[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
CommitLineData
95ea3627
ID
1/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2400pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2400pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2400pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2400pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2400pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2400pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2400pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2400pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2400pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2400pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2400pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2400pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2400pci_read_csr,
214 .write = rt2400pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2400pci_bbp_read,
226 .write = rt2400pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2400pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2400PCI_RFKILL
240static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
247#endif /* CONFIG_RT2400PCI_RFKILL */
248
249/*
250 * Configuration handlers.
251 */
252static void rt2400pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
253{
254 __le32 reg[2];
255
256 memset(&reg, 0, sizeof(reg));
257 memcpy(&reg, addr, ETH_ALEN);
258
259 /*
260 * The MAC address is passed to us as an array of bytes,
261 * that array is little endian, so no need for byte ordering.
262 */
263 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
264}
265
266static void rt2400pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
267{
268 __le32 reg[2];
269
270 memset(&reg, 0, sizeof(reg));
271 memcpy(&reg, bssid, ETH_ALEN);
272
273 /*
274 * The BSSID is passed to us as an array of bytes,
275 * that array is little endian, so no need for byte ordering.
276 */
277 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
278}
279
280static void rt2400pci_config_packet_filter(struct rt2x00_dev *rt2x00dev,
281 const unsigned int filter)
282{
283 int promisc = !!(filter & IFF_PROMISC);
284 u32 reg;
285
286 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
287 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, !promisc);
288 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289}
290
291static void rt2400pci_config_type(struct rt2x00_dev *rt2x00dev, int type)
292{
293 u32 reg;
294
295 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
296
297 /*
298 * Apply hardware packet filter.
299 */
300 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
301
302 if (!is_monitor_present(&rt2x00dev->interface) &&
303 (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
304 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 1);
305 else
306 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 0);
307
308 /*
309 * If there is a non-monitor interface present
310 * the packet should be strict (even if a monitor interface is present!).
311 * When there is only 1 interface present which is in monitor mode
312 * we should start accepting _all_ frames.
313 */
314 if (is_interface_present(&rt2x00dev->interface)) {
315 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 1);
316 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 1);
317 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 1);
318 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
319 } else if (is_monitor_present(&rt2x00dev->interface)) {
320 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 0);
321 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 0);
322 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 0);
323 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 0);
324 }
325
326 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
327
328 /*
329 * Enable beacon config
330 */
331 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
332 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
333 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
334 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
335
336 /*
337 * Enable synchronisation.
338 */
339 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
340 if (is_interface_present(&rt2x00dev->interface)) {
341 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
342 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
343 }
344
345 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
346 if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
347 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
348 else if (type == IEEE80211_IF_TYPE_STA)
349 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
350 else if (is_monitor_present(&rt2x00dev->interface) &&
351 !is_interface_present(&rt2x00dev->interface))
352 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
353
354 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
355}
356
357static void rt2400pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
358{
359 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
360 u32 reg;
361 u32 preamble;
362 u16 value;
363
364 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
365 preamble = SHORT_PREAMBLE;
366 else
367 preamble = PREAMBLE;
368
369 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
370 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
371
372 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
373 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
374 SHORT_DIFS : DIFS) +
375 PLCP + preamble + get_duration(ACK_SIZE, 10);
376 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
377 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
378 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
379 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
380
381 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
382
383 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
384 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
385 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
386 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
387 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
388
389 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
390 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
391 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
392 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
393 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
394
395 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
396 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
397 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
398 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
399 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
400
401 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
402 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
403 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
404 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
405 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
406}
407
408static void rt2400pci_config_phymode(struct rt2x00_dev *rt2x00dev,
409 const int phymode)
410{
411 struct ieee80211_hw_mode *mode;
412 struct ieee80211_rate *rate;
413
414 rt2x00dev->curr_hwmode = HWMODE_B;
415
416 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
417 rate = &mode->rates[mode->num_rates - 1];
418
419 rt2400pci_config_rate(rt2x00dev, rate->val2);
420}
421
422static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
423 const int index, const int channel)
424{
425 struct rf_channel reg;
426
427 /*
428 * Fill rf_reg structure.
429 */
430 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
431
432 /*
433 * Switch on tuning bits.
434 */
435 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
436 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
437
438 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
439 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
440 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
441
442 /*
443 * RF2420 chipset don't need any additional actions.
444 */
445 if (rt2x00_rf(&rt2x00dev->chip, RF2420))
446 return;
447
448 /*
449 * For the RT2421 chipsets we need to write an invalid
450 * reference clock rate to activate auto_tune.
451 * After that we set the value back to the correct channel.
452 */
453 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
454 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
455 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
456
457 msleep(1);
458
459 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
460 rt2400pci_rf_write(rt2x00dev, 2, reg.rf2);
461 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
462
463 msleep(1);
464
465 /*
466 * Switch off tuning bits.
467 */
468 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
469 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
470
471 rt2400pci_rf_write(rt2x00dev, 1, reg.rf1);
472 rt2400pci_rf_write(rt2x00dev, 3, reg.rf3);
473
474 /*
475 * Clear false CRC during channel switch.
476 */
477 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
478}
479
480static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
481{
482 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
483}
484
485static void rt2400pci_config_antenna(struct rt2x00_dev *rt2x00dev,
486 int antenna_tx, int antenna_rx)
487{
488 u8 r1;
489 u8 r4;
490
491 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
492 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
493
494 /*
495 * Configure the TX antenna.
496 */
497 switch (antenna_tx) {
498 case ANTENNA_SW_DIVERSITY:
499 case ANTENNA_HW_DIVERSITY:
500 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
501 break;
502 case ANTENNA_A:
503 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
504 break;
505 case ANTENNA_B:
506 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
507 break;
508 }
509
510 /*
511 * Configure the RX antenna.
512 */
513 switch (antenna_rx) {
514 case ANTENNA_SW_DIVERSITY:
515 case ANTENNA_HW_DIVERSITY:
516 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
517 break;
518 case ANTENNA_A:
519 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
520 break;
521 case ANTENNA_B:
522 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
523 break;
524 }
525
526 rt2400pci_bbp_write(rt2x00dev, 4, r4);
527 rt2400pci_bbp_write(rt2x00dev, 1, r1);
528}
529
530static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
531 int short_slot_time, int beacon_int)
532{
533 u32 reg;
534
535 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
536 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
537 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
538 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
539
540 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
541 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
542 rt2x00_set_field32(&reg, CSR18_PIFS,
543 short_slot_time ? SHORT_PIFS : PIFS);
544 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
545
546 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
547 rt2x00_set_field32(&reg, CSR19_DIFS,
548 short_slot_time ? SHORT_DIFS : DIFS);
549 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
550 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
551
552 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
553 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
554 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
555 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
556
557 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
558 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
559 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
560 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
561}
562
563static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
564 const unsigned int flags,
565 struct ieee80211_conf *conf)
566{
567 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
568
569 if (flags & CONFIG_UPDATE_PHYMODE)
570 rt2400pci_config_phymode(rt2x00dev, conf->phymode);
571 if (flags & CONFIG_UPDATE_CHANNEL)
572 rt2400pci_config_channel(rt2x00dev, conf->channel_val,
573 conf->channel);
574 if (flags & CONFIG_UPDATE_TXPOWER)
575 rt2400pci_config_txpower(rt2x00dev, conf->power_level);
576 if (flags & CONFIG_UPDATE_ANTENNA)
577 rt2400pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
578 conf->antenna_sel_rx);
579 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
580 rt2400pci_config_duration(rt2x00dev, short_slot_time,
581 conf->beacon_int);
582}
583
584static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
585 struct ieee80211_tx_queue_params *params)
586{
587 u32 reg;
588
589 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
590 rt2x00_set_field32(&reg, CSR11_CWMIN, params->cw_min);
591 rt2x00_set_field32(&reg, CSR11_CWMAX, params->cw_max);
592 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
593}
594
595/*
596 * LED functions.
597 */
598static void rt2400pci_enable_led(struct rt2x00_dev *rt2x00dev)
599{
600 u32 reg;
601
602 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
603
604 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
605 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
606
607 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
608 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
609 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
610 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
611 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
612 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
613 } else {
614 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
615 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
616 }
617
618 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
619}
620
621static void rt2400pci_disable_led(struct rt2x00_dev *rt2x00dev)
622{
623 u32 reg;
624
625 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
626 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
627 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
628 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
629}
630
631/*
632 * Link tuning
633 */
634static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev)
635{
636 u32 reg;
637 u8 bbp;
638
639 /*
640 * Update FCS error count from register.
641 */
642 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
643 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
644
645 /*
646 * Update False CCA count from register.
647 */
648 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
649 rt2x00dev->link.false_cca = bbp;
650}
651
652static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
653{
654 rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
655 rt2x00dev->link.vgc_level = 0x08;
656}
657
658static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
659{
660 u8 reg;
661
662 /*
663 * The link tuner should not run longer then 60 seconds,
664 * and should run once every 2 seconds.
665 */
666 if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
667 return;
668
669 /*
670 * Base r13 link tuning on the false cca count.
671 */
672 rt2400pci_bbp_read(rt2x00dev, 13, &reg);
673
674 if (rt2x00dev->link.false_cca > 512 && reg < 0x20) {
675 rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
676 rt2x00dev->link.vgc_level = reg;
677 } else if (rt2x00dev->link.false_cca < 100 && reg > 0x08) {
678 rt2400pci_bbp_write(rt2x00dev, 13, --reg);
679 rt2x00dev->link.vgc_level = reg;
680 }
681}
682
683/*
684 * Initialization functions.
685 */
686static void rt2400pci_init_rxring(struct rt2x00_dev *rt2x00dev)
687{
688 struct data_ring *ring = rt2x00dev->rx;
689 struct data_desc *rxd;
690 unsigned int i;
691 u32 word;
692
693 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
694
695 for (i = 0; i < ring->stats.limit; i++) {
696 rxd = ring->entry[i].priv;
697
698 rt2x00_desc_read(rxd, 2, &word);
699 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH,
700 ring->data_size);
701 rt2x00_desc_write(rxd, 2, word);
702
703 rt2x00_desc_read(rxd, 1, &word);
704 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
705 ring->entry[i].data_dma);
706 rt2x00_desc_write(rxd, 1, word);
707
708 rt2x00_desc_read(rxd, 0, &word);
709 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
710 rt2x00_desc_write(rxd, 0, word);
711 }
712
713 rt2x00_ring_index_clear(rt2x00dev->rx);
714}
715
716static void rt2400pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
717{
718 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
719 struct data_desc *txd;
720 unsigned int i;
721 u32 word;
722
723 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
724
725 for (i = 0; i < ring->stats.limit; i++) {
726 txd = ring->entry[i].priv;
727
728 rt2x00_desc_read(txd, 1, &word);
729 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
730 ring->entry[i].data_dma);
731 rt2x00_desc_write(txd, 1, word);
732
733 rt2x00_desc_read(txd, 2, &word);
734 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH,
735 ring->data_size);
736 rt2x00_desc_write(txd, 2, word);
737
738 rt2x00_desc_read(txd, 0, &word);
739 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
740 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
741 rt2x00_desc_write(txd, 0, word);
742 }
743
744 rt2x00_ring_index_clear(ring);
745}
746
747static int rt2400pci_init_rings(struct rt2x00_dev *rt2x00dev)
748{
749 u32 reg;
750
751 /*
752 * Initialize rings.
753 */
754 rt2400pci_init_rxring(rt2x00dev);
755 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
756 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
757 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
758 rt2400pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
759
760 /*
761 * Initialize registers.
762 */
763 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
764 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
765 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
766 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
767 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
768 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
769 rt2x00dev->bcn[1].stats.limit);
770 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
771 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
772 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
773
774 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
775 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
776 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
777 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
778
779 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
780 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
781 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
782 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
783
784 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
785 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
786 rt2x00dev->bcn[1].data_dma);
787 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
788
789 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
790 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
791 rt2x00dev->bcn[0].data_dma);
792 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
793
794 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
795 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
796 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
797 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
798
799 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
800 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
801 rt2x00dev->rx->data_dma);
802 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
803
804 return 0;
805}
806
807static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
808{
809 u32 reg;
810
811 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
812 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
813 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
814 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
815
816 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
817 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
818 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
819 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
820 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
821
822 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
823 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
824 (rt2x00dev->rx->data_size / 128));
825 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
826
827 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
828
829 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
830 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
831 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
832 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
833 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
834 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
835
836 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
837 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
838 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
839 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
840 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
841 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
842 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
843 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
844
845 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
846
847 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
848 return -EBUSY;
849
850 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
851 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
852
853 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
854 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
855 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
856
857 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
858 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
859 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
860 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
861 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
862 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
863
864 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
865 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
866 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
867 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
868 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
869
870 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
871 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
872 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
873 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
874
875 /*
876 * We must clear the FCS and FIFO error count.
877 * These registers are cleared on read,
878 * so we may pass a useless variable to store the value.
879 */
880 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
881 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
882
883 return 0;
884}
885
886static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
887{
888 unsigned int i;
889 u16 eeprom;
890 u8 reg_id;
891 u8 value;
892
893 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
894 rt2400pci_bbp_read(rt2x00dev, 0, &value);
895 if ((value != 0xff) && (value != 0x00))
896 goto continue_csr_init;
897 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
898 udelay(REGISTER_BUSY_DELAY);
899 }
900
901 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
902 return -EACCES;
903
904continue_csr_init:
905 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
906 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
907 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
908 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
909 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
910 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
911 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
912 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
913 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
914 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
915 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
916 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
917 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
918 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
919
920 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
921 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
922 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
923
924 if (eeprom != 0xffff && eeprom != 0x0000) {
925 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
926 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
927 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
928 reg_id, value);
929 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
930 }
931 }
932 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
933
934 return 0;
935}
936
937/*
938 * Device state switch handlers.
939 */
940static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
941 enum dev_state state)
942{
943 u32 reg;
944
945 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
946 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
947 state == STATE_RADIO_RX_OFF);
948 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
949}
950
951static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
952 enum dev_state state)
953{
954 int mask = (state == STATE_RADIO_IRQ_OFF);
955 u32 reg;
956
957 /*
958 * When interrupts are being enabled, the interrupt registers
959 * should clear the register to assure a clean state.
960 */
961 if (state == STATE_RADIO_IRQ_ON) {
962 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
963 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
964 }
965
966 /*
967 * Only toggle the interrupts bits we are going to use.
968 * Non-checked interrupt bits are disabled by default.
969 */
970 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
971 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
972 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
973 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
974 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
975 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
976 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
977}
978
979static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
980{
981 /*
982 * Initialize all registers.
983 */
984 if (rt2400pci_init_rings(rt2x00dev) ||
985 rt2400pci_init_registers(rt2x00dev) ||
986 rt2400pci_init_bbp(rt2x00dev)) {
987 ERROR(rt2x00dev, "Register initialization failed.\n");
988 return -EIO;
989 }
990
991 /*
992 * Enable interrupts.
993 */
994 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
995
996 /*
997 * Enable LED
998 */
999 rt2400pci_enable_led(rt2x00dev);
1000
1001 return 0;
1002}
1003
1004static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1005{
1006 u32 reg;
1007
1008 /*
1009 * Disable LED
1010 */
1011 rt2400pci_disable_led(rt2x00dev);
1012
1013 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1014
1015 /*
1016 * Disable synchronisation.
1017 */
1018 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1019
1020 /*
1021 * Cancel RX and TX.
1022 */
1023 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1024 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1025 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1026
1027 /*
1028 * Disable interrupts.
1029 */
1030 rt2400pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1031}
1032
1033static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1034 enum dev_state state)
1035{
1036 u32 reg;
1037 unsigned int i;
1038 char put_to_sleep;
1039 char bbp_state;
1040 char rf_state;
1041
1042 put_to_sleep = (state != STATE_AWAKE);
1043
1044 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1045 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1046 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1047 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1048 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1049 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1050
1051 /*
1052 * Device is not guaranteed to be in the requested state yet.
1053 * We must wait until the register indicates that the
1054 * device has entered the correct state.
1055 */
1056 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1057 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1058 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1059 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1060 if (bbp_state == state && rf_state == state)
1061 return 0;
1062 msleep(10);
1063 }
1064
1065 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1066 "current device state: bbp %d and rf %d.\n",
1067 state, bbp_state, rf_state);
1068
1069 return -EBUSY;
1070}
1071
1072static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1073 enum dev_state state)
1074{
1075 int retval = 0;
1076
1077 switch (state) {
1078 case STATE_RADIO_ON:
1079 retval = rt2400pci_enable_radio(rt2x00dev);
1080 break;
1081 case STATE_RADIO_OFF:
1082 rt2400pci_disable_radio(rt2x00dev);
1083 break;
1084 case STATE_RADIO_RX_ON:
1085 case STATE_RADIO_RX_OFF:
1086 rt2400pci_toggle_rx(rt2x00dev, state);
1087 break;
1088 case STATE_DEEP_SLEEP:
1089 case STATE_SLEEP:
1090 case STATE_STANDBY:
1091 case STATE_AWAKE:
1092 retval = rt2400pci_set_state(rt2x00dev, state);
1093 break;
1094 default:
1095 retval = -ENOTSUPP;
1096 break;
1097 }
1098
1099 return retval;
1100}
1101
1102/*
1103 * TX descriptor initialization
1104 */
1105static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1106 struct data_desc *txd,
1107 struct data_entry_desc *desc,
1108 struct ieee80211_hdr *ieee80211hdr,
1109 unsigned int length,
1110 struct ieee80211_tx_control *control)
1111{
1112 u32 word;
1113 u32 signal = 0;
1114 u32 service = 0;
1115 u32 length_high = 0;
1116 u32 length_low = 0;
1117
1118 /*
1119 * The PLCP values should be treated as if they
1120 * were BBP values.
1121 */
1122 rt2x00_set_field32(&signal, BBPCSR_VALUE, desc->signal);
1123 rt2x00_set_field32(&signal, BBPCSR_REGNUM, 5);
1124 rt2x00_set_field32(&signal, BBPCSR_BUSY, 1);
1125
1126 rt2x00_set_field32(&service, BBPCSR_VALUE, desc->service);
1127 rt2x00_set_field32(&service, BBPCSR_REGNUM, 6);
1128 rt2x00_set_field32(&service, BBPCSR_BUSY, 1);
1129
1130 rt2x00_set_field32(&length_high, BBPCSR_VALUE, desc->length_high);
1131 rt2x00_set_field32(&length_high, BBPCSR_REGNUM, 7);
1132 rt2x00_set_field32(&length_high, BBPCSR_BUSY, 1);
1133
1134 rt2x00_set_field32(&length_low, BBPCSR_VALUE, desc->length_low);
1135 rt2x00_set_field32(&length_low, BBPCSR_REGNUM, 8);
1136 rt2x00_set_field32(&length_low, BBPCSR_BUSY, 1);
1137
1138 /*
1139 * Start writing the descriptor words.
1140 */
1141 rt2x00_desc_read(txd, 2, &word);
1142 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, length);
1143 rt2x00_desc_write(txd, 2, word);
1144
1145 rt2x00_desc_read(txd, 3, &word);
1146 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, signal);
1147 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, service);
1148 rt2x00_desc_write(txd, 3, word);
1149
1150 rt2x00_desc_read(txd, 4, &word);
1151 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, length_low);
1152 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, length_high);
1153 rt2x00_desc_write(txd, 4, word);
1154
1155 rt2x00_desc_read(txd, 0, &word);
1156 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1157 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1158 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1159 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1160 rt2x00_set_field32(&word, TXD_W0_ACK,
1161 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1162 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1163 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1164 rt2x00_set_field32(&word, TXD_W0_RTS,
1165 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1166 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1167 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1168 !!(control->flags &
1169 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1170 rt2x00_desc_write(txd, 0, word);
1171}
1172
1173/*
1174 * TX data initialization
1175 */
1176static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1177 unsigned int queue)
1178{
1179 u32 reg;
1180
1181 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1182 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1183 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1184 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1185 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1186 }
1187 return;
1188 }
1189
1190 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1191 if (queue == IEEE80211_TX_QUEUE_DATA0)
1192 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1193 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1194 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1195 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1196 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1197 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1198}
1199
1200/*
1201 * RX control handlers
1202 */
1203static int rt2400pci_fill_rxdone(struct data_entry *entry,
1204 int *signal, int *rssi, int *ofdm, int *size)
1205{
1206 struct data_desc *rxd = entry->priv;
1207 u32 word0;
1208 u32 word2;
1209
1210 rt2x00_desc_read(rxd, 0, &word0);
1211 rt2x00_desc_read(rxd, 2, &word2);
1212
1213 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR) ||
1214 rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1215 return -EINVAL;
1216
1217 /*
1218 * Obtain the status about this packet.
1219 */
1220 *signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1221 *rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1222 entry->ring->rt2x00dev->rssi_offset;
1223 *ofdm = 0;
1224 *size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1225
1226 return 0;
1227}
1228
1229/*
1230 * Interrupt functions.
1231 */
1232static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1233{
1234 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1235 struct data_entry *entry;
1236 struct data_desc *txd;
1237 u32 word;
1238 int tx_status;
1239 int retry;
1240
1241 while (!rt2x00_ring_empty(ring)) {
1242 entry = rt2x00_get_data_entry_done(ring);
1243 txd = entry->priv;
1244 rt2x00_desc_read(txd, 0, &word);
1245
1246 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1247 !rt2x00_get_field32(word, TXD_W0_VALID))
1248 break;
1249
1250 /*
1251 * Obtain the status about this packet.
1252 */
1253 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1254 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1255
1256 rt2x00lib_txdone(entry, tx_status, retry);
1257
1258 /*
1259 * Make this entry available for reuse.
1260 */
1261 entry->flags = 0;
1262 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1263 rt2x00_desc_write(txd, 0, word);
1264 rt2x00_ring_index_done_inc(ring);
1265 }
1266
1267 /*
1268 * If the data ring was full before the txdone handler
1269 * we must make sure the packet queue in the mac80211 stack
1270 * is reenabled when the txdone handler has finished.
1271 */
1272 entry = ring->entry;
1273 if (!rt2x00_ring_full(ring))
1274 ieee80211_wake_queue(rt2x00dev->hw,
1275 entry->tx_status.control.queue);
1276}
1277
1278static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1279{
1280 struct rt2x00_dev *rt2x00dev = dev_instance;
1281 u32 reg;
1282
1283 /*
1284 * Get the interrupt sources & saved to local variable.
1285 * Write register value back to clear pending interrupts.
1286 */
1287 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1288 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1289
1290 if (!reg)
1291 return IRQ_NONE;
1292
1293 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1294 return IRQ_HANDLED;
1295
1296 /*
1297 * Handle interrupts, walk through all bits
1298 * and run the tasks, the bits are checked in order of
1299 * priority.
1300 */
1301
1302 /*
1303 * 1 - Beacon timer expired interrupt.
1304 */
1305 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1306 rt2x00lib_beacondone(rt2x00dev);
1307
1308 /*
1309 * 2 - Rx ring done interrupt.
1310 */
1311 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1312 rt2x00pci_rxdone(rt2x00dev);
1313
1314 /*
1315 * 3 - Atim ring transmit done interrupt.
1316 */
1317 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1318 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1319
1320 /*
1321 * 4 - Priority ring transmit done interrupt.
1322 */
1323 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1324 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1325
1326 /*
1327 * 5 - Tx ring transmit done interrupt.
1328 */
1329 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1330 rt2400pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1331
1332 return IRQ_HANDLED;
1333}
1334
1335/*
1336 * Device probe functions.
1337 */
1338static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1339{
1340 struct eeprom_93cx6 eeprom;
1341 u32 reg;
1342 u16 word;
1343 u8 *mac;
1344
1345 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1346
1347 eeprom.data = rt2x00dev;
1348 eeprom.register_read = rt2400pci_eepromregister_read;
1349 eeprom.register_write = rt2400pci_eepromregister_write;
1350 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1351 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1352 eeprom.reg_data_in = 0;
1353 eeprom.reg_data_out = 0;
1354 eeprom.reg_data_clock = 0;
1355 eeprom.reg_chip_select = 0;
1356
1357 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1358 EEPROM_SIZE / sizeof(u16));
1359
1360 /*
1361 * Start validation of the data that has been read.
1362 */
1363 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1364 if (!is_valid_ether_addr(mac)) {
0795af57
JP
1365 DECLARE_MAC_BUF(macbuf);
1366
95ea3627 1367 random_ether_addr(mac);
0795af57 1368 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
95ea3627
ID
1369 }
1370
1371 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1372 if (word == 0xffff) {
1373 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1374 return -EINVAL;
1375 }
1376
1377 return 0;
1378}
1379
1380static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1381{
1382 u32 reg;
1383 u16 value;
1384 u16 eeprom;
1385
1386 /*
1387 * Read EEPROM word for configuration.
1388 */
1389 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1390
1391 /*
1392 * Identify RF chipset.
1393 */
1394 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1395 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1396 rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
1397
1398 if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
1399 !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
1400 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1401 return -ENODEV;
1402 }
1403
1404 /*
1405 * Identify default antenna configuration.
1406 */
1407 rt2x00dev->hw->conf.antenna_sel_tx =
1408 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1409 rt2x00dev->hw->conf.antenna_sel_rx =
1410 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1411
1412 /*
1413 * Store led mode, for correct led behaviour.
1414 */
1415 rt2x00dev->led_mode =
1416 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1417
1418 /*
1419 * Detect if this device has an hardware controlled radio.
1420 */
1421 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1422 __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1423
1424 /*
1425 * Check if the BBP tuning should be enabled.
1426 */
1427 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1428 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1429
1430 return 0;
1431}
1432
1433/*
1434 * RF value list for RF2420 & RF2421
1435 * Supports: 2.4 GHz
1436 */
1437static const struct rf_channel rf_vals_bg[] = {
1438 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1439 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1440 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1441 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1442 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1443 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1444 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1445 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1446 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1447 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1448 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1449 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1450 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1451 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1452};
1453
1454static void rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1455{
1456 struct hw_mode_spec *spec = &rt2x00dev->spec;
1457 u8 *txpower;
1458 unsigned int i;
1459
1460 /*
1461 * Initialize all hw fields.
1462 */
1463 rt2x00dev->hw->flags =
1464 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1465 IEEE80211_HW_MONITOR_DURING_OPER |
1466 IEEE80211_HW_NO_PROBE_FILTERING;
1467 rt2x00dev->hw->extra_tx_headroom = 0;
1468 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1469 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1470 rt2x00dev->hw->queues = 2;
1471
1472 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1473 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1474 rt2x00_eeprom_addr(rt2x00dev,
1475 EEPROM_MAC_ADDR_0));
1476
1477 /*
1478 * Convert tx_power array in eeprom.
1479 */
1480 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1481 for (i = 0; i < 14; i++)
1482 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1483
1484 /*
1485 * Initialize hw_mode information.
1486 */
1487 spec->num_modes = 1;
1488 spec->num_rates = 4;
1489 spec->tx_power_a = NULL;
1490 spec->tx_power_bg = txpower;
1491 spec->tx_power_default = DEFAULT_TXPOWER;
1492
1493 spec->num_channels = ARRAY_SIZE(rf_vals_bg);
1494 spec->channels = rf_vals_bg;
1495}
1496
1497static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1498{
1499 int retval;
1500
1501 /*
1502 * Allocate eeprom data.
1503 */
1504 retval = rt2400pci_validate_eeprom(rt2x00dev);
1505 if (retval)
1506 return retval;
1507
1508 retval = rt2400pci_init_eeprom(rt2x00dev);
1509 if (retval)
1510 return retval;
1511
1512 /*
1513 * Initialize hw specifications.
1514 */
1515 rt2400pci_probe_hw_mode(rt2x00dev);
1516
1517 /*
1518 * This device requires the beacon ring
1519 */
1520 __set_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags);
1521
1522 /*
1523 * Set the rssi offset.
1524 */
1525 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1526
1527 return 0;
1528}
1529
1530/*
1531 * IEEE80211 stack callback functions.
1532 */
1533static int rt2400pci_set_retry_limit(struct ieee80211_hw *hw,
1534 u32 short_retry, u32 long_retry)
1535{
1536 struct rt2x00_dev *rt2x00dev = hw->priv;
1537 u32 reg;
1538
1539 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1540 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1541 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1542 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1543
1544 return 0;
1545}
1546
1547static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1548 int queue,
1549 const struct ieee80211_tx_queue_params *params)
1550{
1551 struct rt2x00_dev *rt2x00dev = hw->priv;
1552
1553 /*
1554 * We don't support variating cw_min and cw_max variables
1555 * per queue. So by default we only configure the TX queue,
1556 * and ignore all other configurations.
1557 */
1558 if (queue != IEEE80211_TX_QUEUE_DATA0)
1559 return -EINVAL;
1560
1561 if (rt2x00mac_conf_tx(hw, queue, params))
1562 return -EINVAL;
1563
1564 /*
1565 * Write configuration to register.
1566 */
1567 rt2400pci_config_cw(rt2x00dev, &rt2x00dev->tx->tx_params);
1568
1569 return 0;
1570}
1571
1572static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1573{
1574 struct rt2x00_dev *rt2x00dev = hw->priv;
1575 u64 tsf;
1576 u32 reg;
1577
1578 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1579 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1580 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1581 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1582
1583 return tsf;
1584}
1585
1586static void rt2400pci_reset_tsf(struct ieee80211_hw *hw)
1587{
1588 struct rt2x00_dev *rt2x00dev = hw->priv;
1589
1590 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1591 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1592}
1593
1594static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1595{
1596 struct rt2x00_dev *rt2x00dev = hw->priv;
1597 u32 reg;
1598
1599 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1600 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1601}
1602
1603static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1604 .tx = rt2x00mac_tx,
1605 .add_interface = rt2x00mac_add_interface,
1606 .remove_interface = rt2x00mac_remove_interface,
1607 .config = rt2x00mac_config,
1608 .config_interface = rt2x00mac_config_interface,
1609 .set_multicast_list = rt2x00mac_set_multicast_list,
1610 .get_stats = rt2x00mac_get_stats,
1611 .set_retry_limit = rt2400pci_set_retry_limit,
1612 .conf_tx = rt2400pci_conf_tx,
1613 .get_tx_stats = rt2x00mac_get_tx_stats,
1614 .get_tsf = rt2400pci_get_tsf,
1615 .reset_tsf = rt2400pci_reset_tsf,
1616 .beacon_update = rt2x00pci_beacon_update,
1617 .tx_last_beacon = rt2400pci_tx_last_beacon,
1618};
1619
1620static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1621 .irq_handler = rt2400pci_interrupt,
1622 .probe_hw = rt2400pci_probe_hw,
1623 .initialize = rt2x00pci_initialize,
1624 .uninitialize = rt2x00pci_uninitialize,
1625 .set_device_state = rt2400pci_set_device_state,
1626#ifdef CONFIG_RT2400PCI_RFKILL
1627 .rfkill_poll = rt2400pci_rfkill_poll,
1628#endif /* CONFIG_RT2400PCI_RFKILL */
1629 .link_stats = rt2400pci_link_stats,
1630 .reset_tuner = rt2400pci_reset_tuner,
1631 .link_tuner = rt2400pci_link_tuner,
1632 .write_tx_desc = rt2400pci_write_tx_desc,
1633 .write_tx_data = rt2x00pci_write_tx_data,
1634 .kick_tx_queue = rt2400pci_kick_tx_queue,
1635 .fill_rxdone = rt2400pci_fill_rxdone,
1636 .config_mac_addr = rt2400pci_config_mac_addr,
1637 .config_bssid = rt2400pci_config_bssid,
1638 .config_packet_filter = rt2400pci_config_packet_filter,
1639 .config_type = rt2400pci_config_type,
1640 .config = rt2400pci_config,
1641};
1642
1643static const struct rt2x00_ops rt2400pci_ops = {
1644 .name = DRV_NAME,
1645 .rxd_size = RXD_DESC_SIZE,
1646 .txd_size = TXD_DESC_SIZE,
1647 .eeprom_size = EEPROM_SIZE,
1648 .rf_size = RF_SIZE,
1649 .lib = &rt2400pci_rt2x00_ops,
1650 .hw = &rt2400pci_mac80211_ops,
1651#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1652 .debugfs = &rt2400pci_rt2x00debug,
1653#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1654};
1655
1656/*
1657 * RT2400pci module information.
1658 */
1659static struct pci_device_id rt2400pci_device_table[] = {
1660 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1661 { 0, }
1662};
1663
1664MODULE_AUTHOR(DRV_PROJECT);
1665MODULE_VERSION(DRV_VERSION);
1666MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1667MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1668MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1669MODULE_LICENSE("GPL");
1670
1671static struct pci_driver rt2400pci_driver = {
1672 .name = DRV_NAME,
1673 .id_table = rt2400pci_device_table,
1674 .probe = rt2x00pci_probe,
1675 .remove = __devexit_p(rt2x00pci_remove),
1676 .suspend = rt2x00pci_suspend,
1677 .resume = rt2x00pci_resume,
1678};
1679
1680static int __init rt2400pci_init(void)
1681{
1682 return pci_register_driver(&rt2400pci_driver);
1683}
1684
1685static void __exit rt2400pci_exit(void)
1686{
1687 pci_unregister_driver(&rt2400pci_driver);
1688}
1689
1690module_init(rt2400pci_init);
1691module_exit(rt2400pci_exit);
This page took 0.086729 seconds and 5 git commands to generate.