6497b 1027 }
78485054 1028 kfree(trans_pcie->rxq);
9805c446
EG
1029}
1030
26d535ae
SS
1031/*
1032 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1033 *
1034 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1035 * When there are 2 empty RBDs - a request for allocation is posted
1036 */
1037static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1038 struct iwl_rx_mem_buffer *rxb,
1039 struct iwl_rxq *rxq, bool emergency)
1040{
1041 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1042 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1043
1044 /* Move the RBD to the used list, will be moved to allocator in batches
1045 * before claiming or posting a request*/
1046 list_add_tail(&rxb->list, &rxq->rx_used);
1047
1048 if (unlikely(emergency))
1049 return;
1050
1051 /* Count the allocator owned RBDs */
1052 rxq->used_count++;
1053
1054 /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1055 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1056 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1057 * after but we still need to post another request.
1058 */
1059 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1060 /* Move the 2 RBDs to the allocator ownership.
1061 Allocator has another 6 from pool for the request completion*/
1062 spin_lock(&rba->lock);
1063 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1064 spin_unlock(&rba->lock);
1065
1066 atomic_inc(&rba->req_pending);
1067 queue_work(rba->alloc_wq, &rba->rx_alloc);
1068 }
1069}
1070
9805c446 1071static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
78485054 1072 struct iwl_rxq *rxq,
26d535ae
SS
1073 struct iwl_rx_mem_buffer *rxb,
1074 bool emergency)
df2f3216
JB
1075{
1076 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
990aa6d7 1077 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
0c19744c 1078 bool page_stolen = false;
b2cf410c 1079 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
0c19744c 1080 u32 offset = 0;
df2f3216
JB
1081
1082 if (WARN_ON(!rxb))
1083 return;
1084
0c19744c
JB
1085 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1086
1087 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1088 struct iwl_rx_packet *pkt;
0c19744c
JB
1089 u16 sequence;
1090 bool reclaim;
f7e6469f 1091 int index, cmd_index, len;
0c19744c
JB
1092 struct iwl_rx_cmd_buffer rxcb = {
1093 ._offset = offset,
d13f1862 1094 ._rx_page_order = trans_pcie->rx_page_order,
0c19744c
JB
1095 ._page = rxb->page,
1096 ._page_stolen = false,
0d6c4a2e 1097 .truesize = max_len,
0c19744c
JB
1098 };
1099
1100 pkt = rxb_addr(&rxcb);
1101
1102 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
1103 break;
1104
9243efcc
LK
1105 IWL_DEBUG_RX(trans,
1106 "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1107 rxcb._offset,
39bdb17e
SD
1108 iwl_get_cmd_string(trans,
1109 iwl_cmd_id(pkt->hdr.cmd,
1110 pkt->hdr.group_id,
1111 0)),
9243efcc 1112 pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
0c19744c 1113
65b30348 1114 len = iwl_rx_packet_len(pkt);
0c19744c 1115 len += sizeof(u32); /* account for status word */
f042c2eb
JB
1116 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1117 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
0c19744c
JB
1118
1119 /* Reclaim a command buffer only if this packet is a response
1120 * to a (driver-originated) command.
1121 * If the packet (e.g. Rx frame) originated from uCode,
1122 * there is no command buffer to reclaim.
1123 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1124 * but apparently a few don't get set; catch them here. */
1125 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1126 if (reclaim) {
1127 int i;
1128
1129 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1130 if (trans_pcie->no_reclaim_cmds[i] ==
1131 pkt->hdr.cmd) {
1132 reclaim = false;
1133 break;
1134 }
d663ee73
JB
1135 }
1136 }
df2f3216 1137
0c19744c
JB
1138 sequence = le16_to_cpu(pkt->hdr.sequence);
1139 index = SEQ_TO_INDEX(sequence);
1140 cmd_index = get_cmd_index(&txq->q, index);
1141
bce97731
SS
1142 if (rxq->id == 0)
1143 iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1144 &rxcb);
1145 else
1146 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1147 &rxcb, rxq->id);
0c19744c 1148
96791422 1149 if (reclaim) {
5d4185ae 1150 kzfree(txq->entries[cmd_index].free_buf);
f4feb8ac 1151 txq->entries[cmd_index].free_buf = NULL;
96791422
EG
1152 }
1153
0c19744c
JB
1154 /*
1155 * After here, we should always check rxcb._page_stolen,
1156 * if it is true then one of the handlers took the page.
1157 */
1158
1159 if (reclaim) {
1160 /* Invoke any callbacks, transfer the buffer to caller,
1161 * and fire off the (possibly) blocking
1162 * iwl_trans_send_cmd()
1163 * as we reclaim the driver command queue */
1164 if (!rxcb._page_stolen)
f7e6469f 1165 iwl_pcie_hcmd_complete(trans, &rxcb);
0c19744c
JB
1166 else
1167 IWL_WARN(trans, "Claim null rxb?\n");
1168 }
1169
1170 page_stolen |= rxcb._page_stolen;
1171 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
df2f3216
JB
1172 }
1173
0c19744c
JB
1174 /* page was stolen from us -- free our reference */
1175 if (page_stolen) {
b2cf410c 1176 __free_pages(rxb->page, trans_pcie->rx_page_order);
df2f3216 1177 rxb->page = NULL;
0c19744c 1178 }
df2f3216
JB
1179
1180 /* Reuse the page if possible. For notification packets and
1181 * SKBs that fail to Rx correctly, add them back into the
1182 * rx_free list for reuse later. */
df2f3216
JB
1183 if (rxb->page != NULL) {
1184 rxb->page_dma =
1185 dma_map_page(trans->dev, rxb->page, 0,
20d3b647
JB
1186 PAGE_SIZE << trans_pcie->rx_page_order,
1187 DMA_FROM_DEVICE);
7c341582
JB
1188 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1189 /*
1190 * free the page(s) as well to not break
1191 * the invariant that the items on the used
1192 * list have no page(s)
1193 */
1194 __free_pages(rxb->page, trans_pcie->rx_page_order);
1195 rxb->page = NULL;
26d535ae 1196 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
7c341582
JB
1197 } else {
1198 list_add_tail(&rxb->list, &rxq->rx_free);
1199 rxq->free_count++;
1200 }
df2f3216 1201 } else
26d535ae 1202 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
df2f3216
JB
1203}
1204
990aa6d7
EG
1205/*
1206 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
ab697a9f 1207 */
2e5d4a8f 1208static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
ab697a9f 1209{
df2f3216 1210 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2e5d4a8f 1211 struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
d56daea4 1212 u32 r, i, count = 0;
26d535ae 1213 bool emergency = false;
ab697a9f 1214
f14d6b39
JB
1215restart:
1216 spin_lock(&rxq->lock);
ab697a9f
EG
1217 /* uCode's read index (stored in shared DRAM) indicates the last Rx
1218 * buffer that the driver may process (last buffer filled by ucode). */
52e2a99e 1219 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
ab697a9f
EG
1220 i = rxq->read;
1221
5eae443e
SS
1222 /* W/A 9000 device step A0 wrap-around bug */
1223 r &= (rxq->queue_size - 1);
1224
ab697a9f
EG
1225 /* Rx interrupt, but nothing sent from uCode */
1226 if (i == r)
5eae443e 1227 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
ab697a9f 1228
ab697a9f 1229 while (i != r) {
48a2d66f 1230 struct iwl_rx_mem_buffer *rxb;
ab697a9f 1231
96a6497b 1232 if (unlikely(rxq->used_count == rxq->queue_size / 2))
26d535ae
SS
1233 emergency = true;
1234
96a6497b
SS
1235 if (trans->cfg->mq_rx_supported) {
1236 /*
1237 * used_bd is a 32 bit but only 12 are used to retrieve
1238 * the vid
1239 */
5eae443e 1240 u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
96a6497b 1241
5eae443e
SS
1242 if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1243 "Invalid rxb index from HW %u\n", (u32)vid))
1244 goto out;
96a6497b
SS
1245 rxb = trans_pcie->global_table[vid];
1246 } else {
1247 rxb = rxq->queue[i];
1248 rxq->queue[i] = NULL;
1249 }
ab697a9f 1250
5eae443e 1251 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
78485054 1252 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
ab697a9f 1253
96a6497b 1254 i = (i + 1) & (rxq->queue_size - 1);
26d535ae 1255
d56daea4
SS
1256 /*
1257 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1258 * try to claim the pre-allocated buffers from the allocator.
1259 * If not ready - will try to reclaim next time.
1260 * There is no need to reschedule work - allocator exits only
1261 * on success
1262 */
1263 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1264 iwl_pcie_rx_allocator_get(trans, rxq);
1265
1266 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
26d535ae 1267 struct iwl_rb_allocator *rba = &trans_pcie->rba;
26d535ae 1268
d56daea4
SS
1269 /* Add the remaining empty RBDs for allocator use */
1270 spin_lock(&rba->lock);
1271 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1272 spin_unlock(&rba->lock);
1273 } else if (emergency) {
255ba065 1274 count++;
26d535ae 1275 if (count == 8) {
255ba065 1276 count = 0;
96a6497b 1277 if (rxq->used_count < rxq->queue_size / 3)
26d535ae 1278 emergency = false;
e0e168dc
GG
1279
1280 rxq->read = i;
26d535ae 1281 spin_unlock(&rxq->lock);
78485054 1282 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
96a6497b 1283 iwl_pcie_rxq_restock(trans, rxq);
e0e168dc
GG
1284 goto restart;
1285 }
26d535ae 1286 }
ab697a9f 1287 }
5eae443e 1288out:
ab697a9f
EG
1289 /* Backtrack one entry */
1290 rxq->read = i;
f14d6b39
JB
1291 spin_unlock(&rxq->lock);
1292
26d535ae
SS
1293 /*
1294 * handle a case where in emergency there are some unallocated RBDs.
1295 * those RBDs are in the used list, but are not tracked by the queue's
1296 * used_count which counts allocator owned RBDs.
1297 * unallocated emergency RBDs must be allocated on exit, otherwise
1298 * when called again the function may not be in emergency mode and
1299 * they will be handed to the allocator with no tracking in the RBD
1300 * allocator counters, which will lead to them never being claimed back
1301 * by the queue.
1302 * by allocating them here, they are now in the queue free list, and
1303 * will be restocked by the next call of iwl_pcie_rxq_restock.
1304 */
1305 if (unlikely(emergency && count))
78485054 1306 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
255ba065 1307
bce97731
SS
1308 if (rxq->napi.poll)
1309 napi_gro_flush(&rxq->napi, false);
e0e168dc
GG
1310
1311 iwl_pcie_rxq_restock(trans, rxq);
ab697a9f
EG
1312}
1313
2e5d4a8f
HD
1314static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1315{
1316 u8 queue = entry->entry;
1317 struct msix_entry *entries = entry - queue;
1318
1319 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1320}
1321
1322static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1323 struct msix_entry *entry)
1324{
1325 /*
1326 * Before sending the interrupt the HW disables it to prevent
1327 * a nested interrupt. This is done by writing 1 to the corresponding
1328 * bit in the mask register. After handling the interrupt, it should be
1329 * re-enabled by clearing this bit. This register is defined as
1330 * write 1 clear (W1C) register, meaning that it's being clear
1331 * by writing 1 to the bit.
1332 */
7ef3dd26 1333 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
2e5d4a8f
HD
1334}
1335
1336/*
1337 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1338 * This interrupt handler should be used with RSS queue only.
1339 */
1340irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1341{
1342 struct msix_entry *entry = dev_id;
1343 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1344 struct iwl_trans *trans = trans_pcie->trans;
1345
5eae443e
SS
1346 if (WARN_ON(entry->entry >= trans->num_rx_queues))
1347 return IRQ_NONE;
1348
2e5d4a8f
HD
1349 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1350
1351 local_bh_disable();
1352 iwl_pcie_rx_handle(trans, entry->entry);
1353 local_bh_enable();
1354
1355 iwl_pcie_clear_irq(trans, entry);
1356
1357 lock_map_release(&trans->sync_cmd_lockdep_map);
1358
1359 return IRQ_HANDLED;
1360}
1361
990aa6d7
EG
1362/*
1363 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
7ff94706 1364 */
990aa6d7 1365static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
7ff94706 1366{
f946b529 1367 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1103323c 1368 int i;
f946b529 1369
7ff94706 1370 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
035f7ff2 1371 if (trans->cfg->internal_wimax_coex &&
95411d04 1372 !trans->cfg->apmg_not_supported &&
1042db2a 1373 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
20d3b647 1374 APMS_CLK_VAL_MRB_FUNC_MODE) ||
1042db2a 1375 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
20d3b647 1376 APMG_PS_CTRL_VAL_RESET_REQ))) {
eb7ff77e 1377 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
8a8bbdb4 1378 iwl_op_mode_wimax_active(trans->op_mode);
f946b529 1379 wake_up(&trans_pcie->wait_command_queue);
7ff94706
EG
1380 return;
1381 }
1382
990aa6d7 1383 iwl_pcie_dump_csr(trans);
313b0a29 1384 iwl_dump_fh(trans, NULL);
7ff94706 1385
2bfb5092 1386 local_bh_disable();
2a988e98
AN
1387 /* The STATUS_FW_ERROR bit is set in this function. This must happen
1388 * before we wake up the command caller, to ensure a proper cleanup. */
1389 iwl_trans_fw_error(trans);
2bfb5092 1390 local_bh_enable();
2a988e98 1391
1103323c
EG
1392 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1393 del_timer(&trans_pcie->txq[i].stuck_timer);
1394
2a988e98
AN
1395 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1396 wake_up(&trans_pcie->wait_command_queue);
7ff94706
EG
1397}
1398
7117c000 1399static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
fc84472b 1400{
fc84472b
EG
1401 u32 inta;
1402
46e81af9 1403 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
fc84472b
EG
1404
1405 trace_iwlwifi_dev_irq(trans->dev);
1406
1407 /* Discover which interrupts are active/pending */
1408 inta = iwl_read32(trans, CSR_INT);
1409
fc84472b 1410 /* the thread will service interrupts and re-enable them */
fe523dc9 1411 return inta;
fc84472b
EG
1412}
1413
1414/* a device (PCI-E) page is 4096 bytes long */
1415#define ICT_SHIFT 12
1416#define ICT_SIZE (1 << ICT_SHIFT)
1417#define ICT_COUNT (ICT_SIZE / sizeof(u32))
1418
1419/* interrupt handler using ict table, with this interrupt driver will
1420 * stop using INTA register to get device's interrupt, reading this register
1421 * is expensive, device will write interrupts in ICT dram table, increment
1422 * index then will fire interrupt to driver, driver will OR all ICT table
1423 * entries from current index up to table entry with 0 value. the result is
1424 * the interrupt we need to service, driver will set the entries back to 0 and
1425 * set index.
1426 */
7117c000 1427static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
fc84472b
EG
1428{
1429 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
fc84472b
EG
1430 u32 inta;
1431 u32 val = 0;
1432 u32 read;
1433
fc84472b
EG
1434 trace_iwlwifi_dev_irq(trans->dev);
1435
1436 /* Ignore interrupt if there's nothing in NIC to service.
1437 * This may be due to IRQ shared with another device,
1438 * or due to sporadic interrupts thrown from our NIC. */
1439 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1440 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
7ba1faa4
EG
1441 if (!read)
1442 return 0;
fc84472b
EG
1443
1444 /*
1445 * Collect all entries up to the first 0, starting from ict_index;
1446 * note we already read at ict_index.
1447 */
1448 do {
1449 val |= read;
1450 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1451 trans_pcie->ict_index, read);
1452 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1453 trans_pcie->ict_index =
83f32a4b 1454 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
fc84472b
EG
1455
1456 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1457 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1458 read);
1459 } while (read);
1460
1461 /* We should not get this value, just ignore it. */
1462 if (val == 0xffffffff)
1463 val = 0;
1464
1465 /*
1466 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1467 * (bit 15 before shifting it to 31) to clear when using interrupt
1468 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1469 * so we use them to decide on the real state of the Rx bit.
1470 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1471 */
1472 if (val & 0xC0000)
1473 val |= 0x8000;
1474
1475 inta = (0xff & val) | ((0xff00 & val) << 16);
fe523dc9 1476 return inta;
fc84472b
EG
1477}
1478
2bfb5092 1479irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
ab697a9f 1480{
2bfb5092 1481 struct iwl_trans *trans = dev_id;
20d3b647
JB
1482 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1483 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
ab697a9f
EG
1484 u32 inta = 0;
1485 u32 handled = 0;
ab697a9f 1486
2bfb5092
JB
1487 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1488
7b70bd63 1489 spin_lock(&trans_pcie->irq_lock);
ab697a9f 1490
0fec9542
EG
1491 /* dram interrupt table not set yet,
1492 * use legacy interrupt.
1493 */
1494 if (likely(trans_pcie->use_ict))
7117c000 1495 inta = iwl_pcie_int_cause_ict(trans);
0fec9542 1496 else
7117c000 1497 inta = iwl_pcie_int_cause_non_ict(trans);
0fec9542 1498
7ba1faa4
EG
1499 if (iwl_have_debug_level(IWL_DL_ISR)) {
1500 IWL_DEBUG_ISR(trans,
1501 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1502 inta, trans_pcie->inta_mask,
1503 iwl_read32(trans, CSR_INT_MASK),
1504 iwl_read32(trans, CSR_FH_INT_STATUS));
1505 if (inta & (~trans_pcie->inta_mask))
1506 IWL_DEBUG_ISR(trans,
1507 "We got a masked interrupt (0x%08x)\n",
1508 inta & (~trans_pcie->inta_mask));
1509 }
1510
1511 inta &= trans_pcie->inta_mask;
1512
1513 /*
1514 * Ignore interrupt if there's nothing in NIC to service.
1515 * This may be due to IRQ shared with another device,
1516 * or due to sporadic interrupts thrown from our NIC.
1517 */
7117c000 1518 if (unlikely(!inta)) {
7ba1faa4
EG
1519 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1520 /*
1521 * Re-enable interrupts here since we don't
1522 * have anything to service
1523 */
1524 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1525 iwl_enable_interrupts(trans);
7b70bd63 1526 spin_unlock(&trans_pcie->irq_lock);
7117c000
EG
1527 lock_map_release(&trans->sync_cmd_lockdep_map);
1528 return IRQ_NONE;
1529 }
1530
7ba1faa4
EG
1531 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1532 /*
1533 * Hardware disappeared. It might have
1534 * already raised an interrupt.
1535 */
1536 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
7b70bd63 1537 spin_unlock(&trans_pcie->irq_lock);
7117c000 1538 goto out;
a0f337cc
EG
1539 }
1540
ab697a9f
EG
1541 /* Ack/clear/reset pending uCode interrupts.
1542 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1543 */
1544 /* There is a hardware bug in the interrupt mask function that some
1545 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1546 * they are disabled in the CSR_INT_MASK register. Furthermore the
1547 * ICT interrupt handling mechanism has another bug that might cause
1548 * these unmasked interrupts fail to be detected. We workaround the
1549 * hardware bugs here by ACKing all the possible interrupts so that
1550 * interrupt coalescing can still be achieved.
1551 */
7117c000 1552 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
ab697a9f 1553
51cd53ad 1554 if (iwl_have_debug_level(IWL_DL_ISR))
0ca24daf 1555 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
51cd53ad 1556 inta, iwl_read32(trans, CSR_INT_MASK));
ab697a9f 1557
7b70bd63 1558 spin_unlock(&trans_pcie->irq_lock);
b49ba04a 1559
ab697a9f
EG
1560 /* Now service all interrupt bits discovered above. */
1561 if (inta & CSR_INT_BIT_HW_ERR) {
0c325769 1562 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
ab697a9f
EG
1563
1564 /* Tell the device to stop sending interrupts */
0c325769 1565 iwl_disable_interrupts(trans);
ab697a9f 1566
1f7b6172 1567 isr_stats->hw++;
990aa6d7 1568 iwl_pcie_irq_handle_error(trans);
ab697a9f
EG
1569
1570 handled |= CSR_INT_BIT_HW_ERR;
1571
2bfb5092 1572 goto out;
ab697a9f
EG
1573 }
1574
a8bceb39 1575 if (iwl_have_debug_level(IWL_DL_ISR)) {
ab697a9f
EG
1576 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1577 if (inta & CSR_INT_BIT_SCD) {
51cd53ad
JB
1578 IWL_DEBUG_ISR(trans,
1579 "Scheduler finished to transmit the frame/frames.\n");
1f7b6172 1580 isr_stats->sch++;
ab697a9f
EG
1581 }
1582
1583 /* Alive notification via Rx interrupt will do the real work */
1584 if (inta & CSR_INT_BIT_ALIVE) {
0c325769 1585 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1f7b6172 1586 isr_stats->alive++;
ab697a9f
EG
1587 }
1588 }
51cd53ad 1589
ab697a9f
EG
1590 /* Safely ignore these bits for debug checks below */
1591 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1592
1593 /* HW RF KILL switch toggled */
1594 if (inta & CSR_INT_BIT_RF_KILL) {
c9eec95c 1595 bool hw_rfkill;
ab697a9f 1596
8d425517 1597 hw_rfkill = iwl_is_rfkill_set(trans);
0c325769 1598 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
20d3b647 1599 hw_rfkill ? "disable radio" : "enable radio");
ab697a9f 1600
1f7b6172 1601 isr_stats->rfkill++;
ab697a9f 1602
fa9f3281 1603 mutex_lock(&trans_pcie->mutex);
14cfca71 1604 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
fa9f3281 1605 mutex_unlock(&trans_pcie->mutex);
f946b529 1606 if (hw_rfkill) {
eb7ff77e
AN
1607 set_bit(STATUS_RFKILL, &trans->status);
1608 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1609 &trans->status))
f946b529
EG
1610 IWL_DEBUG_RF_KILL(trans,
1611 "Rfkill while SYNC HCMD in flight\n");
1612 wake_up(&trans_pcie->wait_command_queue);
1613 } else {
eb7ff77e 1614 clear_bit(STATUS_RFKILL, &trans->status);
f946b529 1615 }
ab697a9f
EG
1616
1617 handled |= CSR_INT_BIT_RF_KILL;
1618 }
1619
1620 /* Chip got too hot and stopped itself */
1621 if (inta & CSR_INT_BIT_CT_KILL) {
0c325769 1622 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1f7b6172 1623 isr_stats->ctkill++;
ab697a9f
EG
1624 handled |= CSR_INT_BIT_CT_KILL;
1625 }
1626
1627 /* Error detected by uCode */
1628 if (inta & CSR_INT_BIT_SW_ERR) {
0c325769 1629 IWL_ERR(trans, "Microcode SW error detected. "
ab697a9f 1630 " Restarting 0x%X.\n", inta);
1f7b6172 1631 isr_stats->sw++;
990aa6d7 1632 iwl_pcie_irq_handle_error(trans);
ab697a9f
EG
1633 handled |= CSR_INT_BIT_SW_ERR;
1634 }
1635
1636 /* uCode wakes up after power-down sleep */
1637 if (inta & CSR_INT_BIT_WAKEUP) {
0c325769 1638 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
5d63f926 1639 iwl_pcie_rxq_check_wrptr(trans);
ea68f460 1640 iwl_pcie_txq_check_wrptrs(trans);
ab697a9f 1641
1f7b6172 1642 isr_stats->wakeup++;
ab697a9f
EG
1643
1644 handled |= CSR_INT_BIT_WAKEUP;
1645 }
1646
1647 /* All uCode command responses, including Tx command responses,
1648 * Rx "responses" (frame-received notification), and other
1649 * notifications from uCode come through here*/
1650 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
20d3b647 1651 CSR_INT_BIT_RX_PERIODIC)) {
0c325769 1652 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
ab697a9f
EG
1653 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1654 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1042db2a 1655 iwl_write32(trans, CSR_FH_INT_STATUS,
ab697a9f
EG
1656 CSR_FH_INT_RX_MASK);
1657 }
1658 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1659 handled |= CSR_INT_BIT_RX_PERIODIC;
1042db2a 1660 iwl_write32(trans,
0c325769 1661 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
ab697a9f
EG
1662 }
1663 /* Sending RX interrupt require many steps to be done in the
1664 * the device:
1665 * 1- write interrupt to current index in ICT table.
1666 * 2- dma RX frame.
1667 * 3- update RX shared data to indicate last write index.
1668 * 4- send interrupt.
1669 * This could lead to RX race, driver could receive RX interrupt
1670 * but the shared data changes does not reflect this;
1671 * periodic interrupt will detect any dangling Rx activity.
1672 */
1673
1674 /* Disable periodic interrupt; we use it as just a one-shot. */
1042db2a 1675 iwl_write8(trans, CSR_INT_PERIODIC_REG,
ab697a9f 1676 CSR_INT_PERIODIC_DIS);
6379103e 1677
ab697a9f
EG
1678 /*
1679 * Enable periodic interrupt in 8 msec only if we received
1680 * real RX interrupt (instead of just periodic int), to catch
1681 * any dangling Rx interrupt. If it was just the periodic
1682 * interrupt, there was no dangling Rx activity, and no need
1683 * to extend the periodic interrupt; one-shot is enough.
1684 */
1685 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1042db2a 1686 iwl_write8(trans, CSR_INT_PERIODIC_REG,
20d3b647 1687 CSR_INT_PERIODIC_ENA);
ab697a9f 1688
1f7b6172 1689 isr_stats->rx++;
f14d6b39
JB
1690
1691 local_bh_disable();
2e5d4a8f 1692 iwl_pcie_rx_handle(trans, 0);
f14d6b39 1693 local_bh_enable();
ab697a9f
EG
1694 }
1695
1696 /* This "Tx" DMA channel is used only for loading uCode */
1697 if (inta & CSR_INT_BIT_FH_TX) {
1042db2a 1698 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
0c325769 1699 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1f7b6172 1700 isr_stats->tx++;
ab697a9f
EG
1701 handled |= CSR_INT_BIT_FH_TX;
1702 /* Wake up uCode load routine, now that load is complete */
13df1aab
JB
1703 trans_pcie->ucode_write_complete = true;
1704 wake_up(&trans_pcie->ucode_write_waitq);
ab697a9f
EG
1705 }
1706
1707 if (inta & ~handled) {
0c325769 1708 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1f7b6172 1709 isr_stats->unhandled++;
ab697a9f
EG
1710 }
1711
0c325769
EG
1712 if (inta & ~(trans_pcie->inta_mask)) {
1713 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1714 inta & ~trans_pcie->inta_mask);
ab697a9f
EG
1715 }
1716
a6bd005f
EG
1717 /* we are loading the firmware, enable FH_TX interrupt only */
1718 if (handled & CSR_INT_BIT_FH_TX)
1719 iwl_enable_fw_load_int(trans);
1720 /* only Re-enable all interrupt if disabled by irq */
1721 else if (test_bit(STATUS_INT_ENABLED, &trans->status))
0c325769 1722 iwl_enable_interrupts(trans);
ab697a9f 1723 /* Re-enable RF_KILL if it occurred */
8722c899
SG
1724 else if (handled & CSR_INT_BIT_RF_KILL)
1725 iwl_enable_rfkill_int(trans);
2bfb5092
JB
1726
1727out:
1728 lock_map_release(&trans->sync_cmd_lockdep_map);
1729 return IRQ_HANDLED;
ab697a9f
EG
1730}
1731
1a361cd8
EG
1732/******************************************************************************
1733 *
1734 * ICT functions
1735 *
1736 ******************************************************************************/
10667136 1737
1a361cd8 1738/* Free dram table */
990aa6d7 1739void iwl_pcie_free_ict(struct iwl_trans *trans)
1a361cd8 1740{
20d3b647 1741 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
0c325769 1742
10667136 1743 if (trans_pcie->ict_tbl) {
1042db2a 1744 dma_free_coherent(trans->dev, ICT_SIZE,
10667136 1745 trans_pcie->ict_tbl,
0c325769 1746 trans_pcie->ict_tbl_dma);
10667136
JB
1747 trans_pcie->ict_tbl = NULL;
1748 trans_pcie->ict_tbl_dma = 0;
1a361cd8
EG
1749 }
1750}
1751
10667136
JB
1752/*
1753 * allocate dram shared table, it is an aligned memory
1754 * block of ICT_SIZE.
1a361cd8
EG
1755 * also reset all data related to ICT table interrupt.
1756 */
990aa6d7 1757int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1a361cd8 1758{
20d3b647 1759 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1a361cd8 1760
10667136 1761 trans_pcie->ict_tbl =
eef31718 1762 dma_zalloc_coherent(trans->dev, ICT_SIZE,
10667136
JB
1763 &trans_pcie->ict_tbl_dma,
1764 GFP_KERNEL);
1765 if (!trans_pcie->ict_tbl)
1a361cd8
EG
1766 return -ENOMEM;
1767
10667136
JB
1768 /* just an API sanity check ... it is guaranteed to be aligned */
1769 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
990aa6d7 1770 iwl_pcie_free_ict(trans);
10667136
JB
1771 return -EINVAL;
1772 }
1a361cd8 1773
1a361cd8
EG
1774 return 0;
1775}
1776
1777/* Device is going up inform it about using ICT interrupt table,
1778 * also we need to tell the driver to start using ICT interrupt.
1779 */
990aa6d7 1780void iwl_pcie_reset_ict(struct iwl_trans *trans)
1a361cd8 1781{
20d3b647 1782 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1a361cd8 1783 u32 val;
1a361cd8 1784
10667136 1785 if (!trans_pcie->ict_tbl)
ed6a3803 1786 return;
1a361cd8 1787
7b70bd63 1788 spin_lock(&trans_pcie->irq_lock);
0c325769 1789 iwl_disable_interrupts(trans);
1a361cd8 1790
10667136 1791 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1a361cd8 1792
10667136 1793 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1a361cd8 1794
18f5a374
EP
1795 val |= CSR_DRAM_INT_TBL_ENABLE |
1796 CSR_DRAM_INIT_TBL_WRAP_CHECK |
1797 CSR_DRAM_INIT_TBL_WRITE_POINTER;
1a361cd8 1798
10667136 1799 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1a361cd8 1800
1042db2a 1801 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
0c325769
EG
1802 trans_pcie->use_ict = true;
1803 trans_pcie->ict_index = 0;
1042db2a 1804 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
0c325769 1805 iwl_enable_interrupts(trans);
7b70bd63 1806 spin_unlock(&trans_pcie->irq_lock);
1a361cd8
EG
1807}
1808
1809/* Device is going down disable ict interrupt usage */
990aa6d7 1810void iwl_pcie_disable_ict(struct iwl_trans *trans)
1a361cd8 1811{
20d3b647 1812 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1a361cd8 1813
7b70bd63 1814 spin_lock(&trans_pcie->irq_lock);
0c325769 1815 trans_pcie->use_ict = false;
7b70bd63 1816 spin_unlock(&trans_pcie->irq_lock);
1a361cd8
EG
1817}
1818
85bf9da1
EG
1819irqreturn_t iwl_pcie_isr(int irq, void *data)
1820{
1821 struct iwl_trans *trans = data;
1822
1823 if (!trans)
1824 return IRQ_NONE;
1825
1826 /* Disable (but don't clear!) interrupts here to avoid
1827 * back-to-back ISRs and sporadic interrupts from our NIC.
1828 * If we have something to service, the tasklet will re-enable ints.
1829 * If we *don't* have something, we'll re-enable before leaving here.
1830 */
1831 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1832
a0f337cc 1833 return IRQ_WAKE_THREAD;
85bf9da1 1834}
2e5d4a8f
HD
1835
1836irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1837{
1838 return IRQ_WAKE_THREAD;
1839}
1840
1841irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1842{
1843 struct msix_entry *entry = dev_id;
1844 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1845 struct iwl_trans *trans = trans_pcie->trans;
46167a8f 1846 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2e5d4a8f
HD
1847 u32 inta_fh, inta_hw;
1848
1849 lock_map_acquire(&trans->sync_cmd_lockdep_map);
1850
1851 spin_lock(&trans_pcie->irq_lock);
7ef3dd26
HD
1852 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1853 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2e5d4a8f
HD
1854 /*
1855 * Clear causes registers to avoid being handling the same cause.
1856 */
7ef3dd26
HD
1857 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1858 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2e5d4a8f
HD
1859 spin_unlock(&trans_pcie->irq_lock);
1860
1861 if (unlikely(!(inta_fh | inta_hw))) {
1862 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1863 lock_map_release(&trans->sync_cmd_lockdep_map);
1864 return IRQ_NONE;
1865 }
1866
1867 if (iwl_have_debug_level(IWL_DL_ISR))
1868 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1869 inta_fh,
1870 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
1871
1872 /* This "Tx" DMA channel is used only for loading uCode */
1873 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
1874 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1875 isr_stats->tx++;
1876 /*
1877 * Wake up uCode load routine,
1878 * now that load is complete
1879 */
1880 trans_pcie->ucode_write_complete = true;
1881 wake_up(&trans_pcie->ucode_write_waitq);
1882 }
1883
1884 /* Error detected by uCode */
1885 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1886 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1887 IWL_ERR(trans,
1888 "Microcode SW error detected. Restarting 0x%X.\n",
1889 inta_fh);
1890 isr_stats->sw++;
1891 iwl_pcie_irq_handle_error(trans);
1892 }
1893
1894 /* After checking FH register check HW register */
1895 if (iwl_have_debug_level(IWL_DL_ISR))
1896 IWL_DEBUG_ISR(trans,
1897 "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1898 inta_hw,
1899 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
1900
1901 /* Alive notification via Rx interrupt will do the real work */
1902 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1903 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1904 isr_stats->alive++;
1905 }
1906
1907 /* uCode wakes up after power-down sleep */
1908 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1909 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1910 iwl_pcie_rxq_check_wrptr(trans);
1911 iwl_pcie_txq_check_wrptrs(trans);
1912
1913 isr_stats->wakeup++;
1914 }
1915
1916 /* Chip got too hot and stopped itself */
1917 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1918 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1919 isr_stats->ctkill++;
1920 }
1921
1922 /* HW RF KILL switch toggled */
1923 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1924 bool hw_rfkill;
1925
1926 hw_rfkill = iwl_is_rfkill_set(trans);
1927 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1928 hw_rfkill ? "disable radio" : "enable radio");
1929
1930 isr_stats->rfkill++;
1931
1932 mutex_lock(&trans_pcie->mutex);
1933 iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1934 mutex_unlock(&trans_pcie->mutex);
1935 if (hw_rfkill) {
1936 set_bit(STATUS_RFKILL, &trans->status);
1937 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1938 &trans->status))
1939 IWL_DEBUG_RF_KILL(trans,
1940 "Rfkill while SYNC HCMD in flight\n");
1941 wake_up(&trans_pcie->wait_command_queue);
1942 } else {
1943 clear_bit(STATUS_RFKILL, &trans->status);
1944 }
1945 }
1946
1947 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1948 IWL_ERR(trans,
1949 "Hardware error detected. Restarting.\n");
1950
1951 isr_stats->hw++;
1952 iwl_pcie_irq_handle_error(trans);
1953 }
1954
1955 iwl_pcie_clear_irq(trans, entry);
1956
1957 lock_map_release(&trans->sync_cmd_lockdep_map);
1958
1959 return IRQ_HANDLED;
1960}
This page took 0.454911 seconds and 5 git commands to generate.