rt2x00: Update copyright year to 2009
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
CommitLineData
95ea3627 1/*
4e54c711 2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
a7f3a06c 27#include <linux/crc-itu-t.h>
95ea3627
ID
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/eeprom_93cx6.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt61pci.h"
39
008c4482
ID
40/*
41 * Allow hardware encryption to be disabled.
42 */
43static int modparam_nohwcrypt = 0;
44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
95ea3627
ID
47/*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
c9c3b1a5
ID
58#define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60#define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62#define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
95ea3627 65
0e14f6d3 66static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
67 const unsigned int word, const u8 value)
68{
69 u32 reg;
70
8ff48a8b
ID
71 mutex_lock(&rt2x00dev->csr_mutex);
72
95ea3627 73 /*
c9c3b1a5
ID
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
95ea3627 76 */
c9c3b1a5
ID
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
8ff48a8b 86
8ff48a8b 87 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
88}
89
0e14f6d3 90static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
91 const unsigned int word, u8 *value)
92{
93 u32 reg;
94
8ff48a8b
ID
95 mutex_lock(&rt2x00dev->csr_mutex);
96
95ea3627 97 /*
c9c3b1a5
ID
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
95ea3627 104 */
c9c3b1a5
ID
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
95ea3627 110
c9c3b1a5 111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
95ea3627 112
c9c3b1a5
ID
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
95ea3627
ID
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
8ff48a8b 117
8ff48a8b 118 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
119}
120
0e14f6d3 121static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
122 const unsigned int word, const u32 value)
123{
124 u32 reg;
95ea3627
ID
125
126 if (!word)
127 return;
128
8ff48a8b
ID
129 mutex_lock(&rt2x00dev->csr_mutex);
130
c9c3b1a5
ID
131 /*
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
134 */
135 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136 reg = 0;
137 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
95ea3627
ID
144 }
145
8ff48a8b 146 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
147}
148
0e14f6d3 149static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
150 const u8 command, const u8 token,
151 const u8 arg0, const u8 arg1)
152{
153 u32 reg;
154
8ff48a8b
ID
155 mutex_lock(&rt2x00dev->csr_mutex);
156
c9c3b1a5
ID
157 /*
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
160 */
161 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
165 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
166 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
167
168 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
170 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
172 }
8ff48a8b 173
8ff48a8b
ID
174 mutex_unlock(&rt2x00dev->csr_mutex);
175
95ea3627
ID
176}
177
178static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
179{
180 struct rt2x00_dev *rt2x00dev = eeprom->data;
181 u32 reg;
182
183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
184
185 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187 eeprom->reg_data_clock =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189 eeprom->reg_chip_select =
190 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
191}
192
193static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
194{
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg = 0;
197
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
201 !!eeprom->reg_data_clock);
202 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
203 !!eeprom->reg_chip_select);
204
205 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
206}
207
208#ifdef CONFIG_RT2X00_LIB_DEBUGFS
95ea3627
ID
209static const struct rt2x00debug rt61pci_rt2x00debug = {
210 .owner = THIS_MODULE,
211 .csr = {
743b97ca
ID
212 .read = rt2x00pci_register_read,
213 .write = rt2x00pci_register_write,
214 .flags = RT2X00DEBUGFS_OFFSET,
215 .word_base = CSR_REG_BASE,
95ea3627
ID
216 .word_size = sizeof(u32),
217 .word_count = CSR_REG_SIZE / sizeof(u32),
218 },
219 .eeprom = {
220 .read = rt2x00_eeprom_read,
221 .write = rt2x00_eeprom_write,
743b97ca 222 .word_base = EEPROM_BASE,
95ea3627
ID
223 .word_size = sizeof(u16),
224 .word_count = EEPROM_SIZE / sizeof(u16),
225 },
226 .bbp = {
227 .read = rt61pci_bbp_read,
228 .write = rt61pci_bbp_write,
743b97ca 229 .word_base = BBP_BASE,
95ea3627
ID
230 .word_size = sizeof(u8),
231 .word_count = BBP_SIZE / sizeof(u8),
232 },
233 .rf = {
234 .read = rt2x00_rf_read,
235 .write = rt61pci_rf_write,
743b97ca 236 .word_base = RF_BASE,
95ea3627
ID
237 .word_size = sizeof(u32),
238 .word_count = RF_SIZE / sizeof(u32),
239 },
240};
241#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242
58169529 243#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627
ID
244static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
245{
246 u32 reg;
247
248 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
181d6902 249 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
95ea3627 250}
81873e9c
ID
251#else
252#define rt61pci_rfkill_poll NULL
58169529 253#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627 254
771fd565 255#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 256static void rt61pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
257 enum led_brightness brightness)
258{
259 struct rt2x00_led *led =
260 container_of(led_cdev, struct rt2x00_led, led_dev);
261 unsigned int enabled = brightness != LED_OFF;
262 unsigned int a_mode =
263 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264 unsigned int bg_mode =
265 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
266
267 if (led->type == LED_TYPE_RADIO) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_RADIO_STATUS, enabled);
270
271 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272 (led->rt2x00dev->led_mcu_reg & 0xff),
273 ((led->rt2x00dev->led_mcu_reg >> 8)));
274 } else if (led->type == LED_TYPE_ASSOC) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278 MCU_LEDCS_LINK_A_STATUS, a_mode);
279
280 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281 (led->rt2x00dev->led_mcu_reg & 0xff),
282 ((led->rt2x00dev->led_mcu_reg >> 8)));
283 } else if (led->type == LED_TYPE_QUALITY) {
284 /*
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
288 */
289 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290 brightness / (LED_FULL / 6), 0);
291 }
292}
a2e1d52a
ID
293
294static int rt61pci_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
297{
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
300 u32 reg;
301
302 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
303 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
304 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
305 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
306
307 return 0;
308}
475433be
ID
309
310static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
312 enum led_type type)
313{
314 led->rt2x00dev = rt2x00dev;
315 led->type = type;
316 led->led_dev.brightness_set = rt61pci_brightness_set;
317 led->led_dev.blink_set = rt61pci_blink_set;
318 led->flags = LED_INITIALIZED;
319}
771fd565 320#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 321
95ea3627
ID
322/*
323 * Configuration handlers.
324 */
61e754f4
ID
325static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_crypto *crypto,
327 struct ieee80211_key_conf *key)
328{
329 struct hw_key_entry key_entry;
330 struct rt2x00_field32 field;
331 u32 mask;
332 u32 reg;
333
334 if (crypto->cmd == SET_KEY) {
335 /*
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
340 * left.
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
343 * entries.
344 */
345 mask = (0xf << crypto->bssidx);
346
347 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
348 reg &= mask;
349
350 if (reg && reg == mask)
351 return -ENOSPC;
352
acaf908d 353 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
354
355 /*
356 * Upload key to hardware
357 */
358 memcpy(key_entry.key, crypto->key,
359 sizeof(key_entry.key));
360 memcpy(key_entry.tx_mic, crypto->tx_mic,
361 sizeof(key_entry.tx_mic));
362 memcpy(key_entry.rx_mic, crypto->rx_mic,
363 sizeof(key_entry.rx_mic));
364
365 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367 &key_entry, sizeof(key_entry));
368
369 /*
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
375 */
376 if (key->hw_key_idx < 8) {
377 field.bit_offset = (3 * key->hw_key_idx);
378 field.bit_mask = 0x7 << field.bit_offset;
379
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
381 rt2x00_set_field32(&reg, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
383 } else {
384 field.bit_offset = (3 * (key->hw_key_idx - 8));
385 field.bit_mask = 0x7 << field.bit_offset;
386
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
388 rt2x00_set_field32(&reg, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
390 }
391
392 /*
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
400 */
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402 }
403
404 /*
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
409 */
410 mask = 1 << key->hw_key_idx;
411
412 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
413 if (crypto->cmd == SET_KEY)
414 reg |= mask;
415 else if (crypto->cmd == DISABLE_KEY)
416 reg &= ~mask;
417 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
418
419 return 0;
420}
421
422static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423 struct rt2x00lib_crypto *crypto,
424 struct ieee80211_key_conf *key)
425{
426 struct hw_pairwise_ta_entry addr_entry;
427 struct hw_key_entry key_entry;
428 u32 mask;
429 u32 reg;
430
431 if (crypto->cmd == SET_KEY) {
432 /*
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
437 * the next register.
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
440 */
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
442 if (reg && reg == ~0) {
443 key->hw_key_idx = 32;
444 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
445 if (reg && reg == ~0)
446 return -ENOSPC;
447 }
448
acaf908d 449 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
450
451 /*
452 * Upload key to hardware
453 */
454 memcpy(key_entry.key, crypto->key,
455 sizeof(key_entry.key));
456 memcpy(key_entry.tx_mic, crypto->tx_mic,
457 sizeof(key_entry.tx_mic));
458 memcpy(key_entry.rx_mic, crypto->rx_mic,
459 sizeof(key_entry.rx_mic));
460
461 memset(&addr_entry, 0, sizeof(addr_entry));
462 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463 addr_entry.cipher = crypto->cipher;
464
465 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467 &key_entry, sizeof(key_entry));
468
469 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471 &addr_entry, sizeof(addr_entry));
472
473 /*
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
476 * by the hardware.
477 */
478 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
479 reg |= (1 << crypto->bssidx);
480 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
481
482 /*
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
490 */
491 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
492 }
493
494 /*
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
499 */
500 if (key->hw_key_idx < 32) {
501 mask = 1 << key->hw_key_idx;
502
503 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
504 if (crypto->cmd == SET_KEY)
505 reg |= mask;
506 else if (crypto->cmd == DISABLE_KEY)
507 reg &= ~mask;
508 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
509 } else {
510 mask = 1 << (key->hw_key_idx - 32);
511
512 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
513 if (crypto->cmd == SET_KEY)
514 reg |= mask;
515 else if (crypto->cmd == DISABLE_KEY)
516 reg &= ~mask;
517 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
518 }
519
520 return 0;
521}
522
3a643d24
ID
523static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524 const unsigned int filter_flags)
525{
526 u32 reg;
527
528 /*
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
533 */
534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
536 !(filter_flags & FIF_FCSFAIL));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
538 !(filter_flags & FIF_PLCPFAIL));
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
540 !(filter_flags & FIF_CONTROL));
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
542 !(filter_flags & FIF_PROMISC_IN_BSS));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
e0b005fa
ID
544 !(filter_flags & FIF_PROMISC_IN_BSS) &&
545 !rt2x00dev->intf_ap_count);
3a643d24
ID
546 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
548 !(filter_flags & FIF_ALLMULTI));
549 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
550 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
551 !(filter_flags & FIF_CONTROL));
552 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
553}
554
6bb40dd1
ID
555static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00_intf *intf,
557 struct rt2x00intf_conf *conf,
558 const unsigned int flags)
95ea3627 559{
6bb40dd1
ID
560 unsigned int beacon_base;
561 u32 reg;
95ea3627 562
6bb40dd1
ID
563 if (flags & CONFIG_UPDATE_TYPE) {
564 /*
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
569 */
570 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
6bb40dd1 571 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
95ea3627 572
6bb40dd1
ID
573 /*
574 * Enable synchronisation.
575 */
576 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
fd3c91c5 577 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
6bb40dd1 578 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
fd3c91c5 579 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
6bb40dd1
ID
580 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
581 }
95ea3627 582
6bb40dd1
ID
583 if (flags & CONFIG_UPDATE_MAC) {
584 reg = le32_to_cpu(conf->mac[1]);
585 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586 conf->mac[1] = cpu_to_le32(reg);
95ea3627 587
6bb40dd1
ID
588 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589 conf->mac, sizeof(conf->mac));
590 }
95ea3627 591
6bb40dd1
ID
592 if (flags & CONFIG_UPDATE_BSSID) {
593 reg = le32_to_cpu(conf->bssid[1]);
594 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
595 conf->bssid[1] = cpu_to_le32(reg);
95ea3627 596
6bb40dd1
ID
597 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598 conf->bssid, sizeof(conf->bssid));
599 }
95ea3627
ID
600}
601
3a643d24
ID
602static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_erp *erp)
95ea3627 604{
95ea3627 605 u32 reg;
95ea3627
ID
606
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
72810379 608 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
95ea3627
ID
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
610
611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
4f5af6eb 612 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
72810379 613 !!erp->short_preamble);
95ea3627 614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
95ea3627 615
e4ea1c40 616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
95ea3627 617
e4ea1c40
ID
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
95ea3627 621
e4ea1c40
ID
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
95ea3627
ID
627}
628
629static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
addc81bd 630 struct antenna_setup *ant)
95ea3627
ID
631{
632 u8 r3;
633 u8 r4;
634 u8 r77;
635
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 641 rt2x00_rf(&rt2x00dev->chip, RF5325));
e4cd2ff8
ID
642
643 /*
644 * Configure the RX antenna.
645 */
addc81bd 646 switch (ant->rx) {
95ea3627 647 case ANTENNA_HW_DIVERSITY:
acaa410d 648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627 649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
8318d78a 650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
95ea3627
ID
651 break;
652 case ANTENNA_A:
acaa410d 653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 else
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
659 break;
660 case ANTENNA_B:
a4fe07d9 661 default:
acaa410d 662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
668 break;
669 }
670
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
674}
675
676static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
addc81bd 677 struct antenna_setup *ant)
95ea3627
ID
678{
679 u8 r3;
680 u8 r4;
681 u8 r77;
682
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 688 rt2x00_rf(&rt2x00dev->chip, RF2529));
95ea3627
ID
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
691
e4cd2ff8
ID
692 /*
693 * Configure the RX antenna.
694 */
addc81bd 695 switch (ant->rx) {
95ea3627 696 case ANTENNA_HW_DIVERSITY:
acaa410d 697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627
ID
698 break;
699 case ANTENNA_A:
acaa410d
MN
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
702 break;
703 case ANTENNA_B:
a4fe07d9 704 default:
acaa410d
MN
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
707 break;
708 }
709
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
713}
714
715static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
717{
718 u32 reg;
719
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721
acaa410d
MN
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724
725 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
95ea3627
ID
729}
730
731static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
addc81bd 732 struct antenna_setup *ant)
95ea3627 733{
95ea3627
ID
734 u8 r3;
735 u8 r4;
736 u8 r77;
737
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
e4cd2ff8 741
e4cd2ff8
ID
742 /*
743 * Configure the RX antenna.
744 */
745 switch (ant->rx) {
746 case ANTENNA_A:
acaa410d
MN
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
e4cd2ff8 750 break;
e4cd2ff8
ID
751 case ANTENNA_HW_DIVERSITY:
752 /*
a4fe07d9
ID
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
e4cd2ff8
ID
756 */
757 case ANTENNA_B:
a4fe07d9 758 default:
acaa410d
MN
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
e4cd2ff8
ID
762 break;
763 }
764
e4cd2ff8 765 rt61pci_bbp_write(rt2x00dev, 77, r77);
95ea3627
ID
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
768}
769
770struct antenna_sel {
771 u8 word;
772 /*
773 * value[0] -> non-LNA
774 * value[1] -> LNA
775 */
776 u8 value[2];
777};
778
779static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
788};
789
790static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
799};
800
e4ea1c40
ID
801static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
95ea3627
ID
803{
804 const struct antenna_sel *sel;
805 unsigned int lna;
806 unsigned int i;
807 u32 reg;
808
a4fe07d9
ID
809 /*
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
812 */
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
815
8318d78a 816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
817 sel = antenna_sel_a;
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
95ea3627
ID
819 } else {
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
95ea3627
ID
822 }
823
acaa410d
MN
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828
ddc827f9 829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
8318d78a 830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
ddc827f9 831 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
8318d78a 832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
ddc827f9 833
95ea3627
ID
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
addc81bd 838 rt61pci_config_antenna_5x(rt2x00dev, ant);
95ea3627 839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
addc81bd 840 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627
ID
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
addc81bd 843 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627 844 else
addc81bd 845 rt61pci_config_antenna_2529(rt2x00dev, ant);
95ea3627
ID
846 }
847}
848
e4ea1c40
ID
849static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
851{
852 u16 eeprom;
853 short lna_gain = 0;
854
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857 lna_gain += 14;
858
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861 } else {
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863 lna_gain += 14;
864
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867 }
868
869 rt2x00dev->lna_gain = lna_gain;
870}
871
872static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
874{
875 u8 r3;
876 u8 r94;
877 u8 smart;
878
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
881
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
884
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
888
889 r94 = 6;
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893 r94 += txpower;
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
895
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901 udelay(200);
902
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908 udelay(200);
909
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915 msleep(1);
916}
917
918static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919 const int txpower)
920{
921 struct rf_channel rf;
922
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
927
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
929}
930
931static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
5c58ee51 932 struct rt2x00lib_conf *libconf)
95ea3627
ID
933{
934 u32 reg;
935
e4ea1c40
ID
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942}
95ea3627 943
e4ea1c40
ID
944static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
946{
947 u32 reg;
95ea3627
ID
948
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
950 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
952
953 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
954 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
956
957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
5c58ee51
ID
958 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
959 libconf->conf->beacon_int * 16);
95ea3627
ID
960 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
961}
962
7d7f19cc
ID
963static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964 struct rt2x00lib_conf *libconf)
965{
966 enum dev_state state =
967 (libconf->conf->flags & IEEE80211_CONF_PS) ?
968 STATE_SLEEP : STATE_AWAKE;
969 u32 reg;
970
971 if (state == STATE_SLEEP) {
972 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
973 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
974 libconf->conf->beacon_int - 10);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976 libconf->conf->listen_interval - 1);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
978
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
982
983 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
984 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
985
986 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
989
990 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
991 } else {
992 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
993 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
996 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
997 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
998
999 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1002
1003 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1004 }
1005}
1006
95ea3627 1007static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
1008 struct rt2x00lib_conf *libconf,
1009 const unsigned int flags)
95ea3627 1010{
ba2ab471
ID
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev, libconf);
1013
e4ea1c40 1014 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
1015 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016 libconf->conf->power_level);
e4ea1c40
ID
1017 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51 1019 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
e4ea1c40
ID
1020 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
5c58ee51 1023 rt61pci_config_duration(rt2x00dev, libconf);
7d7f19cc
ID
1024 if (flags & IEEE80211_CONF_CHANGE_PS)
1025 rt61pci_config_ps(rt2x00dev, libconf);
95ea3627
ID
1026}
1027
95ea3627
ID
1028/*
1029 * Link tuning
1030 */
ebcf26da
ID
1031static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032 struct link_qual *qual)
95ea3627
ID
1033{
1034 u32 reg;
1035
1036 /*
1037 * Update FCS error count from register.
1038 */
1039 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
ebcf26da 1040 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
95ea3627
ID
1041
1042 /*
1043 * Update False CCA count from register.
1044 */
1045 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
ebcf26da 1046 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
95ea3627
ID
1047}
1048
5352ff65
ID
1049static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1050 struct link_qual *qual, u8 vgc_level)
eb20b4e8 1051{
5352ff65 1052 if (qual->vgc_level != vgc_level) {
eb20b4e8 1053 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
5352ff65
ID
1054 qual->vgc_level = vgc_level;
1055 qual->vgc_level_reg = vgc_level;
eb20b4e8
ID
1056 }
1057}
1058
5352ff65
ID
1059static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1060 struct link_qual *qual)
95ea3627 1061{
5352ff65 1062 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
95ea3627
ID
1063}
1064
5352ff65
ID
1065static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1066 struct link_qual *qual, const u32 count)
95ea3627 1067{
95ea3627
ID
1068 u8 up_bound;
1069 u8 low_bound;
1070
95ea3627
ID
1071 /*
1072 * Determine r17 bounds.
1073 */
1497074a 1074 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1075 low_bound = 0x28;
1076 up_bound = 0x48;
1077 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1078 low_bound += 0x10;
1079 up_bound += 0x10;
1080 }
1081 } else {
1082 low_bound = 0x20;
1083 up_bound = 0x40;
1084 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1085 low_bound += 0x10;
1086 up_bound += 0x10;
1087 }
1088 }
1089
6bb40dd1
ID
1090 /*
1091 * If we are not associated, we should go straight to the
1092 * dynamic CCA tuning.
1093 */
1094 if (!rt2x00dev->intf_associated)
1095 goto dynamic_cca_tune;
1096
95ea3627
ID
1097 /*
1098 * Special big-R17 for very short distance
1099 */
5352ff65
ID
1100 if (qual->rssi >= -35) {
1101 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
95ea3627
ID
1102 return;
1103 }
1104
1105 /*
1106 * Special big-R17 for short distance
1107 */
5352ff65
ID
1108 if (qual->rssi >= -58) {
1109 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
95ea3627
ID
1110 return;
1111 }
1112
1113 /*
1114 * Special big-R17 for middle-short distance
1115 */
5352ff65
ID
1116 if (qual->rssi >= -66) {
1117 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
95ea3627
ID
1118 return;
1119 }
1120
1121 /*
1122 * Special mid-R17 for middle distance
1123 */
5352ff65
ID
1124 if (qual->rssi >= -74) {
1125 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
95ea3627
ID
1126 return;
1127 }
1128
1129 /*
1130 * Special case: Change up_bound based on the rssi.
1131 * Lower up_bound when rssi is weaker then -74 dBm.
1132 */
5352ff65 1133 up_bound -= 2 * (-74 - qual->rssi);
95ea3627
ID
1134 if (low_bound > up_bound)
1135 up_bound = low_bound;
1136
5352ff65
ID
1137 if (qual->vgc_level > up_bound) {
1138 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
95ea3627
ID
1139 return;
1140 }
1141
6bb40dd1
ID
1142dynamic_cca_tune:
1143
95ea3627
ID
1144 /*
1145 * r17 does not yet exceed upper limit, continue and base
1146 * the r17 tuning on the false CCA count.
1147 */
5352ff65
ID
1148 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1149 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1150 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1151 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
95ea3627
ID
1152}
1153
1154/*
a7f3a06c 1155 * Firmware functions
95ea3627
ID
1156 */
1157static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1158{
1159 char *fw_name;
1160
1161 switch (rt2x00dev->chip.rt) {
1162 case RT2561:
1163 fw_name = FIRMWARE_RT2561;
1164 break;
1165 case RT2561s:
1166 fw_name = FIRMWARE_RT2561s;
1167 break;
1168 case RT2661:
1169 fw_name = FIRMWARE_RT2661;
1170 break;
1171 default:
1172 fw_name = NULL;
1173 break;
1174 }
1175
1176 return fw_name;
1177}
1178
f160ebcb 1179static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
a7f3a06c
ID
1180{
1181 u16 crc;
1182
1183 /*
1184 * Use the crc itu-t algorithm.
1185 * The last 2 bytes in the firmware array are the crc checksum itself,
1186 * this means that we should never pass those 2 bytes to the crc
1187 * algorithm.
1188 */
1189 crc = crc_itu_t(0, data, len - 2);
1190 crc = crc_itu_t_byte(crc, 0);
1191 crc = crc_itu_t_byte(crc, 0);
1192
1193 return crc;
1194}
1195
f160ebcb 1196static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
95ea3627
ID
1197 const size_t len)
1198{
1199 int i;
1200 u32 reg;
1201
1202 /*
1203 * Wait for stable hardware.
1204 */
1205 for (i = 0; i < 100; i++) {
1206 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1207 if (reg)
1208 break;
1209 msleep(1);
1210 }
1211
1212 if (!reg) {
1213 ERROR(rt2x00dev, "Unstable hardware.\n");
1214 return -EBUSY;
1215 }
1216
1217 /*
1218 * Prepare MCU and mailbox for firmware loading.
1219 */
1220 reg = 0;
1221 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1222 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1224 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1225 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1226
1227 /*
1228 * Write firmware to device.
1229 */
1230 reg = 0;
1231 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1232 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1233 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234
1235 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1236 data, len);
1237
1238 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1239 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1240
1241 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1242 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244 for (i = 0; i < 100; i++) {
1245 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1246 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1247 break;
1248 msleep(1);
1249 }
1250
1251 if (i == 100) {
1252 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1253 return -EBUSY;
1254 }
1255
e6d3e902
ID
1256 /*
1257 * Hardware needs another millisecond before it is ready.
1258 */
1259 msleep(1);
1260
95ea3627
ID
1261 /*
1262 * Reset MAC and BBP registers.
1263 */
1264 reg = 0;
1265 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1266 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1267 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1270 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1271 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1272 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1273
1274 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1275 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1276 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278 return 0;
1279}
1280
a7f3a06c
ID
1281/*
1282 * Initialization functions.
1283 */
798b7adb 1284static bool rt61pci_get_entry_state(struct queue_entry *entry)
95ea3627 1285{
b8be63ff 1286 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1287 u32 word;
1288
798b7adb
ID
1289 if (entry->queue->qid == QID_RX) {
1290 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627 1291
798b7adb
ID
1292 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1293 } else {
1294 rt2x00_desc_read(entry_priv->desc, 0, &word);
1295
1296 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1297 rt2x00_get_field32(word, TXD_W0_VALID));
1298 }
95ea3627
ID
1299}
1300
798b7adb 1301static void rt61pci_clear_entry(struct queue_entry *entry)
95ea3627 1302{
b8be63ff 1303 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
798b7adb 1304 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
1305 u32 word;
1306
798b7adb
ID
1307 if (entry->queue->qid == QID_RX) {
1308 rt2x00_desc_read(entry_priv->desc, 5, &word);
1309 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1310 skbdesc->skb_dma);
1311 rt2x00_desc_write(entry_priv->desc, 5, word);
1312
1313 rt2x00_desc_read(entry_priv->desc, 0, &word);
1314 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1315 rt2x00_desc_write(entry_priv->desc, 0, word);
1316 } else {
1317 rt2x00_desc_read(entry_priv->desc, 0, &word);
1318 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1319 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1320 rt2x00_desc_write(entry_priv->desc, 0, word);
1321 }
95ea3627
ID
1322}
1323
181d6902 1324static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 1325{
b8be63ff 1326 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
1327 u32 reg;
1328
95ea3627
ID
1329 /*
1330 * Initialize registers.
1331 */
1332 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1333 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
181d6902 1334 rt2x00dev->tx[0].limit);
95ea3627 1335 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
181d6902 1336 rt2x00dev->tx[1].limit);
95ea3627 1337 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
181d6902 1338 rt2x00dev->tx[2].limit);
95ea3627 1339 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
181d6902 1340 rt2x00dev->tx[3].limit);
95ea3627
ID
1341 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1342
1343 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
95ea3627 1344 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
181d6902 1345 rt2x00dev->tx[0].desc_size / 4);
95ea3627
ID
1346 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1347
b8be63ff 1348 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 1349 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
30b3a23c 1350 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
b8be63ff 1351 entry_priv->desc_dma);
95ea3627
ID
1352 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1353
b8be63ff 1354 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 1355 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
30b3a23c 1356 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
b8be63ff 1357 entry_priv->desc_dma);
95ea3627
ID
1358 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1359
b8be63ff 1360 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
95ea3627 1361 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
30b3a23c 1362 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
b8be63ff 1363 entry_priv->desc_dma);
95ea3627
ID
1364 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1365
b8be63ff 1366 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
95ea3627 1367 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
30b3a23c 1368 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
b8be63ff 1369 entry_priv->desc_dma);
95ea3627
ID
1370 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1371
95ea3627 1372 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
181d6902 1373 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
95ea3627
ID
1374 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1375 rt2x00dev->rx->desc_size / 4);
1376 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1377 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1378
b8be63ff 1379 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 1380 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
30b3a23c 1381 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
b8be63ff 1382 entry_priv->desc_dma);
95ea3627
ID
1383 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1384
1385 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1386 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1387 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1388 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1389 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
95ea3627
ID
1390 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1391
1392 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1393 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1394 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1395 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1396 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
95ea3627
ID
1397 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1398
1399 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1400 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1401 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1402
1403 return 0;
1404}
1405
1406static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1407{
1408 u32 reg;
1409
1410 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1411 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1412 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1413 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1414 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1415
1416 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1417 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1418 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1419 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1420 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1421 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1422 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1423 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1424 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1425 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1426
1427 /*
1428 * CCK TXD BBP registers
1429 */
1430 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1431 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1432 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1433 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1434 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1435 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1436 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1437 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1438 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1439 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1440
1441 /*
1442 * OFDM TXD BBP registers
1443 */
1444 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1445 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1446 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1447 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1448 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1449 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1450 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1451 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1452
1453 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1454 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1455 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1456 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1457 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1458 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1459
1460 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1461 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1462 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1463 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1464 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1465 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1466
1f909162
ID
1467 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1468 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1469 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1470 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1471 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1472 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1473 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1474 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1475
95ea3627
ID
1476 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1477
1478 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1479
1480 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1481 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1482 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1483
1484 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1485
1486 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1487 return -EBUSY;
1488
1489 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1490
1491 /*
1492 * Invalidate all Shared Keys (SEC_CSR0),
1493 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1494 */
1495 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1496 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1497 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1498
1499 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1500 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1501 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1502 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1503
1504 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1505
1506 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1507
1508 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1509
6bb40dd1
ID
1510 /*
1511 * Clear all beacons
1512 * For the Beacon base registers we only need to clear
1513 * the first byte since that byte contains the VALID and OWNER
1514 * bits which (when set to 0) will invalidate the entire beacon.
1515 */
1516 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1517 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1518 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1519 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1520
95ea3627
ID
1521 /*
1522 * We must clear the error counters.
1523 * These registers are cleared on read,
1524 * so we may pass a useless variable to store the value.
1525 */
1526 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1527 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1528 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1529
1530 /*
1531 * Reset MAC and BBP registers.
1532 */
1533 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1534 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1535 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1536 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1539 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1540 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1541 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1542
1543 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1544 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1545 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1546
1547 return 0;
1548}
1549
2b08da3f 1550static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1551{
1552 unsigned int i;
95ea3627
ID
1553 u8 value;
1554
1555 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1556 rt61pci_bbp_read(rt2x00dev, 0, &value);
1557 if ((value != 0xff) && (value != 0x00))
2b08da3f 1558 return 0;
95ea3627
ID
1559 udelay(REGISTER_BUSY_DELAY);
1560 }
1561
1562 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1563 return -EACCES;
2b08da3f
ID
1564}
1565
1566static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1567{
1568 unsigned int i;
1569 u16 eeprom;
1570 u8 reg_id;
1571 u8 value;
1572
1573 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1574 return -EACCES;
95ea3627 1575
95ea3627
ID
1576 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1577 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1578 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1579 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1580 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1581 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1582 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1583 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1584 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1585 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1586 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1587 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1588 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1589 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1590 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1591 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1592 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1593 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1594 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1595 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1597 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1598 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1599 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1600
95ea3627
ID
1601 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1602 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1603
1604 if (eeprom != 0xffff && eeprom != 0x0000) {
1605 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1606 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1607 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1608 }
1609 }
95ea3627
ID
1610
1611 return 0;
1612}
1613
1614/*
1615 * Device state switch handlers.
1616 */
1617static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1618 enum dev_state state)
1619{
1620 u32 reg;
1621
1622 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1623 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
2b08da3f
ID
1624 (state == STATE_RADIO_RX_OFF) ||
1625 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1626 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1627}
1628
1629static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1630 enum dev_state state)
1631{
1632 int mask = (state == STATE_RADIO_IRQ_OFF);
1633 u32 reg;
1634
1635 /*
1636 * When interrupts are being enabled, the interrupt registers
1637 * should clear the register to assure a clean state.
1638 */
1639 if (state == STATE_RADIO_IRQ_ON) {
1640 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1641 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1642
1643 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1644 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1645 }
1646
1647 /*
1648 * Only toggle the interrupts bits we are going to use.
1649 * Non-checked interrupt bits are disabled by default.
1650 */
1651 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1652 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1653 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1654 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1655 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1656 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1657
1658 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1659 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1660 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1661 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1662 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1663 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1664 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1665 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1666 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1667 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1668}
1669
1670static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1671{
1672 u32 reg;
1673
1674 /*
1675 * Initialize all registers.
1676 */
2b08da3f
ID
1677 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1678 rt61pci_init_registers(rt2x00dev) ||
1679 rt61pci_init_bbp(rt2x00dev)))
95ea3627 1680 return -EIO;
95ea3627
ID
1681
1682 /*
1683 * Enable RX.
1684 */
1685 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1686 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1687 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1688
95ea3627
ID
1689 return 0;
1690}
1691
1692static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1693{
1694 u32 reg;
1695
95ea3627
ID
1696 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1697
1698 /*
1699 * Disable synchronisation.
1700 */
1701 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1702
1703 /*
1704 * Cancel RX and TX.
1705 */
1706 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1707 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1708 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1709 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1710 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
95ea3627 1711 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
95ea3627
ID
1712}
1713
1714static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1715{
1716 u32 reg;
1717 unsigned int i;
1718 char put_to_sleep;
95ea3627
ID
1719
1720 put_to_sleep = (state != STATE_AWAKE);
1721
1722 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1723 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1724 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1725 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1726
1727 /*
1728 * Device is not guaranteed to be in the requested state yet.
1729 * We must wait until the register indicates that the
1730 * device has entered the correct state.
1731 */
1732 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1733 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
2b08da3f
ID
1734 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1735 if (state == !put_to_sleep)
95ea3627
ID
1736 return 0;
1737 msleep(10);
1738 }
1739
95ea3627
ID
1740 return -EBUSY;
1741}
1742
1743static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1744 enum dev_state state)
1745{
1746 int retval = 0;
1747
1748 switch (state) {
1749 case STATE_RADIO_ON:
1750 retval = rt61pci_enable_radio(rt2x00dev);
1751 break;
1752 case STATE_RADIO_OFF:
1753 rt61pci_disable_radio(rt2x00dev);
1754 break;
1755 case STATE_RADIO_RX_ON:
61667d8d 1756 case STATE_RADIO_RX_ON_LINK:
95ea3627 1757 case STATE_RADIO_RX_OFF:
61667d8d 1758 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1759 rt61pci_toggle_rx(rt2x00dev, state);
1760 break;
1761 case STATE_RADIO_IRQ_ON:
1762 case STATE_RADIO_IRQ_OFF:
1763 rt61pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1764 break;
1765 case STATE_DEEP_SLEEP:
1766 case STATE_SLEEP:
1767 case STATE_STANDBY:
1768 case STATE_AWAKE:
1769 retval = rt61pci_set_state(rt2x00dev, state);
1770 break;
1771 default:
1772 retval = -ENOTSUPP;
1773 break;
1774 }
1775
2b08da3f
ID
1776 if (unlikely(retval))
1777 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1778 state, retval);
1779
95ea3627
ID
1780 return retval;
1781}
1782
1783/*
1784 * TX descriptor initialization
1785 */
1786static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
61e754f4
ID
1787 struct sk_buff *skb,
1788 struct txentry_desc *txdesc)
95ea3627 1789{
181d6902 1790 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
dd3193e1 1791 __le32 *txd = skbdesc->desc;
95ea3627
ID
1792 u32 word;
1793
1794 /*
1795 * Start writing the descriptor words.
1796 */
1797 rt2x00_desc_read(txd, 1, &word);
181d6902
ID
1798 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1799 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1800 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1801 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
61e754f4 1802 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
5adf6d63
ID
1803 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1804 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
4de36fe5 1805 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
95ea3627
ID
1806 rt2x00_desc_write(txd, 1, word);
1807
1808 rt2x00_desc_read(txd, 2, &word);
181d6902
ID
1809 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1810 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1811 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1812 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1813 rt2x00_desc_write(txd, 2, word);
1814
61e754f4 1815 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1ce9cdac
ID
1816 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1817 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
61e754f4
ID
1818 }
1819
95ea3627 1820 rt2x00_desc_read(txd, 5, &word);
4de36fe5
GW
1821 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1822 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1823 skbdesc->entry->entry_idx);
95ea3627 1824 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
ac1aa7e4 1825 TXPOWER_TO_DEV(rt2x00dev->tx_power));
95ea3627
ID
1826 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1827 rt2x00_desc_write(txd, 5, word);
1828
4de36fe5
GW
1829 rt2x00_desc_read(txd, 6, &word);
1830 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
c4da0048 1831 skbdesc->skb_dma);
4de36fe5
GW
1832 rt2x00_desc_write(txd, 6, word);
1833
d7bafff3
AB
1834 if (skbdesc->desc_len > TXINFO_SIZE) {
1835 rt2x00_desc_read(txd, 11, &word);
d56d453a 1836 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
d7bafff3
AB
1837 rt2x00_desc_write(txd, 11, word);
1838 }
95ea3627
ID
1839
1840 rt2x00_desc_read(txd, 0, &word);
1841 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1842 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1843 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1844 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1845 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1846 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1847 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1848 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1849 rt2x00_set_field32(&word, TXD_W0_OFDM,
076f9582 1850 (txdesc->rate_mode == RATE_MODE_OFDM));
181d6902 1851 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1852 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1853 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
61e754f4
ID
1854 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1855 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1856 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1857 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1858 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
d56d453a 1859 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
95ea3627 1860 rt2x00_set_field32(&word, TXD_W0_BURST,
181d6902 1861 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
61e754f4 1862 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
95ea3627
ID
1863 rt2x00_desc_write(txd, 0, word);
1864}
1865
1866/*
1867 * TX data initialization
1868 */
bd88a781
ID
1869static void rt61pci_write_beacon(struct queue_entry *entry)
1870{
1871 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1872 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1873 unsigned int beacon_base;
1874 u32 reg;
1875
1876 /*
1877 * Disable beaconing while we are reloading the beacon data,
1878 * otherwise we might be sending out invalid data.
1879 */
1880 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1881 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1882 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1883 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1884 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1885
1886 /*
1887 * Write entire beacon with descriptor to register.
1888 */
1889 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1890 rt2x00pci_register_multiwrite(rt2x00dev,
1891 beacon_base,
1892 skbdesc->desc, skbdesc->desc_len);
1893 rt2x00pci_register_multiwrite(rt2x00dev,
1894 beacon_base + skbdesc->desc_len,
1895 entry->skb->data, entry->skb->len);
1896
1897 /*
1898 * Clean up beacon skb.
1899 */
1900 dev_kfree_skb_any(entry->skb);
1901 entry->skb = NULL;
1902}
1903
95ea3627 1904static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
e58c6aca 1905 const enum data_queue_qid queue)
95ea3627
ID
1906{
1907 u32 reg;
1908
e58c6aca 1909 if (queue == QID_BEACON) {
95ea3627
ID
1910 /*
1911 * For Wi-Fi faily generated beacons between participating
1912 * stations. Set TBTT phase adaptive adjustment step to 8us.
1913 */
1914 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1915
1916 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1917 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
8af244cc
ID
1918 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1919 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
95ea3627
ID
1920 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1921 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1922 }
1923 return;
1924 }
1925
1926 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
e58c6aca
ID
1927 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1928 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1929 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1930 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
95ea3627
ID
1931 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1932}
1933
1934/*
1935 * RX control handlers
1936 */
1937static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1938{
ba2ab471 1939 u8 offset = rt2x00dev->lna_gain;
95ea3627
ID
1940 u8 lna;
1941
1942 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1943 switch (lna) {
1944 case 3:
ba2ab471 1945 offset += 90;
95ea3627
ID
1946 break;
1947 case 2:
ba2ab471 1948 offset += 74;
95ea3627
ID
1949 break;
1950 case 1:
ba2ab471 1951 offset += 64;
95ea3627
ID
1952 break;
1953 default:
1954 return 0;
1955 }
1956
8318d78a 1957 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1958 if (lna == 3 || lna == 2)
1959 offset += 10;
95ea3627
ID
1960 }
1961
1962 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1963}
1964
181d6902 1965static void rt61pci_fill_rxdone(struct queue_entry *entry,
55887511 1966 struct rxdone_entry_desc *rxdesc)
95ea3627 1967{
61e754f4 1968 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
b8be63ff 1969 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1970 u32 word0;
1971 u32 word1;
1972
b8be63ff
ID
1973 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1974 rt2x00_desc_read(entry_priv->desc, 1, &word1);
95ea3627 1975
4150c572 1976 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1977 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
95ea3627 1978
61e754f4
ID
1979 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1980 rxdesc->cipher =
1981 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1982 rxdesc->cipher_status =
1983 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1984 }
1985
1986 if (rxdesc->cipher != CIPHER_NONE) {
1ce9cdac
ID
1987 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1988 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
74415edb
ID
1989 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1990
61e754f4 1991 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
74415edb 1992 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
61e754f4
ID
1993
1994 /*
1995 * Hardware has stripped IV/EIV data from 802.11 frame during
1996 * decryption. It has provided the data seperately but rt2x00lib
1997 * should decide if it should be reinserted.
1998 */
1999 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2000
2001 /*
2002 * FIXME: Legacy driver indicates that the frame does
2003 * contain the Michael Mic. Unfortunately, in rt2x00
2004 * the MIC seems to be missing completely...
2005 */
2006 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2007
2008 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2009 rxdesc->flags |= RX_FLAG_DECRYPTED;
2010 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2011 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2012 }
2013
95ea3627
ID
2014 /*
2015 * Obtain the status about this packet.
89993890
ID
2016 * When frame was received with an OFDM bitrate,
2017 * the signal is the PLCP value. If it was received with
2018 * a CCK bitrate the signal is the rate in 100kbit/s.
95ea3627 2019 */
181d6902 2020 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
61e754f4 2021 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
181d6902 2022 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 2023
19d30e02
ID
2024 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2025 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
2026 else
2027 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
2028 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2029 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
2030}
2031
2032/*
2033 * Interrupt functions.
2034 */
2035static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2036{
181d6902
ID
2037 struct data_queue *queue;
2038 struct queue_entry *entry;
2039 struct queue_entry *entry_done;
b8be63ff 2040 struct queue_entry_priv_pci *entry_priv;
181d6902 2041 struct txdone_entry_desc txdesc;
95ea3627
ID
2042 u32 word;
2043 u32 reg;
2044 u32 old_reg;
2045 int type;
2046 int index;
95ea3627
ID
2047
2048 /*
2049 * During each loop we will compare the freshly read
2050 * STA_CSR4 register value with the value read from
2051 * the previous loop. If the 2 values are equal then
2052 * we should stop processing because the chance it
2053 * quite big that the device has been unplugged and
2054 * we risk going into an endless loop.
2055 */
2056 old_reg = 0;
2057
2058 while (1) {
2059 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2060 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2061 break;
2062
2063 if (old_reg == reg)
2064 break;
2065 old_reg = reg;
2066
2067 /*
2068 * Skip this entry when it contains an invalid
181d6902 2069 * queue identication number.
95ea3627
ID
2070 */
2071 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
181d6902
ID
2072 queue = rt2x00queue_get_queue(rt2x00dev, type);
2073 if (unlikely(!queue))
95ea3627
ID
2074 continue;
2075
2076 /*
2077 * Skip this entry when it contains an invalid
2078 * index number.
2079 */
2080 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
181d6902 2081 if (unlikely(index >= queue->limit))
95ea3627
ID
2082 continue;
2083
181d6902 2084 entry = &queue->entries[index];
b8be63ff
ID
2085 entry_priv = entry->priv_data;
2086 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
2087
2088 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2089 !rt2x00_get_field32(word, TXD_W0_VALID))
2090 return;
2091
181d6902 2092 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b 2093 while (entry != entry_done) {
181d6902
ID
2094 /* Catch up.
2095 * Just report any entries we missed as failed.
2096 */
62bc060b 2097 WARNING(rt2x00dev,
181d6902
ID
2098 "TX status report missed for entry %d\n",
2099 entry_done->entry_idx);
2100
fb55f4d1
ID
2101 txdesc.flags = 0;
2102 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
181d6902
ID
2103 txdesc.retry = 0;
2104
d74f5ba4 2105 rt2x00lib_txdone(entry_done, &txdesc);
181d6902 2106 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b
MN
2107 }
2108
95ea3627
ID
2109 /*
2110 * Obtain the status about this packet.
2111 */
fb55f4d1
ID
2112 txdesc.flags = 0;
2113 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2114 case 0: /* Success, maybe with retry */
2115 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2116 break;
2117 case 6: /* Failure, excessive retries */
2118 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2119 /* Don't break, this is a failed frame! */
2120 default: /* Failure */
2121 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2122 }
181d6902 2123 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
95ea3627 2124
d74f5ba4 2125 rt2x00lib_txdone(entry, &txdesc);
95ea3627
ID
2126 }
2127}
2128
2129static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2130{
2131 struct rt2x00_dev *rt2x00dev = dev_instance;
2132 u32 reg_mcu;
2133 u32 reg;
2134
2135 /*
2136 * Get the interrupt sources & saved to local variable.
2137 * Write register value back to clear pending interrupts.
2138 */
2139 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2140 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2141
2142 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2143 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2144
2145 if (!reg && !reg_mcu)
2146 return IRQ_NONE;
2147
0262ab0d 2148 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
95ea3627
ID
2149 return IRQ_HANDLED;
2150
2151 /*
2152 * Handle interrupts, walk through all bits
2153 * and run the tasks, the bits are checked in order of
2154 * priority.
2155 */
2156
2157 /*
2158 * 1 - Rx ring done interrupt.
2159 */
2160 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2161 rt2x00pci_rxdone(rt2x00dev);
2162
2163 /*
2164 * 2 - Tx ring done interrupt.
2165 */
2166 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2167 rt61pci_txdone(rt2x00dev);
2168
2169 /*
2170 * 3 - Handle MCU command done.
2171 */
2172 if (reg_mcu)
2173 rt2x00pci_register_write(rt2x00dev,
2174 M2H_CMD_DONE_CSR, 0xffffffff);
2175
2176 return IRQ_HANDLED;
2177}
2178
2179/*
2180 * Device probe functions.
2181 */
2182static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2183{
2184 struct eeprom_93cx6 eeprom;
2185 u32 reg;
2186 u16 word;
2187 u8 *mac;
2188 s8 value;
2189
2190 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2191
2192 eeprom.data = rt2x00dev;
2193 eeprom.register_read = rt61pci_eepromregister_read;
2194 eeprom.register_write = rt61pci_eepromregister_write;
2195 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2196 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2197 eeprom.reg_data_in = 0;
2198 eeprom.reg_data_out = 0;
2199 eeprom.reg_data_clock = 0;
2200 eeprom.reg_chip_select = 0;
2201
2202 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2203 EEPROM_SIZE / sizeof(u16));
2204
2205 /*
2206 * Start validation of the data that has been read.
2207 */
2208 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2209 if (!is_valid_ether_addr(mac)) {
2210 random_ether_addr(mac);
e174961c 2211 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
2212 }
2213
2214 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2215 if (word == 0xffff) {
2216 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
2217 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2218 ANTENNA_B);
2219 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2220 ANTENNA_B);
95ea3627
ID
2221 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2222 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2223 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2224 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2225 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2226 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2227 }
2228
2229 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2230 if (word == 0xffff) {
2231 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2232 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
91581b62
ID
2233 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2234 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
95ea3627
ID
2235 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2236 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2237 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2238 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2239 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2240 }
2241
2242 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2243 if (word == 0xffff) {
2244 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2245 LED_MODE_DEFAULT);
2246 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2247 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2248 }
2249
2250 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2251 if (word == 0xffff) {
2252 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2253 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2254 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2255 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2256 }
2257
2258 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2259 if (word == 0xffff) {
2260 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2261 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2262 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2263 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2264 } else {
2265 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2266 if (value < -10 || value > 10)
2267 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2268 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2269 if (value < -10 || value > 10)
2270 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2271 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2272 }
2273
2274 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2275 if (word == 0xffff) {
2276 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2277 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2278 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
417f412f 2279 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
95ea3627
ID
2280 } else {
2281 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2282 if (value < -10 || value > 10)
2283 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2284 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2285 if (value < -10 || value > 10)
2286 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2287 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2288 }
2289
2290 return 0;
2291}
2292
2293static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2294{
2295 u32 reg;
2296 u16 value;
2297 u16 eeprom;
2298 u16 device;
2299
2300 /*
2301 * Read EEPROM word for configuration.
2302 */
2303 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2304
2305 /*
2306 * Identify RF chipset.
2307 * To determine the RT chip we have to read the
2308 * PCI header of the device.
2309 */
14a3bf89 2310 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
95ea3627
ID
2311 PCI_CONFIG_HEADER_DEVICE, &device);
2312 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2313 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2314 rt2x00_set_chip(rt2x00dev, device, value, reg);
2315
2316 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2317 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2318 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2319 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2320 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2321 return -ENODEV;
2322 }
2323
e4cd2ff8
ID
2324 /*
2325 * Determine number of antenna's.
2326 */
2327 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2328 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2329
95ea3627
ID
2330 /*
2331 * Identify default antenna configuration.
2332 */
addc81bd 2333 rt2x00dev->default_ant.tx =
95ea3627 2334 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 2335 rt2x00dev->default_ant.rx =
95ea3627
ID
2336 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2337
2338 /*
2339 * Read the Frame type.
2340 */
2341 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2342 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2343
95ea3627
ID
2344 /*
2345 * Detect if this device has an hardware controlled radio.
2346 */
58169529 2347#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627 2348 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 2349 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
58169529 2350#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627
ID
2351
2352 /*
2353 * Read frequency offset and RF programming sequence.
2354 */
2355 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2356 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2357 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2358
2359 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2360
2361 /*
2362 * Read external LNA informations.
2363 */
2364 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2365
2366 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2367 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2368 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2369 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2370
e4cd2ff8
ID
2371 /*
2372 * When working with a RF2529 chip without double antenna
2373 * the antenna settings should be gathered from the NIC
2374 * eeprom word.
2375 */
2376 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2377 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
91581b62
ID
2378 rt2x00dev->default_ant.rx =
2379 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2380 rt2x00dev->default_ant.tx =
2381 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
e4cd2ff8
ID
2382
2383 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2384 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2385 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2386 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2387 }
2388
95ea3627
ID
2389 /*
2390 * Store led settings, for correct led behaviour.
2391 * If the eeprom value is invalid,
2392 * switch to default led mode.
2393 */
771fd565 2394#ifdef CONFIG_RT2X00_LIB_LEDS
95ea3627 2395 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
a9450b70
ID
2396 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2397
475433be
ID
2398 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2399 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2400 if (value == LED_MODE_SIGNAL_STRENGTH)
2401 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2402 LED_TYPE_QUALITY);
95ea3627 2403
a9450b70
ID
2404 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2405 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
95ea3627
ID
2406 rt2x00_get_field16(eeprom,
2407 EEPROM_LED_POLARITY_GPIO_0));
a9450b70 2408 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
95ea3627
ID
2409 rt2x00_get_field16(eeprom,
2410 EEPROM_LED_POLARITY_GPIO_1));
a9450b70 2411 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
95ea3627
ID
2412 rt2x00_get_field16(eeprom,
2413 EEPROM_LED_POLARITY_GPIO_2));
a9450b70 2414 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
95ea3627
ID
2415 rt2x00_get_field16(eeprom,
2416 EEPROM_LED_POLARITY_GPIO_3));
a9450b70 2417 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
95ea3627
ID
2418 rt2x00_get_field16(eeprom,
2419 EEPROM_LED_POLARITY_GPIO_4));
a9450b70 2420 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
95ea3627 2421 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
a9450b70 2422 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
95ea3627
ID
2423 rt2x00_get_field16(eeprom,
2424 EEPROM_LED_POLARITY_RDY_G));
a9450b70 2425 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
95ea3627
ID
2426 rt2x00_get_field16(eeprom,
2427 EEPROM_LED_POLARITY_RDY_A));
771fd565 2428#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
2429
2430 return 0;
2431}
2432
2433/*
2434 * RF value list for RF5225 & RF5325
2435 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2436 */
2437static const struct rf_channel rf_vals_noseq[] = {
2438 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2439 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2440 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2441 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2442 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2443 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2444 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2445 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2446 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2447 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2448 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2449 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2450 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2451 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2452
2453 /* 802.11 UNI / HyperLan 2 */
2454 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2455 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2456 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2457 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2458 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2459 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2460 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2461 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2462
2463 /* 802.11 HyperLan 2 */
2464 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2465 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2466 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2467 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2468 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2469 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2470 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2471 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2472 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2473 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2474
2475 /* 802.11 UNII */
2476 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2477 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2478 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2479 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2480 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2481 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2482
2483 /* MMAC(Japan)J52 ch 34,38,42,46 */
2484 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2485 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2486 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2487 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2488};
2489
2490/*
2491 * RF value list for RF5225 & RF5325
2492 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2493 */
2494static const struct rf_channel rf_vals_seq[] = {
2495 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2496 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2497 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2498 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2499 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2500 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2501 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2502 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2503 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2504 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2505 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2506 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2507 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2508 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2509
2510 /* 802.11 UNI / HyperLan 2 */
2511 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2512 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2513 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2514 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2515 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2516 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2517 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2518 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2519
2520 /* 802.11 HyperLan 2 */
2521 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2522 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2523 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2524 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2525 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2526 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2527 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2528 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2529 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2530 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2531
2532 /* 802.11 UNII */
2533 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2534 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2535 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2536 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2537 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2538 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2539
2540 /* MMAC(Japan)J52 ch 34,38,42,46 */
2541 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2542 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2543 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2544 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2545};
2546
8c5e7a5f 2547static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
2548{
2549 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
2550 struct channel_info *info;
2551 char *tx_power;
95ea3627
ID
2552 unsigned int i;
2553
2554 /*
2555 * Initialize all hw fields.
2556 */
2557 rt2x00dev->hw->flags =
566bfe5a 2558 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
4be8c387
JB
2559 IEEE80211_HW_SIGNAL_DBM |
2560 IEEE80211_HW_SUPPORTS_PS |
2561 IEEE80211_HW_PS_NULLFUNC_STACK;
95ea3627 2562 rt2x00dev->hw->extra_tx_headroom = 0;
95ea3627 2563
14a3bf89 2564 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
2565 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2566 rt2x00_eeprom_addr(rt2x00dev,
2567 EEPROM_MAC_ADDR_0));
2568
95ea3627
ID
2569 /*
2570 * Initialize hw_mode information.
2571 */
31562e80
ID
2572 spec->supported_bands = SUPPORT_BAND_2GHZ;
2573 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
2574
2575 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2576 spec->num_channels = 14;
2577 spec->channels = rf_vals_noseq;
2578 } else {
2579 spec->num_channels = 14;
2580 spec->channels = rf_vals_seq;
2581 }
2582
2583 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2584 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
31562e80 2585 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627 2586 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
8c5e7a5f
ID
2587 }
2588
2589 /*
2590 * Create channel information array
2591 */
2592 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2593 if (!info)
2594 return -ENOMEM;
2595
2596 spec->channels_info = info;
95ea3627 2597
8c5e7a5f
ID
2598 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2599 for (i = 0; i < 14; i++)
2600 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2601
8c5e7a5f
ID
2602 if (spec->num_channels > 14) {
2603 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2604 for (i = 14; i < spec->num_channels; i++)
2605 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2606 }
8c5e7a5f
ID
2607
2608 return 0;
95ea3627
ID
2609}
2610
2611static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2612{
2613 int retval;
2614
2615 /*
2616 * Allocate eeprom data.
2617 */
2618 retval = rt61pci_validate_eeprom(rt2x00dev);
2619 if (retval)
2620 return retval;
2621
2622 retval = rt61pci_init_eeprom(rt2x00dev);
2623 if (retval)
2624 return retval;
2625
2626 /*
2627 * Initialize hw specifications.
2628 */
8c5e7a5f
ID
2629 retval = rt61pci_probe_hw_mode(rt2x00dev);
2630 if (retval)
2631 return retval;
95ea3627
ID
2632
2633 /*
c4da0048 2634 * This device requires firmware and DMA mapped skbs.
95ea3627 2635 */
066cb637 2636 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
c4da0048 2637 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
008c4482
ID
2638 if (!modparam_nohwcrypt)
2639 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
95ea3627
ID
2640
2641 /*
2642 * Set the rssi offset.
2643 */
2644 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2645
2646 return 0;
2647}
2648
2649/*
2650 * IEEE80211 stack callback functions.
2651 */
2af0a570
ID
2652static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2653 const struct ieee80211_tx_queue_params *params)
2654{
2655 struct rt2x00_dev *rt2x00dev = hw->priv;
2656 struct data_queue *queue;
2657 struct rt2x00_field32 field;
2658 int retval;
2659 u32 reg;
2660
2661 /*
2662 * First pass the configuration through rt2x00lib, that will
2663 * update the queue settings and validate the input. After that
2664 * we are free to update the registers based on the value
2665 * in the queue parameter.
2666 */
2667 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2668 if (retval)
2669 return retval;
2670
2671 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2672
2673 /* Update WMM TXOP register */
2674 if (queue_idx < 2) {
2675 field.bit_offset = queue_idx * 16;
2676 field.bit_mask = 0xffff << field.bit_offset;
2677
2678 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2679 rt2x00_set_field32(&reg, field, queue->txop);
2680 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2681 } else if (queue_idx < 4) {
2682 field.bit_offset = (queue_idx - 2) * 16;
2683 field.bit_mask = 0xffff << field.bit_offset;
2684
2685 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2686 rt2x00_set_field32(&reg, field, queue->txop);
2687 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2688 }
2689
2690 /* Update WMM registers */
2691 field.bit_offset = queue_idx * 4;
2692 field.bit_mask = 0xf << field.bit_offset;
2693
2694 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2695 rt2x00_set_field32(&reg, field, queue->aifs);
2696 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2697
2698 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2699 rt2x00_set_field32(&reg, field, queue->cw_min);
2700 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2701
2702 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2703 rt2x00_set_field32(&reg, field, queue->cw_max);
2704 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2705
2706 return 0;
2707}
2708
95ea3627
ID
2709static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2710{
2711 struct rt2x00_dev *rt2x00dev = hw->priv;
2712 u64 tsf;
2713 u32 reg;
2714
2715 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2716 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2717 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2718 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2719
2720 return tsf;
2721}
2722
95ea3627
ID
2723static const struct ieee80211_ops rt61pci_mac80211_ops = {
2724 .tx = rt2x00mac_tx,
4150c572
JB
2725 .start = rt2x00mac_start,
2726 .stop = rt2x00mac_stop,
95ea3627
ID
2727 .add_interface = rt2x00mac_add_interface,
2728 .remove_interface = rt2x00mac_remove_interface,
2729 .config = rt2x00mac_config,
2730 .config_interface = rt2x00mac_config_interface,
3a643d24 2731 .configure_filter = rt2x00mac_configure_filter,
61e754f4 2732 .set_key = rt2x00mac_set_key,
95ea3627 2733 .get_stats = rt2x00mac_get_stats,
471b3efd 2734 .bss_info_changed = rt2x00mac_bss_info_changed,
2af0a570 2735 .conf_tx = rt61pci_conf_tx,
95ea3627
ID
2736 .get_tx_stats = rt2x00mac_get_tx_stats,
2737 .get_tsf = rt61pci_get_tsf,
95ea3627
ID
2738};
2739
2740static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2741 .irq_handler = rt61pci_interrupt,
2742 .probe_hw = rt61pci_probe_hw,
2743 .get_firmware_name = rt61pci_get_firmware_name,
a7f3a06c 2744 .get_firmware_crc = rt61pci_get_firmware_crc,
95ea3627
ID
2745 .load_firmware = rt61pci_load_firmware,
2746 .initialize = rt2x00pci_initialize,
2747 .uninitialize = rt2x00pci_uninitialize,
798b7adb
ID
2748 .get_entry_state = rt61pci_get_entry_state,
2749 .clear_entry = rt61pci_clear_entry,
95ea3627 2750 .set_device_state = rt61pci_set_device_state,
95ea3627 2751 .rfkill_poll = rt61pci_rfkill_poll,
95ea3627
ID
2752 .link_stats = rt61pci_link_stats,
2753 .reset_tuner = rt61pci_reset_tuner,
2754 .link_tuner = rt61pci_link_tuner,
2755 .write_tx_desc = rt61pci_write_tx_desc,
2756 .write_tx_data = rt2x00pci_write_tx_data,
bd88a781 2757 .write_beacon = rt61pci_write_beacon,
95ea3627
ID
2758 .kick_tx_queue = rt61pci_kick_tx_queue,
2759 .fill_rxdone = rt61pci_fill_rxdone,
61e754f4
ID
2760 .config_shared_key = rt61pci_config_shared_key,
2761 .config_pairwise_key = rt61pci_config_pairwise_key,
3a643d24 2762 .config_filter = rt61pci_config_filter,
6bb40dd1 2763 .config_intf = rt61pci_config_intf,
72810379 2764 .config_erp = rt61pci_config_erp,
e4ea1c40 2765 .config_ant = rt61pci_config_ant,
95ea3627
ID
2766 .config = rt61pci_config,
2767};
2768
181d6902
ID
2769static const struct data_queue_desc rt61pci_queue_rx = {
2770 .entry_num = RX_ENTRIES,
2771 .data_size = DATA_FRAME_SIZE,
2772 .desc_size = RXD_DESC_SIZE,
b8be63ff 2773 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2774};
2775
2776static const struct data_queue_desc rt61pci_queue_tx = {
2777 .entry_num = TX_ENTRIES,
2778 .data_size = DATA_FRAME_SIZE,
2779 .desc_size = TXD_DESC_SIZE,
b8be63ff 2780 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2781};
2782
2783static const struct data_queue_desc rt61pci_queue_bcn = {
6bb40dd1 2784 .entry_num = 4 * BEACON_ENTRIES,
78720897 2785 .data_size = 0, /* No DMA required for beacons */
181d6902 2786 .desc_size = TXINFO_SIZE,
b8be63ff 2787 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2788};
2789
95ea3627 2790static const struct rt2x00_ops rt61pci_ops = {
2360157c 2791 .name = KBUILD_MODNAME,
6bb40dd1
ID
2792 .max_sta_intf = 1,
2793 .max_ap_intf = 4,
95ea3627
ID
2794 .eeprom_size = EEPROM_SIZE,
2795 .rf_size = RF_SIZE,
61448f88 2796 .tx_queues = NUM_TX_QUEUES,
181d6902
ID
2797 .rx = &rt61pci_queue_rx,
2798 .tx = &rt61pci_queue_tx,
2799 .bcn = &rt61pci_queue_bcn,
95ea3627
ID
2800 .lib = &rt61pci_rt2x00_ops,
2801 .hw = &rt61pci_mac80211_ops,
2802#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2803 .debugfs = &rt61pci_rt2x00debug,
2804#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2805};
2806
2807/*
2808 * RT61pci module information.
2809 */
2810static struct pci_device_id rt61pci_device_table[] = {
2811 /* RT2561s */
2812 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2813 /* RT2561 v2 */
2814 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2815 /* RT2661 */
2816 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2817 { 0, }
2818};
2819
2820MODULE_AUTHOR(DRV_PROJECT);
2821MODULE_VERSION(DRV_VERSION);
2822MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2823MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2824 "PCI & PCMCIA chipset based cards");
2825MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2826MODULE_FIRMWARE(FIRMWARE_RT2561);
2827MODULE_FIRMWARE(FIRMWARE_RT2561s);
2828MODULE_FIRMWARE(FIRMWARE_RT2661);
2829MODULE_LICENSE("GPL");
2830
2831static struct pci_driver rt61pci_driver = {
2360157c 2832 .name = KBUILD_MODNAME,
95ea3627
ID
2833 .id_table = rt61pci_device_table,
2834 .probe = rt2x00pci_probe,
2835 .remove = __devexit_p(rt2x00pci_remove),
2836 .suspend = rt2x00pci_suspend,
2837 .resume = rt2x00pci_resume,
2838};
2839
2840static int __init rt61pci_init(void)
2841{
2842 return pci_register_driver(&rt61pci_driver);
2843}
2844
2845static void __exit rt61pci_exit(void)
2846{
2847 pci_unregister_driver(&rt61pci_driver);
2848}
2849
2850module_init(rt61pci_init);
2851module_exit(rt61pci_exit);
This page took 0.434313 seconds and 5 git commands to generate.