rsi: Add RS9113 wireless driver
[deliverable/linux.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
CommitLineData
dad0d04f
FF
1/**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include "rsi_mgmt.h"
19#include "rsi_common.h"
20
21static struct bootup_params boot_params_20 = {
22 .magic_number = cpu_to_le16(0x5aa5),
23 .crystal_good_time = 0x0,
24 .valid = cpu_to_le32(VALID_20),
25 .reserved_for_valids = 0x0,
26 .bootup_mode_info = 0x0,
27 .digital_loop_back_params = 0x0,
28 .rtls_timestamp_en = 0x0,
29 .host_spi_intr_cfg = 0x0,
30 .device_clk_info = {{
31 .pll_config_g = {
32 .tapll_info_g = {
33 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 (TA_PLL_M_VAL_20)),
35 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 },
37 .pll960_info_g = {
38 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 (PLL960_N_VAL_20)),
40 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 .pll_reg_3 = 0x0,
42 },
43 .afepll_info_g = {
44 .pll_reg = cpu_to_le16(0x9f0),
45 }
46 },
47 .switch_clk_g = {
48 .switch_clk_info = cpu_to_le16(BIT(3)),
49 .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 .umac_clock_reg_config = 0x0,
51 .qspi_uart_clock_reg_config = 0x0
52 }
53 },
54 {
55 .pll_config_g = {
56 .tapll_info_g = {
57 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 (TA_PLL_M_VAL_20)),
59 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 },
61 .pll960_info_g = {
62 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 (PLL960_N_VAL_20)),
64 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 .pll_reg_3 = 0x0,
66 },
67 .afepll_info_g = {
68 .pll_reg = cpu_to_le16(0x9f0),
69 }
70 },
71 .switch_clk_g = {
72 .switch_clk_info = 0x0,
73 .bbp_lmac_clk_reg_val = 0x0,
74 .umac_clock_reg_config = 0x0,
75 .qspi_uart_clock_reg_config = 0x0
76 }
77 },
78 {
79 .pll_config_g = {
80 .tapll_info_g = {
81 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 (TA_PLL_M_VAL_20)),
83 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 },
85 .pll960_info_g = {
86 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 (PLL960_N_VAL_20)),
88 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 .pll_reg_3 = 0x0,
90 },
91 .afepll_info_g = {
92 .pll_reg = cpu_to_le16(0x9f0),
93 }
94 },
95 .switch_clk_g = {
96 .switch_clk_info = 0x0,
97 .bbp_lmac_clk_reg_val = 0x0,
98 .umac_clock_reg_config = 0x0,
99 .qspi_uart_clock_reg_config = 0x0
100 }
101 } },
102 .buckboost_wakeup_cnt = 0x0,
103 .pmu_wakeup_wait = 0x0,
104 .shutdown_wait_time = 0x0,
105 .pmu_slp_clkout_sel = 0x0,
106 .wdt_prog_value = 0x0,
107 .wdt_soc_rst_delay = 0x0,
108 .dcdc_operation_mode = 0x0,
109 .soc_reset_wait_cnt = 0x0
110};
111
112static struct bootup_params boot_params_40 = {
113 .magic_number = cpu_to_le16(0x5aa5),
114 .crystal_good_time = 0x0,
115 .valid = cpu_to_le32(VALID_40),
116 .reserved_for_valids = 0x0,
117 .bootup_mode_info = 0x0,
118 .digital_loop_back_params = 0x0,
119 .rtls_timestamp_en = 0x0,
120 .host_spi_intr_cfg = 0x0,
121 .device_clk_info = {{
122 .pll_config_g = {
123 .tapll_info_g = {
124 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 (TA_PLL_M_VAL_40)),
126 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 },
128 .pll960_info_g = {
129 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 (PLL960_N_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 .pll_reg_3 = 0x0,
133 },
134 .afepll_info_g = {
135 .pll_reg = cpu_to_le16(0x9f0),
136 }
137 },
138 .switch_clk_g = {
139 .switch_clk_info = cpu_to_le16(0x09),
140 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 .umac_clock_reg_config = cpu_to_le16(0x48),
142 .qspi_uart_clock_reg_config = 0x0
143 }
144 },
145 {
146 .pll_config_g = {
147 .tapll_info_g = {
148 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 (TA_PLL_M_VAL_40)),
150 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 },
152 .pll960_info_g = {
153 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 (PLL960_N_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 .pll_reg_3 = 0x0,
157 },
158 .afepll_info_g = {
159 .pll_reg = cpu_to_le16(0x9f0),
160 }
161 },
162 .switch_clk_g = {
163 .switch_clk_info = 0x0,
164 .bbp_lmac_clk_reg_val = 0x0,
165 .umac_clock_reg_config = 0x0,
166 .qspi_uart_clock_reg_config = 0x0
167 }
168 },
169 {
170 .pll_config_g = {
171 .tapll_info_g = {
172 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 (TA_PLL_M_VAL_40)),
174 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 },
176 .pll960_info_g = {
177 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 (PLL960_N_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 .pll_reg_3 = 0x0,
181 },
182 .afepll_info_g = {
183 .pll_reg = cpu_to_le16(0x9f0),
184 }
185 },
186 .switch_clk_g = {
187 .switch_clk_info = 0x0,
188 .bbp_lmac_clk_reg_val = 0x0,
189 .umac_clock_reg_config = 0x0,
190 .qspi_uart_clock_reg_config = 0x0
191 }
192 } },
193 .buckboost_wakeup_cnt = 0x0,
194 .pmu_wakeup_wait = 0x0,
195 .shutdown_wait_time = 0x0,
196 .pmu_slp_clkout_sel = 0x0,
197 .wdt_prog_value = 0x0,
198 .wdt_soc_rst_delay = 0x0,
199 .dcdc_operation_mode = 0x0,
200 .soc_reset_wait_cnt = 0x0
201};
202
203static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205/**
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
208 *
209 * Return: none
210 */
211static void rsi_set_default_parameters(struct rsi_common *common)
212{
213 common->band = IEEE80211_BAND_2GHZ;
214 common->channel_width = BW_20MHZ;
215 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 common->channel = 1;
217 common->min_rate = 0xffff;
218 common->fsm_state = FSM_CARD_NOT_READY;
219 common->iface_down = true;
220}
221
222/**
223 * rsi_set_contention_vals() - This function sets the contention values for the
224 * backoff procedure.
225 * @common: Pointer to the driver private structure.
226 *
227 * Return: None.
228 */
229static void rsi_set_contention_vals(struct rsi_common *common)
230{
231 u8 ii = 0;
232
233 for (; ii < NUM_EDCA_QUEUES; ii++) {
234 common->tx_qinfo[ii].wme_params =
235 (((common->edca_params[ii].cw_min / 2) +
236 (common->edca_params[ii].aifs)) *
237 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
238 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
239 common->tx_qinfo[ii].pkt_contended = 0;
240 }
241}
242
243/**
244 * rsi_send_internal_mgmt_frame() - This function sends management frames to
245 * firmware.Also schedules packet to queue
246 * for transmission.
247 * @common: Pointer to the driver private structure.
248 * @skb: Pointer to the socket buffer structure.
249 *
250 * Return: 0 on success, -1 on failure.
251 */
252static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
253 struct sk_buff *skb)
254{
255 struct skb_info *tx_params;
256
257 if (skb == NULL) {
258 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
259 return -ENOMEM;
260 }
261 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
262 tx_params->flags |= INTERNAL_MGMT_PKT;
263 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
264 rsi_set_event(&common->tx_thread.event);
265 return 0;
266}
267
268/**
269 * rsi_load_radio_caps() - This function is used to send radio capabilities
270 * values to firmware.
271 * @common: Pointer to the driver private structure.
272 *
273 * Return: 0 on success, corresponding negative error code on failure.
274 */
275static int rsi_load_radio_caps(struct rsi_common *common)
276{
277 struct rsi_radio_caps *radio_caps;
278 struct rsi_hw *adapter = common->priv;
279 struct ieee80211_hw *hw = adapter->hw;
280 u16 inx = 0;
281 u8 ii;
282 u8 radio_id = 0;
283 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 0xf0, 0xf0, 0xf0, 0xf0,
285 0xf0, 0xf0, 0xf0, 0xf0,
286 0xf0, 0xf0, 0xf0, 0xf0,
287 0xf0, 0xf0, 0xf0, 0xf0};
288 struct ieee80211_conf *conf = &hw->conf;
289 struct sk_buff *skb;
290
291 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
292
293 skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
294
295 if (!skb) {
296 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
297 __func__);
298 return -ENOMEM;
299 }
300
301 memset(skb->data, 0, sizeof(struct rsi_radio_caps));
302 radio_caps = (struct rsi_radio_caps *)skb->data;
303
304 radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
305 radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
306
307 if (common->channel_width == BW_40MHZ) {
308 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
309 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
310 if (common->channel_width) {
311 radio_caps->desc_word[5] =
312 cpu_to_le16(common->channel_width << 12);
313 radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE);
314 }
315
316 if (conf_is_ht40_minus(conf)) {
317 radio_caps->desc_word[5] = 0;
318 radio_caps->desc_word[5] |=
319 cpu_to_le16(LOWER_20_ENABLE);
320 radio_caps->desc_word[5] |=
321 cpu_to_le16(LOWER_20_ENABLE >> 12);
322 }
323
324 if (conf_is_ht40_plus(conf)) {
325 radio_caps->desc_word[5] = 0;
326 radio_caps->desc_word[5] |=
327 cpu_to_le16(UPPER_20_ENABLE);
328 radio_caps->desc_word[5] |=
329 cpu_to_le16(UPPER_20_ENABLE >> 12);
330 }
331 }
332
333 radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
334
335 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
336 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
337 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
338 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
339 radio_caps->qos_params[ii].txop_q = 0;
340 }
341
342 for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
343 radio_caps->qos_params[ii].cont_win_min_q =
344 cpu_to_le16(common->edca_params[ii].cw_min);
345 radio_caps->qos_params[ii].cont_win_max_q =
346 cpu_to_le16(common->edca_params[ii].cw_max);
347 radio_caps->qos_params[ii].aifsn_val_q =
348 cpu_to_le16((common->edca_params[ii].aifs) << 8);
349 radio_caps->qos_params[ii].txop_q =
350 cpu_to_le16(common->edca_params[ii].txop);
351 }
352
353 memcpy(&common->rate_pwr[0], &gc[0], 40);
354 for (ii = 0; ii < 20; ii++)
355 radio_caps->gcpd_per_rate[inx++] =
356 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
357
358 radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
359 FRAME_DESC_SZ) |
360 (RSI_WIFI_MGMT_Q << 12));
361
362
363 skb_put(skb, (sizeof(struct rsi_radio_caps)));
364
365 return rsi_send_internal_mgmt_frame(common, skb);
366}
367
368/**
369 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
370 * @common: Pointer to the driver private structure.
371 * @msg: Pointer to received packet.
372 * @msg_len: Length of the recieved packet.
373 * @type: Type of recieved packet.
374 *
375 * Return: 0 on success, -1 on failure.
376 */
377static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
378 u8 *msg,
379 s32 msg_len,
380 u8 type)
381{
382 struct rsi_hw *adapter = common->priv;
383 struct ieee80211_tx_info *info;
384 struct skb_info *rx_params;
385 u8 pad_bytes = msg[4];
386 u8 pkt_recv;
387 struct sk_buff *skb;
388 char *buffer;
389
390 if (type == RX_DOT11_MGMT) {
391 if (!adapter->sc_nvifs)
392 return -ENOLINK;
393
394 msg_len -= pad_bytes;
395 if ((msg_len <= 0) || (!msg)) {
396 rsi_dbg(MGMT_RX_ZONE, "Invalid rx msg of len = %d\n",
397 __func__, msg_len);
398 return -EINVAL;
399 }
400
401 skb = dev_alloc_skb(msg_len);
402 if (!skb) {
403 rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
404 __func__);
405 return -ENOMEM;
406 }
407
408 buffer = skb_put(skb, msg_len);
409
410 memcpy(buffer,
411 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
412 msg_len);
413
414 pkt_recv = buffer[0];
415
416 info = IEEE80211_SKB_CB(skb);
417 rx_params = (struct skb_info *)info->driver_data;
418 rx_params->rssi = rsi_get_rssi(msg);
419 rx_params->channel = rsi_get_channel(msg);
420 rsi_indicate_pkt_to_os(common, skb);
421 } else {
422 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
423 }
424
425 return 0;
426}
427
428/**
429 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
430 * frame to firmware.
431 * @common: Pointer to the driver private structure.
432 * @opmode: Operating mode of device.
433 * @notify_event: Notification about station connection.
434 * @bssid: bssid.
435 * @qos_enable: Qos is enabled.
436 * @aid: Aid (unique for all STA).
437 *
438 * Return: status: 0 on success, corresponding negative error code on failure.
439 */
440static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
441 u8 opmode,
442 u8 notify_event,
443 const unsigned char *bssid,
444 u8 qos_enable,
445 u16 aid)
446{
447 struct sk_buff *skb = NULL;
448 struct rsi_peer_notify *peer_notify;
449 u16 vap_id = 0;
450 int status;
451
452 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
453
454 skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
455
456 if (!skb) {
457 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
458 __func__);
459 return -ENOMEM;
460 }
461
462 memset(skb->data, 0, sizeof(struct rsi_peer_notify));
463 peer_notify = (struct rsi_peer_notify *)skb->data;
464
465 peer_notify->command = cpu_to_le16(opmode << 1);
466
467 switch (notify_event) {
468 case STA_CONNECTED:
469 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
470 break;
471 case STA_DISCONNECTED:
472 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
473 break;
474 default:
475 break;
476 }
477
478 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
479 ether_addr_copy(peer_notify->mac_addr, bssid);
480
481 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
482
483 peer_notify->desc_word[0] =
484 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
485 (RSI_WIFI_MGMT_Q << 12));
486 peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
487 peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
488
489 skb_put(skb, sizeof(struct rsi_peer_notify));
490
491 status = rsi_send_internal_mgmt_frame(common, skb);
492
493 if (!status && qos_enable) {
494 rsi_set_contention_vals(common);
495 status = rsi_load_radio_caps(common);
496 }
497 return status;
498}
499
500/**
501 * rsi_send_aggregation_params_frame() - This function sends the ampdu
502 * indication frame to firmware.
503 * @common: Pointer to the driver private structure.
504 * @tid: traffic identifier.
505 * @ssn: ssn.
506 * @buf_size: buffer size.
507 * @event: notification about station connection.
508 *
509 * Return: 0 on success, corresponding negative error code on failure.
510 */
511int rsi_send_aggregation_params_frame(struct rsi_common *common,
512 u16 tid,
513 u16 ssn,
514 u8 buf_size,
515 u8 event)
516{
517 struct sk_buff *skb = NULL;
518 struct rsi_mac_frame *mgmt_frame;
519 u8 peer_id = 0;
520
521 skb = dev_alloc_skb(FRAME_DESC_SZ);
522
523 if (!skb) {
524 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
525 __func__);
526 return -ENOMEM;
527 }
528
529 memset(skb->data, 0, FRAME_DESC_SZ);
530 mgmt_frame = (struct rsi_mac_frame *)skb->data;
531
532 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
533
534 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
535 mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
536
537 if (event == STA_TX_ADDBA_DONE) {
538 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
539 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
540 mgmt_frame->desc_word[7] =
541 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
542 } else if (event == STA_RX_ADDBA_DONE) {
543 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
544 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
545 (START_AMPDU_AGGR << 4) |
546 (RX_BA_INDICATION << 5) |
547 (peer_id << 8));
548 } else if (event == STA_TX_DELBA) {
549 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
550 (STOP_AMPDU_AGGR << 4) |
551 (peer_id << 8));
552 } else if (event == STA_RX_DELBA) {
553 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
554 (STOP_AMPDU_AGGR << 4) |
555 (RX_BA_INDICATION << 5) |
556 (peer_id << 8));
557 }
558
559 skb_put(skb, FRAME_DESC_SZ);
560
561 return rsi_send_internal_mgmt_frame(common, skb);
562}
563
564/**
565 * rsi_program_bb_rf() - This function starts base band and RF programming.
566 * This is called after initial configurations are done.
567 * @common: Pointer to the driver private structure.
568 *
569 * Return: 0 on success, corresponding negative error code on failure.
570 */
571static int rsi_program_bb_rf(struct rsi_common *common)
572{
573 struct sk_buff *skb;
574 struct rsi_mac_frame *mgmt_frame;
575
576 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
577
578 skb = dev_alloc_skb(FRAME_DESC_SZ);
579 if (!skb) {
580 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
581 __func__);
582 return -ENOMEM;
583 }
584
585 memset(skb->data, 0, FRAME_DESC_SZ);
586 mgmt_frame = (struct rsi_mac_frame *)skb->data;
587
588 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
589 mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
590 mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint << 8);
591
592 if (common->rf_reset) {
593 mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
594 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
595 __func__);
596 common->rf_reset = 0;
597 }
598 common->bb_rf_prog_count = 1;
599 mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
600 BBP_REG_WRITE | (RSI_RF_TYPE << 4));
601 skb_put(skb, FRAME_DESC_SZ);
602
603 return rsi_send_internal_mgmt_frame(common, skb);
604}
605
606/**
607 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
608 * @common: Pointer to the driver private structure.
609 * @opmode: Operating mode of device.
610 *
611 * Return: 0 on success, corresponding negative error code on failure.
612 */
613int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
614{
615 struct sk_buff *skb = NULL;
616 struct rsi_vap_caps *vap_caps;
617 u16 vap_id = 0;
618
619 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
620
621 skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
622 if (!skb) {
623 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
624 __func__);
625 return -ENOMEM;
626 }
627
628 memset(skb->data, 0, sizeof(struct rsi_vap_caps));
629 vap_caps = (struct rsi_vap_caps *)skb->data;
630
631 vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
632 FRAME_DESC_SZ) |
633 (RSI_WIFI_MGMT_Q << 12));
634 vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
635 vap_caps->desc_word[4] = cpu_to_le16(mode |
636 (common->channel_width << 8));
637 vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
638 (common->mac_id << 4) |
639 common->radio_id);
640
641 memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
642 vap_caps->keep_alive_period = cpu_to_le16(90);
643 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
644
645 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
646 vap_caps->default_mgmt_rate = 0;
647 if (conf_is_ht40(&common->priv->hw->conf)) {
648 vap_caps->default_ctrl_rate =
649 cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16);
650 } else {
651 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
652 }
653 vap_caps->default_data_rate = 0;
654 vap_caps->beacon_interval = cpu_to_le16(200);
655 vap_caps->dtim_period = cpu_to_le16(4);
656
657 skb_put(skb, sizeof(*vap_caps));
658
659 return rsi_send_internal_mgmt_frame(common, skb);
660}
661
662/**
663 * rsi_hal_load_key() - This function is used to load keys within the firmware.
664 * @common: Pointer to the driver private structure.
665 * @data: Pointer to the key data.
666 * @key_len: Key length to be loaded.
667 * @key_type: Type of key: GROUP/PAIRWISE.
668 * @key_id: Key index.
669 * @cipher: Type of cipher used.
670 *
671 * Return: 0 on success, -1 on failure.
672 */
673int rsi_hal_load_key(struct rsi_common *common,
674 u8 *data,
675 u16 key_len,
676 u8 key_type,
677 u8 key_id,
678 u32 cipher)
679{
680 struct sk_buff *skb = NULL;
681 struct rsi_set_key *set_key;
682 u16 key_descriptor = 0;
683
684 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
685
686 skb = dev_alloc_skb(sizeof(struct rsi_set_key));
687 if (!skb) {
688 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
689 __func__);
690 return -ENOMEM;
691 }
692
693 memset(skb->data, 0, sizeof(struct rsi_set_key));
694 set_key = (struct rsi_set_key *)skb->data;
695
696 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
697 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
698 key_len += 1;
699 key_descriptor |= BIT(2);
700 if (key_len >= 13)
701 key_descriptor |= BIT(3);
702 } else if (cipher != KEY_TYPE_CLEAR) {
703 key_descriptor |= BIT(4);
704 if (key_type == RSI_PAIRWISE_KEY)
705 key_id = 0;
706 if (cipher == WLAN_CIPHER_SUITE_TKIP)
707 key_descriptor |= BIT(5);
708 }
709 key_descriptor |= (key_type | BIT(13) | (key_id << 14));
710
711 set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
712 FRAME_DESC_SZ) |
713 (RSI_WIFI_MGMT_Q << 12));
714 set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
715 set_key->desc_word[4] = cpu_to_le16(key_descriptor);
716
717 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
718 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
719 memcpy(&set_key->key[key_id][1],
720 data,
721 key_len * 2);
722 } else {
723 memcpy(&set_key->key[0][0], data, key_len);
724 }
725
726 memcpy(set_key->tx_mic_key, &data[16], 8);
727 memcpy(set_key->rx_mic_key, &data[24], 8);
728
729 skb_put(skb, sizeof(struct rsi_set_key));
730
731 return rsi_send_internal_mgmt_frame(common, skb);
732}
733
734/*
735 * rsi_load_bootup_params() - This function send bootup params to the firmware.
736 * @common: Pointer to the driver private structure.
737 *
738 * Return: 0 on success, corresponding error code on failure.
739 */
740static u8 rsi_load_bootup_params(struct rsi_common *common)
741{
742 struct sk_buff *skb;
743 struct rsi_boot_params *boot_params;
744
745 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
746 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
747 if (!skb) {
748 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
749 __func__);
750 return -ENOMEM;
751 }
752
753 memset(skb->data, 0, sizeof(struct rsi_boot_params));
754 boot_params = (struct rsi_boot_params *)skb->data;
755
756 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
757
758 if (common->channel_width == BW_40MHZ) {
759 memcpy(&boot_params->bootup_params,
760 &boot_params_40,
761 sizeof(struct bootup_params));
762 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
763 UMAC_CLK_40BW);
764 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
765 } else {
766 memcpy(&boot_params->bootup_params,
767 &boot_params_20,
768 sizeof(struct bootup_params));
769 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
770 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
771 rsi_dbg(MGMT_TX_ZONE,
772 "%s: Packet 20MHZ <=== %d\n", __func__,
773 UMAC_CLK_20BW);
774 } else {
775 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
776 rsi_dbg(MGMT_TX_ZONE,
777 "%s: Packet 20MHZ <=== %d\n", __func__,
778 UMAC_CLK_40MHZ);
779 }
780 }
781
782 /**
783 * Bit{0:11} indicates length of the Packet
784 * Bit{12:15} indicates host queue number
785 */
786 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
787 (RSI_WIFI_MGMT_Q << 12));
788 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
789
790 skb_put(skb, sizeof(struct rsi_boot_params));
791
792 return rsi_send_internal_mgmt_frame(common, skb);
793}
794
795/**
796 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
797 * internal management frame to indicate it to firmware.
798 * @common: Pointer to the driver private structure.
799 *
800 * Return: 0 on success, corresponding error code on failure.
801 */
802static int rsi_send_reset_mac(struct rsi_common *common)
803{
804 struct sk_buff *skb;
805 struct rsi_mac_frame *mgmt_frame;
806
807 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
808
809 skb = dev_alloc_skb(FRAME_DESC_SZ);
810 if (!skb) {
811 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
812 __func__);
813 return -ENOMEM;
814 }
815
816 memset(skb->data, 0, FRAME_DESC_SZ);
817 mgmt_frame = (struct rsi_mac_frame *)skb->data;
818
819 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
820 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
821 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
822
823 skb_put(skb, FRAME_DESC_SZ);
824
825 return rsi_send_internal_mgmt_frame(common, skb);
826}
827
828/**
829 * rsi_set_channel() - This function programs the channel.
830 * @common: Pointer to the driver private structure.
831 * @channel: Channel value to be set.
832 *
833 * Return: 0 on success, corresponding error code on failure.
834 */
835int rsi_set_channel(struct rsi_common *common, u16 channel)
836{
837 struct sk_buff *skb = NULL;
838 struct rsi_mac_frame *mgmt_frame;
839
840 rsi_dbg(MGMT_TX_ZONE,
841 "%s: Sending scan req frame\n", __func__);
842
843 skb = dev_alloc_skb(FRAME_DESC_SZ);
844 if (!skb) {
845 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
846 __func__);
847 return -ENOMEM;
848 }
849
850 memset(skb->data, 0, FRAME_DESC_SZ);
851 mgmt_frame = (struct rsi_mac_frame *)skb->data;
852
853 if (common->band == IEEE80211_BAND_5GHZ) {
854 if ((channel >= 36) && (channel <= 64))
855 channel = ((channel - 32) / 4);
856 else if ((channel > 64) && (channel <= 140))
857 channel = ((channel - 102) / 4) + 8;
858 else if (channel >= 149)
859 channel = ((channel - 151) / 4) + 18;
860 else
861 return -EINVAL;
862 } else {
863 if (channel > 14) {
864 rsi_dbg(ERR_ZONE, "%s: Invalid chno %d, band = %d\n",
865 __func__, channel, common->band);
866 return -EINVAL;
867 }
868 }
869
870 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
871 mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
872 mgmt_frame->desc_word[4] = cpu_to_le16(channel);
873
874 mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
875 BBP_REG_WRITE |
876 (RSI_RF_TYPE << 4));
877
878 mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
879
880 if (common->channel_width == BW_40MHZ)
881 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
882
883 common->channel = channel;
884
885 skb_put(skb, FRAME_DESC_SZ);
886
887 return rsi_send_internal_mgmt_frame(common, skb);
888}
889
890/**
891 * rsi_compare() - This function is used to compare two integers
892 * @a: pointer to the first integer
893 * @b: pointer to the second integer
894 *
895 * Return: 0 if both are equal, -1 if the first is smaller, else 1
896 */
897static int rsi_compare(const void *a, const void *b)
898{
899 u16 _a = *(const u16 *)(a);
900 u16 _b = *(const u16 *)(b);
901
902 if (_a > _b)
903 return -1;
904
905 if (_a < _b)
906 return 1;
907
908 return 0;
909}
910
911/**
912 * rsi_map_rates() - This function is used to map selected rates to hw rates.
913 * @rate: The standard rate to be mapped.
914 * @offset: Offset that will be returned.
915 *
916 * Return: 0 if it is a mcs rate, else 1
917 */
918static bool rsi_map_rates(u16 rate, int *offset)
919{
920 int kk;
921 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
922 if (rate == mcs[kk]) {
923 *offset = kk;
924 return false;
925 }
926 }
927
928 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
929 if (rate == rsi_rates[kk].bitrate / 5) {
930 *offset = kk;
931 break;
932 }
933 }
934 return true;
935}
936
937/**
938 * rsi_send_auto_rate_request() - This function is to set rates for connection
939 * and send autorate request to firmware.
940 * @common: Pointer to the driver private structure.
941 *
942 * Return: 0 on success, corresponding error code on failure.
943 */
944static int rsi_send_auto_rate_request(struct rsi_common *common)
945{
946 struct sk_buff *skb;
947 struct rsi_auto_rate *auto_rate;
948 int ii = 0, jj = 0, kk = 0;
949 struct ieee80211_hw *hw = common->priv->hw;
950 u8 band = hw->conf.chandef.chan->band;
951 u8 num_supported_rates = 0;
952 u8 rate_offset = 0;
953 u32 rate_bitmap = common->bitrate_mask[band];
954
955 u16 *selected_rates, min_rate;
956
957 skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
958 if (!skb) {
959 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
960 __func__);
961 return -ENOMEM;
962 }
963
964 selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
965 if (!selected_rates) {
966 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
967 __func__);
968 return -ENOMEM;
969 }
970
971 memset(skb->data, 0, sizeof(struct rsi_auto_rate));
972 memset(selected_rates, 0, 2 * RSI_TBL_SZ);
973
974 auto_rate = (struct rsi_auto_rate *)skb->data;
975
976 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
977 auto_rate->collision_tolerance = cpu_to_le16(3);
978 auto_rate->failure_limit = cpu_to_le16(3);
979 auto_rate->initial_boundary = cpu_to_le16(3);
980 auto_rate->max_threshold_limt = cpu_to_le16(27);
981
982 auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
983
984 if (common->channel_width == BW_40MHZ)
985 auto_rate->desc_word[7] |= cpu_to_le16(1);
986
987 if (band == IEEE80211_BAND_2GHZ)
988 min_rate = STD_RATE_01;
989 else
990 min_rate = STD_RATE_06;
991
992 for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) {
993 if (rate_bitmap & BIT(ii)) {
994 selected_rates[jj++] = (rsi_rates[ii].bitrate / 5);
995 rate_offset++;
996 }
997 }
998 num_supported_rates = jj;
999
1000 if (common->vif_info[0].is_ht) {
1001 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1002 selected_rates[jj++] = mcs[ii];
1003 num_supported_rates += ARRAY_SIZE(mcs);
1004 rate_offset += ARRAY_SIZE(mcs);
1005 }
1006
1007 if (rate_offset < (RSI_TBL_SZ / 2) - 1) {
1008 for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) {
1009 selected_rates[jj++] = min_rate;
1010 rate_offset++;
1011 }
1012 }
1013
1014 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1015
1016 /* mapping the rates to RSI rates */
1017 for (ii = 0; ii < jj; ii++) {
1018 if (rsi_map_rates(selected_rates[ii], &kk)) {
1019 auto_rate->supported_rates[ii] =
1020 cpu_to_le16(rsi_rates[kk].hw_value);
1021 } else {
1022 auto_rate->supported_rates[ii] =
1023 cpu_to_le16(rsi_mcsrates[kk]);
1024 }
1025 }
1026
1027 /* loading HT rates in the bottom half of the auto rate table */
1028 if (common->vif_info[0].is_ht) {
1029 if (common->vif_info[0].sgi)
1030 auto_rate->supported_rates[rate_offset++] =
1031 cpu_to_le16(RSI_RATE_MCS7_SG);
1032
1033 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1034 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1035 if (common->vif_info[0].sgi)
1036 auto_rate->supported_rates[ii++] =
1037 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1038 auto_rate->supported_rates[ii] =
1039 cpu_to_le16(rsi_mcsrates[kk--]);
1040 }
1041
1042 for (; ii < RSI_TBL_SZ; ii++) {
1043 auto_rate->supported_rates[ii] =
1044 cpu_to_le16(rsi_mcsrates[0]);
1045 }
1046 }
1047
1048 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1049 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1050 auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1051 num_supported_rates *= 2;
1052
1053 auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1054 FRAME_DESC_SZ) |
1055 (RSI_WIFI_MGMT_Q << 12));
1056
1057 skb_put(skb,
1058 sizeof(struct rsi_auto_rate));
1059 kfree(selected_rates);
1060
1061 return rsi_send_internal_mgmt_frame(common, skb);
1062}
1063
1064/**
1065 * rsi_inform_bss_status() - This function informs about bss status with the
1066 * help of sta notify params by sending an internal
1067 * management frame to firmware.
1068 * @common: Pointer to the driver private structure.
1069 * @status: Bss status type.
1070 * @bssid: Bssid.
1071 * @qos_enable: Qos is enabled.
1072 * @aid: Aid (unique for all STAs).
1073 *
1074 * Return: None.
1075 */
1076void rsi_inform_bss_status(struct rsi_common *common,
1077 u8 status,
1078 const unsigned char *bssid,
1079 u8 qos_enable,
1080 u16 aid)
1081{
1082 if (status) {
1083 rsi_hal_send_sta_notify_frame(common,
1084 NL80211_IFTYPE_STATION,
1085 STA_CONNECTED,
1086 bssid,
1087 qos_enable,
1088 aid);
1089 if (common->min_rate == 0xffff)
1090 rsi_send_auto_rate_request(common);
1091 } else {
1092 rsi_hal_send_sta_notify_frame(common,
1093 NL80211_IFTYPE_STATION,
1094 STA_DISCONNECTED,
1095 bssid,
1096 qos_enable,
1097 aid);
1098 }
1099}
1100
1101/**
1102 * rsi_eeprom_read() - This function sends a frame to read the mac address
1103 * from the eeprom.
1104 * @common: Pointer to the driver private structure.
1105 *
1106 * Return: 0 on success, -1 on failure.
1107 */
1108static int rsi_eeprom_read(struct rsi_common *common)
1109{
1110 struct rsi_mac_frame *mgmt_frame;
1111 struct sk_buff *skb;
1112
1113 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1114
1115 skb = dev_alloc_skb(FRAME_DESC_SZ);
1116 if (!skb) {
1117 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1118 __func__);
1119 return -ENOMEM;
1120 }
1121
1122 memset(skb->data, 0, FRAME_DESC_SZ);
1123 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1124
1125 /* FrameType */
1126 mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1127 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1128 /* Number of bytes to read */
1129 mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1130 WLAN_MAC_MAGIC_WORD_LEN +
1131 WLAN_HOST_MODE_LEN +
1132 WLAN_FW_VERSION_LEN);
1133 /* Address to read */
1134 mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1135
1136 skb_put(skb, FRAME_DESC_SZ);
1137
1138 return rsi_send_internal_mgmt_frame(common, skb);
1139}
1140
1141/**
1142 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1143 * @common: Pointer to the driver private structure.
1144 * @msg: Pointer to received packet.
1145 *
1146 * Return: 0 on success, -1 on failure.
1147 */
1148static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1149 u8 *msg)
1150{
1151 u8 sub_type = (msg[15] & 0xff);
1152
1153 switch (sub_type) {
1154 case BOOTUP_PARAMS_REQUEST:
1155 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1156 __func__);
1157 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1158 if (rsi_eeprom_read(common)) {
1159 common->fsm_state = FSM_CARD_NOT_READY;
1160 goto out;
1161 } else {
1162 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1163 }
1164 } else {
1165 rsi_dbg(ERR_ZONE,
1166 "%s: Received bootup params cfm in %d state\n",
1167 __func__, common->fsm_state);
1168 return 0;
1169 }
1170 break;
1171
1172 case EEPROM_READ_TYPE:
1173 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1174 if (msg[16] == MAGIC_WORD) {
1175 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1176 + WLAN_MAC_MAGIC_WORD_LEN);
1177 memcpy(common->mac_addr,
1178 &msg[offset],
1179 ETH_ALEN);
1180 memcpy(&common->fw_ver,
1181 &msg[offset + ETH_ALEN],
1182 sizeof(struct version_info));
1183
1184 } else {
1185 common->fsm_state = FSM_CARD_NOT_READY;
1186 break;
1187 }
1188 if (rsi_send_reset_mac(common))
1189 goto out;
1190 else
1191 common->fsm_state = FSM_RESET_MAC_SENT;
1192 } else {
1193 rsi_dbg(ERR_ZONE,
1194 "%s: Received eeprom mac addr in %d state\n",
1195 __func__, common->fsm_state);
1196 return 0;
1197 }
1198 break;
1199
1200 case RESET_MAC_REQ:
1201 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1202 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1203 __func__);
1204
1205 if (rsi_load_radio_caps(common))
1206 goto out;
1207 else
1208 common->fsm_state = FSM_RADIO_CAPS_SENT;
1209 } else {
1210 rsi_dbg(ERR_ZONE,
1211 "%s: Received reset mac cfm in %d state\n",
1212 __func__, common->fsm_state);
1213 return 0;
1214 }
1215 break;
1216
1217 case RADIO_CAPABILITIES:
1218 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1219 common->rf_reset = 1;
1220 if (rsi_program_bb_rf(common)) {
1221 goto out;
1222 } else {
1223 common->fsm_state = FSM_BB_RF_PROG_SENT;
1224 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1225 __func__);
1226 }
1227 } else {
1228 rsi_dbg(ERR_ZONE,
1229 "%s: Received radio caps cfm in %d state\n",
1230 __func__, common->fsm_state);
1231 return 0;
1232 }
1233 break;
1234
1235 case BB_PROG_VALUES_REQUEST:
1236 case RF_PROG_VALUES_REQUEST:
1237 case BBP_PROG_IN_TA:
1238 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1239 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1240 common->bb_rf_prog_count--;
1241 if (!common->bb_rf_prog_count) {
1242 common->fsm_state = FSM_MAC_INIT_DONE;
1243 return rsi_mac80211_attach(common);
1244 }
1245 } else {
1246 goto out;
1247 }
1248 break;
1249
1250 default:
1251 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1252 __func__);
1253 break;
1254 }
1255 return 0;
1256out:
1257 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1258 __func__);
1259 return -EINVAL;
1260}
1261
1262/**
1263 * rsi_mgmt_pkt_recv() - This function processes the management packets
1264 * recieved from the hardware.
1265 * @common: Pointer to the driver private structure.
1266 * @msg: Pointer to the received packet.
1267 *
1268 * Return: 0 on success, -1 on failure.
1269 */
1270int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1271{
1272 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1273 u16 msg_type = (msg[2]);
1274
1275 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1276 __func__, msg_len, msg_type);
1277
1278 if (msg_type == TA_CONFIRM_TYPE) {
1279 return rsi_handle_ta_confirm_type(common, msg);
1280 } else if (msg_type == CARD_READY_IND) {
1281 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1282 __func__);
1283 if (common->fsm_state == FSM_CARD_NOT_READY) {
1284 rsi_set_default_parameters(common);
1285
1286 if (rsi_load_bootup_params(common))
1287 return -ENOMEM;
1288 else
1289 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1290 } else {
1291 return -EINVAL;
1292 }
1293 } else if (msg_type == TX_STATUS_IND) {
1294 if (msg[15] == PROBEREQ_CONFIRM)
1295 common->mgmt_q_block = false;
1296 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1297 __func__);
1298 } else {
1299 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1300 }
1301 return 0;
1302}
This page took 0.095827 seconds and 5 git commands to generate.