rt2x00: Use ieee80211_channel_to_frequency()
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
CommitLineData
95ea3627 1/*
811aa9ca 2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
95ea3627
ID
27#include <linux/delay.h>
28#include <linux/etherdevice.h>
29#include <linux/init.h>
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/pci.h>
33#include <linux/eeprom_93cx6.h>
34
35#include "rt2x00.h"
36#include "rt2x00pci.h"
37#include "rt2500pci.h"
38
39/*
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
51 */
0e14f6d3 52static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
53{
54 u32 reg;
55 unsigned int i;
56
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
60 break;
61 udelay(REGISTER_BUSY_DELAY);
62 }
63
64 return reg;
65}
66
0e14f6d3 67static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
68 const unsigned int word, const u8 value)
69{
70 u32 reg;
71
72 /*
73 * Wait until the BBP becomes ready.
74 */
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
78 return;
79 }
80
81 /*
82 * Write the data into the BBP.
83 */
84 reg = 0;
85 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
86 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
89
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
91}
92
0e14f6d3 93static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
94 const unsigned int word, u8 *value)
95{
96 u32 reg;
97
98 /*
99 * Wait until the BBP becomes ready.
100 */
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
104 return;
105 }
106
107 /*
108 * Write the request into the BBP.
109 */
110 reg = 0;
111 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
114
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
116
117 /*
118 * Wait until the BBP becomes ready.
119 */
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
123 *value = 0xff;
124 return;
125 }
126
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
128}
129
0e14f6d3 130static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
131 const unsigned int word, const u32 value)
132{
133 u32 reg;
134 unsigned int i;
135
136 if (!word)
137 return;
138
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
142 goto rf_write;
143 udelay(REGISTER_BUSY_DELAY);
144 }
145
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
147 return;
148
149rf_write:
150 reg = 0;
151 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
152 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
155
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
158}
159
160static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
161{
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
163 u32 reg;
164
165 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
166
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
173}
174
175static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
176{
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
178 u32 reg = 0;
179
180 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
186
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
188}
189
190#ifdef CONFIG_RT2X00_LIB_DEBUGFS
191#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
192
0e14f6d3 193static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
194 const unsigned int word, u32 *data)
195{
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
197}
198
0e14f6d3 199static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
200 const unsigned int word, u32 data)
201{
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
203}
204
205static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
207 .csr = {
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
212 },
213 .eeprom = {
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
218 },
219 .bbp = {
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
224 },
225 .rf = {
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
230 },
231};
232#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
233
234#ifdef CONFIG_RT2500PCI_RFKILL
235static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
236{
237 u32 reg;
238
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
241}
81873e9c
ID
242#else
243#define rt2500pci_rfkill_poll NULL
dcf5475b 244#endif /* CONFIG_RT2500PCI_RFKILL */
95ea3627
ID
245
246/*
247 * Configuration handlers.
248 */
6bb40dd1
ID
249static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_intf *intf,
251 struct rt2x00intf_conf *conf,
252 const unsigned int flags)
95ea3627 253{
181d6902 254 struct data_queue *queue =
5957da4c 255 rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
6bb40dd1 256 unsigned int bcn_preload;
95ea3627
ID
257 u32 reg;
258
6bb40dd1
ID
259 if (flags & CONFIG_UPDATE_TYPE) {
260 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
95ea3627 261
6bb40dd1
ID
262 /*
263 * Enable beacon config
264 */
265 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
266 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
267 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
268 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
269 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
95ea3627 270
6bb40dd1
ID
271 /*
272 * Enable synchronisation.
273 */
274 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
275 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
276 rt2x00_set_field32(&reg, CSR14_TBCN,
277 (conf->sync == TSF_SYNC_BEACON));
278 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
279 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
280 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
281 }
282
283 if (flags & CONFIG_UPDATE_MAC)
284 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
285 conf->mac, sizeof(conf->mac));
286
287 if (flags & CONFIG_UPDATE_BSSID)
288 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
289 conf->bssid, sizeof(conf->bssid));
95ea3627
ID
290}
291
6bb40dd1
ID
292static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
293 const int short_preamble,
294 const int ack_timeout,
295 const int ack_consume_time)
95ea3627 296{
5c58ee51 297 int preamble_mask;
95ea3627 298 u32 reg;
95ea3627 299
5c58ee51
ID
300 /*
301 * When short preamble is enabled, we should set bit 0x08
302 */
303 preamble_mask = short_preamble << 3;
95ea3627
ID
304
305 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
5c58ee51
ID
306 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);
307 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
95ea3627
ID
308 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
309
95ea3627 310 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
5c58ee51 311 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);
95ea3627
ID
312 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
313 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
314 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
315
316 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
5c58ee51 317 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
95ea3627
ID
318 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
319 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
320 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
321
322 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
5c58ee51 323 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
95ea3627
ID
324 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
325 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
326 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
327
328 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
5c58ee51 329 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
95ea3627
ID
330 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
331 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
332 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
6bb40dd1
ID
333
334 return 0;
95ea3627
ID
335}
336
337static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
5c58ee51 338 const int basic_rate_mask)
95ea3627 339{
5c58ee51 340 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
95ea3627
ID
341}
342
343static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
5c58ee51 344 struct rf_channel *rf, const int txpower)
95ea3627 345{
95ea3627
ID
346 u8 r70;
347
95ea3627
ID
348 /*
349 * Set TXpower.
350 */
5c58ee51 351 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
95ea3627
ID
352
353 /*
354 * Switch on tuning bits.
355 * For RT2523 devices we do not need to update the R1 register.
356 */
357 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
5c58ee51
ID
358 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
359 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
95ea3627
ID
360
361 /*
362 * For RT2525 we should first set the channel to half band higher.
363 */
364 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
365 static const u32 vals[] = {
366 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
367 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
368 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
369 0x00080d2e, 0x00080d3a
370 };
371
5c58ee51
ID
372 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
373 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
374 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
375 if (rf->rf4)
376 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
377 }
378
5c58ee51
ID
379 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
380 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
381 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
382 if (rf->rf4)
383 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
95ea3627
ID
384
385 /*
386 * Channel 14 requires the Japan filter bit to be set.
387 */
388 r70 = 0x46;
5c58ee51 389 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
95ea3627
ID
390 rt2500pci_bbp_write(rt2x00dev, 70, r70);
391
392 msleep(1);
393
394 /*
395 * Switch off tuning bits.
396 * For RT2523 devices we do not need to update the R1 register.
397 */
398 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
5c58ee51
ID
399 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
400 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
95ea3627
ID
401 }
402
5c58ee51
ID
403 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
404 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
95ea3627
ID
405
406 /*
407 * Clear false CRC during channel switch.
408 */
5c58ee51 409 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
95ea3627
ID
410}
411
412static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
413 const int txpower)
414{
415 u32 rf3;
416
417 rt2x00_rf_read(rt2x00dev, 3, &rf3);
418 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
419 rt2500pci_rf_write(rt2x00dev, 3, rf3);
420}
421
422static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
addc81bd 423 struct antenna_setup *ant)
95ea3627
ID
424{
425 u32 reg;
426 u8 r14;
427 u8 r2;
428
429 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
430 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
431 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
432
433 /*
434 * Configure the TX antenna.
435 */
addc81bd 436 switch (ant->tx) {
95ea3627
ID
437 case ANTENNA_A:
438 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
439 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
440 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
441 break;
39e75857
ID
442 case ANTENNA_HW_DIVERSITY:
443 case ANTENNA_SW_DIVERSITY:
444 /*
445 * NOTE: We should never come here because rt2x00lib is
446 * supposed to catch this and send us the correct antenna
447 * explicitely. However we are nog going to bug about this.
448 * Instead, just default to antenna B.
449 */
95ea3627
ID
450 case ANTENNA_B:
451 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
452 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
453 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
454 break;
455 }
456
457 /*
458 * Configure the RX antenna.
459 */
addc81bd 460 switch (ant->rx) {
95ea3627
ID
461 case ANTENNA_A:
462 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
463 break;
39e75857
ID
464 case ANTENNA_HW_DIVERSITY:
465 case ANTENNA_SW_DIVERSITY:
466 /*
467 * NOTE: We should never come here because rt2x00lib is
468 * supposed to catch this and send us the correct antenna
469 * explicitely. However we are nog going to bug about this.
470 * Instead, just default to antenna B.
471 */
95ea3627
ID
472 case ANTENNA_B:
473 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
474 break;
475 }
476
477 /*
478 * RT2525E and RT5222 need to flip TX I/Q
479 */
480 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
481 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
482 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
483 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
484 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
485
486 /*
487 * RT2525E does not need RX I/Q Flip.
488 */
489 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
490 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
491 } else {
492 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
493 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
494 }
495
496 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
497 rt2500pci_bbp_write(rt2x00dev, 14, r14);
498 rt2500pci_bbp_write(rt2x00dev, 2, r2);
499}
500
501static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
5c58ee51 502 struct rt2x00lib_conf *libconf)
95ea3627
ID
503{
504 u32 reg;
505
506 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
5c58ee51 507 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, libconf->slot_time);
95ea3627
ID
508 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
509
510 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
5c58ee51
ID
511 rt2x00_set_field32(&reg, CSR18_SIFS, libconf->sifs);
512 rt2x00_set_field32(&reg, CSR18_PIFS, libconf->pifs);
95ea3627
ID
513 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
514
515 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
5c58ee51
ID
516 rt2x00_set_field32(&reg, CSR19_DIFS, libconf->difs);
517 rt2x00_set_field32(&reg, CSR19_EIFS, libconf->eifs);
95ea3627
ID
518 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
519
520 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
521 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
522 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
523 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
524
525 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
5c58ee51
ID
526 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
527 libconf->conf->beacon_int * 16);
528 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
529 libconf->conf->beacon_int * 16);
95ea3627
ID
530 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
531}
532
533static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
534 struct rt2x00lib_conf *libconf,
535 const unsigned int flags)
95ea3627 536{
95ea3627 537 if (flags & CONFIG_UPDATE_PHYMODE)
5c58ee51 538 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
95ea3627 539 if (flags & CONFIG_UPDATE_CHANNEL)
5c58ee51
ID
540 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
541 libconf->conf->power_level);
95ea3627 542 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
5c58ee51
ID
543 rt2500pci_config_txpower(rt2x00dev,
544 libconf->conf->power_level);
95ea3627 545 if (flags & CONFIG_UPDATE_ANTENNA)
addc81bd 546 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
95ea3627 547 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
5c58ee51 548 rt2500pci_config_duration(rt2x00dev, libconf);
95ea3627
ID
549}
550
551/*
552 * LED functions.
553 */
554static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
555{
556 u32 reg;
557
558 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
559
560 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
561 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
ddc827f9
ID
562 rt2x00_set_field32(&reg, LEDCSR_LINK,
563 (rt2x00dev->led_mode != LED_MODE_ASUS));
564 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY,
565 (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
95ea3627
ID
566 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
567}
568
569static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
570{
571 u32 reg;
572
573 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
574 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
575 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
576 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
577}
578
579/*
580 * Link tuning
581 */
ebcf26da
ID
582static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
583 struct link_qual *qual)
95ea3627
ID
584{
585 u32 reg;
586
587 /*
588 * Update FCS error count from register.
589 */
590 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
ebcf26da 591 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
95ea3627
ID
592
593 /*
594 * Update False CCA count from register.
595 */
596 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
ebcf26da 597 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
95ea3627
ID
598}
599
600static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
601{
602 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
603 rt2x00dev->link.vgc_level = 0x48;
604}
605
606static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
607{
608 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
609 u8 r17;
610
611 /*
612 * To prevent collisions with MAC ASIC on chipsets
613 * up to version C the link tuning should halt after 20
6bb40dd1 614 * seconds while being associated.
95ea3627 615 */
755a957d 616 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
6bb40dd1 617 rt2x00dev->intf_associated &&
95ea3627
ID
618 rt2x00dev->link.count > 20)
619 return;
620
621 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
622
623 /*
624 * Chipset versions C and lower should directly continue
6bb40dd1
ID
625 * to the dynamic CCA tuning. Chipset version D and higher
626 * should go straight to dynamic CCA tuning when they
627 * are not associated.
95ea3627 628 */
6bb40dd1
ID
629 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
630 !rt2x00dev->intf_associated)
95ea3627
ID
631 goto dynamic_cca_tune;
632
633 /*
634 * A too low RSSI will cause too much false CCA which will
635 * then corrupt the R17 tuning. To remidy this the tuning should
636 * be stopped (While making sure the R17 value will not exceed limits)
637 */
638 if (rssi < -80 && rt2x00dev->link.count > 20) {
639 if (r17 >= 0x41) {
640 r17 = rt2x00dev->link.vgc_level;
641 rt2500pci_bbp_write(rt2x00dev, 17, r17);
642 }
643 return;
644 }
645
646 /*
647 * Special big-R17 for short distance
648 */
649 if (rssi >= -58) {
650 if (r17 != 0x50)
651 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
652 return;
653 }
654
655 /*
656 * Special mid-R17 for middle distance
657 */
658 if (rssi >= -74) {
659 if (r17 != 0x41)
660 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
661 return;
662 }
663
664 /*
665 * Leave short or middle distance condition, restore r17
666 * to the dynamic tuning range.
667 */
668 if (r17 >= 0x41) {
669 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
670 return;
671 }
672
673dynamic_cca_tune:
674
675 /*
676 * R17 is inside the dynamic tuning range,
677 * start tuning the link based on the false cca counter.
678 */
ebcf26da 679 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
95ea3627
ID
680 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
681 rt2x00dev->link.vgc_level = r17;
ebcf26da 682 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
95ea3627
ID
683 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
684 rt2x00dev->link.vgc_level = r17;
685 }
686}
687
688/*
689 * Initialization functions.
690 */
837e7f24 691static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
181d6902 692 struct queue_entry *entry)
95ea3627 693{
181d6902 694 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
95ea3627
ID
695 u32 word;
696
181d6902
ID
697 rt2x00_desc_read(priv_rx->desc, 1, &word);
698 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->dma);
699 rt2x00_desc_write(priv_rx->desc, 1, word);
95ea3627 700
181d6902 701 rt2x00_desc_read(priv_rx->desc, 0, &word);
837e7f24 702 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
181d6902 703 rt2x00_desc_write(priv_rx->desc, 0, word);
95ea3627
ID
704}
705
837e7f24 706static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
181d6902 707 struct queue_entry *entry)
95ea3627 708{
181d6902 709 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
95ea3627
ID
710 u32 word;
711
181d6902
ID
712 rt2x00_desc_read(priv_tx->desc, 1, &word);
713 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->dma);
714 rt2x00_desc_write(priv_tx->desc, 1, word);
95ea3627 715
181d6902 716 rt2x00_desc_read(priv_tx->desc, 0, &word);
837e7f24
ID
717 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
718 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
181d6902 719 rt2x00_desc_write(priv_tx->desc, 0, word);
95ea3627
ID
720}
721
181d6902 722static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 723{
181d6902
ID
724 struct queue_entry_priv_pci_rx *priv_rx;
725 struct queue_entry_priv_pci_tx *priv_tx;
95ea3627
ID
726 u32 reg;
727
95ea3627
ID
728 /*
729 * Initialize registers.
730 */
731 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
181d6902
ID
732 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
733 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
734 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
735 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
95ea3627
ID
736 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
737
181d6902 738 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 739 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
181d6902 740 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER, priv_tx->dma);
95ea3627
ID
741 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
742
181d6902 743 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 744 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
181d6902 745 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER, priv_tx->dma);
95ea3627
ID
746 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
747
181d6902 748 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
95ea3627 749 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
181d6902 750 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER, priv_tx->dma);
95ea3627
ID
751 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
752
181d6902 753 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
95ea3627 754 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
181d6902 755 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER, priv_tx->dma);
95ea3627
ID
756 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
757
758 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
759 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
181d6902 760 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
95ea3627
ID
761 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
762
181d6902 763 priv_rx = rt2x00dev->rx->entries[0].priv_data;
95ea3627 764 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
181d6902 765 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER, priv_tx->dma);
95ea3627
ID
766 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
767
768 return 0;
769}
770
771static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
772{
773 u32 reg;
774
775 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
776 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
777 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
778 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
779
780 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
781 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
782 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
783 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
784 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
785
786 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
787 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
788 rt2x00dev->rx->data_size / 128);
789 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
790
791 /*
792 * Always use CWmin and CWmax set in descriptor.
793 */
794 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
795 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
796 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
797
798 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
799
800 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
801 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
802 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
803 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
804 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
805 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
806 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
807 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
808 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
809 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
810
811 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
812 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
813 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
814 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
815 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
816 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
817
818 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
819 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
820 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
821 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
822 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
823 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
824
825 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
826 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
827 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
828 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
829 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
830 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
831
832 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
833 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
834 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
835 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
836 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
837 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
838 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
839 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
840 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
841 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
842
843 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
844 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
845 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
846 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
847 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
848 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
849 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
850 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
851 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
852
853 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
854
855 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
856 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
857
858 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
859 return -EBUSY;
860
861 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
862 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
863
864 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
865 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
866 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
867
868 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
869 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
870 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
871 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
872 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
873 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
874 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
875 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
876
877 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
878
879 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
880
881 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
882 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
883 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
884 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
885 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
886
887 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
888 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
889 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
890 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
891
892 /*
893 * We must clear the FCS and FIFO error count.
894 * These registers are cleared on read,
895 * so we may pass a useless variable to store the value.
896 */
897 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
898 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
899
900 return 0;
901}
902
903static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
904{
905 unsigned int i;
906 u16 eeprom;
907 u8 reg_id;
908 u8 value;
909
910 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
911 rt2500pci_bbp_read(rt2x00dev, 0, &value);
912 if ((value != 0xff) && (value != 0x00))
913 goto continue_csr_init;
914 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
915 udelay(REGISTER_BUSY_DELAY);
916 }
917
918 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
919 return -EACCES;
920
921continue_csr_init:
922 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
923 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
924 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
925 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
926 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
927 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
928 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
929 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
930 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
931 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
932 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
933 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
934 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
935 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
936 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
937 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
938 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
939 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
940 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
941 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
942 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
943 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
944 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
945 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
946 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
947 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
948 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
949 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
950 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
951 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
952
953 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
954 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
955 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
956
957 if (eeprom != 0xffff && eeprom != 0x0000) {
958 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
959 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
960 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
961 reg_id, value);
962 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
963 }
964 }
965 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
966
967 return 0;
968}
969
970/*
971 * Device state switch handlers.
972 */
973static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
974 enum dev_state state)
975{
976 u32 reg;
977
978 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
979 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
980 state == STATE_RADIO_RX_OFF);
981 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
982}
983
984static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
985 enum dev_state state)
986{
987 int mask = (state == STATE_RADIO_IRQ_OFF);
988 u32 reg;
989
990 /*
991 * When interrupts are being enabled, the interrupt registers
992 * should clear the register to assure a clean state.
993 */
994 if (state == STATE_RADIO_IRQ_ON) {
995 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
996 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
997 }
998
999 /*
1000 * Only toggle the interrupts bits we are going to use.
1001 * Non-checked interrupt bits are disabled by default.
1002 */
1003 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1004 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1005 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1006 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1007 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1008 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1009 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1010}
1011
1012static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1013{
1014 /*
1015 * Initialize all registers.
1016 */
181d6902 1017 if (rt2500pci_init_queues(rt2x00dev) ||
95ea3627
ID
1018 rt2500pci_init_registers(rt2x00dev) ||
1019 rt2500pci_init_bbp(rt2x00dev)) {
1020 ERROR(rt2x00dev, "Register initialization failed.\n");
1021 return -EIO;
1022 }
1023
1024 /*
1025 * Enable interrupts.
1026 */
1027 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1028
1029 /*
1030 * Enable LED
1031 */
1032 rt2500pci_enable_led(rt2x00dev);
1033
1034 return 0;
1035}
1036
1037static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1038{
1039 u32 reg;
1040
1041 /*
1042 * Disable LED
1043 */
1044 rt2500pci_disable_led(rt2x00dev);
1045
1046 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1047
1048 /*
1049 * Disable synchronisation.
1050 */
1051 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1052
1053 /*
1054 * Cancel RX and TX.
1055 */
1056 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1057 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1058 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1059
1060 /*
1061 * Disable interrupts.
1062 */
1063 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1064}
1065
1066static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1067 enum dev_state state)
1068{
1069 u32 reg;
1070 unsigned int i;
1071 char put_to_sleep;
1072 char bbp_state;
1073 char rf_state;
1074
1075 put_to_sleep = (state != STATE_AWAKE);
1076
1077 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1078 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1079 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1080 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1081 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1082 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1083
1084 /*
1085 * Device is not guaranteed to be in the requested state yet.
1086 * We must wait until the register indicates that the
1087 * device has entered the correct state.
1088 */
1089 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1090 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1091 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1092 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1093 if (bbp_state == state && rf_state == state)
1094 return 0;
1095 msleep(10);
1096 }
1097
1098 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1099 "current device state: bbp %d and rf %d.\n",
1100 state, bbp_state, rf_state);
1101
1102 return -EBUSY;
1103}
1104
1105static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1106 enum dev_state state)
1107{
1108 int retval = 0;
1109
1110 switch (state) {
1111 case STATE_RADIO_ON:
1112 retval = rt2500pci_enable_radio(rt2x00dev);
1113 break;
1114 case STATE_RADIO_OFF:
1115 rt2500pci_disable_radio(rt2x00dev);
1116 break;
1117 case STATE_RADIO_RX_ON:
61667d8d
ID
1118 case STATE_RADIO_RX_ON_LINK:
1119 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1120 break;
95ea3627 1121 case STATE_RADIO_RX_OFF:
61667d8d
ID
1122 case STATE_RADIO_RX_OFF_LINK:
1123 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95ea3627
ID
1124 break;
1125 case STATE_DEEP_SLEEP:
1126 case STATE_SLEEP:
1127 case STATE_STANDBY:
1128 case STATE_AWAKE:
1129 retval = rt2500pci_set_state(rt2x00dev, state);
1130 break;
1131 default:
1132 retval = -ENOTSUPP;
1133 break;
1134 }
1135
1136 return retval;
1137}
1138
1139/*
1140 * TX descriptor initialization
1141 */
1142static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
dd3193e1 1143 struct sk_buff *skb,
181d6902 1144 struct txentry_desc *txdesc,
95ea3627
ID
1145 struct ieee80211_tx_control *control)
1146{
181d6902 1147 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
dd3193e1 1148 __le32 *txd = skbdesc->desc;
95ea3627
ID
1149 u32 word;
1150
1151 /*
1152 * Start writing the descriptor words.
1153 */
1154 rt2x00_desc_read(txd, 2, &word);
1155 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
181d6902
ID
1156 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1157 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1158 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
95ea3627
ID
1159 rt2x00_desc_write(txd, 2, word);
1160
1161 rt2x00_desc_read(txd, 3, &word);
181d6902
ID
1162 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1163 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1164 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1165 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1166 rt2x00_desc_write(txd, 3, word);
1167
1168 rt2x00_desc_read(txd, 10, &word);
1169 rt2x00_set_field32(&word, TXD_W10_RTS,
181d6902 1170 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
95ea3627
ID
1171 rt2x00_desc_write(txd, 10, word);
1172
1173 rt2x00_desc_read(txd, 0, &word);
1174 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1175 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1176 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1177 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1178 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1179 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1180 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1181 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1182 rt2x00_set_field32(&word, TXD_W0_OFDM,
181d6902 1183 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
95ea3627 1184 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
181d6902 1185 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627
ID
1186 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1187 !!(control->flags &
1188 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
dd3193e1 1189 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
95ea3627
ID
1190 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1191 rt2x00_desc_write(txd, 0, word);
1192}
1193
1194/*
1195 * TX data initialization
1196 */
1197static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
5957da4c 1198 const unsigned int queue)
95ea3627
ID
1199{
1200 u32 reg;
1201
5957da4c 1202 if (queue == RT2X00_BCN_QUEUE_BEACON) {
95ea3627
ID
1203 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1204 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1205 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1206 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1207 }
1208 return;
1209 }
1210
1211 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
ddc827f9
ID
1212 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO,
1213 (queue == IEEE80211_TX_QUEUE_DATA0));
1214 rt2x00_set_field32(&reg, TXCSR0_KICK_TX,
1215 (queue == IEEE80211_TX_QUEUE_DATA1));
1216 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM,
5957da4c 1217 (queue == RT2X00_BCN_QUEUE_ATIM));
95ea3627
ID
1218 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1219}
1220
1221/*
1222 * RX control handlers
1223 */
181d6902
ID
1224static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1225 struct rxdone_entry_desc *rxdesc)
95ea3627 1226{
181d6902 1227 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
95ea3627
ID
1228 u32 word0;
1229 u32 word2;
1230
181d6902
ID
1231 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1232 rt2x00_desc_read(priv_rx->desc, 2, &word2);
95ea3627 1233
181d6902 1234 rxdesc->flags = 0;
4150c572 1235 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1236 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
4150c572 1237 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
181d6902
ID
1238 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1239
1240 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1241 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1242 entry->queue->rt2x00dev->rssi_offset;
1243 rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1244 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1245 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
95ea3627
ID
1246}
1247
1248/*
1249 * Interrupt functions.
1250 */
181d6902
ID
1251static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1252 const enum ieee80211_tx_queue queue_idx)
95ea3627 1253{
181d6902
ID
1254 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1255 struct queue_entry_priv_pci_tx *priv_tx;
1256 struct queue_entry *entry;
1257 struct txdone_entry_desc txdesc;
95ea3627 1258 u32 word;
95ea3627 1259
181d6902
ID
1260 while (!rt2x00queue_empty(queue)) {
1261 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1262 priv_tx = entry->priv_data;
1263 rt2x00_desc_read(priv_tx->desc, 0, &word);
95ea3627
ID
1264
1265 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1266 !rt2x00_get_field32(word, TXD_W0_VALID))
1267 break;
1268
1269 /*
1270 * Obtain the status about this packet.
1271 */
181d6902
ID
1272 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1273 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
95ea3627 1274
181d6902 1275 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
95ea3627 1276 }
95ea3627
ID
1277}
1278
1279static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1280{
1281 struct rt2x00_dev *rt2x00dev = dev_instance;
1282 u32 reg;
1283
1284 /*
1285 * Get the interrupt sources & saved to local variable.
1286 * Write register value back to clear pending interrupts.
1287 */
1288 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1289 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1290
1291 if (!reg)
1292 return IRQ_NONE;
1293
1294 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1295 return IRQ_HANDLED;
1296
1297 /*
1298 * Handle interrupts, walk through all bits
1299 * and run the tasks, the bits are checked in order of
1300 * priority.
1301 */
1302
1303 /*
1304 * 1 - Beacon timer expired interrupt.
1305 */
1306 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1307 rt2x00lib_beacondone(rt2x00dev);
1308
1309 /*
1310 * 2 - Rx ring done interrupt.
1311 */
1312 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1313 rt2x00pci_rxdone(rt2x00dev);
1314
1315 /*
1316 * 3 - Atim ring transmit done interrupt.
1317 */
1318 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
5957da4c 1319 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
95ea3627
ID
1320
1321 /*
1322 * 4 - Priority ring transmit done interrupt.
1323 */
1324 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1325 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1326
1327 /*
1328 * 5 - Tx ring transmit done interrupt.
1329 */
1330 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1331 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1332
1333 return IRQ_HANDLED;
1334}
1335
1336/*
1337 * Device probe functions.
1338 */
1339static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1340{
1341 struct eeprom_93cx6 eeprom;
1342 u32 reg;
1343 u16 word;
1344 u8 *mac;
1345
1346 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1347
1348 eeprom.data = rt2x00dev;
1349 eeprom.register_read = rt2500pci_eepromregister_read;
1350 eeprom.register_write = rt2500pci_eepromregister_write;
1351 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1352 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1353 eeprom.reg_data_in = 0;
1354 eeprom.reg_data_out = 0;
1355 eeprom.reg_data_clock = 0;
1356 eeprom.reg_chip_select = 0;
1357
1358 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1359 EEPROM_SIZE / sizeof(u16));
1360
1361 /*
1362 * Start validation of the data that has been read.
1363 */
1364 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1365 if (!is_valid_ether_addr(mac)) {
0795af57
JP
1366 DECLARE_MAC_BUF(macbuf);
1367
95ea3627 1368 random_ether_addr(mac);
0795af57
JP
1369 EEPROM(rt2x00dev, "MAC: %s\n",
1370 print_mac(macbuf, mac));
95ea3627
ID
1371 }
1372
1373 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1374 if (word == 0xffff) {
1375 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
1376 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1377 ANTENNA_SW_DIVERSITY);
1378 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1379 ANTENNA_SW_DIVERSITY);
1380 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1381 LED_MODE_DEFAULT);
95ea3627
ID
1382 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1383 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1384 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1385 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1386 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1387 }
1388
1389 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1390 if (word == 0xffff) {
1391 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1392 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1393 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1394 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1395 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1396 }
1397
1398 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1399 if (word == 0xffff) {
1400 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1401 DEFAULT_RSSI_OFFSET);
1402 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1403 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1404 }
1405
1406 return 0;
1407}
1408
1409static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1410{
1411 u32 reg;
1412 u16 value;
1413 u16 eeprom;
1414
1415 /*
1416 * Read EEPROM word for configuration.
1417 */
1418 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1419
1420 /*
1421 * Identify RF chipset.
1422 */
1423 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1424 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1425 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1426
1427 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1428 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1429 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1430 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1431 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1432 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1433 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1434 return -ENODEV;
1435 }
1436
1437 /*
1438 * Identify default antenna configuration.
1439 */
addc81bd 1440 rt2x00dev->default_ant.tx =
95ea3627 1441 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 1442 rt2x00dev->default_ant.rx =
95ea3627
ID
1443 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1444
1445 /*
1446 * Store led mode, for correct led behaviour.
1447 */
1448 rt2x00dev->led_mode =
1449 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1450
1451 /*
1452 * Detect if this device has an hardware controlled radio.
1453 */
81873e9c 1454#ifdef CONFIG_RT2500PCI_RFKILL
95ea3627 1455 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 1456 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
81873e9c 1457#endif /* CONFIG_RT2500PCI_RFKILL */
95ea3627
ID
1458
1459 /*
1460 * Check if the BBP tuning should be enabled.
1461 */
1462 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1463
1464 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1465 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1466
1467 /*
1468 * Read the RSSI <-> dBm offset information.
1469 */
1470 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1471 rt2x00dev->rssi_offset =
1472 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1473
1474 return 0;
1475}
1476
1477/*
1478 * RF value list for RF2522
1479 * Supports: 2.4 GHz
1480 */
1481static const struct rf_channel rf_vals_bg_2522[] = {
1482 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1483 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1484 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1485 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1486 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1487 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1488 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1489 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1490 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1491 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1492 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1493 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1494 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1495 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1496};
1497
1498/*
1499 * RF value list for RF2523
1500 * Supports: 2.4 GHz
1501 */
1502static const struct rf_channel rf_vals_bg_2523[] = {
1503 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1504 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1505 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1506 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1507 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1508 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1509 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1510 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1511 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1512 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1513 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1514 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1515 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1516 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1517};
1518
1519/*
1520 * RF value list for RF2524
1521 * Supports: 2.4 GHz
1522 */
1523static const struct rf_channel rf_vals_bg_2524[] = {
1524 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1525 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1526 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1527 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1528 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1529 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1530 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1531 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1532 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1533 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1534 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1535 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1536 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1537 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1538};
1539
1540/*
1541 * RF value list for RF2525
1542 * Supports: 2.4 GHz
1543 */
1544static const struct rf_channel rf_vals_bg_2525[] = {
1545 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1546 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1547 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1548 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1549 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1550 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1551 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1552 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1553 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1554 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1555 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1556 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1557 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1558 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1559};
1560
1561/*
1562 * RF value list for RF2525e
1563 * Supports: 2.4 GHz
1564 */
1565static const struct rf_channel rf_vals_bg_2525e[] = {
1566 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1567 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1568 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1569 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1570 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1571 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1572 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1573 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1574 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1575 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1576 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1577 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1578 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1579 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1580};
1581
1582/*
1583 * RF value list for RF5222
1584 * Supports: 2.4 GHz & 5.2 GHz
1585 */
1586static const struct rf_channel rf_vals_5222[] = {
1587 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1588 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1589 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1590 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1591 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1592 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1593 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1594 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1595 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1596 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1597 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1598 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1599 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1600 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1601
1602 /* 802.11 UNI / HyperLan 2 */
1603 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1604 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1605 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1606 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1607 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1608 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1609 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1610 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1611
1612 /* 802.11 HyperLan 2 */
1613 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1614 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1615 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1616 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1617 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1618 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1619 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1620 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1621 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1622 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1623
1624 /* 802.11 UNII */
1625 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1626 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1627 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1628 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1629 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1630};
1631
1632static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1633{
1634 struct hw_mode_spec *spec = &rt2x00dev->spec;
1635 u8 *txpower;
1636 unsigned int i;
1637
1638 /*
1639 * Initialize all hw fields.
1640 */
4150c572 1641 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
95ea3627
ID
1642 rt2x00dev->hw->extra_tx_headroom = 0;
1643 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1644 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1645 rt2x00dev->hw->queues = 2;
1646
1647 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1648 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1649 rt2x00_eeprom_addr(rt2x00dev,
1650 EEPROM_MAC_ADDR_0));
1651
1652 /*
1653 * Convert tx_power array in eeprom.
1654 */
1655 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1656 for (i = 0; i < 14; i++)
1657 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1658
1659 /*
1660 * Initialize hw_mode information.
1661 */
1662 spec->num_modes = 2;
1663 spec->num_rates = 12;
1664 spec->tx_power_a = NULL;
1665 spec->tx_power_bg = txpower;
1666 spec->tx_power_default = DEFAULT_TXPOWER;
1667
1668 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1669 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1670 spec->channels = rf_vals_bg_2522;
1671 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1672 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1673 spec->channels = rf_vals_bg_2523;
1674 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1675 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1676 spec->channels = rf_vals_bg_2524;
1677 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1678 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1679 spec->channels = rf_vals_bg_2525;
1680 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1681 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1682 spec->channels = rf_vals_bg_2525e;
1683 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1684 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1685 spec->channels = rf_vals_5222;
1686 spec->num_modes = 3;
1687 }
1688}
1689
1690static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1691{
1692 int retval;
1693
1694 /*
1695 * Allocate eeprom data.
1696 */
1697 retval = rt2500pci_validate_eeprom(rt2x00dev);
1698 if (retval)
1699 return retval;
1700
1701 retval = rt2500pci_init_eeprom(rt2x00dev);
1702 if (retval)
1703 return retval;
1704
1705 /*
1706 * Initialize hw specifications.
1707 */
1708 rt2500pci_probe_hw_mode(rt2x00dev);
1709
1710 /*
181d6902 1711 * This device requires the atim queue
95ea3627 1712 */
181d6902 1713 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
95ea3627
ID
1714
1715 /*
1716 * Set the rssi offset.
1717 */
1718 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1719
1720 return 0;
1721}
1722
1723/*
1724 * IEEE80211 stack callback functions.
1725 */
4150c572
JB
1726static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1727 unsigned int changed_flags,
1728 unsigned int *total_flags,
1729 int mc_count,
1730 struct dev_addr_list *mc_list)
1731{
1732 struct rt2x00_dev *rt2x00dev = hw->priv;
4150c572
JB
1733 u32 reg;
1734
1735 /*
1736 * Mask off any flags we are going to ignore from
1737 * the total_flags field.
1738 */
1739 *total_flags &=
1740 FIF_ALLMULTI |
1741 FIF_FCSFAIL |
1742 FIF_PLCPFAIL |
1743 FIF_CONTROL |
1744 FIF_OTHER_BSS |
1745 FIF_PROMISC_IN_BSS;
1746
1747 /*
1748 * Apply some rules to the filters:
1749 * - Some filters imply different filters to be set.
1750 * - Some things we can't filter out at all.
4150c572
JB
1751 */
1752 if (mc_count)
1753 *total_flags |= FIF_ALLMULTI;
5886d0db
ID
1754 if (*total_flags & FIF_OTHER_BSS ||
1755 *total_flags & FIF_PROMISC_IN_BSS)
4150c572 1756 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
4150c572
JB
1757
1758 /*
1759 * Check if there is any work left for us.
1760 */
3c4f2085 1761 if (rt2x00dev->packet_filter == *total_flags)
4150c572 1762 return;
3c4f2085 1763 rt2x00dev->packet_filter = *total_flags;
4150c572
JB
1764
1765 /*
1766 * Start configuration steps.
1767 * Note that the version error will always be dropped
1768 * and broadcast frames will always be accepted since
1769 * there is no filter for it at this time.
1770 */
1771 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1772 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
1773 !(*total_flags & FIF_FCSFAIL));
1774 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
1775 !(*total_flags & FIF_PLCPFAIL));
1776 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
1777 !(*total_flags & FIF_CONTROL));
1778 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
1779 !(*total_flags & FIF_PROMISC_IN_BSS));
1780 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
1781 !(*total_flags & FIF_PROMISC_IN_BSS));
1782 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
1783 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
1784 !(*total_flags & FIF_ALLMULTI));
1785 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
1786 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1787}
1788
95ea3627
ID
1789static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1790 u32 short_retry, u32 long_retry)
1791{
1792 struct rt2x00_dev *rt2x00dev = hw->priv;
1793 u32 reg;
1794
1795 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1796 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1797 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1798 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1799
1800 return 0;
1801}
1802
1803static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1804{
1805 struct rt2x00_dev *rt2x00dev = hw->priv;
1806 u64 tsf;
1807 u32 reg;
1808
1809 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1810 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1811 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1812 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1813
1814 return tsf;
1815}
1816
1817static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1818{
1819 struct rt2x00_dev *rt2x00dev = hw->priv;
1820
1821 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1822 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1823}
1824
5957da4c
ID
1825static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1826 struct ieee80211_tx_control *control)
1827{
1828 struct rt2x00_dev *rt2x00dev = hw->priv;
1829 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1830 struct queue_entry_priv_pci_tx *priv_tx;
1831 struct skb_frame_desc *skbdesc;
1832
1833 if (unlikely(!intf->beacon))
1834 return -ENOBUFS;
1835
1836 priv_tx = intf->beacon->priv_data;
1837
1838 /*
1839 * Fill in skb descriptor
1840 */
1841 skbdesc = get_skb_frame_desc(skb);
1842 memset(skbdesc, 0, sizeof(*skbdesc));
1843 skbdesc->data = skb->data;
1844 skbdesc->data_len = skb->len;
1845 skbdesc->desc = priv_tx->desc;
1846 skbdesc->desc_len = intf->beacon->queue->desc_size;
1847 skbdesc->entry = intf->beacon;
1848
1849 /*
1850 * mac80211 doesn't provide the control->queue variable
1851 * for beacons. Set our own queue identification so
1852 * it can be used during descriptor initialization.
1853 */
1854 control->queue = RT2X00_BCN_QUEUE_BEACON;
1855 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1856
1857 /*
1858 * Enable beacon generation.
1859 * Write entire beacon with descriptor to register,
1860 * and kick the beacon generator.
1861 */
1862 memcpy(priv_tx->data, skb->data, skb->len);
1863 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1864
1865 return 0;
1866}
1867
95ea3627
ID
1868static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1869{
1870 struct rt2x00_dev *rt2x00dev = hw->priv;
1871 u32 reg;
1872
1873 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1874 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1875}
1876
1877static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1878 .tx = rt2x00mac_tx,
4150c572
JB
1879 .start = rt2x00mac_start,
1880 .stop = rt2x00mac_stop,
95ea3627
ID
1881 .add_interface = rt2x00mac_add_interface,
1882 .remove_interface = rt2x00mac_remove_interface,
1883 .config = rt2x00mac_config,
1884 .config_interface = rt2x00mac_config_interface,
4150c572 1885 .configure_filter = rt2500pci_configure_filter,
95ea3627
ID
1886 .get_stats = rt2x00mac_get_stats,
1887 .set_retry_limit = rt2500pci_set_retry_limit,
471b3efd 1888 .bss_info_changed = rt2x00mac_bss_info_changed,
95ea3627
ID
1889 .conf_tx = rt2x00mac_conf_tx,
1890 .get_tx_stats = rt2x00mac_get_tx_stats,
1891 .get_tsf = rt2500pci_get_tsf,
1892 .reset_tsf = rt2500pci_reset_tsf,
5957da4c 1893 .beacon_update = rt2500pci_beacon_update,
95ea3627
ID
1894 .tx_last_beacon = rt2500pci_tx_last_beacon,
1895};
1896
1897static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1898 .irq_handler = rt2500pci_interrupt,
1899 .probe_hw = rt2500pci_probe_hw,
1900 .initialize = rt2x00pci_initialize,
1901 .uninitialize = rt2x00pci_uninitialize,
837e7f24
ID
1902 .init_rxentry = rt2500pci_init_rxentry,
1903 .init_txentry = rt2500pci_init_txentry,
95ea3627 1904 .set_device_state = rt2500pci_set_device_state,
95ea3627 1905 .rfkill_poll = rt2500pci_rfkill_poll,
95ea3627
ID
1906 .link_stats = rt2500pci_link_stats,
1907 .reset_tuner = rt2500pci_reset_tuner,
1908 .link_tuner = rt2500pci_link_tuner,
1909 .write_tx_desc = rt2500pci_write_tx_desc,
1910 .write_tx_data = rt2x00pci_write_tx_data,
1911 .kick_tx_queue = rt2500pci_kick_tx_queue,
1912 .fill_rxdone = rt2500pci_fill_rxdone,
6bb40dd1 1913 .config_intf = rt2500pci_config_intf,
5c58ee51 1914 .config_preamble = rt2500pci_config_preamble,
95ea3627
ID
1915 .config = rt2500pci_config,
1916};
1917
181d6902
ID
1918static const struct data_queue_desc rt2500pci_queue_rx = {
1919 .entry_num = RX_ENTRIES,
1920 .data_size = DATA_FRAME_SIZE,
1921 .desc_size = RXD_DESC_SIZE,
1922 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1923};
1924
1925static const struct data_queue_desc rt2500pci_queue_tx = {
1926 .entry_num = TX_ENTRIES,
1927 .data_size = DATA_FRAME_SIZE,
1928 .desc_size = TXD_DESC_SIZE,
1929 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1930};
1931
1932static const struct data_queue_desc rt2500pci_queue_bcn = {
1933 .entry_num = BEACON_ENTRIES,
1934 .data_size = MGMT_FRAME_SIZE,
1935 .desc_size = TXD_DESC_SIZE,
1936 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1937};
1938
1939static const struct data_queue_desc rt2500pci_queue_atim = {
1940 .entry_num = ATIM_ENTRIES,
1941 .data_size = DATA_FRAME_SIZE,
1942 .desc_size = TXD_DESC_SIZE,
1943 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1944};
1945
95ea3627 1946static const struct rt2x00_ops rt2500pci_ops = {
2360157c 1947 .name = KBUILD_MODNAME,
6bb40dd1
ID
1948 .max_sta_intf = 1,
1949 .max_ap_intf = 1,
95ea3627
ID
1950 .eeprom_size = EEPROM_SIZE,
1951 .rf_size = RF_SIZE,
181d6902
ID
1952 .rx = &rt2500pci_queue_rx,
1953 .tx = &rt2500pci_queue_tx,
1954 .bcn = &rt2500pci_queue_bcn,
1955 .atim = &rt2500pci_queue_atim,
95ea3627
ID
1956 .lib = &rt2500pci_rt2x00_ops,
1957 .hw = &rt2500pci_mac80211_ops,
1958#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1959 .debugfs = &rt2500pci_rt2x00debug,
1960#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1961};
1962
1963/*
1964 * RT2500pci module information.
1965 */
1966static struct pci_device_id rt2500pci_device_table[] = {
1967 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1968 { 0, }
1969};
1970
1971MODULE_AUTHOR(DRV_PROJECT);
1972MODULE_VERSION(DRV_VERSION);
1973MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1974MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1975MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1976MODULE_LICENSE("GPL");
1977
1978static struct pci_driver rt2500pci_driver = {
2360157c 1979 .name = KBUILD_MODNAME,
95ea3627
ID
1980 .id_table = rt2500pci_device_table,
1981 .probe = rt2x00pci_probe,
1982 .remove = __devexit_p(rt2x00pci_remove),
1983 .suspend = rt2x00pci_suspend,
1984 .resume = rt2x00pci_resume,
1985};
1986
1987static int __init rt2500pci_init(void)
1988{
1989 return pci_register_driver(&rt2500pci_driver);
1990}
1991
1992static void __exit rt2500pci_exit(void)
1993{
1994 pci_unregister_driver(&rt2500pci_driver);
1995}
1996
1997module_init(rt2500pci_init);
1998module_exit(rt2500pci_exit);
This page took 0.209951 seconds and 5 git commands to generate.