rsi: Add macros for endpoints and set default value of endpoint.
[deliverable/linux.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
CommitLineData
dad0d04f
FF
1/**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include "rsi_mgmt.h"
19#include "rsi_common.h"
20
21static struct bootup_params boot_params_20 = {
22 .magic_number = cpu_to_le16(0x5aa5),
23 .crystal_good_time = 0x0,
24 .valid = cpu_to_le32(VALID_20),
25 .reserved_for_valids = 0x0,
26 .bootup_mode_info = 0x0,
27 .digital_loop_back_params = 0x0,
28 .rtls_timestamp_en = 0x0,
29 .host_spi_intr_cfg = 0x0,
30 .device_clk_info = {{
31 .pll_config_g = {
32 .tapll_info_g = {
33 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 (TA_PLL_M_VAL_20)),
35 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 },
37 .pll960_info_g = {
38 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 (PLL960_N_VAL_20)),
40 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 .pll_reg_3 = 0x0,
42 },
43 .afepll_info_g = {
44 .pll_reg = cpu_to_le16(0x9f0),
45 }
46 },
47 .switch_clk_g = {
48 .switch_clk_info = cpu_to_le16(BIT(3)),
49 .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 .umac_clock_reg_config = 0x0,
51 .qspi_uart_clock_reg_config = 0x0
52 }
53 },
54 {
55 .pll_config_g = {
56 .tapll_info_g = {
57 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 (TA_PLL_M_VAL_20)),
59 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 },
61 .pll960_info_g = {
62 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 (PLL960_N_VAL_20)),
64 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 .pll_reg_3 = 0x0,
66 },
67 .afepll_info_g = {
68 .pll_reg = cpu_to_le16(0x9f0),
69 }
70 },
71 .switch_clk_g = {
72 .switch_clk_info = 0x0,
73 .bbp_lmac_clk_reg_val = 0x0,
74 .umac_clock_reg_config = 0x0,
75 .qspi_uart_clock_reg_config = 0x0
76 }
77 },
78 {
79 .pll_config_g = {
80 .tapll_info_g = {
81 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 (TA_PLL_M_VAL_20)),
83 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 },
85 .pll960_info_g = {
86 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 (PLL960_N_VAL_20)),
88 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 .pll_reg_3 = 0x0,
90 },
91 .afepll_info_g = {
92 .pll_reg = cpu_to_le16(0x9f0),
93 }
94 },
95 .switch_clk_g = {
96 .switch_clk_info = 0x0,
97 .bbp_lmac_clk_reg_val = 0x0,
98 .umac_clock_reg_config = 0x0,
99 .qspi_uart_clock_reg_config = 0x0
100 }
101 } },
102 .buckboost_wakeup_cnt = 0x0,
103 .pmu_wakeup_wait = 0x0,
104 .shutdown_wait_time = 0x0,
105 .pmu_slp_clkout_sel = 0x0,
106 .wdt_prog_value = 0x0,
107 .wdt_soc_rst_delay = 0x0,
108 .dcdc_operation_mode = 0x0,
109 .soc_reset_wait_cnt = 0x0
110};
111
112static struct bootup_params boot_params_40 = {
113 .magic_number = cpu_to_le16(0x5aa5),
114 .crystal_good_time = 0x0,
115 .valid = cpu_to_le32(VALID_40),
116 .reserved_for_valids = 0x0,
117 .bootup_mode_info = 0x0,
118 .digital_loop_back_params = 0x0,
119 .rtls_timestamp_en = 0x0,
120 .host_spi_intr_cfg = 0x0,
121 .device_clk_info = {{
122 .pll_config_g = {
123 .tapll_info_g = {
124 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 (TA_PLL_M_VAL_40)),
126 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 },
128 .pll960_info_g = {
129 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 (PLL960_N_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 .pll_reg_3 = 0x0,
133 },
134 .afepll_info_g = {
135 .pll_reg = cpu_to_le16(0x9f0),
136 }
137 },
138 .switch_clk_g = {
139 .switch_clk_info = cpu_to_le16(0x09),
140 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 .umac_clock_reg_config = cpu_to_le16(0x48),
142 .qspi_uart_clock_reg_config = 0x0
143 }
144 },
145 {
146 .pll_config_g = {
147 .tapll_info_g = {
148 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 (TA_PLL_M_VAL_40)),
150 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 },
152 .pll960_info_g = {
153 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 (PLL960_N_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 .pll_reg_3 = 0x0,
157 },
158 .afepll_info_g = {
159 .pll_reg = cpu_to_le16(0x9f0),
160 }
161 },
162 .switch_clk_g = {
163 .switch_clk_info = 0x0,
164 .bbp_lmac_clk_reg_val = 0x0,
165 .umac_clock_reg_config = 0x0,
166 .qspi_uart_clock_reg_config = 0x0
167 }
168 },
169 {
170 .pll_config_g = {
171 .tapll_info_g = {
172 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 (TA_PLL_M_VAL_40)),
174 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 },
176 .pll960_info_g = {
177 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 (PLL960_N_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 .pll_reg_3 = 0x0,
181 },
182 .afepll_info_g = {
183 .pll_reg = cpu_to_le16(0x9f0),
184 }
185 },
186 .switch_clk_g = {
187 .switch_clk_info = 0x0,
188 .bbp_lmac_clk_reg_val = 0x0,
189 .umac_clock_reg_config = 0x0,
190 .qspi_uart_clock_reg_config = 0x0
191 }
192 } },
193 .buckboost_wakeup_cnt = 0x0,
194 .pmu_wakeup_wait = 0x0,
195 .shutdown_wait_time = 0x0,
196 .pmu_slp_clkout_sel = 0x0,
197 .wdt_prog_value = 0x0,
198 .wdt_soc_rst_delay = 0x0,
199 .dcdc_operation_mode = 0x0,
200 .soc_reset_wait_cnt = 0x0
201};
202
203static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205/**
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
208 *
209 * Return: none
210 */
211static void rsi_set_default_parameters(struct rsi_common *common)
212{
213 common->band = IEEE80211_BAND_2GHZ;
214 common->channel_width = BW_20MHZ;
215 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 common->channel = 1;
217 common->min_rate = 0xffff;
218 common->fsm_state = FSM_CARD_NOT_READY;
219 common->iface_down = true;
f870a340 220 common->endpoint = EP_2GHZ_20MHZ;
dad0d04f
FF
221}
222
223/**
224 * rsi_set_contention_vals() - This function sets the contention values for the
225 * backoff procedure.
226 * @common: Pointer to the driver private structure.
227 *
228 * Return: None.
229 */
230static void rsi_set_contention_vals(struct rsi_common *common)
231{
232 u8 ii = 0;
233
234 for (; ii < NUM_EDCA_QUEUES; ii++) {
235 common->tx_qinfo[ii].wme_params =
236 (((common->edca_params[ii].cw_min / 2) +
237 (common->edca_params[ii].aifs)) *
238 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240 common->tx_qinfo[ii].pkt_contended = 0;
241 }
242}
243
244/**
245 * rsi_send_internal_mgmt_frame() - This function sends management frames to
246 * firmware.Also schedules packet to queue
247 * for transmission.
248 * @common: Pointer to the driver private structure.
249 * @skb: Pointer to the socket buffer structure.
250 *
251 * Return: 0 on success, -1 on failure.
252 */
253static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254 struct sk_buff *skb)
255{
256 struct skb_info *tx_params;
257
258 if (skb == NULL) {
259 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260 return -ENOMEM;
261 }
262 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263 tx_params->flags |= INTERNAL_MGMT_PKT;
264 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265 rsi_set_event(&common->tx_thread.event);
266 return 0;
267}
268
269/**
270 * rsi_load_radio_caps() - This function is used to send radio capabilities
271 * values to firmware.
272 * @common: Pointer to the driver private structure.
273 *
274 * Return: 0 on success, corresponding negative error code on failure.
275 */
276static int rsi_load_radio_caps(struct rsi_common *common)
277{
278 struct rsi_radio_caps *radio_caps;
279 struct rsi_hw *adapter = common->priv;
280 struct ieee80211_hw *hw = adapter->hw;
281 u16 inx = 0;
282 u8 ii;
283 u8 radio_id = 0;
284 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
285 0xf0, 0xf0, 0xf0, 0xf0,
286 0xf0, 0xf0, 0xf0, 0xf0,
287 0xf0, 0xf0, 0xf0, 0xf0,
288 0xf0, 0xf0, 0xf0, 0xf0};
289 struct ieee80211_conf *conf = &hw->conf;
290 struct sk_buff *skb;
291
292 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
293
294 skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
295
296 if (!skb) {
297 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
298 __func__);
299 return -ENOMEM;
300 }
301
302 memset(skb->data, 0, sizeof(struct rsi_radio_caps));
303 radio_caps = (struct rsi_radio_caps *)skb->data;
304
305 radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
306 radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
307
308 if (common->channel_width == BW_40MHZ) {
309 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
310 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
311 if (common->channel_width) {
312 radio_caps->desc_word[5] =
313 cpu_to_le16(common->channel_width << 12);
314 radio_caps->desc_word[5] |= cpu_to_le16(FULL40M_ENABLE);
315 }
316
317 if (conf_is_ht40_minus(conf)) {
318 radio_caps->desc_word[5] = 0;
319 radio_caps->desc_word[5] |=
320 cpu_to_le16(LOWER_20_ENABLE);
321 radio_caps->desc_word[5] |=
322 cpu_to_le16(LOWER_20_ENABLE >> 12);
323 }
324
325 if (conf_is_ht40_plus(conf)) {
326 radio_caps->desc_word[5] = 0;
327 radio_caps->desc_word[5] |=
328 cpu_to_le16(UPPER_20_ENABLE);
329 radio_caps->desc_word[5] |=
330 cpu_to_le16(UPPER_20_ENABLE >> 12);
331 }
332 }
333
334 radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
335
336 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
337 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
338 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
339 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
340 radio_caps->qos_params[ii].txop_q = 0;
341 }
342
343 for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
344 radio_caps->qos_params[ii].cont_win_min_q =
345 cpu_to_le16(common->edca_params[ii].cw_min);
346 radio_caps->qos_params[ii].cont_win_max_q =
347 cpu_to_le16(common->edca_params[ii].cw_max);
348 radio_caps->qos_params[ii].aifsn_val_q =
349 cpu_to_le16((common->edca_params[ii].aifs) << 8);
350 radio_caps->qos_params[ii].txop_q =
351 cpu_to_le16(common->edca_params[ii].txop);
352 }
353
354 memcpy(&common->rate_pwr[0], &gc[0], 40);
355 for (ii = 0; ii < 20; ii++)
356 radio_caps->gcpd_per_rate[inx++] =
357 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
358
359 radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
360 FRAME_DESC_SZ) |
361 (RSI_WIFI_MGMT_Q << 12));
362
363
364 skb_put(skb, (sizeof(struct rsi_radio_caps)));
365
366 return rsi_send_internal_mgmt_frame(common, skb);
367}
368
369/**
370 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
371 * @common: Pointer to the driver private structure.
372 * @msg: Pointer to received packet.
373 * @msg_len: Length of the recieved packet.
374 * @type: Type of recieved packet.
375 *
376 * Return: 0 on success, -1 on failure.
377 */
378static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
379 u8 *msg,
380 s32 msg_len,
381 u8 type)
382{
383 struct rsi_hw *adapter = common->priv;
384 struct ieee80211_tx_info *info;
385 struct skb_info *rx_params;
386 u8 pad_bytes = msg[4];
387 u8 pkt_recv;
388 struct sk_buff *skb;
389 char *buffer;
390
391 if (type == RX_DOT11_MGMT) {
392 if (!adapter->sc_nvifs)
393 return -ENOLINK;
394
395 msg_len -= pad_bytes;
396 if ((msg_len <= 0) || (!msg)) {
5fe1b76a
JP
397 rsi_dbg(MGMT_RX_ZONE,
398 "%s: Invalid rx msg of len = %d\n",
dad0d04f
FF
399 __func__, msg_len);
400 return -EINVAL;
401 }
402
403 skb = dev_alloc_skb(msg_len);
404 if (!skb) {
405 rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
406 __func__);
407 return -ENOMEM;
408 }
409
410 buffer = skb_put(skb, msg_len);
411
412 memcpy(buffer,
413 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
414 msg_len);
415
416 pkt_recv = buffer[0];
417
418 info = IEEE80211_SKB_CB(skb);
419 rx_params = (struct skb_info *)info->driver_data;
420 rx_params->rssi = rsi_get_rssi(msg);
421 rx_params->channel = rsi_get_channel(msg);
422 rsi_indicate_pkt_to_os(common, skb);
423 } else {
424 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
425 }
426
427 return 0;
428}
429
430/**
431 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
432 * frame to firmware.
433 * @common: Pointer to the driver private structure.
434 * @opmode: Operating mode of device.
435 * @notify_event: Notification about station connection.
436 * @bssid: bssid.
437 * @qos_enable: Qos is enabled.
438 * @aid: Aid (unique for all STA).
439 *
440 * Return: status: 0 on success, corresponding negative error code on failure.
441 */
442static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
443 u8 opmode,
444 u8 notify_event,
445 const unsigned char *bssid,
446 u8 qos_enable,
447 u16 aid)
448{
449 struct sk_buff *skb = NULL;
450 struct rsi_peer_notify *peer_notify;
451 u16 vap_id = 0;
452 int status;
453
454 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
455
456 skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
457
458 if (!skb) {
459 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
460 __func__);
461 return -ENOMEM;
462 }
463
464 memset(skb->data, 0, sizeof(struct rsi_peer_notify));
465 peer_notify = (struct rsi_peer_notify *)skb->data;
466
467 peer_notify->command = cpu_to_le16(opmode << 1);
468
469 switch (notify_event) {
470 case STA_CONNECTED:
471 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
472 break;
473 case STA_DISCONNECTED:
474 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
475 break;
476 default:
477 break;
478 }
479
480 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
481 ether_addr_copy(peer_notify->mac_addr, bssid);
482
483 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
484
485 peer_notify->desc_word[0] =
486 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
487 (RSI_WIFI_MGMT_Q << 12));
488 peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
489 peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
490
491 skb_put(skb, sizeof(struct rsi_peer_notify));
492
493 status = rsi_send_internal_mgmt_frame(common, skb);
494
495 if (!status && qos_enable) {
496 rsi_set_contention_vals(common);
497 status = rsi_load_radio_caps(common);
498 }
499 return status;
500}
501
502/**
503 * rsi_send_aggregation_params_frame() - This function sends the ampdu
504 * indication frame to firmware.
505 * @common: Pointer to the driver private structure.
506 * @tid: traffic identifier.
507 * @ssn: ssn.
508 * @buf_size: buffer size.
509 * @event: notification about station connection.
510 *
511 * Return: 0 on success, corresponding negative error code on failure.
512 */
513int rsi_send_aggregation_params_frame(struct rsi_common *common,
514 u16 tid,
515 u16 ssn,
516 u8 buf_size,
517 u8 event)
518{
519 struct sk_buff *skb = NULL;
520 struct rsi_mac_frame *mgmt_frame;
521 u8 peer_id = 0;
522
523 skb = dev_alloc_skb(FRAME_DESC_SZ);
524
525 if (!skb) {
526 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
527 __func__);
528 return -ENOMEM;
529 }
530
531 memset(skb->data, 0, FRAME_DESC_SZ);
532 mgmt_frame = (struct rsi_mac_frame *)skb->data;
533
534 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
535
536 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
537 mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
538
539 if (event == STA_TX_ADDBA_DONE) {
540 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
541 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
542 mgmt_frame->desc_word[7] =
543 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
544 } else if (event == STA_RX_ADDBA_DONE) {
545 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
547 (START_AMPDU_AGGR << 4) |
548 (RX_BA_INDICATION << 5) |
549 (peer_id << 8));
550 } else if (event == STA_TX_DELBA) {
551 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552 (STOP_AMPDU_AGGR << 4) |
553 (peer_id << 8));
554 } else if (event == STA_RX_DELBA) {
555 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
556 (STOP_AMPDU_AGGR << 4) |
557 (RX_BA_INDICATION << 5) |
558 (peer_id << 8));
559 }
560
561 skb_put(skb, FRAME_DESC_SZ);
562
563 return rsi_send_internal_mgmt_frame(common, skb);
564}
565
566/**
567 * rsi_program_bb_rf() - This function starts base band and RF programming.
568 * This is called after initial configurations are done.
569 * @common: Pointer to the driver private structure.
570 *
571 * Return: 0 on success, corresponding negative error code on failure.
572 */
573static int rsi_program_bb_rf(struct rsi_common *common)
574{
575 struct sk_buff *skb;
576 struct rsi_mac_frame *mgmt_frame;
577
578 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
579
580 skb = dev_alloc_skb(FRAME_DESC_SZ);
581 if (!skb) {
582 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
583 __func__);
584 return -ENOMEM;
585 }
586
587 memset(skb->data, 0, FRAME_DESC_SZ);
588 mgmt_frame = (struct rsi_mac_frame *)skb->data;
589
590 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
591 mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
592 mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint << 8);
593
594 if (common->rf_reset) {
595 mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
596 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
597 __func__);
598 common->rf_reset = 0;
599 }
600 common->bb_rf_prog_count = 1;
601 mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
602 BBP_REG_WRITE | (RSI_RF_TYPE << 4));
603 skb_put(skb, FRAME_DESC_SZ);
604
605 return rsi_send_internal_mgmt_frame(common, skb);
606}
607
608/**
609 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
610 * @common: Pointer to the driver private structure.
611 * @opmode: Operating mode of device.
612 *
613 * Return: 0 on success, corresponding negative error code on failure.
614 */
615int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
616{
617 struct sk_buff *skb = NULL;
618 struct rsi_vap_caps *vap_caps;
619 u16 vap_id = 0;
620
621 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
622
623 skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
624 if (!skb) {
625 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
626 __func__);
627 return -ENOMEM;
628 }
629
630 memset(skb->data, 0, sizeof(struct rsi_vap_caps));
631 vap_caps = (struct rsi_vap_caps *)skb->data;
632
633 vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
634 FRAME_DESC_SZ) |
635 (RSI_WIFI_MGMT_Q << 12));
636 vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
637 vap_caps->desc_word[4] = cpu_to_le16(mode |
638 (common->channel_width << 8));
639 vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
640 (common->mac_id << 4) |
641 common->radio_id);
642
643 memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
644 vap_caps->keep_alive_period = cpu_to_le16(90);
645 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
646
647 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
648 vap_caps->default_mgmt_rate = 0;
649 if (conf_is_ht40(&common->priv->hw->conf)) {
650 vap_caps->default_ctrl_rate =
651 cpu_to_le32(RSI_RATE_6 | FULL40M_ENABLE << 16);
652 } else {
653 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
654 }
655 vap_caps->default_data_rate = 0;
656 vap_caps->beacon_interval = cpu_to_le16(200);
657 vap_caps->dtim_period = cpu_to_le16(4);
658
659 skb_put(skb, sizeof(*vap_caps));
660
661 return rsi_send_internal_mgmt_frame(common, skb);
662}
663
664/**
665 * rsi_hal_load_key() - This function is used to load keys within the firmware.
666 * @common: Pointer to the driver private structure.
667 * @data: Pointer to the key data.
668 * @key_len: Key length to be loaded.
669 * @key_type: Type of key: GROUP/PAIRWISE.
670 * @key_id: Key index.
671 * @cipher: Type of cipher used.
672 *
673 * Return: 0 on success, -1 on failure.
674 */
675int rsi_hal_load_key(struct rsi_common *common,
676 u8 *data,
677 u16 key_len,
678 u8 key_type,
679 u8 key_id,
680 u32 cipher)
681{
682 struct sk_buff *skb = NULL;
683 struct rsi_set_key *set_key;
684 u16 key_descriptor = 0;
685
686 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
687
688 skb = dev_alloc_skb(sizeof(struct rsi_set_key));
689 if (!skb) {
690 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
691 __func__);
692 return -ENOMEM;
693 }
694
695 memset(skb->data, 0, sizeof(struct rsi_set_key));
696 set_key = (struct rsi_set_key *)skb->data;
697
698 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
699 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
700 key_len += 1;
701 key_descriptor |= BIT(2);
702 if (key_len >= 13)
703 key_descriptor |= BIT(3);
704 } else if (cipher != KEY_TYPE_CLEAR) {
705 key_descriptor |= BIT(4);
706 if (key_type == RSI_PAIRWISE_KEY)
707 key_id = 0;
708 if (cipher == WLAN_CIPHER_SUITE_TKIP)
709 key_descriptor |= BIT(5);
710 }
711 key_descriptor |= (key_type | BIT(13) | (key_id << 14));
712
713 set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
714 FRAME_DESC_SZ) |
715 (RSI_WIFI_MGMT_Q << 12));
716 set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
717 set_key->desc_word[4] = cpu_to_le16(key_descriptor);
718
719 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
720 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
721 memcpy(&set_key->key[key_id][1],
722 data,
723 key_len * 2);
724 } else {
725 memcpy(&set_key->key[0][0], data, key_len);
726 }
727
728 memcpy(set_key->tx_mic_key, &data[16], 8);
729 memcpy(set_key->rx_mic_key, &data[24], 8);
730
731 skb_put(skb, sizeof(struct rsi_set_key));
732
733 return rsi_send_internal_mgmt_frame(common, skb);
734}
735
736/*
737 * rsi_load_bootup_params() - This function send bootup params to the firmware.
738 * @common: Pointer to the driver private structure.
739 *
740 * Return: 0 on success, corresponding error code on failure.
741 */
bff37af7 742static int rsi_load_bootup_params(struct rsi_common *common)
dad0d04f
FF
743{
744 struct sk_buff *skb;
745 struct rsi_boot_params *boot_params;
746
747 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
748 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
749 if (!skb) {
750 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
751 __func__);
752 return -ENOMEM;
753 }
754
755 memset(skb->data, 0, sizeof(struct rsi_boot_params));
756 boot_params = (struct rsi_boot_params *)skb->data;
757
758 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
759
760 if (common->channel_width == BW_40MHZ) {
761 memcpy(&boot_params->bootup_params,
762 &boot_params_40,
763 sizeof(struct bootup_params));
764 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
765 UMAC_CLK_40BW);
766 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
767 } else {
768 memcpy(&boot_params->bootup_params,
769 &boot_params_20,
770 sizeof(struct bootup_params));
771 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
772 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
773 rsi_dbg(MGMT_TX_ZONE,
774 "%s: Packet 20MHZ <=== %d\n", __func__,
775 UMAC_CLK_20BW);
776 } else {
777 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
778 rsi_dbg(MGMT_TX_ZONE,
779 "%s: Packet 20MHZ <=== %d\n", __func__,
780 UMAC_CLK_40MHZ);
781 }
782 }
783
784 /**
785 * Bit{0:11} indicates length of the Packet
786 * Bit{12:15} indicates host queue number
787 */
788 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
789 (RSI_WIFI_MGMT_Q << 12));
790 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
791
792 skb_put(skb, sizeof(struct rsi_boot_params));
793
794 return rsi_send_internal_mgmt_frame(common, skb);
795}
796
797/**
798 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
799 * internal management frame to indicate it to firmware.
800 * @common: Pointer to the driver private structure.
801 *
802 * Return: 0 on success, corresponding error code on failure.
803 */
804static int rsi_send_reset_mac(struct rsi_common *common)
805{
806 struct sk_buff *skb;
807 struct rsi_mac_frame *mgmt_frame;
808
809 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
810
811 skb = dev_alloc_skb(FRAME_DESC_SZ);
812 if (!skb) {
813 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
814 __func__);
815 return -ENOMEM;
816 }
817
818 memset(skb->data, 0, FRAME_DESC_SZ);
819 mgmt_frame = (struct rsi_mac_frame *)skb->data;
820
821 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
822 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
823 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
824
825 skb_put(skb, FRAME_DESC_SZ);
826
827 return rsi_send_internal_mgmt_frame(common, skb);
828}
829
830/**
831 * rsi_set_channel() - This function programs the channel.
832 * @common: Pointer to the driver private structure.
833 * @channel: Channel value to be set.
834 *
835 * Return: 0 on success, corresponding error code on failure.
836 */
837int rsi_set_channel(struct rsi_common *common, u16 channel)
838{
839 struct sk_buff *skb = NULL;
840 struct rsi_mac_frame *mgmt_frame;
841
842 rsi_dbg(MGMT_TX_ZONE,
843 "%s: Sending scan req frame\n", __func__);
844
dad0d04f
FF
845 if (common->band == IEEE80211_BAND_5GHZ) {
846 if ((channel >= 36) && (channel <= 64))
847 channel = ((channel - 32) / 4);
848 else if ((channel > 64) && (channel <= 140))
849 channel = ((channel - 102) / 4) + 8;
850 else if (channel >= 149)
851 channel = ((channel - 151) / 4) + 18;
852 else
853 return -EINVAL;
854 } else {
855 if (channel > 14) {
856 rsi_dbg(ERR_ZONE, "%s: Invalid chno %d, band = %d\n",
857 __func__, channel, common->band);
858 return -EINVAL;
859 }
860 }
861
98ddcbe0
CE
862 skb = dev_alloc_skb(FRAME_DESC_SZ);
863 if (!skb) {
864 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
865 __func__);
866 return -ENOMEM;
867 }
868
869 memset(skb->data, 0, FRAME_DESC_SZ);
870 mgmt_frame = (struct rsi_mac_frame *)skb->data;
871
dad0d04f
FF
872 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
873 mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
874 mgmt_frame->desc_word[4] = cpu_to_le16(channel);
875
876 mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
877 BBP_REG_WRITE |
878 (RSI_RF_TYPE << 4));
879
880 mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
881
882 if (common->channel_width == BW_40MHZ)
883 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
884
885 common->channel = channel;
886
887 skb_put(skb, FRAME_DESC_SZ);
888
889 return rsi_send_internal_mgmt_frame(common, skb);
890}
891
892/**
893 * rsi_compare() - This function is used to compare two integers
894 * @a: pointer to the first integer
895 * @b: pointer to the second integer
896 *
897 * Return: 0 if both are equal, -1 if the first is smaller, else 1
898 */
899static int rsi_compare(const void *a, const void *b)
900{
901 u16 _a = *(const u16 *)(a);
902 u16 _b = *(const u16 *)(b);
903
904 if (_a > _b)
905 return -1;
906
907 if (_a < _b)
908 return 1;
909
910 return 0;
911}
912
913/**
914 * rsi_map_rates() - This function is used to map selected rates to hw rates.
915 * @rate: The standard rate to be mapped.
916 * @offset: Offset that will be returned.
917 *
918 * Return: 0 if it is a mcs rate, else 1
919 */
920static bool rsi_map_rates(u16 rate, int *offset)
921{
922 int kk;
923 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
924 if (rate == mcs[kk]) {
925 *offset = kk;
926 return false;
927 }
928 }
929
930 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
931 if (rate == rsi_rates[kk].bitrate / 5) {
932 *offset = kk;
933 break;
934 }
935 }
936 return true;
937}
938
939/**
940 * rsi_send_auto_rate_request() - This function is to set rates for connection
941 * and send autorate request to firmware.
942 * @common: Pointer to the driver private structure.
943 *
944 * Return: 0 on success, corresponding error code on failure.
945 */
946static int rsi_send_auto_rate_request(struct rsi_common *common)
947{
948 struct sk_buff *skb;
949 struct rsi_auto_rate *auto_rate;
950 int ii = 0, jj = 0, kk = 0;
951 struct ieee80211_hw *hw = common->priv->hw;
952 u8 band = hw->conf.chandef.chan->band;
953 u8 num_supported_rates = 0;
954 u8 rate_offset = 0;
955 u32 rate_bitmap = common->bitrate_mask[band];
956
957 u16 *selected_rates, min_rate;
958
959 skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
960 if (!skb) {
961 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
962 __func__);
963 return -ENOMEM;
964 }
965
966 selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
967 if (!selected_rates) {
968 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
969 __func__);
61698b7e 970 dev_kfree_skb(skb);
dad0d04f
FF
971 return -ENOMEM;
972 }
973
974 memset(skb->data, 0, sizeof(struct rsi_auto_rate));
975 memset(selected_rates, 0, 2 * RSI_TBL_SZ);
976
977 auto_rate = (struct rsi_auto_rate *)skb->data;
978
979 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
980 auto_rate->collision_tolerance = cpu_to_le16(3);
981 auto_rate->failure_limit = cpu_to_le16(3);
982 auto_rate->initial_boundary = cpu_to_le16(3);
983 auto_rate->max_threshold_limt = cpu_to_le16(27);
984
985 auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
986
987 if (common->channel_width == BW_40MHZ)
988 auto_rate->desc_word[7] |= cpu_to_le16(1);
989
990 if (band == IEEE80211_BAND_2GHZ)
991 min_rate = STD_RATE_01;
992 else
993 min_rate = STD_RATE_06;
994
995 for (ii = 0, jj = 0; ii < ARRAY_SIZE(rsi_rates); ii++) {
996 if (rate_bitmap & BIT(ii)) {
997 selected_rates[jj++] = (rsi_rates[ii].bitrate / 5);
998 rate_offset++;
999 }
1000 }
1001 num_supported_rates = jj;
1002
1003 if (common->vif_info[0].is_ht) {
1004 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1005 selected_rates[jj++] = mcs[ii];
1006 num_supported_rates += ARRAY_SIZE(mcs);
1007 rate_offset += ARRAY_SIZE(mcs);
1008 }
1009
1010 if (rate_offset < (RSI_TBL_SZ / 2) - 1) {
1011 for (ii = jj; ii < (RSI_TBL_SZ / 2); ii++) {
1012 selected_rates[jj++] = min_rate;
1013 rate_offset++;
1014 }
1015 }
1016
1017 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1018
1019 /* mapping the rates to RSI rates */
1020 for (ii = 0; ii < jj; ii++) {
1021 if (rsi_map_rates(selected_rates[ii], &kk)) {
1022 auto_rate->supported_rates[ii] =
1023 cpu_to_le16(rsi_rates[kk].hw_value);
1024 } else {
1025 auto_rate->supported_rates[ii] =
1026 cpu_to_le16(rsi_mcsrates[kk]);
1027 }
1028 }
1029
1030 /* loading HT rates in the bottom half of the auto rate table */
1031 if (common->vif_info[0].is_ht) {
1032 if (common->vif_info[0].sgi)
1033 auto_rate->supported_rates[rate_offset++] =
1034 cpu_to_le16(RSI_RATE_MCS7_SG);
1035
1036 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1037 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1038 if (common->vif_info[0].sgi)
1039 auto_rate->supported_rates[ii++] =
1040 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1041 auto_rate->supported_rates[ii] =
1042 cpu_to_le16(rsi_mcsrates[kk--]);
1043 }
1044
1045 for (; ii < RSI_TBL_SZ; ii++) {
1046 auto_rate->supported_rates[ii] =
1047 cpu_to_le16(rsi_mcsrates[0]);
1048 }
1049 }
1050
1051 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1052 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1053 auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1054 num_supported_rates *= 2;
1055
1056 auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1057 FRAME_DESC_SZ) |
1058 (RSI_WIFI_MGMT_Q << 12));
1059
1060 skb_put(skb,
1061 sizeof(struct rsi_auto_rate));
1062 kfree(selected_rates);
1063
1064 return rsi_send_internal_mgmt_frame(common, skb);
1065}
1066
1067/**
1068 * rsi_inform_bss_status() - This function informs about bss status with the
1069 * help of sta notify params by sending an internal
1070 * management frame to firmware.
1071 * @common: Pointer to the driver private structure.
1072 * @status: Bss status type.
1073 * @bssid: Bssid.
1074 * @qos_enable: Qos is enabled.
1075 * @aid: Aid (unique for all STAs).
1076 *
1077 * Return: None.
1078 */
1079void rsi_inform_bss_status(struct rsi_common *common,
1080 u8 status,
1081 const unsigned char *bssid,
1082 u8 qos_enable,
1083 u16 aid)
1084{
1085 if (status) {
1086 rsi_hal_send_sta_notify_frame(common,
48d11dc3 1087 RSI_IFTYPE_STATION,
dad0d04f
FF
1088 STA_CONNECTED,
1089 bssid,
1090 qos_enable,
1091 aid);
1092 if (common->min_rate == 0xffff)
1093 rsi_send_auto_rate_request(common);
1094 } else {
1095 rsi_hal_send_sta_notify_frame(common,
48d11dc3 1096 RSI_IFTYPE_STATION,
dad0d04f
FF
1097 STA_DISCONNECTED,
1098 bssid,
1099 qos_enable,
1100 aid);
1101 }
1102}
1103
1104/**
1105 * rsi_eeprom_read() - This function sends a frame to read the mac address
1106 * from the eeprom.
1107 * @common: Pointer to the driver private structure.
1108 *
1109 * Return: 0 on success, -1 on failure.
1110 */
1111static int rsi_eeprom_read(struct rsi_common *common)
1112{
1113 struct rsi_mac_frame *mgmt_frame;
1114 struct sk_buff *skb;
1115
1116 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1117
1118 skb = dev_alloc_skb(FRAME_DESC_SZ);
1119 if (!skb) {
1120 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1121 __func__);
1122 return -ENOMEM;
1123 }
1124
1125 memset(skb->data, 0, FRAME_DESC_SZ);
1126 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1127
1128 /* FrameType */
1129 mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1130 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1131 /* Number of bytes to read */
1132 mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1133 WLAN_MAC_MAGIC_WORD_LEN +
1134 WLAN_HOST_MODE_LEN +
1135 WLAN_FW_VERSION_LEN);
1136 /* Address to read */
1137 mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1138
1139 skb_put(skb, FRAME_DESC_SZ);
1140
1141 return rsi_send_internal_mgmt_frame(common, skb);
1142}
1143
1144/**
1145 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1146 * @common: Pointer to the driver private structure.
1147 * @msg: Pointer to received packet.
1148 *
1149 * Return: 0 on success, -1 on failure.
1150 */
1151static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1152 u8 *msg)
1153{
1154 u8 sub_type = (msg[15] & 0xff);
1155
1156 switch (sub_type) {
1157 case BOOTUP_PARAMS_REQUEST:
1158 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1159 __func__);
1160 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1161 if (rsi_eeprom_read(common)) {
1162 common->fsm_state = FSM_CARD_NOT_READY;
1163 goto out;
1164 } else {
1165 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1166 }
1167 } else {
1168 rsi_dbg(ERR_ZONE,
1169 "%s: Received bootup params cfm in %d state\n",
1170 __func__, common->fsm_state);
1171 return 0;
1172 }
1173 break;
1174
1175 case EEPROM_READ_TYPE:
1176 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1177 if (msg[16] == MAGIC_WORD) {
1178 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1179 + WLAN_MAC_MAGIC_WORD_LEN);
1180 memcpy(common->mac_addr,
1181 &msg[offset],
1182 ETH_ALEN);
1183 memcpy(&common->fw_ver,
1184 &msg[offset + ETH_ALEN],
1185 sizeof(struct version_info));
1186
1187 } else {
1188 common->fsm_state = FSM_CARD_NOT_READY;
1189 break;
1190 }
1191 if (rsi_send_reset_mac(common))
1192 goto out;
1193 else
1194 common->fsm_state = FSM_RESET_MAC_SENT;
1195 } else {
1196 rsi_dbg(ERR_ZONE,
1197 "%s: Received eeprom mac addr in %d state\n",
1198 __func__, common->fsm_state);
1199 return 0;
1200 }
1201 break;
1202
1203 case RESET_MAC_REQ:
1204 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1205 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1206 __func__);
1207
1208 if (rsi_load_radio_caps(common))
1209 goto out;
1210 else
1211 common->fsm_state = FSM_RADIO_CAPS_SENT;
1212 } else {
1213 rsi_dbg(ERR_ZONE,
1214 "%s: Received reset mac cfm in %d state\n",
1215 __func__, common->fsm_state);
1216 return 0;
1217 }
1218 break;
1219
1220 case RADIO_CAPABILITIES:
1221 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1222 common->rf_reset = 1;
1223 if (rsi_program_bb_rf(common)) {
1224 goto out;
1225 } else {
1226 common->fsm_state = FSM_BB_RF_PROG_SENT;
1227 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1228 __func__);
1229 }
1230 } else {
1231 rsi_dbg(ERR_ZONE,
1232 "%s: Received radio caps cfm in %d state\n",
1233 __func__, common->fsm_state);
1234 return 0;
1235 }
1236 break;
1237
1238 case BB_PROG_VALUES_REQUEST:
1239 case RF_PROG_VALUES_REQUEST:
1240 case BBP_PROG_IN_TA:
1241 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1242 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1243 common->bb_rf_prog_count--;
1244 if (!common->bb_rf_prog_count) {
1245 common->fsm_state = FSM_MAC_INIT_DONE;
1246 return rsi_mac80211_attach(common);
1247 }
1248 } else {
1249 goto out;
1250 }
1251 break;
1252
1253 default:
1254 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1255 __func__);
1256 break;
1257 }
1258 return 0;
1259out:
1260 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1261 __func__);
1262 return -EINVAL;
1263}
1264
1265/**
1266 * rsi_mgmt_pkt_recv() - This function processes the management packets
1267 * recieved from the hardware.
1268 * @common: Pointer to the driver private structure.
1269 * @msg: Pointer to the received packet.
1270 *
1271 * Return: 0 on success, -1 on failure.
1272 */
1273int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1274{
1275 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1276 u16 msg_type = (msg[2]);
bff37af7 1277 int ret;
dad0d04f
FF
1278
1279 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1280 __func__, msg_len, msg_type);
1281
1282 if (msg_type == TA_CONFIRM_TYPE) {
1283 return rsi_handle_ta_confirm_type(common, msg);
1284 } else if (msg_type == CARD_READY_IND) {
1285 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1286 __func__);
1287 if (common->fsm_state == FSM_CARD_NOT_READY) {
1288 rsi_set_default_parameters(common);
1289
bff37af7
FF
1290 ret = rsi_load_bootup_params(common);
1291 if (ret)
1292 return ret;
dad0d04f
FF
1293 else
1294 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1295 } else {
1296 return -EINVAL;
1297 }
1298 } else if (msg_type == TX_STATUS_IND) {
3f3aa2fb 1299 if (msg[15] == PROBEREQ_CONFIRM) {
dad0d04f
FF
1300 common->mgmt_q_block = false;
1301 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1302 __func__);
3f3aa2fb 1303 }
dad0d04f
FF
1304 } else {
1305 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1306 }
1307 return 0;
1308}
This page took 0.10062 seconds and 5 git commands to generate.