Merge tag 'omap-fixes-for-v3.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
CommitLineData
95ea3627 1/*
9c9a0d14 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
95ea3627
ID
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/pci.h>
33#include <linux/eeprom_93cx6.h>
5a0e3ad6 34#include <linux/slab.h>
95ea3627
ID
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt2500pci.h"
39
40/*
41 * Register access.
42 * All access to the CSR registers will go through the methods
43 * rt2x00pci_register_read and rt2x00pci_register_write.
44 * BBP and RF register require indirect register access,
45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
46 * These indirect registers work with busy bits,
47 * and we will try maximal REGISTER_BUSY_COUNT times to access
48 * the register while taking a REGISTER_BUSY_DELAY us delay
49 * between each attampt. When the busy bit is still set at that time,
50 * the access attempt is considered to have failed,
51 * and we will print an error.
52 */
c9c3b1a5
ID
53#define WAIT_FOR_BBP(__dev, __reg) \
54 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55#define WAIT_FOR_RF(__dev, __reg) \
56 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
95ea3627 57
0e14f6d3 58static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
59 const unsigned int word, const u8 value)
60{
61 u32 reg;
62
8ff48a8b
ID
63 mutex_lock(&rt2x00dev->csr_mutex);
64
95ea3627 65 /*
c9c3b1a5
ID
66 * Wait until the BBP becomes available, afterwards we
67 * can safely write the new data into the register.
95ea3627 68 */
c9c3b1a5
ID
69 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70 reg = 0;
71 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77 }
8ff48a8b 78
8ff48a8b 79 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
80}
81
0e14f6d3 82static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
83 const unsigned int word, u8 *value)
84{
85 u32 reg;
86
8ff48a8b
ID
87 mutex_lock(&rt2x00dev->csr_mutex);
88
95ea3627 89 /*
c9c3b1a5
ID
90 * Wait until the BBP becomes available, afterwards we
91 * can safely write the read request into the register.
92 * After the data has been written, we wait until hardware
93 * returns the correct value, if at any time the register
94 * doesn't become available in time, reg will be 0xffffffff
95 * which means we return 0xff to the caller.
95ea3627 96 */
c9c3b1a5
ID
97 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98 reg = 0;
99 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
95ea3627 102
c9c3b1a5 103 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
95ea3627 104
c9c3b1a5
ID
105 WAIT_FOR_BBP(rt2x00dev, &reg);
106 }
95ea3627
ID
107
108 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
8ff48a8b
ID
109
110 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
111}
112
0e14f6d3 113static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
114 const unsigned int word, const u32 value)
115{
116 u32 reg;
95ea3627 117
8ff48a8b
ID
118 mutex_lock(&rt2x00dev->csr_mutex);
119
c9c3b1a5
ID
120 /*
121 * Wait until the RF becomes available, afterwards we
122 * can safely write the new data into the register.
123 */
124 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125 reg = 0;
126 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132 rt2x00_rf_write(rt2x00dev, word, value);
95ea3627
ID
133 }
134
8ff48a8b 135 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
136}
137
138static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139{
140 struct rt2x00_dev *rt2x00dev = eeprom->data;
141 u32 reg;
142
143 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147 eeprom->reg_data_clock =
148 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149 eeprom->reg_chip_select =
150 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151}
152
153static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154{
155 struct rt2x00_dev *rt2x00dev = eeprom->data;
156 u32 reg = 0;
157
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161 !!eeprom->reg_data_clock);
162 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163 !!eeprom->reg_chip_select);
164
165 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166}
167
168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
95ea3627
ID
169static const struct rt2x00debug rt2500pci_rt2x00debug = {
170 .owner = THIS_MODULE,
171 .csr = {
743b97ca
ID
172 .read = rt2x00pci_register_read,
173 .write = rt2x00pci_register_write,
174 .flags = RT2X00DEBUGFS_OFFSET,
175 .word_base = CSR_REG_BASE,
95ea3627
ID
176 .word_size = sizeof(u32),
177 .word_count = CSR_REG_SIZE / sizeof(u32),
178 },
179 .eeprom = {
180 .read = rt2x00_eeprom_read,
181 .write = rt2x00_eeprom_write,
743b97ca 182 .word_base = EEPROM_BASE,
95ea3627
ID
183 .word_size = sizeof(u16),
184 .word_count = EEPROM_SIZE / sizeof(u16),
185 },
186 .bbp = {
187 .read = rt2500pci_bbp_read,
188 .write = rt2500pci_bbp_write,
743b97ca 189 .word_base = BBP_BASE,
95ea3627
ID
190 .word_size = sizeof(u8),
191 .word_count = BBP_SIZE / sizeof(u8),
192 },
193 .rf = {
194 .read = rt2x00_rf_read,
195 .write = rt2500pci_rf_write,
743b97ca 196 .word_base = RF_BASE,
95ea3627
ID
197 .word_size = sizeof(u32),
198 .word_count = RF_SIZE / sizeof(u32),
199 },
200};
201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
95ea3627
ID
203static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204{
205 u32 reg;
206
207 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209}
95ea3627 210
771fd565 211#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 212static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
213 enum led_brightness brightness)
214{
215 struct rt2x00_led *led =
216 container_of(led_cdev, struct rt2x00_led, led_dev);
217 unsigned int enabled = brightness != LED_OFF;
a9450b70
ID
218 u32 reg;
219
220 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
a2e1d52a 222 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
a9450b70 223 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
a2e1d52a
ID
224 else if (led->type == LED_TYPE_ACTIVITY)
225 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
a9450b70
ID
226
227 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228}
a2e1d52a
ID
229
230static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231 unsigned long *delay_on,
232 unsigned long *delay_off)
233{
234 struct rt2x00_led *led =
235 container_of(led_cdev, struct rt2x00_led, led_dev);
236 u32 reg;
237
238 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243 return 0;
244}
475433be
ID
245
246static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247 struct rt2x00_led *led,
248 enum led_type type)
249{
250 led->rt2x00dev = rt2x00dev;
251 led->type = type;
252 led->led_dev.brightness_set = rt2500pci_brightness_set;
253 led->led_dev.blink_set = rt2500pci_blink_set;
254 led->flags = LED_INITIALIZED;
255}
771fd565 256#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 257
95ea3627
ID
258/*
259 * Configuration handlers.
260 */
3a643d24
ID
261static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262 const unsigned int filter_flags)
263{
264 u32 reg;
265
266 /*
267 * Start configuration steps.
268 * Note that the version error will always be dropped
269 * and broadcast frames will always be accepted since
270 * there is no filter for it at this time.
271 */
272 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274 !(filter_flags & FIF_FCSFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276 !(filter_flags & FIF_PLCPFAIL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278 !(filter_flags & FIF_CONTROL));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280 !(filter_flags & FIF_PROMISC_IN_BSS));
281 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
e0b005fa
ID
282 !(filter_flags & FIF_PROMISC_IN_BSS) &&
283 !rt2x00dev->intf_ap_count);
3a643d24
ID
284 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286 !(filter_flags & FIF_ALLMULTI));
287 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289}
290
6bb40dd1
ID
291static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292 struct rt2x00_intf *intf,
293 struct rt2x00intf_conf *conf,
294 const unsigned int flags)
95ea3627 295{
a2440830 296 struct data_queue *queue = rt2x00dev->bcn;
6bb40dd1 297 unsigned int bcn_preload;
95ea3627
ID
298 u32 reg;
299
6bb40dd1 300 if (flags & CONFIG_UPDATE_TYPE) {
6bb40dd1
ID
301 /*
302 * Enable beacon config
303 */
bad13639 304 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
6bb40dd1
ID
305 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
95ea3627 309
6bb40dd1
ID
310 /*
311 * Enable synchronisation.
312 */
313 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
6bb40dd1
ID
314 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
316 }
317
318 if (flags & CONFIG_UPDATE_MAC)
319 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
320 conf->mac, sizeof(conf->mac));
321
322 if (flags & CONFIG_UPDATE_BSSID)
323 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
324 conf->bssid, sizeof(conf->bssid));
95ea3627
ID
325}
326
3a643d24 327static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
02044643
HS
328 struct rt2x00lib_erp *erp,
329 u32 changed)
95ea3627 330{
5c58ee51 331 int preamble_mask;
95ea3627 332 u32 reg;
95ea3627 333
5c58ee51
ID
334 /*
335 * When short preamble is enabled, we should set bit 0x08
336 */
02044643
HS
337 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
338 preamble_mask = erp->short_preamble << 3;
339
340 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
351 GET_DURATION(ACK_SIZE, 10));
352 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353
354 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
355 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
356 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
357 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
358 GET_DURATION(ACK_SIZE, 20));
359 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
360
361 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
362 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
363 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
364 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
365 GET_DURATION(ACK_SIZE, 55));
366 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
367
368 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
371 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
372 GET_DURATION(ACK_SIZE, 110));
373 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
374 }
375
376 if (changed & BSS_CHANGED_BASIC_RATES)
377 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378
379 if (changed & BSS_CHANGED_ERP_SLOT) {
380 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
381 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
382 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
383
384 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
385 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
386 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
387 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
388
389 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
390 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
391 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
392 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
393 }
394
395 if (changed & BSS_CHANGED_BEACON_INT) {
396 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
397 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
398 erp->beacon_int * 16);
399 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
400 erp->beacon_int * 16);
401 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
402 }
403
95ea3627
ID
404}
405
e4ea1c40
ID
406static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
407 struct antenna_setup *ant)
95ea3627 408{
e4ea1c40
ID
409 u32 reg;
410 u8 r14;
411 u8 r2;
412
413 /*
414 * We should never come here because rt2x00lib is supposed
415 * to catch this and send us the correct antenna explicitely.
416 */
417 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
418 ant->tx == ANTENNA_SW_DIVERSITY);
419
420 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
421 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
422 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
423
424 /*
425 * Configure the TX antenna.
426 */
427 switch (ant->tx) {
428 case ANTENNA_A:
429 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
430 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
431 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
432 break;
433 case ANTENNA_B:
434 default:
435 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
436 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
437 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
438 break;
439 }
440
441 /*
442 * Configure the RX antenna.
443 */
444 switch (ant->rx) {
445 case ANTENNA_A:
446 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
447 break;
448 case ANTENNA_B:
449 default:
450 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
451 break;
452 }
453
454 /*
455 * RT2525E and RT5222 need to flip TX I/Q
456 */
5122d898 457 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
e4ea1c40
ID
458 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
459 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
460 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
461
462 /*
463 * RT2525E does not need RX I/Q Flip.
464 */
5122d898 465 if (rt2x00_rf(rt2x00dev, RF2525E))
e4ea1c40
ID
466 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
467 } else {
468 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
469 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
470 }
471
472 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
473 rt2500pci_bbp_write(rt2x00dev, 14, r14);
474 rt2500pci_bbp_write(rt2x00dev, 2, r2);
95ea3627
ID
475}
476
477static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
5c58ee51 478 struct rf_channel *rf, const int txpower)
95ea3627 479{
95ea3627
ID
480 u8 r70;
481
95ea3627
ID
482 /*
483 * Set TXpower.
484 */
5c58ee51 485 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
95ea3627
ID
486
487 /*
488 * Switch on tuning bits.
489 * For RT2523 devices we do not need to update the R1 register.
490 */
5122d898 491 if (!rt2x00_rf(rt2x00dev, RF2523))
5c58ee51
ID
492 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
493 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
95ea3627
ID
494
495 /*
496 * For RT2525 we should first set the channel to half band higher.
497 */
5122d898 498 if (rt2x00_rf(rt2x00dev, RF2525)) {
95ea3627
ID
499 static const u32 vals[] = {
500 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
501 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
502 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
503 0x00080d2e, 0x00080d3a
504 };
505
5c58ee51
ID
506 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
507 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
508 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
509 if (rf->rf4)
510 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
511 }
512
5c58ee51
ID
513 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
514 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
515 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
516 if (rf->rf4)
517 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
518
519 /*
520 * Channel 14 requires the Japan filter bit to be set.
521 */
522 r70 = 0x46;
5c58ee51 523 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
95ea3627
ID
524 rt2500pci_bbp_write(rt2x00dev, 70, r70);
525
526 msleep(1);
527
528 /*
529 * Switch off tuning bits.
530 * For RT2523 devices we do not need to update the R1 register.
531 */
5122d898 532 if (!rt2x00_rf(rt2x00dev, RF2523)) {
5c58ee51
ID
533 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
534 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
95ea3627
ID
535 }
536
5c58ee51
ID
537 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
538 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
95ea3627
ID
539
540 /*
541 * Clear false CRC during channel switch.
542 */
5c58ee51 543 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
95ea3627
ID
544}
545
546static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
547 const int txpower)
548{
549 u32 rf3;
550
551 rt2x00_rf_read(rt2x00dev, 3, &rf3);
552 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
553 rt2500pci_rf_write(rt2x00dev, 3, rf3);
554}
555
e4ea1c40
ID
556static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
557 struct rt2x00lib_conf *libconf)
95ea3627
ID
558{
559 u32 reg;
95ea3627 560
e4ea1c40
ID
561 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
562 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
563 libconf->conf->long_frame_max_tx_count);
564 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
565 libconf->conf->short_frame_max_tx_count);
566 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
95ea3627
ID
567}
568
7d7f19cc
ID
569static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
570 struct rt2x00lib_conf *libconf)
571{
572 enum dev_state state =
573 (libconf->conf->flags & IEEE80211_CONF_PS) ?
574 STATE_SLEEP : STATE_AWAKE;
575 u32 reg;
576
577 if (state == STATE_SLEEP) {
578 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
6b347bff 580 (rt2x00dev->beacon_int - 20) * 16);
7d7f19cc
ID
581 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
582 libconf->conf->listen_interval - 1);
583
584 /* We must first disable autowake before it can be enabled */
585 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
586 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
587
588 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
589 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
5731858d
GW
590 } else {
591 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
592 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
593 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
7d7f19cc
ID
594 }
595
596 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
597}
598
95ea3627 599static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
600 struct rt2x00lib_conf *libconf,
601 const unsigned int flags)
95ea3627 602{
e4ea1c40 603 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
604 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605 libconf->conf->power_level);
e4ea1c40
ID
606 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51
ID
608 rt2500pci_config_txpower(rt2x00dev,
609 libconf->conf->power_level);
e4ea1c40
ID
610 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
611 rt2500pci_config_retry_limit(rt2x00dev, libconf);
7d7f19cc
ID
612 if (flags & IEEE80211_CONF_CHANGE_PS)
613 rt2500pci_config_ps(rt2x00dev, libconf);
95ea3627
ID
614}
615
95ea3627
ID
616/*
617 * Link tuning
618 */
ebcf26da
ID
619static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
620 struct link_qual *qual)
95ea3627
ID
621{
622 u32 reg;
623
624 /*
625 * Update FCS error count from register.
626 */
627 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
ebcf26da 628 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
95ea3627
ID
629
630 /*
631 * Update False CCA count from register.
632 */
633 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
ebcf26da 634 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
95ea3627
ID
635}
636
5352ff65
ID
637static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
638 struct link_qual *qual, u8 vgc_level)
eb20b4e8 639{
5352ff65 640 if (qual->vgc_level_reg != vgc_level) {
eb20b4e8 641 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
223dcc26 642 qual->vgc_level = vgc_level;
5352ff65 643 qual->vgc_level_reg = vgc_level;
eb20b4e8
ID
644 }
645}
646
5352ff65
ID
647static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
648 struct link_qual *qual)
95ea3627 649{
5352ff65 650 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
95ea3627
ID
651}
652
5352ff65
ID
653static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
654 struct link_qual *qual, const u32 count)
95ea3627 655{
95ea3627
ID
656 /*
657 * To prevent collisions with MAC ASIC on chipsets
658 * up to version C the link tuning should halt after 20
6bb40dd1 659 * seconds while being associated.
95ea3627 660 */
5122d898 661 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
5352ff65 662 rt2x00dev->intf_associated && count > 20)
95ea3627
ID
663 return;
664
95ea3627
ID
665 /*
666 * Chipset versions C and lower should directly continue
6bb40dd1
ID
667 * to the dynamic CCA tuning. Chipset version D and higher
668 * should go straight to dynamic CCA tuning when they
669 * are not associated.
95ea3627 670 */
5122d898 671 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
6bb40dd1 672 !rt2x00dev->intf_associated)
95ea3627
ID
673 goto dynamic_cca_tune;
674
675 /*
676 * A too low RSSI will cause too much false CCA which will
677 * then corrupt the R17 tuning. To remidy this the tuning should
678 * be stopped (While making sure the R17 value will not exceed limits)
679 */
5352ff65
ID
680 if (qual->rssi < -80 && count > 20) {
681 if (qual->vgc_level_reg >= 0x41)
682 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
95ea3627
ID
683 return;
684 }
685
686 /*
687 * Special big-R17 for short distance
688 */
5352ff65
ID
689 if (qual->rssi >= -58) {
690 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
95ea3627
ID
691 return;
692 }
693
694 /*
695 * Special mid-R17 for middle distance
696 */
5352ff65
ID
697 if (qual->rssi >= -74) {
698 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
95ea3627
ID
699 return;
700 }
701
702 /*
703 * Leave short or middle distance condition, restore r17
704 * to the dynamic tuning range.
705 */
5352ff65
ID
706 if (qual->vgc_level_reg >= 0x41) {
707 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
95ea3627
ID
708 return;
709 }
710
711dynamic_cca_tune:
712
713 /*
714 * R17 is inside the dynamic tuning range,
715 * start tuning the link based on the false cca counter.
716 */
223dcc26 717 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
5352ff65 718 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
223dcc26 719 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
5352ff65 720 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
95ea3627
ID
721}
722
5450b7e2
ID
723/*
724 * Queue handlers.
725 */
726static void rt2500pci_start_queue(struct data_queue *queue)
727{
728 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
729 u32 reg;
730
731 switch (queue->qid) {
732 case QID_RX:
733 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
734 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
735 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
736 break;
737 case QID_BEACON:
738 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
739 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
740 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
741 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
742 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
743 break;
744 default:
745 break;
746 }
747}
748
749static void rt2500pci_kick_queue(struct data_queue *queue)
750{
751 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
752 u32 reg;
753
754 switch (queue->qid) {
f615e9a3 755 case QID_AC_VO:
5450b7e2
ID
756 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
757 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
758 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
759 break;
f615e9a3 760 case QID_AC_VI:
5450b7e2
ID
761 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
762 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
763 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
764 break;
765 case QID_ATIM:
766 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
767 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
768 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
769 break;
770 default:
771 break;
772 }
773}
774
775static void rt2500pci_stop_queue(struct data_queue *queue)
776{
777 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
778 u32 reg;
779
780 switch (queue->qid) {
f615e9a3
ID
781 case QID_AC_VO:
782 case QID_AC_VI:
5450b7e2
ID
783 case QID_ATIM:
784 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
785 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
786 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
787 break;
788 case QID_RX:
789 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
790 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
791 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
792 break;
793 case QID_BEACON:
794 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
795 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
796 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
797 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
798 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
16222a0d
HS
799
800 /*
801 * Wait for possibly running tbtt tasklets.
802 */
abc11994 803 tasklet_kill(&rt2x00dev->tbtt_tasklet);
5450b7e2
ID
804 break;
805 default:
806 break;
807 }
808}
809
95ea3627
ID
810/*
811 * Initialization functions.
812 */
798b7adb 813static bool rt2500pci_get_entry_state(struct queue_entry *entry)
95ea3627 814{
b8be63ff 815 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
816 u32 word;
817
798b7adb
ID
818 if (entry->queue->qid == QID_RX) {
819 rt2x00_desc_read(entry_priv->desc, 0, &word);
820
821 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
822 } else {
823 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627 824
798b7adb
ID
825 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
826 rt2x00_get_field32(word, TXD_W0_VALID));
827 }
95ea3627
ID
828}
829
798b7adb 830static void rt2500pci_clear_entry(struct queue_entry *entry)
95ea3627 831{
b8be63ff 832 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
798b7adb 833 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
834 u32 word;
835
798b7adb
ID
836 if (entry->queue->qid == QID_RX) {
837 rt2x00_desc_read(entry_priv->desc, 1, &word);
838 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
839 rt2x00_desc_write(entry_priv->desc, 1, word);
840
841 rt2x00_desc_read(entry_priv->desc, 0, &word);
842 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
843 rt2x00_desc_write(entry_priv->desc, 0, word);
844 } else {
845 rt2x00_desc_read(entry_priv->desc, 0, &word);
846 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
847 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
848 rt2x00_desc_write(entry_priv->desc, 0, word);
849 }
95ea3627
ID
850}
851
181d6902 852static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 853{
b8be63ff 854 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
855 u32 reg;
856
95ea3627
ID
857 /*
858 * Initialize registers.
859 */
860 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
181d6902
ID
861 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
862 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
e74df4a7 863 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
181d6902 864 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
95ea3627
ID
865 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
866
b8be63ff 867 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 868 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
30b3a23c 869 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
b8be63ff 870 entry_priv->desc_dma);
95ea3627
ID
871 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
872
b8be63ff 873 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 874 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
30b3a23c 875 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
b8be63ff 876 entry_priv->desc_dma);
95ea3627
ID
877 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
878
e74df4a7 879 entry_priv = rt2x00dev->atim->entries[0].priv_data;
95ea3627 880 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
30b3a23c 881 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
b8be63ff 882 entry_priv->desc_dma);
95ea3627
ID
883 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
884
e74df4a7 885 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
95ea3627 886 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
30b3a23c 887 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
b8be63ff 888 entry_priv->desc_dma);
95ea3627
ID
889 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
890
891 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
892 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
181d6902 893 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
95ea3627
ID
894 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
895
b8be63ff 896 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 897 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
b8be63ff
ID
898 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
899 entry_priv->desc_dma);
95ea3627
ID
900 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
901
902 return 0;
903}
904
905static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
906{
907 u32 reg;
908
909 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
910 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
911 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
912 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
913
914 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
915 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
916 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
917 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
918 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
919
920 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
921 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
922 rt2x00dev->rx->data_size / 128);
923 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
924
925 /*
926 * Always use CWmin and CWmax set in descriptor.
927 */
928 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
929 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
930 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
931
1f909162
ID
932 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
933 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
934 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
935 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
936 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
937 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
938 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
939 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
940 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
941 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
942
95ea3627
ID
943 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
944
945 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
946 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
947 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
948 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
949 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
950 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
951 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
952 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
953 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
954 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
955
956 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
957 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
958 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
959 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
960 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
961 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
962
963 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
964 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
965 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
966 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
967 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
968 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
969
970 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
971 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
972 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
973 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
974 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
975 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
976
977 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
978 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
979 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
980 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
981 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
982 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
983 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
984 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
985 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
986 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
987
988 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
989 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
990 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
991 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
992 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
993 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
994 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
995 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
996 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
997
998 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
999
1000 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1001 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1002
1003 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1004 return -EBUSY;
1005
1006 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1007 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1008
1009 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1010 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1011 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1012
1013 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1014 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1015 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1016 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1017 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1018 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1019 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1020 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1021
1022 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1023
1024 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1025
1026 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1027 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1028 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1029 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1030 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1031
1032 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1033 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1034 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1035 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036
1037 /*
1038 * We must clear the FCS and FIFO error count.
1039 * These registers are cleared on read,
1040 * so we may pass a useless variable to store the value.
1041 */
1042 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1043 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1044
1045 return 0;
1046}
1047
2b08da3f 1048static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1049{
1050 unsigned int i;
95ea3627
ID
1051 u8 value;
1052
1053 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1054 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1055 if ((value != 0xff) && (value != 0x00))
2b08da3f 1056 return 0;
95ea3627
ID
1057 udelay(REGISTER_BUSY_DELAY);
1058 }
1059
1060 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1061 return -EACCES;
2b08da3f
ID
1062}
1063
1064static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1065{
1066 unsigned int i;
1067 u16 eeprom;
1068 u8 reg_id;
1069 u8 value;
1070
1071 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1072 return -EACCES;
95ea3627 1073
95ea3627
ID
1074 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1075 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1076 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1077 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1078 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1079 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1080 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1081 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1082 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1083 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1084 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1085 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1086 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1087 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1088 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1089 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1090 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1091 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1092 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1093 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1094 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1095 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1096 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1097 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1098 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1099 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1100 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1101 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1102 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1103 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1104
95ea3627
ID
1105 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1106 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1107
1108 if (eeprom != 0xffff && eeprom != 0x0000) {
1109 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1110 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1111 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1112 }
1113 }
95ea3627
ID
1114
1115 return 0;
1116}
1117
1118/*
1119 * Device state switch handlers.
1120 */
95ea3627
ID
1121static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1122 enum dev_state state)
1123{
b550911a 1124 int mask = (state == STATE_RADIO_IRQ_OFF);
95ea3627 1125 u32 reg;
16222a0d 1126 unsigned long flags;
95ea3627
ID
1127
1128 /*
1129 * When interrupts are being enabled, the interrupt registers
1130 * should clear the register to assure a clean state.
1131 */
1132 if (state == STATE_RADIO_IRQ_ON) {
1133 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1134 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1135 }
1136
1137 /*
1138 * Only toggle the interrupts bits we are going to use.
1139 * Non-checked interrupt bits are disabled by default.
1140 */
16222a0d
HS
1141 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1142
95ea3627
ID
1143 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1144 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1145 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1146 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1147 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1148 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1149 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
16222a0d
HS
1150
1151 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1152
1153 if (state == STATE_RADIO_IRQ_OFF) {
1154 /*
1155 * Ensure that all tasklets are finished.
1156 */
abc11994
HS
1157 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1158 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1159 tasklet_kill(&rt2x00dev->tbtt_tasklet);
16222a0d 1160 }
95ea3627
ID
1161}
1162
1163static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1164{
1165 /*
1166 * Initialize all registers.
1167 */
2b08da3f
ID
1168 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1169 rt2500pci_init_registers(rt2x00dev) ||
1170 rt2500pci_init_bbp(rt2x00dev)))
95ea3627 1171 return -EIO;
95ea3627 1172
95ea3627
ID
1173 return 0;
1174}
1175
1176static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1177{
95ea3627 1178 /*
a2c9b652 1179 * Disable power
95ea3627 1180 */
a2c9b652 1181 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
95ea3627
ID
1182}
1183
1184static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1185 enum dev_state state)
1186{
9655a6ec 1187 u32 reg, reg2;
95ea3627
ID
1188 unsigned int i;
1189 char put_to_sleep;
1190 char bbp_state;
1191 char rf_state;
1192
1193 put_to_sleep = (state != STATE_AWAKE);
1194
1195 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1196 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1197 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1198 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1199 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1200 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1201
1202 /*
1203 * Device is not guaranteed to be in the requested state yet.
1204 * We must wait until the register indicates that the
1205 * device has entered the correct state.
1206 */
1207 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
9655a6ec
GW
1208 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1209 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1210 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
95ea3627
ID
1211 if (bbp_state == state && rf_state == state)
1212 return 0;
9655a6ec 1213 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
95ea3627
ID
1214 msleep(10);
1215 }
1216
95ea3627
ID
1217 return -EBUSY;
1218}
1219
1220static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1221 enum dev_state state)
1222{
1223 int retval = 0;
1224
1225 switch (state) {
1226 case STATE_RADIO_ON:
1227 retval = rt2500pci_enable_radio(rt2x00dev);
1228 break;
1229 case STATE_RADIO_OFF:
1230 rt2500pci_disable_radio(rt2x00dev);
1231 break;
2b08da3f
ID
1232 case STATE_RADIO_IRQ_ON:
1233 case STATE_RADIO_IRQ_OFF:
1234 rt2500pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1235 break;
1236 case STATE_DEEP_SLEEP:
1237 case STATE_SLEEP:
1238 case STATE_STANDBY:
1239 case STATE_AWAKE:
1240 retval = rt2500pci_set_state(rt2x00dev, state);
1241 break;
1242 default:
1243 retval = -ENOTSUPP;
1244 break;
1245 }
1246
2b08da3f
ID
1247 if (unlikely(retval))
1248 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1249 state, retval);
1250
95ea3627
ID
1251 return retval;
1252}
1253
1254/*
1255 * TX descriptor initialization
1256 */
93331458 1257static void rt2500pci_write_tx_desc(struct queue_entry *entry,
61486e0f 1258 struct txentry_desc *txdesc)
95ea3627 1259{
93331458
ID
1260 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1261 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
85b7a8b3 1262 __le32 *txd = entry_priv->desc;
95ea3627
ID
1263 u32 word;
1264
1265 /*
1266 * Start writing the descriptor words.
1267 */
85b7a8b3 1268 rt2x00_desc_read(txd, 1, &word);
c4da0048 1269 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
85b7a8b3 1270 rt2x00_desc_write(txd, 1, word);
4de36fe5 1271
95ea3627
ID
1272 rt2x00_desc_read(txd, 2, &word);
1273 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
2b23cdaa
HS
1274 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1275 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1276 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
95ea3627
ID
1277 rt2x00_desc_write(txd, 2, word);
1278
1279 rt2x00_desc_read(txd, 3, &word);
26a1d07f
HS
1280 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1281 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1282 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1283 txdesc->u.plcp.length_low);
1284 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1285 txdesc->u.plcp.length_high);
95ea3627
ID
1286 rt2x00_desc_write(txd, 3, word);
1287
1288 rt2x00_desc_read(txd, 10, &word);
1289 rt2x00_set_field32(&word, TXD_W10_RTS,
181d6902 1290 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
95ea3627
ID
1291 rt2x00_desc_write(txd, 10, word);
1292
e01f1ec3
GW
1293 /*
1294 * Writing TXD word 0 must the last to prevent a race condition with
1295 * the device, whereby the device may take hold of the TXD before we
1296 * finished updating it.
1297 */
95ea3627
ID
1298 rt2x00_desc_read(txd, 0, &word);
1299 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1300 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1301 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1302 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1303 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1304 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1305 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1306 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1307 rt2x00_set_field32(&word, TXD_W0_OFDM,
076f9582 1308 (txdesc->rate_mode == RATE_MODE_OFDM));
95ea3627 1309 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
2517794b 1310 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
95ea3627 1311 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1312 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
df624ca5 1313 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
95ea3627
ID
1314 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1315 rt2x00_desc_write(txd, 0, word);
85b7a8b3
GW
1316
1317 /*
1318 * Register descriptor details in skb frame descriptor.
1319 */
1320 skbdesc->desc = txd;
1321 skbdesc->desc_len = TXD_DESC_SIZE;
95ea3627
ID
1322}
1323
1324/*
1325 * TX data initialization
1326 */
f224f4ef
GW
1327static void rt2500pci_write_beacon(struct queue_entry *entry,
1328 struct txentry_desc *txdesc)
bd88a781
ID
1329{
1330 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
bd88a781
ID
1331 u32 reg;
1332
1333 /*
1334 * Disable beaconing while we are reloading the beacon data,
1335 * otherwise we might be sending out invalid data.
1336 */
1337 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
bd88a781
ID
1338 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1339 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1340
fa69560f 1341 rt2x00queue_map_txskb(entry);
bd88a781 1342
5c3b685c
GW
1343 /*
1344 * Write the TX descriptor for the beacon.
1345 */
93331458 1346 rt2500pci_write_tx_desc(entry, txdesc);
5c3b685c
GW
1347
1348 /*
1349 * Dump beacon to userspace through debugfs.
1350 */
1351 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
d61cb266
GW
1352
1353 /*
1354 * Enable beaconing again.
1355 */
d61cb266
GW
1356 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1357 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
bd88a781
ID
1358}
1359
95ea3627
ID
1360/*
1361 * RX control handlers
1362 */
181d6902
ID
1363static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1364 struct rxdone_entry_desc *rxdesc)
95ea3627 1365{
b8be63ff 1366 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1367 u32 word0;
1368 u32 word2;
1369
b8be63ff
ID
1370 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1371 rt2x00_desc_read(entry_priv->desc, 2, &word2);
95ea3627 1372
4150c572 1373 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1374 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
4150c572 1375 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
181d6902
ID
1376 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1377
89993890
ID
1378 /*
1379 * Obtain the status about this packet.
1380 * When frame was received with an OFDM bitrate,
1381 * the signal is the PLCP value. If it was received with
1382 * a CCK bitrate the signal is the rate in 100kbit/s.
1383 */
181d6902
ID
1384 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1385 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1386 entry->queue->rt2x00dev->rssi_offset;
181d6902 1387 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 1388
19d30e02
ID
1389 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1390 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
1391 else
1392 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
1393 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1394 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
1395}
1396
1397/*
1398 * Interrupt functions.
1399 */
181d6902 1400static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
e58c6aca 1401 const enum data_queue_qid queue_idx)
95ea3627 1402{
61c6e489 1403 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
b8be63ff 1404 struct queue_entry_priv_pci *entry_priv;
181d6902
ID
1405 struct queue_entry *entry;
1406 struct txdone_entry_desc txdesc;
95ea3627 1407 u32 word;
95ea3627 1408
181d6902
ID
1409 while (!rt2x00queue_empty(queue)) {
1410 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
b8be63ff
ID
1411 entry_priv = entry->priv_data;
1412 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
1413
1414 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1415 !rt2x00_get_field32(word, TXD_W0_VALID))
1416 break;
1417
1418 /*
1419 * Obtain the status about this packet.
1420 */
fb55f4d1
ID
1421 txdesc.flags = 0;
1422 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1423 case 0: /* Success */
1424 case 1: /* Success with retry */
1425 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1426 break;
1427 case 2: /* Failure, excessive retries */
1428 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1429 /* Don't break, this is a failed frame! */
1430 default: /* Failure */
1431 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1432 }
181d6902 1433 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
95ea3627 1434
e513a0b6 1435 rt2x00lib_txdone(entry, &txdesc);
95ea3627 1436 }
95ea3627
ID
1437}
1438
7a5a681a
HS
1439static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1440 struct rt2x00_field32 irq_field)
95ea3627 1441{
16222a0d 1442 u32 reg;
95ea3627
ID
1443
1444 /*
16222a0d
HS
1445 * Enable a single interrupt. The interrupt mask register
1446 * access needs locking.
95ea3627 1447 */
0aa13b2e 1448 spin_lock_irq(&rt2x00dev->irqmask_lock);
95ea3627 1449
16222a0d
HS
1450 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1451 rt2x00_set_field32(&reg, irq_field, 0);
1452 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
95ea3627 1453
0aa13b2e 1454 spin_unlock_irq(&rt2x00dev->irqmask_lock);
16222a0d 1455}
95ea3627 1456
16222a0d
HS
1457static void rt2500pci_txstatus_tasklet(unsigned long data)
1458{
1459 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1460 u32 reg;
95ea3627
ID
1461
1462 /*
16222a0d 1463 * Handle all tx queues.
95ea3627 1464 */
16222a0d
HS
1465 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1466 rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1467 rt2500pci_txdone(rt2x00dev, QID_AC_VI);
95ea3627
ID
1468
1469 /*
16222a0d 1470 * Enable all TXDONE interrupts again.
95ea3627 1471 */
abc11994
HS
1472 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1473 spin_lock_irq(&rt2x00dev->irqmask_lock);
95ea3627 1474
abc11994
HS
1475 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1476 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1477 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1478 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1479 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
78e256c9 1480
abc11994
HS
1481 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1482 }
16222a0d
HS
1483}
1484
1485static void rt2500pci_tbtt_tasklet(unsigned long data)
1486{
1487 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1488 rt2x00lib_beacondone(rt2x00dev);
abc11994
HS
1489 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1490 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
16222a0d
HS
1491}
1492
1493static void rt2500pci_rxdone_tasklet(unsigned long data)
1494{
1495 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
16638937
HS
1496 if (rt2x00pci_rxdone(rt2x00dev))
1497 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
abc11994 1498 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
16638937 1499 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
95ea3627
ID
1500}
1501
78e256c9
HS
1502static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1503{
1504 struct rt2x00_dev *rt2x00dev = dev_instance;
16222a0d 1505 u32 reg, mask;
78e256c9
HS
1506
1507 /*
1508 * Get the interrupt sources & saved to local variable.
1509 * Write register value back to clear pending interrupts.
1510 */
1511 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1512 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1513
1514 if (!reg)
1515 return IRQ_NONE;
1516
1517 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1518 return IRQ_HANDLED;
1519
16222a0d
HS
1520 mask = reg;
1521
1522 /*
1523 * Schedule tasklets for interrupt handling.
1524 */
1525 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1526 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1527
1528 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1529 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1530
1531 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1532 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1533 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1534 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1535 /*
1536 * Mask out all txdone interrupts.
1537 */
1538 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1539 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1540 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1541 }
1542
1543 /*
1544 * Disable all interrupts for which a tasklet was scheduled right now,
1545 * the tasklet will reenable the appropriate interrupts.
1546 */
0aa13b2e 1547 spin_lock(&rt2x00dev->irqmask_lock);
78e256c9 1548
16222a0d
HS
1549 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1550 reg |= mask;
1551 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1552
0aa13b2e 1553 spin_unlock(&rt2x00dev->irqmask_lock);
78e256c9 1554
16222a0d 1555 return IRQ_HANDLED;
78e256c9
HS
1556}
1557
95ea3627
ID
1558/*
1559 * Device probe functions.
1560 */
1561static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1562{
1563 struct eeprom_93cx6 eeprom;
1564 u32 reg;
1565 u16 word;
1566 u8 *mac;
1567
1568 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1569
1570 eeprom.data = rt2x00dev;
1571 eeprom.register_read = rt2500pci_eepromregister_read;
1572 eeprom.register_write = rt2500pci_eepromregister_write;
1573 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1574 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1575 eeprom.reg_data_in = 0;
1576 eeprom.reg_data_out = 0;
1577 eeprom.reg_data_clock = 0;
1578 eeprom.reg_chip_select = 0;
1579
1580 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1581 EEPROM_SIZE / sizeof(u16));
1582
1583 /*
1584 * Start validation of the data that has been read.
1585 */
1586 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1587 if (!is_valid_ether_addr(mac)) {
1588 random_ether_addr(mac);
e174961c 1589 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
1590 }
1591
1592 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1593 if (word == 0xffff) {
1594 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
1595 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1596 ANTENNA_SW_DIVERSITY);
1597 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1598 ANTENNA_SW_DIVERSITY);
1599 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1600 LED_MODE_DEFAULT);
95ea3627
ID
1601 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1602 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1603 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1604 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1605 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1606 }
1607
1608 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1609 if (word == 0xffff) {
1610 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1611 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1612 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1613 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1614 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1615 }
1616
1617 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1618 if (word == 0xffff) {
1619 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1620 DEFAULT_RSSI_OFFSET);
1621 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1622 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1623 }
1624
1625 return 0;
1626}
1627
1628static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1629{
1630 u32 reg;
1631 u16 value;
1632 u16 eeprom;
1633
1634 /*
1635 * Read EEPROM word for configuration.
1636 */
1637 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1638
1639 /*
1640 * Identify RF chipset.
1641 */
1642 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
49e721ec
GW
1644 rt2x00_set_chip(rt2x00dev, RT2560, value,
1645 rt2x00_get_field32(reg, CSR0_REVISION));
95ea3627 1646
5122d898
GW
1647 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648 !rt2x00_rf(rt2x00dev, RF2523) &&
1649 !rt2x00_rf(rt2x00dev, RF2524) &&
1650 !rt2x00_rf(rt2x00dev, RF2525) &&
1651 !rt2x00_rf(rt2x00dev, RF2525E) &&
1652 !rt2x00_rf(rt2x00dev, RF5222)) {
95ea3627
ID
1653 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1654 return -ENODEV;
1655 }
1656
1657 /*
1658 * Identify default antenna configuration.
1659 */
addc81bd 1660 rt2x00dev->default_ant.tx =
95ea3627 1661 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 1662 rt2x00dev->default_ant.rx =
95ea3627
ID
1663 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1664
1665 /*
1666 * Store led mode, for correct led behaviour.
1667 */
771fd565 1668#ifdef CONFIG_RT2X00_LIB_LEDS
a9450b70
ID
1669 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1670
475433be 1671 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
3d3e451f
ID
1672 if (value == LED_MODE_TXRX_ACTIVITY ||
1673 value == LED_MODE_DEFAULT ||
1674 value == LED_MODE_ASUS)
475433be
ID
1675 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1676 LED_TYPE_ACTIVITY);
771fd565 1677#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
1678
1679 /*
1680 * Detect if this device has an hardware controlled radio.
1681 */
1682 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
7dab73b3 1683 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
95ea3627
ID
1684
1685 /*
1686 * Check if the BBP tuning should be enabled.
1687 */
1688 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
27df2a9c 1689 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
7dab73b3 1690 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
95ea3627
ID
1691
1692 /*
1693 * Read the RSSI <-> dBm offset information.
1694 */
1695 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1696 rt2x00dev->rssi_offset =
1697 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1698
1699 return 0;
1700}
1701
1702/*
1703 * RF value list for RF2522
1704 * Supports: 2.4 GHz
1705 */
1706static const struct rf_channel rf_vals_bg_2522[] = {
1707 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1708 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1709 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1710 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1711 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1712 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1713 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1714 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1715 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1716 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1717 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1718 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1719 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1720 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1721};
1722
1723/*
1724 * RF value list for RF2523
1725 * Supports: 2.4 GHz
1726 */
1727static const struct rf_channel rf_vals_bg_2523[] = {
1728 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1729 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1730 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1731 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1732 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1733 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1734 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1735 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1736 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1737 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1738 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1739 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1740 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1741 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1742};
1743
1744/*
1745 * RF value list for RF2524
1746 * Supports: 2.4 GHz
1747 */
1748static const struct rf_channel rf_vals_bg_2524[] = {
1749 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1750 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1751 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1752 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1753 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1754 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1755 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1756 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1757 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1758 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1759 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1760 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1761 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1762 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1763};
1764
1765/*
1766 * RF value list for RF2525
1767 * Supports: 2.4 GHz
1768 */
1769static const struct rf_channel rf_vals_bg_2525[] = {
1770 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1771 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1772 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1773 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1774 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1775 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1776 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1777 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1778 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1779 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1780 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1781 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1782 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1783 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1784};
1785
1786/*
1787 * RF value list for RF2525e
1788 * Supports: 2.4 GHz
1789 */
1790static const struct rf_channel rf_vals_bg_2525e[] = {
1791 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1792 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1793 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1794 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1795 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1796 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1797 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1798 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1799 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1800 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1801 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1802 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1803 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1804 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1805};
1806
1807/*
1808 * RF value list for RF5222
1809 * Supports: 2.4 GHz & 5.2 GHz
1810 */
1811static const struct rf_channel rf_vals_5222[] = {
1812 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1813 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1814 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1815 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1816 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1817 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1818 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1819 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1820 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1821 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1822 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1823 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1824 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1825 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1826
1827 /* 802.11 UNI / HyperLan 2 */
1828 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1829 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1830 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1831 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1832 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1833 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1834 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1835 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1836
1837 /* 802.11 HyperLan 2 */
1838 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1839 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1840 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1841 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1842 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1843 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1844 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1845 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1846 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1847 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1848
1849 /* 802.11 UNII */
1850 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1851 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1852 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1853 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1854 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1855};
1856
8c5e7a5f 1857static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1858{
1859 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
1860 struct channel_info *info;
1861 char *tx_power;
95ea3627
ID
1862 unsigned int i;
1863
1864 /*
1865 * Initialize all hw fields.
1866 */
566bfe5a 1867 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
4be8c387
JB
1868 IEEE80211_HW_SIGNAL_DBM |
1869 IEEE80211_HW_SUPPORTS_PS |
1870 IEEE80211_HW_PS_NULLFUNC_STACK;
566bfe5a 1871
14a3bf89 1872 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
1873 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1874 rt2x00_eeprom_addr(rt2x00dev,
1875 EEPROM_MAC_ADDR_0));
1876
95ea3627
ID
1877 /*
1878 * Initialize hw_mode information.
1879 */
31562e80
ID
1880 spec->supported_bands = SUPPORT_BAND_2GHZ;
1881 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627 1882
5122d898 1883 if (rt2x00_rf(rt2x00dev, RF2522)) {
95ea3627
ID
1884 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1885 spec->channels = rf_vals_bg_2522;
5122d898 1886 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
95ea3627
ID
1887 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1888 spec->channels = rf_vals_bg_2523;
5122d898 1889 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
95ea3627
ID
1890 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1891 spec->channels = rf_vals_bg_2524;
5122d898 1892 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
95ea3627
ID
1893 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1894 spec->channels = rf_vals_bg_2525;
5122d898 1895 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
95ea3627
ID
1896 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1897 spec->channels = rf_vals_bg_2525e;
5122d898 1898 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
31562e80 1899 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627
ID
1900 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1901 spec->channels = rf_vals_5222;
95ea3627 1902 }
8c5e7a5f
ID
1903
1904 /*
1905 * Create channel information array
1906 */
baeb2ffa 1907 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
8c5e7a5f
ID
1908 if (!info)
1909 return -ENOMEM;
1910
1911 spec->channels_info = info;
1912
1913 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
8d1331b3
ID
1914 for (i = 0; i < 14; i++) {
1915 info[i].max_power = MAX_TXPOWER;
1916 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1917 }
8c5e7a5f
ID
1918
1919 if (spec->num_channels > 14) {
8d1331b3
ID
1920 for (i = 14; i < spec->num_channels; i++) {
1921 info[i].max_power = MAX_TXPOWER;
1922 info[i].default_power1 = DEFAULT_TXPOWER;
1923 }
8c5e7a5f
ID
1924 }
1925
1926 return 0;
95ea3627
ID
1927}
1928
1929static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1930{
1931 int retval;
1932
1933 /*
1934 * Allocate eeprom data.
1935 */
1936 retval = rt2500pci_validate_eeprom(rt2x00dev);
1937 if (retval)
1938 return retval;
1939
1940 retval = rt2500pci_init_eeprom(rt2x00dev);
1941 if (retval)
1942 return retval;
1943
1944 /*
1945 * Initialize hw specifications.
1946 */
8c5e7a5f
ID
1947 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1948 if (retval)
1949 return retval;
95ea3627
ID
1950
1951 /*
c4da0048 1952 * This device requires the atim queue and DMA-mapped skbs.
95ea3627 1953 */
7dab73b3
ID
1954 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1955 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1956 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
95ea3627
ID
1957
1958 /*
1959 * Set the rssi offset.
1960 */
1961 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1962
1963 return 0;
1964}
1965
1966/*
1967 * IEEE80211 stack callback functions.
1968 */
37a41b4a
EP
1969static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1970 struct ieee80211_vif *vif)
95ea3627
ID
1971{
1972 struct rt2x00_dev *rt2x00dev = hw->priv;
1973 u64 tsf;
1974 u32 reg;
1975
1976 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1977 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1978 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1979 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1980
1981 return tsf;
1982}
1983
95ea3627
ID
1984static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1985{
1986 struct rt2x00_dev *rt2x00dev = hw->priv;
1987 u32 reg;
1988
1989 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1990 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1991}
1992
1993static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1994 .tx = rt2x00mac_tx,
4150c572
JB
1995 .start = rt2x00mac_start,
1996 .stop = rt2x00mac_stop,
95ea3627
ID
1997 .add_interface = rt2x00mac_add_interface,
1998 .remove_interface = rt2x00mac_remove_interface,
1999 .config = rt2x00mac_config,
3a643d24 2000 .configure_filter = rt2x00mac_configure_filter,
d8147f9d
ID
2001 .sw_scan_start = rt2x00mac_sw_scan_start,
2002 .sw_scan_complete = rt2x00mac_sw_scan_complete,
95ea3627 2003 .get_stats = rt2x00mac_get_stats,
471b3efd 2004 .bss_info_changed = rt2x00mac_bss_info_changed,
95ea3627 2005 .conf_tx = rt2x00mac_conf_tx,
95ea3627 2006 .get_tsf = rt2500pci_get_tsf,
95ea3627 2007 .tx_last_beacon = rt2500pci_tx_last_beacon,
e47a5cdd 2008 .rfkill_poll = rt2x00mac_rfkill_poll,
f44df18c 2009 .flush = rt2x00mac_flush,
0ed7b3c0
ID
2010 .set_antenna = rt2x00mac_set_antenna,
2011 .get_antenna = rt2x00mac_get_antenna,
e7dee444 2012 .get_ringparam = rt2x00mac_get_ringparam,
5f0dd296 2013 .tx_frames_pending = rt2x00mac_tx_frames_pending,
95ea3627
ID
2014};
2015
2016static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2017 .irq_handler = rt2500pci_interrupt,
16222a0d
HS
2018 .txstatus_tasklet = rt2500pci_txstatus_tasklet,
2019 .tbtt_tasklet = rt2500pci_tbtt_tasklet,
2020 .rxdone_tasklet = rt2500pci_rxdone_tasklet,
95ea3627
ID
2021 .probe_hw = rt2500pci_probe_hw,
2022 .initialize = rt2x00pci_initialize,
2023 .uninitialize = rt2x00pci_uninitialize,
798b7adb
ID
2024 .get_entry_state = rt2500pci_get_entry_state,
2025 .clear_entry = rt2500pci_clear_entry,
95ea3627 2026 .set_device_state = rt2500pci_set_device_state,
95ea3627 2027 .rfkill_poll = rt2500pci_rfkill_poll,
95ea3627
ID
2028 .link_stats = rt2500pci_link_stats,
2029 .reset_tuner = rt2500pci_reset_tuner,
2030 .link_tuner = rt2500pci_link_tuner,
dbba306f
ID
2031 .start_queue = rt2500pci_start_queue,
2032 .kick_queue = rt2500pci_kick_queue,
2033 .stop_queue = rt2500pci_stop_queue,
152a5992 2034 .flush_queue = rt2x00pci_flush_queue,
95ea3627 2035 .write_tx_desc = rt2500pci_write_tx_desc,
bd88a781 2036 .write_beacon = rt2500pci_write_beacon,
95ea3627 2037 .fill_rxdone = rt2500pci_fill_rxdone,
3a643d24 2038 .config_filter = rt2500pci_config_filter,
6bb40dd1 2039 .config_intf = rt2500pci_config_intf,
72810379 2040 .config_erp = rt2500pci_config_erp,
e4ea1c40 2041 .config_ant = rt2500pci_config_ant,
95ea3627
ID
2042 .config = rt2500pci_config,
2043};
2044
181d6902 2045static const struct data_queue_desc rt2500pci_queue_rx = {
efd2f271 2046 .entry_num = 32,
181d6902
ID
2047 .data_size = DATA_FRAME_SIZE,
2048 .desc_size = RXD_DESC_SIZE,
b8be63ff 2049 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2050};
2051
2052static const struct data_queue_desc rt2500pci_queue_tx = {
efd2f271 2053 .entry_num = 32,
181d6902
ID
2054 .data_size = DATA_FRAME_SIZE,
2055 .desc_size = TXD_DESC_SIZE,
b8be63ff 2056 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2057};
2058
2059static const struct data_queue_desc rt2500pci_queue_bcn = {
efd2f271 2060 .entry_num = 1,
181d6902
ID
2061 .data_size = MGMT_FRAME_SIZE,
2062 .desc_size = TXD_DESC_SIZE,
b8be63ff 2063 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2064};
2065
2066static const struct data_queue_desc rt2500pci_queue_atim = {
efd2f271 2067 .entry_num = 8,
181d6902
ID
2068 .data_size = DATA_FRAME_SIZE,
2069 .desc_size = TXD_DESC_SIZE,
b8be63ff 2070 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2071};
2072
95ea3627 2073static const struct rt2x00_ops rt2500pci_ops = {
04d0362e
GW
2074 .name = KBUILD_MODNAME,
2075 .max_sta_intf = 1,
2076 .max_ap_intf = 1,
2077 .eeprom_size = EEPROM_SIZE,
2078 .rf_size = RF_SIZE,
2079 .tx_queues = NUM_TX_QUEUES,
e6218cc4 2080 .extra_tx_headroom = 0,
04d0362e
GW
2081 .rx = &rt2500pci_queue_rx,
2082 .tx = &rt2500pci_queue_tx,
2083 .bcn = &rt2500pci_queue_bcn,
2084 .atim = &rt2500pci_queue_atim,
2085 .lib = &rt2500pci_rt2x00_ops,
2086 .hw = &rt2500pci_mac80211_ops,
95ea3627 2087#ifdef CONFIG_RT2X00_LIB_DEBUGFS
04d0362e 2088 .debugfs = &rt2500pci_rt2x00debug,
95ea3627
ID
2089#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2090};
2091
2092/*
2093 * RT2500pci module information.
2094 */
a3aa1884 2095static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
e01ae27f 2096 { PCI_DEVICE(0x1814, 0x0201) },
95ea3627
ID
2097 { 0, }
2098};
2099
2100MODULE_AUTHOR(DRV_PROJECT);
2101MODULE_VERSION(DRV_VERSION);
2102MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2103MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2104MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2105MODULE_LICENSE("GPL");
2106
e01ae27f
GW
2107static int rt2500pci_probe(struct pci_dev *pci_dev,
2108 const struct pci_device_id *id)
2109{
2110 return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2111}
2112
95ea3627 2113static struct pci_driver rt2500pci_driver = {
2360157c 2114 .name = KBUILD_MODNAME,
95ea3627 2115 .id_table = rt2500pci_device_table,
e01ae27f 2116 .probe = rt2500pci_probe,
95ea3627
ID
2117 .remove = __devexit_p(rt2x00pci_remove),
2118 .suspend = rt2x00pci_suspend,
2119 .resume = rt2x00pci_resume,
2120};
2121
2122static int __init rt2500pci_init(void)
2123{
2124 return pci_register_driver(&rt2500pci_driver);
2125}
2126
2127static void __exit rt2500pci_exit(void)
2128{
2129 pci_unregister_driver(&rt2500pci_driver);
2130}
2131
2132module_init(rt2500pci_init);
2133module_exit(rt2500pci_exit);
This page took 0.837647 seconds and 5 git commands to generate.