ath9k_common: clarify and correct jumbogram processing
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
CommitLineData
a9b3a9f7
ID
1/*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2800pci
23 Abstract: rt2800pci device specific routines.
24 Supported chipsets: RT2800E & RT2800ED.
25 */
26
27#include <linux/crc-ccitt.h>
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/platform_device.h>
35#include <linux/eeprom_93cx6.h>
36
37#include "rt2x00.h"
38#include "rt2x00pci.h"
39#include "rt2x00soc.h"
7ef5cc92 40#include "rt2800lib.h"
b54f78a8 41#include "rt2800.h"
a9b3a9f7
ID
42#include "rt2800pci.h"
43
44#ifdef CONFIG_RT2800PCI_PCI_MODULE
45#define CONFIG_RT2800PCI_PCI
46#endif
47
48#ifdef CONFIG_RT2800PCI_WISOC_MODULE
49#define CONFIG_RT2800PCI_WISOC
50#endif
51
52/*
53 * Allow hardware encryption to be disabled.
54 */
55static int modparam_nohwcrypt = 1;
56module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
57MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
58
a9b3a9f7
ID
59static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
60{
61 unsigned int i;
62 u32 reg;
63
64 for (i = 0; i < 200; i++) {
9ca21eb7 65 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
a9b3a9f7
ID
66
67 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
68 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
69 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
70 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
71 break;
72
73 udelay(REGISTER_BUSY_DELAY);
74 }
75
76 if (i == 200)
77 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
78
9ca21eb7
BZ
79 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
80 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
a9b3a9f7
ID
81}
82
83#ifdef CONFIG_RT2800PCI_WISOC
84static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
85{
86 u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
87
88 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
89}
90#else
91static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
92{
93}
94#endif /* CONFIG_RT2800PCI_WISOC */
95
96#ifdef CONFIG_RT2800PCI_PCI
97static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
98{
99 struct rt2x00_dev *rt2x00dev = eeprom->data;
100 u32 reg;
101
9ca21eb7 102 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
a9b3a9f7
ID
103
104 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
105 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
106 eeprom->reg_data_clock =
107 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
108 eeprom->reg_chip_select =
109 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
110}
111
112static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
113{
114 struct rt2x00_dev *rt2x00dev = eeprom->data;
115 u32 reg = 0;
116
117 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
118 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
119 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
120 !!eeprom->reg_data_clock);
121 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
122 !!eeprom->reg_chip_select);
123
9ca21eb7 124 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
a9b3a9f7
ID
125}
126
127static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
128{
129 struct eeprom_93cx6 eeprom;
130 u32 reg;
131
9ca21eb7 132 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
a9b3a9f7
ID
133
134 eeprom.data = rt2x00dev;
135 eeprom.register_read = rt2800pci_eepromregister_read;
136 eeprom.register_write = rt2800pci_eepromregister_write;
137 eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
138 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
139 eeprom.reg_data_in = 0;
140 eeprom.reg_data_out = 0;
141 eeprom.reg_data_clock = 0;
142 eeprom.reg_chip_select = 0;
143
144 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
145 EEPROM_SIZE / sizeof(u16));
146}
147
148static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
149 unsigned int i)
150{
151 u32 reg;
152
9ca21eb7 153 rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
a9b3a9f7
ID
154 rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
155 rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
156 rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
9ca21eb7 157 rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
a9b3a9f7
ID
158
159 /* Wait until the EEPROM has been loaded */
b4a77d0d 160 rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
a9b3a9f7
ID
161
162 /* Apparently the data is read from end to start */
9ca21eb7 163 rt2800_register_read(rt2x00dev, EFUSE_DATA3,
a9b3a9f7 164 (u32 *)&rt2x00dev->eeprom[i]);
9ca21eb7 165 rt2800_register_read(rt2x00dev, EFUSE_DATA2,
a9b3a9f7 166 (u32 *)&rt2x00dev->eeprom[i + 2]);
9ca21eb7 167 rt2800_register_read(rt2x00dev, EFUSE_DATA1,
a9b3a9f7 168 (u32 *)&rt2x00dev->eeprom[i + 4]);
9ca21eb7 169 rt2800_register_read(rt2x00dev, EFUSE_DATA0,
a9b3a9f7
ID
170 (u32 *)&rt2x00dev->eeprom[i + 6]);
171}
172
173static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
174{
175 unsigned int i;
176
177 for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
178 rt2800pci_efuse_read(rt2x00dev, i);
179}
180#else
181static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
182{
183}
184
185static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
186{
187}
188#endif /* CONFIG_RT2800PCI_PCI */
189
a9b3a9f7
ID
190/*
191 * Firmware functions
192 */
193static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
194{
195 return FIRMWARE_RT2860;
196}
197
198static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
199 const u8 *data, const size_t len)
200{
201 u16 fw_crc;
202 u16 crc;
203
204 /*
205 * Only support 8kb firmware files.
206 */
207 if (len != 8192)
208 return FW_BAD_LENGTH;
209
210 /*
211 * The last 2 bytes in the firmware array are the crc checksum itself,
212 * this means that we should never pass those 2 bytes to the crc
213 * algorithm.
214 */
215 fw_crc = (data[len - 2] << 8 | data[len - 1]);
216
217 /*
218 * Use the crc ccitt algorithm.
219 * This will return the same value as the legacy driver which
220 * used bit ordering reversion on the both the firmware bytes
221 * before input input as well as on the final output.
222 * Obviously using crc ccitt directly is much more efficient.
223 */
224 crc = crc_ccitt(~0, data, len - 2);
225
226 /*
227 * There is a small difference between the crc-itu-t + bitrev and
228 * the crc-ccitt crc calculation. In the latter method the 2 bytes
229 * will be swapped, use swab16 to convert the crc to the correct
230 * value.
231 */
232 crc = swab16(crc);
233
234 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
235}
236
237static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
238 const u8 *data, const size_t len)
239{
240 unsigned int i;
241 u32 reg;
242
243 /*
244 * Wait for stable hardware.
245 */
246 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
9ca21eb7 247 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
a9b3a9f7
ID
248 if (reg && reg != ~0)
249 break;
250 msleep(1);
251 }
252
253 if (i == REGISTER_BUSY_COUNT) {
254 ERROR(rt2x00dev, "Unstable hardware.\n");
255 return -EBUSY;
256 }
257
9ca21eb7
BZ
258 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
259 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
a9b3a9f7
ID
260
261 /*
262 * Disable DMA, will be reenabled later when enabling
263 * the radio.
264 */
9ca21eb7 265 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
a9b3a9f7
ID
266 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
267 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
268 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
269 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
270 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
9ca21eb7 271 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
a9b3a9f7
ID
272
273 /*
274 * enable Host program ram write selection
275 */
276 reg = 0;
277 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
9ca21eb7 278 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
a9b3a9f7
ID
279
280 /*
281 * Write firmware to device.
282 */
4f2732ce 283 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
a9b3a9f7
ID
284 data, len);
285
9ca21eb7
BZ
286 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
287 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
a9b3a9f7
ID
288
289 /*
290 * Wait for device to stabilize.
291 */
292 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
9ca21eb7 293 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
a9b3a9f7
ID
294 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
295 break;
296 msleep(1);
297 }
298
299 if (i == REGISTER_BUSY_COUNT) {
300 ERROR(rt2x00dev, "PBF system register not ready.\n");
301 return -EBUSY;
302 }
303
304 /*
305 * Disable interrupts
306 */
307 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
308
309 /*
310 * Initialize BBP R/W access agent
311 */
9ca21eb7
BZ
312 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
313 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
a9b3a9f7
ID
314
315 return 0;
316}
317
318/*
319 * Initialization functions.
320 */
321static bool rt2800pci_get_entry_state(struct queue_entry *entry)
322{
323 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
324 u32 word;
325
326 if (entry->queue->qid == QID_RX) {
327 rt2x00_desc_read(entry_priv->desc, 1, &word);
328
329 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
330 } else {
331 rt2x00_desc_read(entry_priv->desc, 1, &word);
332
333 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
334 }
335}
336
337static void rt2800pci_clear_entry(struct queue_entry *entry)
338{
339 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
340 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
341 u32 word;
342
343 if (entry->queue->qid == QID_RX) {
344 rt2x00_desc_read(entry_priv->desc, 0, &word);
345 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
346 rt2x00_desc_write(entry_priv->desc, 0, word);
347
348 rt2x00_desc_read(entry_priv->desc, 1, &word);
349 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
350 rt2x00_desc_write(entry_priv->desc, 1, word);
351 } else {
352 rt2x00_desc_read(entry_priv->desc, 1, &word);
353 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
354 rt2x00_desc_write(entry_priv->desc, 1, word);
355 }
356}
357
358static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
359{
360 struct queue_entry_priv_pci *entry_priv;
361 u32 reg;
362
9ca21eb7 363 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
a9b3a9f7
ID
364 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
365 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
366 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
367 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
368 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
369 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
370 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
9ca21eb7 371 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
a9b3a9f7 372
9ca21eb7
BZ
373 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
374 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
a9b3a9f7
ID
375
376 /*
377 * Initialize registers.
378 */
379 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
9ca21eb7
BZ
380 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
381 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
382 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
383 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
a9b3a9f7
ID
384
385 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
9ca21eb7
BZ
386 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
387 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
388 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
389 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
a9b3a9f7
ID
390
391 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
9ca21eb7
BZ
392 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
393 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
394 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
395 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
a9b3a9f7
ID
396
397 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
9ca21eb7
BZ
398 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
399 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
400 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
401 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
a9b3a9f7
ID
402
403 entry_priv = rt2x00dev->rx->entries[0].priv_data;
9ca21eb7
BZ
404 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
405 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
406 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
407 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
a9b3a9f7
ID
408
409 /*
410 * Enable global DMA configuration
411 */
9ca21eb7 412 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
a9b3a9f7
ID
413 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
414 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
415 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
9ca21eb7 416 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
a9b3a9f7 417
9ca21eb7 418 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
a9b3a9f7
ID
419
420 return 0;
421}
422
a9b3a9f7
ID
423/*
424 * Device state switch handlers.
425 */
426static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
427 enum dev_state state)
428{
429 u32 reg;
430
9ca21eb7 431 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
a9b3a9f7
ID
432 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
433 (state == STATE_RADIO_RX_ON) ||
434 (state == STATE_RADIO_RX_ON_LINK));
9ca21eb7 435 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
a9b3a9f7
ID
436}
437
438static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
439 enum dev_state state)
440{
441 int mask = (state == STATE_RADIO_IRQ_ON);
442 u32 reg;
443
444 /*
445 * When interrupts are being enabled, the interrupt registers
446 * should clear the register to assure a clean state.
447 */
448 if (state == STATE_RADIO_IRQ_ON) {
9ca21eb7
BZ
449 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
450 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
a9b3a9f7
ID
451 }
452
9ca21eb7 453 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
a9b3a9f7
ID
454 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
455 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
456 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
457 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
458 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
459 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
460 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
461 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
462 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
463 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
464 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
465 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
466 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
467 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
468 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
469 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
470 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
471 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
9ca21eb7 472 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
a9b3a9f7
ID
473}
474
475static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
476{
477 unsigned int i;
478 u32 reg;
479
480 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
9ca21eb7 481 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
a9b3a9f7
ID
482 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
483 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
484 return 0;
485
486 msleep(1);
487 }
488
489 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
490 return -EACCES;
491}
492
493static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
494{
495 u32 reg;
496 u16 word;
497
498 /*
499 * Initialize all registers.
500 */
501 if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
502 rt2800pci_init_queues(rt2x00dev) ||
fcf51541 503 rt2800_init_registers(rt2x00dev) ||
a9b3a9f7 504 rt2800pci_wait_wpdma_ready(rt2x00dev) ||
fcf51541
BZ
505 rt2800_init_bbp(rt2x00dev) ||
506 rt2800_init_rfcsr(rt2x00dev)))
a9b3a9f7
ID
507 return -EIO;
508
509 /*
510 * Send signal to firmware during boot time.
511 */
3a9e5b0f 512 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
a9b3a9f7
ID
513
514 /*
515 * Enable RX.
516 */
9ca21eb7 517 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
a9b3a9f7
ID
518 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
519 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
9ca21eb7 520 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
a9b3a9f7 521
9ca21eb7 522 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
a9b3a9f7
ID
523 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
524 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
525 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
526 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
9ca21eb7 527 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
a9b3a9f7 528
9ca21eb7 529 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
a9b3a9f7
ID
530 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
531 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
9ca21eb7 532 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
a9b3a9f7
ID
533
534 /*
535 * Initialize LED control
536 */
537 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
3a9e5b0f 538 rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
a9b3a9f7
ID
539 word & 0xff, (word >> 8) & 0xff);
540
541 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
3a9e5b0f 542 rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
a9b3a9f7
ID
543 word & 0xff, (word >> 8) & 0xff);
544
545 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
3a9e5b0f 546 rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
a9b3a9f7
ID
547 word & 0xff, (word >> 8) & 0xff);
548
549 return 0;
550}
551
552static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
553{
554 u32 reg;
555
9ca21eb7 556 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
a9b3a9f7
ID
557 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
558 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
559 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
560 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
561 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
9ca21eb7 562 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
a9b3a9f7 563
9ca21eb7
BZ
564 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
565 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
566 rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
a9b3a9f7 567
9ca21eb7 568 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
a9b3a9f7 569
9ca21eb7 570 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
a9b3a9f7
ID
571 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
572 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
573 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
574 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
575 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
576 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
577 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
9ca21eb7 578 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
a9b3a9f7 579
9ca21eb7
BZ
580 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
581 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
a9b3a9f7
ID
582
583 /* Wait for DMA, ignore error */
584 rt2800pci_wait_wpdma_ready(rt2x00dev);
585}
586
587static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
588 enum dev_state state)
589{
590 /*
591 * Always put the device to sleep (even when we intend to wakeup!)
592 * if the device is booting and wasn't asleep it will return
593 * failure when attempting to wakeup.
594 */
3a9e5b0f 595 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
a9b3a9f7
ID
596
597 if (state == STATE_AWAKE) {
3a9e5b0f 598 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
a9b3a9f7
ID
599 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
600 }
601
602 return 0;
603}
604
605static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
606 enum dev_state state)
607{
608 int retval = 0;
609
610 switch (state) {
611 case STATE_RADIO_ON:
612 /*
613 * Before the radio can be enabled, the device first has
614 * to be woken up. After that it needs a bit of time
615 * to be fully awake and then the radio can be enabled.
616 */
617 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
618 msleep(1);
619 retval = rt2800pci_enable_radio(rt2x00dev);
620 break;
621 case STATE_RADIO_OFF:
622 /*
623 * After the radio has been disabled, the device should
624 * be put to sleep for powersaving.
625 */
626 rt2800pci_disable_radio(rt2x00dev);
627 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
628 break;
629 case STATE_RADIO_RX_ON:
630 case STATE_RADIO_RX_ON_LINK:
631 case STATE_RADIO_RX_OFF:
632 case STATE_RADIO_RX_OFF_LINK:
633 rt2800pci_toggle_rx(rt2x00dev, state);
634 break;
635 case STATE_RADIO_IRQ_ON:
636 case STATE_RADIO_IRQ_OFF:
637 rt2800pci_toggle_irq(rt2x00dev, state);
638 break;
639 case STATE_DEEP_SLEEP:
640 case STATE_SLEEP:
641 case STATE_STANDBY:
642 case STATE_AWAKE:
643 retval = rt2800pci_set_state(rt2x00dev, state);
644 break;
645 default:
646 retval = -ENOTSUPP;
647 break;
648 }
649
650 if (unlikely(retval))
651 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
652 state, retval);
653
654 return retval;
655}
656
657/*
658 * TX descriptor initialization
659 */
660static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
661 struct sk_buff *skb,
662 struct txentry_desc *txdesc)
663{
664 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
665 __le32 *txd = skbdesc->desc;
666 __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
667 u32 word;
668
669 /*
670 * Initialize TX Info descriptor
671 */
672 rt2x00_desc_read(txwi, 0, &word);
673 rt2x00_set_field32(&word, TXWI_W0_FRAG,
674 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
675 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
676 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
677 rt2x00_set_field32(&word, TXWI_W0_TS,
678 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
679 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
680 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
681 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
682 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
683 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
684 rt2x00_set_field32(&word, TXWI_W0_BW,
685 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
686 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
687 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
688 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
689 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
690 rt2x00_desc_write(txwi, 0, word);
691
692 rt2x00_desc_read(txwi, 1, &word);
693 rt2x00_set_field32(&word, TXWI_W1_ACK,
694 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
695 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
696 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
697 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
698 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
699 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
f644fea1 700 txdesc->key_idx : 0xff);
a9b3a9f7
ID
701 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
702 skb->len - txdesc->l2pad);
703 rt2x00_set_field32(&word, TXWI_W1_PACKETID,
704 skbdesc->entry->queue->qid + 1);
705 rt2x00_desc_write(txwi, 1, word);
706
707 /*
708 * Always write 0 to IV/EIV fields, hardware will insert the IV
77dba493
BZ
709 * from the IVEIV register when TXD_W3_WIV is set to 0.
710 * When TXD_W3_WIV is set to 1 it will use the IV data
a9b3a9f7
ID
711 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
712 * crypto entry in the registers should be used to encrypt the frame.
713 */
714 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
715 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
716
717 /*
718 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
719 * must contains a TXWI structure + 802.11 header + padding + 802.11
720 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
721 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
722 * data. It means that LAST_SEC0 is always 0.
723 */
724
725 /*
726 * Initialize TX descriptor
727 */
728 rt2x00_desc_read(txd, 0, &word);
729 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
730 rt2x00_desc_write(txd, 0, word);
731
732 rt2x00_desc_read(txd, 1, &word);
733 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
734 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
735 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
736 rt2x00_set_field32(&word, TXD_W1_BURST,
737 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
738 rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
739 rt2x00dev->hw->extra_tx_headroom);
740 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
741 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
742 rt2x00_desc_write(txd, 1, word);
743
744 rt2x00_desc_read(txd, 2, &word);
745 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
746 skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
747 rt2x00_desc_write(txd, 2, word);
748
749 rt2x00_desc_read(txd, 3, &word);
750 rt2x00_set_field32(&word, TXD_W3_WIV,
751 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
752 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
753 rt2x00_desc_write(txd, 3, word);
754}
755
756/*
757 * TX data initialization
758 */
759static void rt2800pci_write_beacon(struct queue_entry *entry)
760{
761 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
762 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
763 unsigned int beacon_base;
764 u32 reg;
765
766 /*
767 * Disable beaconing while we are reloading the beacon data,
768 * otherwise we might be sending out invalid data.
769 */
9ca21eb7 770 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
a9b3a9f7 771 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
9ca21eb7 772 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
a9b3a9f7
ID
773
774 /*
775 * Write entire beacon with descriptor to register.
776 */
777 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
4f2732ce 778 rt2800_register_multiwrite(rt2x00dev,
a9b3a9f7
ID
779 beacon_base,
780 skbdesc->desc, skbdesc->desc_len);
4f2732ce 781 rt2800_register_multiwrite(rt2x00dev,
a9b3a9f7
ID
782 beacon_base + skbdesc->desc_len,
783 entry->skb->data, entry->skb->len);
784
785 /*
786 * Clean up beacon skb.
787 */
788 dev_kfree_skb_any(entry->skb);
789 entry->skb = NULL;
790}
791
792static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
793 const enum data_queue_qid queue_idx)
794{
795 struct data_queue *queue;
796 unsigned int idx, qidx = 0;
797 u32 reg;
798
799 if (queue_idx == QID_BEACON) {
9ca21eb7 800 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
a9b3a9f7
ID
801 if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
802 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
803 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
804 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
9ca21eb7 805 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
a9b3a9f7
ID
806 }
807 return;
808 }
809
810 if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
811 return;
812
813 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
814 idx = queue->index[Q_INDEX];
815
816 if (queue_idx == QID_MGMT)
817 qidx = 5;
818 else
819 qidx = queue_idx;
820
9ca21eb7 821 rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
a9b3a9f7
ID
822}
823
824static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
825 const enum data_queue_qid qid)
826{
827 u32 reg;
828
829 if (qid == QID_BEACON) {
9ca21eb7 830 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
a9b3a9f7
ID
831 return;
832 }
833
9ca21eb7 834 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
a9b3a9f7
ID
835 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
836 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
837 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
838 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
9ca21eb7 839 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
a9b3a9f7
ID
840}
841
842/*
843 * RX control handlers
844 */
845static void rt2800pci_fill_rxdone(struct queue_entry *entry,
846 struct rxdone_entry_desc *rxdesc)
847{
848 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
849 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
850 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
851 __le32 *rxd = entry_priv->desc;
852 __le32 *rxwi = (__le32 *)entry->skb->data;
853 u32 rxd3;
854 u32 rxwi0;
855 u32 rxwi1;
856 u32 rxwi2;
857 u32 rxwi3;
858
859 rt2x00_desc_read(rxd, 3, &rxd3);
860 rt2x00_desc_read(rxwi, 0, &rxwi0);
861 rt2x00_desc_read(rxwi, 1, &rxwi1);
862 rt2x00_desc_read(rxwi, 2, &rxwi2);
863 rt2x00_desc_read(rxwi, 3, &rxwi3);
864
865 if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
866 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
867
868 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
869 /*
870 * Unfortunately we don't know the cipher type used during
871 * decryption. This prevents us from correct providing
872 * correct statistics through debugfs.
873 */
874 rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
875 rxdesc->cipher_status =
876 rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
877 }
878
879 if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
880 /*
881 * Hardware has stripped IV/EIV data from 802.11 frame during
882 * decryption. Unfortunately the descriptor doesn't contain
883 * any fields with the EIV/IV data either, so they can't
884 * be restored by rt2x00lib.
885 */
886 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
887
888 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
889 rxdesc->flags |= RX_FLAG_DECRYPTED;
890 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
891 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
892 }
893
894 if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
895 rxdesc->dev_flags |= RXDONE_MY_BSS;
896
897 if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
898 rxdesc->dev_flags |= RXDONE_L2PAD;
899 skbdesc->flags |= SKBDESC_L2_PADDED;
900 }
901
902 if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
903 rxdesc->flags |= RX_FLAG_SHORT_GI;
904
905 if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
906 rxdesc->flags |= RX_FLAG_40MHZ;
907
908 /*
909 * Detect RX rate, always use MCS as signal type.
910 */
911 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
912 rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
913 rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
914
915 /*
916 * Mask of 0x8 bit to remove the short preamble flag.
917 */
918 if (rxdesc->rate_mode == RATE_MODE_CCK)
919 rxdesc->signal &= ~0x8;
920
921 rxdesc->rssi =
922 (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
923 rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
924
925 rxdesc->noise =
926 (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
927 rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
928
929 rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
930
931 /*
932 * Set RX IDX in register to inform hardware that we have handled
933 * this entry and it is available for reuse again.
934 */
9ca21eb7 935 rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
a9b3a9f7
ID
936
937 /*
938 * Remove TXWI descriptor from start of buffer.
939 */
940 skb_pull(entry->skb, RXWI_DESC_SIZE);
941 skb_trim(entry->skb, rxdesc->size);
942}
943
944/*
945 * Interrupt functions.
946 */
947static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
948{
949 struct data_queue *queue;
950 struct queue_entry *entry;
951 struct queue_entry *entry_done;
952 struct queue_entry_priv_pci *entry_priv;
953 struct txdone_entry_desc txdesc;
954 u32 word;
955 u32 reg;
956 u32 old_reg;
957 unsigned int type;
958 unsigned int index;
959 u16 mcs, real_mcs;
960
961 /*
962 * During each loop we will compare the freshly read
963 * TX_STA_FIFO register value with the value read from
964 * the previous loop. If the 2 values are equal then
965 * we should stop processing because the chance it
966 * quite big that the device has been unplugged and
967 * we risk going into an endless loop.
968 */
969 old_reg = 0;
970
971 while (1) {
9ca21eb7 972 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
a9b3a9f7
ID
973 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
974 break;
975
976 if (old_reg == reg)
977 break;
978 old_reg = reg;
979
980 /*
981 * Skip this entry when it contains an invalid
982 * queue identication number.
983 */
984 type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
985 if (type >= QID_RX)
986 continue;
987
988 queue = rt2x00queue_get_queue(rt2x00dev, type);
989 if (unlikely(!queue))
990 continue;
991
992 /*
993 * Skip this entry when it contains an invalid
994 * index number.
995 */
996 index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
997 if (unlikely(index >= queue->limit))
998 continue;
999
1000 entry = &queue->entries[index];
1001 entry_priv = entry->priv_data;
1002 rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
1003
1004 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1005 while (entry != entry_done) {
1006 /*
1007 * Catch up.
1008 * Just report any entries we missed as failed.
1009 */
1010 WARNING(rt2x00dev,
1011 "TX status report missed for entry %d\n",
1012 entry_done->entry_idx);
1013
1014 txdesc.flags = 0;
1015 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
1016 txdesc.retry = 0;
1017
1018 rt2x00lib_txdone(entry_done, &txdesc);
1019 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1020 }
1021
1022 /*
1023 * Obtain the status about this packet.
1024 */
1025 txdesc.flags = 0;
1026 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
1027 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1028 else
1029 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1030
1031 /*
1032 * Ralink has a retry mechanism using a global fallback
1033 * table. We setup this fallback table to try immediate
1034 * lower rate for all rates. In the TX_STA_FIFO,
1035 * the MCS field contains the MCS used for the successfull
1036 * transmission. If the first transmission succeed,
1037 * we have mcs == tx_mcs. On the second transmission,
1038 * we have mcs = tx_mcs - 1. So the number of
1039 * retry is (tx_mcs - mcs).
1040 */
1041 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
1042 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
1043 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
1044 txdesc.retry = mcs - min(mcs, real_mcs);
1045
1046 rt2x00lib_txdone(entry, &txdesc);
1047 }
1048}
1049
1050static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
1051{
1052 struct rt2x00_dev *rt2x00dev = dev_instance;
1053 u32 reg;
1054
1055 /* Read status and ACK all interrupts */
9ca21eb7
BZ
1056 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1057 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
a9b3a9f7
ID
1058
1059 if (!reg)
1060 return IRQ_NONE;
1061
1062 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1063 return IRQ_HANDLED;
1064
1065 /*
1066 * 1 - Rx ring done interrupt.
1067 */
1068 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
1069 rt2x00pci_rxdone(rt2x00dev);
1070
1071 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
1072 rt2800pci_txdone(rt2x00dev);
1073
1074 return IRQ_HANDLED;
1075}
1076
1077/*
1078 * Device probe functions.
1079 */
1080static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1081{
1082 u16 word;
1083 u8 *mac;
1084 u8 default_lna_gain;
1085
1086 /*
1087 * Read EEPROM into buffer
1088 */
1089 switch(rt2x00dev->chip.rt) {
1090 case RT2880:
1091 case RT3052:
1092 rt2800pci_read_eeprom_soc(rt2x00dev);
1093 break;
1094 case RT3090:
1095 rt2800pci_read_eeprom_efuse(rt2x00dev);
1096 break;
1097 default:
1098 rt2800pci_read_eeprom_pci(rt2x00dev);
1099 break;
1100 }
1101
1102 /*
1103 * Start validation of the data that has been read.
1104 */
1105 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1106 if (!is_valid_ether_addr(mac)) {
1107 random_ether_addr(mac);
1108 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1109 }
1110
1111 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1112 if (word == 0xffff) {
1113 rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
1114 rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1);
1115 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820);
1116 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1117 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1118 } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) {
1119 /*
1120 * There is a max of 2 RX streams for RT2860 series
1121 */
1122 if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2)
1123 rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2);
1124 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1125 }
1126
1127 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1128 if (word == 0xffff) {
1129 rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0);
1130 rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0);
1131 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1132 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1133 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1134 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0);
1135 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0);
1136 rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0);
1137 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0);
1138 rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0);
1139 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1140 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1141 }
1142
1143 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1144 if ((word & 0x00ff) == 0x00ff) {
1145 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1146 rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
1147 LED_MODE_TXRX_ACTIVITY);
1148 rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
1149 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1150 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555);
1151 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221);
1152 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8);
1153 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1154 }
1155
1156 /*
1157 * During the LNA validation we are going to use
1158 * lna0 as correct value. Note that EEPROM_LNA
1159 * is never validated.
1160 */
1161 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
1162 default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
1163
1164 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
1165 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
1166 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
1167 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
1168 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
1169 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
1170
1171 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
1172 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
1173 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
1174 if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
1175 rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
1176 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
1177 default_lna_gain);
1178 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
1179
1180 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
1181 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
1182 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
1183 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
1184 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
1185 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
1186
1187 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
1188 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
1189 rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
1190 if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
1191 rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
1192 rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
1193 default_lna_gain);
1194 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
1195
1196 return 0;
1197}
1198
1199static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1200{
1201 u32 reg;
1202 u16 value;
1203 u16 eeprom;
1204
1205 /*
1206 * Read EEPROM word for configuration.
1207 */
1208 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1209
1210 /*
1211 * Identify RF chipset.
1212 */
1213 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
9ca21eb7 1214 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
a9b3a9f7
ID
1215 rt2x00_set_chip_rf(rt2x00dev, value, reg);
1216
1217 if (!rt2x00_rf(&rt2x00dev->chip, RF2820) &&
1218 !rt2x00_rf(&rt2x00dev->chip, RF2850) &&
1219 !rt2x00_rf(&rt2x00dev->chip, RF2720) &&
1220 !rt2x00_rf(&rt2x00dev->chip, RF2750) &&
1221 !rt2x00_rf(&rt2x00dev->chip, RF3020) &&
1222 !rt2x00_rf(&rt2x00dev->chip, RF2020) &&
1223 !rt2x00_rf(&rt2x00dev->chip, RF3021) &&
1224 !rt2x00_rf(&rt2x00dev->chip, RF3022)) {
1225 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1226 return -ENODEV;
1227 }
1228
1229 /*
1230 * Identify default antenna configuration.
1231 */
1232 rt2x00dev->default_ant.tx =
1233 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH);
1234 rt2x00dev->default_ant.rx =
1235 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH);
1236
1237 /*
1238 * Read frequency offset and RF programming sequence.
1239 */
1240 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1241 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1242
1243 /*
1244 * Read external LNA informations.
1245 */
1246 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1247
1248 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
1249 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1250 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
1251 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1252
1253 /*
1254 * Detect if this device has an hardware controlled radio.
1255 */
1256 if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO))
1257 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1258
1259 /*
1260 * Store led settings, for correct led behaviour.
1261 */
1262#ifdef CONFIG_RT2X00_LIB_LEDS
f4450616
BZ
1263 rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1264 rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1265 rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
a9b3a9f7
ID
1266
1267 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
1268#endif /* CONFIG_RT2X00_LIB_LEDS */
1269
1270 return 0;
1271}
1272
1273/*
1274 * RF value list for rt2860
1275 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
1276 */
1277static const struct rf_channel rf_vals[] = {
1278 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
1279 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
1280 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
1281 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
1282 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
1283 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
1284 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
1285 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
1286 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
1287 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
1288 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
1289 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
1290 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
1291 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
1292
1293 /* 802.11 UNI / HyperLan 2 */
1294 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
1295 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
1296 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
1297 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
1298 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
1299 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
1300 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
1301 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
1302 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
1303 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
1304 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
1305 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
1306
1307 /* 802.11 HyperLan 2 */
1308 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
1309 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
1310 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
1311 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
1312 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
1313 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
1314 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
1315 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
1316 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
1317 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
1318 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
1319 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
1320 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
1321 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
1322 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
1323 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
1324
1325 /* 802.11 UNII */
1326 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
1327 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
1328 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
1329 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
1330 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
1331 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
1332 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
1333
1334 /* 802.11 Japan */
1335 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
1336 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
1337 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
1338 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
1339 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
1340 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
1341 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
1342};
1343
1344static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1345{
1346 struct hw_mode_spec *spec = &rt2x00dev->spec;
1347 struct channel_info *info;
1348 char *tx_power1;
1349 char *tx_power2;
1350 unsigned int i;
1351 u16 eeprom;
1352
1353 /*
1354 * Initialize all hw fields.
1355 */
1356 rt2x00dev->hw->flags =
1357 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1358 IEEE80211_HW_SIGNAL_DBM |
1359 IEEE80211_HW_SUPPORTS_PS |
1360 IEEE80211_HW_PS_NULLFUNC_STACK;
1361 rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
1362
1363 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1364 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1365 rt2x00_eeprom_addr(rt2x00dev,
1366 EEPROM_MAC_ADDR_0));
1367
1368 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1369
1370 /*
1371 * Initialize hw_mode information.
1372 */
1373 spec->supported_bands = SUPPORT_BAND_2GHZ;
1374 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1375
1376 if (rt2x00_rf(&rt2x00dev->chip, RF2820) ||
1377 rt2x00_rf(&rt2x00dev->chip, RF2720) ||
1378 rt2x00_rf(&rt2x00dev->chip, RF3020) ||
1379 rt2x00_rf(&rt2x00dev->chip, RF3021) ||
1380 rt2x00_rf(&rt2x00dev->chip, RF3022) ||
1381 rt2x00_rf(&rt2x00dev->chip, RF2020) ||
1382 rt2x00_rf(&rt2x00dev->chip, RF3052)) {
1383 spec->num_channels = 14;
1384 spec->channels = rf_vals;
1385 } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) ||
1386 rt2x00_rf(&rt2x00dev->chip, RF2750)) {
1387 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1388 spec->num_channels = ARRAY_SIZE(rf_vals);
1389 spec->channels = rf_vals;
1390 }
1391
1392 /*
1393 * Initialize HT information.
1394 */
1395 spec->ht.ht_supported = true;
1396 spec->ht.cap =
1397 IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1398 IEEE80211_HT_CAP_GRN_FLD |
1399 IEEE80211_HT_CAP_SGI_20 |
1400 IEEE80211_HT_CAP_SGI_40 |
1401 IEEE80211_HT_CAP_TX_STBC |
1402 IEEE80211_HT_CAP_RX_STBC |
1403 IEEE80211_HT_CAP_PSMP_SUPPORT;
1404 spec->ht.ampdu_factor = 3;
1405 spec->ht.ampdu_density = 4;
1406 spec->ht.mcs.tx_params =
1407 IEEE80211_HT_MCS_TX_DEFINED |
1408 IEEE80211_HT_MCS_TX_RX_DIFF |
1409 ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
1410 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
1411
1412 switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
1413 case 3:
1414 spec->ht.mcs.rx_mask[2] = 0xff;
1415 case 2:
1416 spec->ht.mcs.rx_mask[1] = 0xff;
1417 case 1:
1418 spec->ht.mcs.rx_mask[0] = 0xff;
1419 spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
1420 break;
1421 }
1422
1423 /*
1424 * Create channel information array
1425 */
1426 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1427 if (!info)
1428 return -ENOMEM;
1429
1430 spec->channels_info = info;
1431
1432 tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
1433 tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
1434
1435 for (i = 0; i < 14; i++) {
1436 info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
1437 info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
1438 }
1439
1440 if (spec->num_channels > 14) {
1441 tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
1442 tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
1443
1444 for (i = 14; i < spec->num_channels; i++) {
1445 info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
1446 info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
1447 }
1448 }
1449
1450 return 0;
1451}
1452
b0a1edab
BZ
1453static const struct rt2800_ops rt2800pci_rt2800_ops = {
1454 .register_read = rt2x00pci_register_read,
1455 .register_write = rt2x00pci_register_write,
1456 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1457
1458 .register_multiread = rt2x00pci_register_multiread,
1459 .register_multiwrite = rt2x00pci_register_multiwrite,
1460
1461 .regbusy_read = rt2x00pci_regbusy_read,
1462};
1463
a9b3a9f7
ID
1464static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1465{
1466 int retval;
1467
b0a1edab
BZ
1468 rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
1469
a9b3a9f7
ID
1470 /*
1471 * Allocate eeprom data.
1472 */
1473 retval = rt2800pci_validate_eeprom(rt2x00dev);
1474 if (retval)
1475 return retval;
1476
1477 retval = rt2800pci_init_eeprom(rt2x00dev);
1478 if (retval)
1479 return retval;
1480
1481 /*
1482 * Initialize hw specifications.
1483 */
1484 retval = rt2800pci_probe_hw_mode(rt2x00dev);
1485 if (retval)
1486 return retval;
1487
1488 /*
1489 * This device has multiple filters for control frames
1490 * and has a separate filter for PS Poll frames.
1491 */
1492 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
1493 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
1494
1495 /*
1496 * This device requires firmware.
1497 */
1498 if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
1499 !rt2x00_rt(&rt2x00dev->chip, RT3052))
1500 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
1501 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1502 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
1503 if (!modparam_nohwcrypt)
1504 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1505
1506 /*
1507 * Set the rssi offset.
1508 */
1509 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1510
1511 return 0;
1512}
1513
a9b3a9f7
ID
1514static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1515 .irq_handler = rt2800pci_interrupt,
1516 .probe_hw = rt2800pci_probe_hw,
1517 .get_firmware_name = rt2800pci_get_firmware_name,
1518 .check_firmware = rt2800pci_check_firmware,
1519 .load_firmware = rt2800pci_load_firmware,
1520 .initialize = rt2x00pci_initialize,
1521 .uninitialize = rt2x00pci_uninitialize,
1522 .get_entry_state = rt2800pci_get_entry_state,
1523 .clear_entry = rt2800pci_clear_entry,
1524 .set_device_state = rt2800pci_set_device_state,
f4450616
BZ
1525 .rfkill_poll = rt2800_rfkill_poll,
1526 .link_stats = rt2800_link_stats,
1527 .reset_tuner = rt2800_reset_tuner,
1528 .link_tuner = rt2800_link_tuner,
a9b3a9f7
ID
1529 .write_tx_desc = rt2800pci_write_tx_desc,
1530 .write_tx_data = rt2x00pci_write_tx_data,
1531 .write_beacon = rt2800pci_write_beacon,
1532 .kick_tx_queue = rt2800pci_kick_tx_queue,
1533 .kill_tx_queue = rt2800pci_kill_tx_queue,
1534 .fill_rxdone = rt2800pci_fill_rxdone,
f4450616
BZ
1535 .config_shared_key = rt2800_config_shared_key,
1536 .config_pairwise_key = rt2800_config_pairwise_key,
1537 .config_filter = rt2800_config_filter,
1538 .config_intf = rt2800_config_intf,
1539 .config_erp = rt2800_config_erp,
1540 .config_ant = rt2800_config_ant,
1541 .config = rt2800_config,
a9b3a9f7
ID
1542};
1543
1544static const struct data_queue_desc rt2800pci_queue_rx = {
1545 .entry_num = RX_ENTRIES,
1546 .data_size = AGGREGATION_SIZE,
1547 .desc_size = RXD_DESC_SIZE,
1548 .priv_size = sizeof(struct queue_entry_priv_pci),
1549};
1550
1551static const struct data_queue_desc rt2800pci_queue_tx = {
1552 .entry_num = TX_ENTRIES,
1553 .data_size = AGGREGATION_SIZE,
1554 .desc_size = TXD_DESC_SIZE,
1555 .priv_size = sizeof(struct queue_entry_priv_pci),
1556};
1557
1558static const struct data_queue_desc rt2800pci_queue_bcn = {
1559 .entry_num = 8 * BEACON_ENTRIES,
1560 .data_size = 0, /* No DMA required for beacons */
1561 .desc_size = TXWI_DESC_SIZE,
1562 .priv_size = sizeof(struct queue_entry_priv_pci),
1563};
1564
1565static const struct rt2x00_ops rt2800pci_ops = {
1566 .name = KBUILD_MODNAME,
1567 .max_sta_intf = 1,
1568 .max_ap_intf = 8,
1569 .eeprom_size = EEPROM_SIZE,
1570 .rf_size = RF_SIZE,
1571 .tx_queues = NUM_TX_QUEUES,
1572 .rx = &rt2800pci_queue_rx,
1573 .tx = &rt2800pci_queue_tx,
1574 .bcn = &rt2800pci_queue_bcn,
1575 .lib = &rt2800pci_rt2x00_ops,
2ce33995 1576 .hw = &rt2800_mac80211_ops,
a9b3a9f7 1577#ifdef CONFIG_RT2X00_LIB_DEBUGFS
f4450616 1578 .debugfs = &rt2800_rt2x00debug,
a9b3a9f7
ID
1579#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1580};
1581
1582/*
1583 * RT2800pci module information.
1584 */
1585static struct pci_device_id rt2800pci_device_table[] = {
1586 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1587 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1588 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1589 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1590 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1591 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1592 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1593 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1594 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1595 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1596 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1597 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1598 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1599 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1600 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1601 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1602 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1603 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1604 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1605 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1606 { 0, }
1607};
1608
1609MODULE_AUTHOR(DRV_PROJECT);
1610MODULE_VERSION(DRV_VERSION);
1611MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1612MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1613#ifdef CONFIG_RT2800PCI_PCI
1614MODULE_FIRMWARE(FIRMWARE_RT2860);
1615MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1616#endif /* CONFIG_RT2800PCI_PCI */
1617MODULE_LICENSE("GPL");
1618
1619#ifdef CONFIG_RT2800PCI_WISOC
1620#if defined(CONFIG_RALINK_RT288X)
1621__rt2x00soc_probe(RT2880, &rt2800pci_ops);
1622#elif defined(CONFIG_RALINK_RT305X)
1623__rt2x00soc_probe(RT3052, &rt2800pci_ops);
1624#endif
1625
1626static struct platform_driver rt2800soc_driver = {
1627 .driver = {
1628 .name = "rt2800_wmac",
1629 .owner = THIS_MODULE,
1630 .mod_name = KBUILD_MODNAME,
1631 },
1632 .probe = __rt2x00soc_probe,
1633 .remove = __devexit_p(rt2x00soc_remove),
1634 .suspend = rt2x00soc_suspend,
1635 .resume = rt2x00soc_resume,
1636};
1637#endif /* CONFIG_RT2800PCI_WISOC */
1638
1639#ifdef CONFIG_RT2800PCI_PCI
1640static struct pci_driver rt2800pci_driver = {
1641 .name = KBUILD_MODNAME,
1642 .id_table = rt2800pci_device_table,
1643 .probe = rt2x00pci_probe,
1644 .remove = __devexit_p(rt2x00pci_remove),
1645 .suspend = rt2x00pci_suspend,
1646 .resume = rt2x00pci_resume,
1647};
1648#endif /* CONFIG_RT2800PCI_PCI */
1649
1650static int __init rt2800pci_init(void)
1651{
1652 int ret = 0;
1653
1654#ifdef CONFIG_RT2800PCI_WISOC
1655 ret = platform_driver_register(&rt2800soc_driver);
1656 if (ret)
1657 return ret;
1658#endif
1659#ifdef CONFIG_RT2800PCI_PCI
1660 ret = pci_register_driver(&rt2800pci_driver);
1661 if (ret) {
1662#ifdef CONFIG_RT2800PCI_WISOC
1663 platform_driver_unregister(&rt2800soc_driver);
1664#endif
1665 return ret;
1666 }
1667#endif
1668
1669 return ret;
1670}
1671
1672static void __exit rt2800pci_exit(void)
1673{
1674#ifdef CONFIG_RT2800PCI_PCI
1675 pci_unregister_driver(&rt2800pci_driver);
1676#endif
1677#ifdef CONFIG_RT2800PCI_WISOC
1678 platform_driver_unregister(&rt2800soc_driver);
1679#endif
1680}
1681
1682module_init(rt2800pci_init);
1683module_exit(rt2800pci_exit);
This page took 0.111489 seconds and 5 git commands to generate.