rt2x00: Move link tuning into seperate file
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
CommitLineData
95ea3627 1/*
811aa9ca 2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
a7f3a06c 27#include <linux/crc-itu-t.h>
95ea3627
ID
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/eeprom_93cx6.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt61pci.h"
39
008c4482
ID
40/*
41 * Allow hardware encryption to be disabled.
42 */
43static int modparam_nohwcrypt = 0;
44module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
95ea3627
ID
47/*
48 * Register access.
49 * BBP and RF register require indirect register access,
50 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51 * These indirect registers work with busy bits,
52 * and we will try maximal REGISTER_BUSY_COUNT times to access
53 * the register while taking a REGISTER_BUSY_DELAY us delay
54 * between each attampt. When the busy bit is still set at that time,
55 * the access attempt is considered to have failed,
56 * and we will print an error.
57 */
c9c3b1a5
ID
58#define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60#define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62#define WAIT_FOR_MCU(__dev, __reg) \
63 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64 H2M_MAILBOX_CSR_OWNER, (__reg))
95ea3627 65
0e14f6d3 66static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
67 const unsigned int word, const u8 value)
68{
69 u32 reg;
70
8ff48a8b
ID
71 mutex_lock(&rt2x00dev->csr_mutex);
72
95ea3627 73 /*
c9c3b1a5
ID
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
95ea3627 76 */
c9c3b1a5
ID
77 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78 reg = 0;
79 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85 }
8ff48a8b 86
8ff48a8b 87 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
88}
89
0e14f6d3 90static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
91 const unsigned int word, u8 *value)
92{
93 u32 reg;
94
8ff48a8b
ID
95 mutex_lock(&rt2x00dev->csr_mutex);
96
95ea3627 97 /*
c9c3b1a5
ID
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
95ea3627 104 */
c9c3b1a5
ID
105 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106 reg = 0;
107 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
95ea3627 110
c9c3b1a5 111 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
95ea3627 112
c9c3b1a5
ID
113 WAIT_FOR_BBP(rt2x00dev, &reg);
114 }
95ea3627
ID
115
116 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
8ff48a8b 117
8ff48a8b 118 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
119}
120
0e14f6d3 121static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
122 const unsigned int word, const u32 value)
123{
124 u32 reg;
95ea3627
ID
125
126 if (!word)
127 return;
128
8ff48a8b
ID
129 mutex_lock(&rt2x00dev->csr_mutex);
130
c9c3b1a5
ID
131 /*
132 * Wait until the RF becomes available, afterwards we
133 * can safely write the new data into the register.
134 */
135 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136 reg = 0;
137 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
95ea3627
ID
144 }
145
8ff48a8b 146 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
147}
148
0e14f6d3 149static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
150 const u8 command, const u8 token,
151 const u8 arg0, const u8 arg1)
152{
153 u32 reg;
154
8ff48a8b
ID
155 mutex_lock(&rt2x00dev->csr_mutex);
156
c9c3b1a5
ID
157 /*
158 * Wait until the MCU becomes available, afterwards we
159 * can safely write the new data into the register.
160 */
161 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
165 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
166 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
167
168 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
169 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
170 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
172 }
8ff48a8b 173
8ff48a8b
ID
174 mutex_unlock(&rt2x00dev->csr_mutex);
175
95ea3627
ID
176}
177
178static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
179{
180 struct rt2x00_dev *rt2x00dev = eeprom->data;
181 u32 reg;
182
183 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
184
185 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187 eeprom->reg_data_clock =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189 eeprom->reg_chip_select =
190 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
191}
192
193static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
194{
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg = 0;
197
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
201 !!eeprom->reg_data_clock);
202 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
203 !!eeprom->reg_chip_select);
204
205 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
206}
207
208#ifdef CONFIG_RT2X00_LIB_DEBUGFS
95ea3627
ID
209static const struct rt2x00debug rt61pci_rt2x00debug = {
210 .owner = THIS_MODULE,
211 .csr = {
743b97ca
ID
212 .read = rt2x00pci_register_read,
213 .write = rt2x00pci_register_write,
214 .flags = RT2X00DEBUGFS_OFFSET,
215 .word_base = CSR_REG_BASE,
95ea3627
ID
216 .word_size = sizeof(u32),
217 .word_count = CSR_REG_SIZE / sizeof(u32),
218 },
219 .eeprom = {
220 .read = rt2x00_eeprom_read,
221 .write = rt2x00_eeprom_write,
743b97ca 222 .word_base = EEPROM_BASE,
95ea3627
ID
223 .word_size = sizeof(u16),
224 .word_count = EEPROM_SIZE / sizeof(u16),
225 },
226 .bbp = {
227 .read = rt61pci_bbp_read,
228 .write = rt61pci_bbp_write,
743b97ca 229 .word_base = BBP_BASE,
95ea3627
ID
230 .word_size = sizeof(u8),
231 .word_count = BBP_SIZE / sizeof(u8),
232 },
233 .rf = {
234 .read = rt2x00_rf_read,
235 .write = rt61pci_rf_write,
743b97ca 236 .word_base = RF_BASE,
95ea3627
ID
237 .word_size = sizeof(u32),
238 .word_count = RF_SIZE / sizeof(u32),
239 },
240};
241#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242
58169529 243#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627
ID
244static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
245{
246 u32 reg;
247
248 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
181d6902 249 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
95ea3627 250}
81873e9c
ID
251#else
252#define rt61pci_rfkill_poll NULL
58169529 253#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627 254
771fd565 255#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 256static void rt61pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
257 enum led_brightness brightness)
258{
259 struct rt2x00_led *led =
260 container_of(led_cdev, struct rt2x00_led, led_dev);
261 unsigned int enabled = brightness != LED_OFF;
262 unsigned int a_mode =
263 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264 unsigned int bg_mode =
265 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
266
267 if (led->type == LED_TYPE_RADIO) {
268 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269 MCU_LEDCS_RADIO_STATUS, enabled);
270
271 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272 (led->rt2x00dev->led_mcu_reg & 0xff),
273 ((led->rt2x00dev->led_mcu_reg >> 8)));
274 } else if (led->type == LED_TYPE_ASSOC) {
275 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278 MCU_LEDCS_LINK_A_STATUS, a_mode);
279
280 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281 (led->rt2x00dev->led_mcu_reg & 0xff),
282 ((led->rt2x00dev->led_mcu_reg >> 8)));
283 } else if (led->type == LED_TYPE_QUALITY) {
284 /*
285 * The brightness is divided into 6 levels (0 - 5),
286 * this means we need to convert the brightness
287 * argument into the matching level within that range.
288 */
289 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290 brightness / (LED_FULL / 6), 0);
291 }
292}
a2e1d52a
ID
293
294static int rt61pci_blink_set(struct led_classdev *led_cdev,
295 unsigned long *delay_on,
296 unsigned long *delay_off)
297{
298 struct rt2x00_led *led =
299 container_of(led_cdev, struct rt2x00_led, led_dev);
300 u32 reg;
301
302 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
303 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
304 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
305 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
306
307 return 0;
308}
475433be
ID
309
310static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311 struct rt2x00_led *led,
312 enum led_type type)
313{
314 led->rt2x00dev = rt2x00dev;
315 led->type = type;
316 led->led_dev.brightness_set = rt61pci_brightness_set;
317 led->led_dev.blink_set = rt61pci_blink_set;
318 led->flags = LED_INITIALIZED;
319}
771fd565 320#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 321
95ea3627
ID
322/*
323 * Configuration handlers.
324 */
61e754f4
ID
325static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326 struct rt2x00lib_crypto *crypto,
327 struct ieee80211_key_conf *key)
328{
329 struct hw_key_entry key_entry;
330 struct rt2x00_field32 field;
331 u32 mask;
332 u32 reg;
333
334 if (crypto->cmd == SET_KEY) {
335 /*
336 * rt2x00lib can't determine the correct free
337 * key_idx for shared keys. We have 1 register
338 * with key valid bits. The goal is simple, read
339 * the register, if that is full we have no slots
340 * left.
341 * Note that each BSS is allowed to have up to 4
342 * shared keys, so put a mask over the allowed
343 * entries.
344 */
345 mask = (0xf << crypto->bssidx);
346
347 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
348 reg &= mask;
349
350 if (reg && reg == mask)
351 return -ENOSPC;
352
acaf908d 353 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
354
355 /*
356 * Upload key to hardware
357 */
358 memcpy(key_entry.key, crypto->key,
359 sizeof(key_entry.key));
360 memcpy(key_entry.tx_mic, crypto->tx_mic,
361 sizeof(key_entry.tx_mic));
362 memcpy(key_entry.rx_mic, crypto->rx_mic,
363 sizeof(key_entry.rx_mic));
364
365 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367 &key_entry, sizeof(key_entry));
368
369 /*
370 * The cipher types are stored over 2 registers.
371 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372 * bssidx 1 and 2 keys are stored in SEC_CSR5.
373 * Using the correct defines correctly will cause overhead,
374 * so just calculate the correct offset.
375 */
376 if (key->hw_key_idx < 8) {
377 field.bit_offset = (3 * key->hw_key_idx);
378 field.bit_mask = 0x7 << field.bit_offset;
379
380 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
381 rt2x00_set_field32(&reg, field, crypto->cipher);
382 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
383 } else {
384 field.bit_offset = (3 * (key->hw_key_idx - 8));
385 field.bit_mask = 0x7 << field.bit_offset;
386
387 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
388 rt2x00_set_field32(&reg, field, crypto->cipher);
389 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
390 }
391
392 /*
393 * The driver does not support the IV/EIV generation
394 * in hardware. However it doesn't support the IV/EIV
395 * inside the ieee80211 frame either, but requires it
396 * to be provided seperately for the descriptor.
397 * rt2x00lib will cut the IV/EIV data out of all frames
398 * given to us by mac80211, but we must tell mac80211
399 * to generate the IV/EIV data.
400 */
401 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402 }
403
404 /*
405 * SEC_CSR0 contains only single-bit fields to indicate
406 * a particular key is valid. Because using the FIELD32()
407 * defines directly will cause a lot of overhead we use
408 * a calculation to determine the correct bit directly.
409 */
410 mask = 1 << key->hw_key_idx;
411
412 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
413 if (crypto->cmd == SET_KEY)
414 reg |= mask;
415 else if (crypto->cmd == DISABLE_KEY)
416 reg &= ~mask;
417 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
418
419 return 0;
420}
421
422static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423 struct rt2x00lib_crypto *crypto,
424 struct ieee80211_key_conf *key)
425{
426 struct hw_pairwise_ta_entry addr_entry;
427 struct hw_key_entry key_entry;
428 u32 mask;
429 u32 reg;
430
431 if (crypto->cmd == SET_KEY) {
432 /*
433 * rt2x00lib can't determine the correct free
434 * key_idx for pairwise keys. We have 2 registers
435 * with key valid bits. The goal is simple, read
436 * the first register, if that is full move to
437 * the next register.
438 * When both registers are full, we drop the key,
439 * otherwise we use the first invalid entry.
440 */
441 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
442 if (reg && reg == ~0) {
443 key->hw_key_idx = 32;
444 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
445 if (reg && reg == ~0)
446 return -ENOSPC;
447 }
448
acaf908d 449 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
450
451 /*
452 * Upload key to hardware
453 */
454 memcpy(key_entry.key, crypto->key,
455 sizeof(key_entry.key));
456 memcpy(key_entry.tx_mic, crypto->tx_mic,
457 sizeof(key_entry.tx_mic));
458 memcpy(key_entry.rx_mic, crypto->rx_mic,
459 sizeof(key_entry.rx_mic));
460
461 memset(&addr_entry, 0, sizeof(addr_entry));
462 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463 addr_entry.cipher = crypto->cipher;
464
465 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467 &key_entry, sizeof(key_entry));
468
469 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471 &addr_entry, sizeof(addr_entry));
472
473 /*
474 * Enable pairwise lookup table for given BSS idx,
475 * without this received frames will not be decrypted
476 * by the hardware.
477 */
478 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
479 reg |= (1 << crypto->bssidx);
480 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
481
482 /*
483 * The driver does not support the IV/EIV generation
484 * in hardware. However it doesn't support the IV/EIV
485 * inside the ieee80211 frame either, but requires it
486 * to be provided seperately for the descriptor.
487 * rt2x00lib will cut the IV/EIV data out of all frames
488 * given to us by mac80211, but we must tell mac80211
489 * to generate the IV/EIV data.
490 */
491 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
492 }
493
494 /*
495 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496 * a particular key is valid. Because using the FIELD32()
497 * defines directly will cause a lot of overhead we use
498 * a calculation to determine the correct bit directly.
499 */
500 if (key->hw_key_idx < 32) {
501 mask = 1 << key->hw_key_idx;
502
503 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
504 if (crypto->cmd == SET_KEY)
505 reg |= mask;
506 else if (crypto->cmd == DISABLE_KEY)
507 reg &= ~mask;
508 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
509 } else {
510 mask = 1 << (key->hw_key_idx - 32);
511
512 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
513 if (crypto->cmd == SET_KEY)
514 reg |= mask;
515 else if (crypto->cmd == DISABLE_KEY)
516 reg &= ~mask;
517 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
518 }
519
520 return 0;
521}
522
3a643d24
ID
523static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524 const unsigned int filter_flags)
525{
526 u32 reg;
527
528 /*
529 * Start configuration steps.
530 * Note that the version error will always be dropped
531 * and broadcast frames will always be accepted since
532 * there is no filter for it at this time.
533 */
534 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
536 !(filter_flags & FIF_FCSFAIL));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
538 !(filter_flags & FIF_PLCPFAIL));
539 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
540 !(filter_flags & FIF_CONTROL));
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
542 !(filter_flags & FIF_PROMISC_IN_BSS));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
e0b005fa
ID
544 !(filter_flags & FIF_PROMISC_IN_BSS) &&
545 !rt2x00dev->intf_ap_count);
3a643d24
ID
546 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
548 !(filter_flags & FIF_ALLMULTI));
549 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
550 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
551 !(filter_flags & FIF_CONTROL));
552 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
553}
554
6bb40dd1
ID
555static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556 struct rt2x00_intf *intf,
557 struct rt2x00intf_conf *conf,
558 const unsigned int flags)
95ea3627 559{
6bb40dd1
ID
560 unsigned int beacon_base;
561 u32 reg;
95ea3627 562
6bb40dd1
ID
563 if (flags & CONFIG_UPDATE_TYPE) {
564 /*
565 * Clear current synchronisation setup.
566 * For the Beacon base registers we only need to clear
567 * the first byte since that byte contains the VALID and OWNER
568 * bits which (when set to 0) will invalidate the entire beacon.
569 */
570 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
6bb40dd1 571 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
95ea3627 572
6bb40dd1
ID
573 /*
574 * Enable synchronisation.
575 */
576 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
fd3c91c5 577 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
6bb40dd1 578 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
fd3c91c5 579 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
6bb40dd1
ID
580 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
581 }
95ea3627 582
6bb40dd1
ID
583 if (flags & CONFIG_UPDATE_MAC) {
584 reg = le32_to_cpu(conf->mac[1]);
585 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586 conf->mac[1] = cpu_to_le32(reg);
95ea3627 587
6bb40dd1
ID
588 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589 conf->mac, sizeof(conf->mac));
590 }
95ea3627 591
6bb40dd1
ID
592 if (flags & CONFIG_UPDATE_BSSID) {
593 reg = le32_to_cpu(conf->bssid[1]);
594 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
595 conf->bssid[1] = cpu_to_le32(reg);
95ea3627 596
6bb40dd1
ID
597 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598 conf->bssid, sizeof(conf->bssid));
599 }
95ea3627
ID
600}
601
3a643d24
ID
602static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_erp *erp)
95ea3627 604{
95ea3627 605 u32 reg;
95ea3627
ID
606
607 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
72810379 608 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
95ea3627
ID
609 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
610
611 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
4f5af6eb 612 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
72810379 613 !!erp->short_preamble);
95ea3627 614 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
95ea3627 615
e4ea1c40 616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
95ea3627 617
e4ea1c40
ID
618 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
95ea3627 621
e4ea1c40
ID
622 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
95ea3627
ID
627}
628
629static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
addc81bd 630 struct antenna_setup *ant)
95ea3627
ID
631{
632 u8 r3;
633 u8 r4;
634 u8 r77;
635
636 rt61pci_bbp_read(rt2x00dev, 3, &r3);
637 rt61pci_bbp_read(rt2x00dev, 4, &r4);
638 rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 641 rt2x00_rf(&rt2x00dev->chip, RF5325));
e4cd2ff8
ID
642
643 /*
644 * Configure the RX antenna.
645 */
addc81bd 646 switch (ant->rx) {
95ea3627 647 case ANTENNA_HW_DIVERSITY:
acaa410d 648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627 649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
8318d78a 650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
95ea3627
ID
651 break;
652 case ANTENNA_A:
acaa410d 653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 else
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
659 break;
660 case ANTENNA_B:
a4fe07d9 661 default:
acaa410d 662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
668 break;
669 }
670
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
674}
675
676static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
addc81bd 677 struct antenna_setup *ant)
95ea3627
ID
678{
679 u8 r3;
680 u8 r4;
681 u8 r77;
682
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 688 rt2x00_rf(&rt2x00dev->chip, RF2529));
95ea3627
ID
689 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
691
e4cd2ff8
ID
692 /*
693 * Configure the RX antenna.
694 */
addc81bd 695 switch (ant->rx) {
95ea3627 696 case ANTENNA_HW_DIVERSITY:
acaa410d 697 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627
ID
698 break;
699 case ANTENNA_A:
acaa410d
MN
700 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
702 break;
703 case ANTENNA_B:
a4fe07d9 704 default:
acaa410d
MN
705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
707 break;
708 }
709
710 rt61pci_bbp_write(rt2x00dev, 77, r77);
711 rt61pci_bbp_write(rt2x00dev, 3, r3);
712 rt61pci_bbp_write(rt2x00dev, 4, r4);
713}
714
715static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716 const int p1, const int p2)
717{
718 u32 reg;
719
720 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721
acaa410d
MN
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724
725 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727
728 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
95ea3627
ID
729}
730
731static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
addc81bd 732 struct antenna_setup *ant)
95ea3627 733{
95ea3627
ID
734 u8 r3;
735 u8 r4;
736 u8 r77;
737
738 rt61pci_bbp_read(rt2x00dev, 3, &r3);
739 rt61pci_bbp_read(rt2x00dev, 4, &r4);
740 rt61pci_bbp_read(rt2x00dev, 77, &r77);
e4cd2ff8 741
e4cd2ff8
ID
742 /*
743 * Configure the RX antenna.
744 */
745 switch (ant->rx) {
746 case ANTENNA_A:
acaa410d
MN
747 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
e4cd2ff8 750 break;
e4cd2ff8
ID
751 case ANTENNA_HW_DIVERSITY:
752 /*
a4fe07d9
ID
753 * FIXME: Antenna selection for the rf 2529 is very confusing
754 * in the legacy driver. Just default to antenna B until the
755 * legacy code can be properly translated into rt2x00 code.
e4cd2ff8
ID
756 */
757 case ANTENNA_B:
a4fe07d9 758 default:
acaa410d
MN
759 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
e4cd2ff8
ID
762 break;
763 }
764
e4cd2ff8 765 rt61pci_bbp_write(rt2x00dev, 77, r77);
95ea3627
ID
766 rt61pci_bbp_write(rt2x00dev, 3, r3);
767 rt61pci_bbp_write(rt2x00dev, 4, r4);
768}
769
770struct antenna_sel {
771 u8 word;
772 /*
773 * value[0] -> non-LNA
774 * value[1] -> LNA
775 */
776 u8 value[2];
777};
778
779static const struct antenna_sel antenna_sel_a[] = {
780 { 96, { 0x58, 0x78 } },
781 { 104, { 0x38, 0x48 } },
782 { 75, { 0xfe, 0x80 } },
783 { 86, { 0xfe, 0x80 } },
784 { 88, { 0xfe, 0x80 } },
785 { 35, { 0x60, 0x60 } },
786 { 97, { 0x58, 0x58 } },
787 { 98, { 0x58, 0x58 } },
788};
789
790static const struct antenna_sel antenna_sel_bg[] = {
791 { 96, { 0x48, 0x68 } },
792 { 104, { 0x2c, 0x3c } },
793 { 75, { 0xfe, 0x80 } },
794 { 86, { 0xfe, 0x80 } },
795 { 88, { 0xfe, 0x80 } },
796 { 35, { 0x50, 0x50 } },
797 { 97, { 0x48, 0x48 } },
798 { 98, { 0x48, 0x48 } },
799};
800
e4ea1c40
ID
801static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802 struct antenna_setup *ant)
95ea3627
ID
803{
804 const struct antenna_sel *sel;
805 unsigned int lna;
806 unsigned int i;
807 u32 reg;
808
a4fe07d9
ID
809 /*
810 * We should never come here because rt2x00lib is supposed
811 * to catch this and send us the correct antenna explicitely.
812 */
813 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814 ant->tx == ANTENNA_SW_DIVERSITY);
815
8318d78a 816 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
817 sel = antenna_sel_a;
818 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
95ea3627
ID
819 } else {
820 sel = antenna_sel_bg;
821 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
95ea3627
ID
822 }
823
acaa410d
MN
824 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826
827 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828
ddc827f9 829 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
8318d78a 830 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
ddc827f9 831 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
8318d78a 832 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
ddc827f9 833
95ea3627
ID
834 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835
836 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837 rt2x00_rf(&rt2x00dev->chip, RF5325))
addc81bd 838 rt61pci_config_antenna_5x(rt2x00dev, ant);
95ea3627 839 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
addc81bd 840 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627
ID
841 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
addc81bd 843 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627 844 else
addc81bd 845 rt61pci_config_antenna_2529(rt2x00dev, ant);
95ea3627
ID
846 }
847}
848
e4ea1c40
ID
849static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850 struct rt2x00lib_conf *libconf)
851{
852 u16 eeprom;
853 short lna_gain = 0;
854
855 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857 lna_gain += 14;
858
859 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861 } else {
862 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863 lna_gain += 14;
864
865 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867 }
868
869 rt2x00dev->lna_gain = lna_gain;
870}
871
872static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873 struct rf_channel *rf, const int txpower)
874{
875 u8 r3;
876 u8 r94;
877 u8 smart;
878
879 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
881
882 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883 rt2x00_rf(&rt2x00dev->chip, RF2527));
884
885 rt61pci_bbp_read(rt2x00dev, 3, &r3);
886 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887 rt61pci_bbp_write(rt2x00dev, 3, r3);
888
889 r94 = 6;
890 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891 r94 += txpower - MAX_TXPOWER;
892 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893 r94 += txpower;
894 rt61pci_bbp_write(rt2x00dev, 94, r94);
895
896 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901 udelay(200);
902
903 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908 udelay(200);
909
910 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915 msleep(1);
916}
917
918static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919 const int txpower)
920{
921 struct rf_channel rf;
922
923 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
927
928 rt61pci_config_channel(rt2x00dev, &rf, txpower);
929}
930
931static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
5c58ee51 932 struct rt2x00lib_conf *libconf)
95ea3627
ID
933{
934 u32 reg;
935
e4ea1c40
ID
936 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942}
95ea3627 943
e4ea1c40
ID
944static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
946{
947 u32 reg;
95ea3627
ID
948
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
950 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
952
953 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
954 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
956
957 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
5c58ee51
ID
958 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
959 libconf->conf->beacon_int * 16);
95ea3627
ID
960 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
961}
962
7d7f19cc
ID
963static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964 struct rt2x00lib_conf *libconf)
965{
966 enum dev_state state =
967 (libconf->conf->flags & IEEE80211_CONF_PS) ?
968 STATE_SLEEP : STATE_AWAKE;
969 u32 reg;
970
971 if (state == STATE_SLEEP) {
972 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
973 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
974 libconf->conf->beacon_int - 10);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976 libconf->conf->listen_interval - 1);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
978
979 /* We must first disable autowake before it can be enabled */
980 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
981 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
982
983 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
984 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
985
986 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
989
990 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
991 } else {
992 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
993 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
996 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
997 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
998
999 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1002
1003 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1004 }
1005}
1006
95ea3627 1007static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
1008 struct rt2x00lib_conf *libconf,
1009 const unsigned int flags)
95ea3627 1010{
ba2ab471
ID
1011 /* Always recalculate LNA gain before changing configuration */
1012 rt61pci_config_lna_gain(rt2x00dev, libconf);
1013
e4ea1c40 1014 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
1015 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016 libconf->conf->power_level);
e4ea1c40
ID
1017 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51 1019 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
e4ea1c40
ID
1020 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022 if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
5c58ee51 1023 rt61pci_config_duration(rt2x00dev, libconf);
7d7f19cc
ID
1024 if (flags & IEEE80211_CONF_CHANGE_PS)
1025 rt61pci_config_ps(rt2x00dev, libconf);
95ea3627
ID
1026}
1027
95ea3627
ID
1028/*
1029 * Link tuning
1030 */
ebcf26da
ID
1031static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032 struct link_qual *qual)
95ea3627
ID
1033{
1034 u32 reg;
1035
1036 /*
1037 * Update FCS error count from register.
1038 */
1039 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
ebcf26da 1040 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
95ea3627
ID
1041
1042 /*
1043 * Update False CCA count from register.
1044 */
1045 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
ebcf26da 1046 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
95ea3627
ID
1047}
1048
1049static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
1050{
1051 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
1052 rt2x00dev->link.vgc_level = 0x20;
1053}
1054
1055static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1056{
1057 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1058 u8 r17;
1059 u8 up_bound;
1060 u8 low_bound;
1061
95ea3627
ID
1062 rt61pci_bbp_read(rt2x00dev, 17, &r17);
1063
1064 /*
1065 * Determine r17 bounds.
1066 */
1497074a 1067 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1068 low_bound = 0x28;
1069 up_bound = 0x48;
1070 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1071 low_bound += 0x10;
1072 up_bound += 0x10;
1073 }
1074 } else {
1075 low_bound = 0x20;
1076 up_bound = 0x40;
1077 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1078 low_bound += 0x10;
1079 up_bound += 0x10;
1080 }
1081 }
1082
6bb40dd1
ID
1083 /*
1084 * If we are not associated, we should go straight to the
1085 * dynamic CCA tuning.
1086 */
1087 if (!rt2x00dev->intf_associated)
1088 goto dynamic_cca_tune;
1089
95ea3627
ID
1090 /*
1091 * Special big-R17 for very short distance
1092 */
1093 if (rssi >= -35) {
1094 if (r17 != 0x60)
1095 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1096 return;
1097 }
1098
1099 /*
1100 * Special big-R17 for short distance
1101 */
1102 if (rssi >= -58) {
1103 if (r17 != up_bound)
1104 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1105 return;
1106 }
1107
1108 /*
1109 * Special big-R17 for middle-short distance
1110 */
1111 if (rssi >= -66) {
1112 low_bound += 0x10;
1113 if (r17 != low_bound)
1114 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1115 return;
1116 }
1117
1118 /*
1119 * Special mid-R17 for middle distance
1120 */
1121 if (rssi >= -74) {
1122 low_bound += 0x08;
1123 if (r17 != low_bound)
1124 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1125 return;
1126 }
1127
1128 /*
1129 * Special case: Change up_bound based on the rssi.
1130 * Lower up_bound when rssi is weaker then -74 dBm.
1131 */
1132 up_bound -= 2 * (-74 - rssi);
1133 if (low_bound > up_bound)
1134 up_bound = low_bound;
1135
1136 if (r17 > up_bound) {
1137 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1138 return;
1139 }
1140
6bb40dd1
ID
1141dynamic_cca_tune:
1142
95ea3627
ID
1143 /*
1144 * r17 does not yet exceed upper limit, continue and base
1145 * the r17 tuning on the false CCA count.
1146 */
ebcf26da 1147 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
95ea3627
ID
1148 if (++r17 > up_bound)
1149 r17 = up_bound;
1150 rt61pci_bbp_write(rt2x00dev, 17, r17);
ebcf26da 1151 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
95ea3627
ID
1152 if (--r17 < low_bound)
1153 r17 = low_bound;
1154 rt61pci_bbp_write(rt2x00dev, 17, r17);
1155 }
1156}
1157
1158/*
a7f3a06c 1159 * Firmware functions
95ea3627
ID
1160 */
1161static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1162{
1163 char *fw_name;
1164
1165 switch (rt2x00dev->chip.rt) {
1166 case RT2561:
1167 fw_name = FIRMWARE_RT2561;
1168 break;
1169 case RT2561s:
1170 fw_name = FIRMWARE_RT2561s;
1171 break;
1172 case RT2661:
1173 fw_name = FIRMWARE_RT2661;
1174 break;
1175 default:
1176 fw_name = NULL;
1177 break;
1178 }
1179
1180 return fw_name;
1181}
1182
f160ebcb 1183static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
a7f3a06c
ID
1184{
1185 u16 crc;
1186
1187 /*
1188 * Use the crc itu-t algorithm.
1189 * The last 2 bytes in the firmware array are the crc checksum itself,
1190 * this means that we should never pass those 2 bytes to the crc
1191 * algorithm.
1192 */
1193 crc = crc_itu_t(0, data, len - 2);
1194 crc = crc_itu_t_byte(crc, 0);
1195 crc = crc_itu_t_byte(crc, 0);
1196
1197 return crc;
1198}
1199
f160ebcb 1200static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
95ea3627
ID
1201 const size_t len)
1202{
1203 int i;
1204 u32 reg;
1205
1206 /*
1207 * Wait for stable hardware.
1208 */
1209 for (i = 0; i < 100; i++) {
1210 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1211 if (reg)
1212 break;
1213 msleep(1);
1214 }
1215
1216 if (!reg) {
1217 ERROR(rt2x00dev, "Unstable hardware.\n");
1218 return -EBUSY;
1219 }
1220
1221 /*
1222 * Prepare MCU and mailbox for firmware loading.
1223 */
1224 reg = 0;
1225 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1226 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1227 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1228 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1229 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1230
1231 /*
1232 * Write firmware to device.
1233 */
1234 reg = 0;
1235 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1236 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1237 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1238
1239 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1240 data, len);
1241
1242 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1243 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1244
1245 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1246 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1247
1248 for (i = 0; i < 100; i++) {
1249 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1250 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1251 break;
1252 msleep(1);
1253 }
1254
1255 if (i == 100) {
1256 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1257 return -EBUSY;
1258 }
1259
e6d3e902
ID
1260 /*
1261 * Hardware needs another millisecond before it is ready.
1262 */
1263 msleep(1);
1264
95ea3627
ID
1265 /*
1266 * Reset MAC and BBP registers.
1267 */
1268 reg = 0;
1269 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1270 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1271 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1272
1273 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1274 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1275 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1276 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1279 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1280 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1281
1282 return 0;
1283}
1284
a7f3a06c
ID
1285/*
1286 * Initialization functions.
1287 */
798b7adb 1288static bool rt61pci_get_entry_state(struct queue_entry *entry)
95ea3627 1289{
b8be63ff 1290 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1291 u32 word;
1292
798b7adb
ID
1293 if (entry->queue->qid == QID_RX) {
1294 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627 1295
798b7adb
ID
1296 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1297 } else {
1298 rt2x00_desc_read(entry_priv->desc, 0, &word);
1299
1300 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1301 rt2x00_get_field32(word, TXD_W0_VALID));
1302 }
95ea3627
ID
1303}
1304
798b7adb 1305static void rt61pci_clear_entry(struct queue_entry *entry)
95ea3627 1306{
b8be63ff 1307 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
798b7adb 1308 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
1309 u32 word;
1310
798b7adb
ID
1311 if (entry->queue->qid == QID_RX) {
1312 rt2x00_desc_read(entry_priv->desc, 5, &word);
1313 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1314 skbdesc->skb_dma);
1315 rt2x00_desc_write(entry_priv->desc, 5, word);
1316
1317 rt2x00_desc_read(entry_priv->desc, 0, &word);
1318 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1319 rt2x00_desc_write(entry_priv->desc, 0, word);
1320 } else {
1321 rt2x00_desc_read(entry_priv->desc, 0, &word);
1322 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1323 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1324 rt2x00_desc_write(entry_priv->desc, 0, word);
1325 }
95ea3627
ID
1326}
1327
181d6902 1328static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 1329{
b8be63ff 1330 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
1331 u32 reg;
1332
95ea3627
ID
1333 /*
1334 * Initialize registers.
1335 */
1336 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1337 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
181d6902 1338 rt2x00dev->tx[0].limit);
95ea3627 1339 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
181d6902 1340 rt2x00dev->tx[1].limit);
95ea3627 1341 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
181d6902 1342 rt2x00dev->tx[2].limit);
95ea3627 1343 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
181d6902 1344 rt2x00dev->tx[3].limit);
95ea3627
ID
1345 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1346
1347 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
95ea3627 1348 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
181d6902 1349 rt2x00dev->tx[0].desc_size / 4);
95ea3627
ID
1350 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1351
b8be63ff 1352 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 1353 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
30b3a23c 1354 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
b8be63ff 1355 entry_priv->desc_dma);
95ea3627
ID
1356 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1357
b8be63ff 1358 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 1359 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
30b3a23c 1360 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
b8be63ff 1361 entry_priv->desc_dma);
95ea3627
ID
1362 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1363
b8be63ff 1364 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
95ea3627 1365 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
30b3a23c 1366 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
b8be63ff 1367 entry_priv->desc_dma);
95ea3627
ID
1368 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1369
b8be63ff 1370 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
95ea3627 1371 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
30b3a23c 1372 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
b8be63ff 1373 entry_priv->desc_dma);
95ea3627
ID
1374 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1375
95ea3627 1376 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
181d6902 1377 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
95ea3627
ID
1378 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1379 rt2x00dev->rx->desc_size / 4);
1380 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1381 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1382
b8be63ff 1383 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 1384 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
30b3a23c 1385 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
b8be63ff 1386 entry_priv->desc_dma);
95ea3627
ID
1387 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1388
1389 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1390 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1391 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1392 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1393 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
95ea3627
ID
1394 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1395
1396 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1397 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1398 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1399 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1400 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
95ea3627
ID
1401 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1402
1403 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1404 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1405 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1406
1407 return 0;
1408}
1409
1410static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1411{
1412 u32 reg;
1413
1414 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1415 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1416 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1417 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1418 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1419
1420 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1421 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1422 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1423 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1424 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1425 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1426 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1427 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1428 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1429 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1430
1431 /*
1432 * CCK TXD BBP registers
1433 */
1434 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1435 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1436 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1437 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1438 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1439 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1440 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1441 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1442 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1443 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1444
1445 /*
1446 * OFDM TXD BBP registers
1447 */
1448 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1449 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1450 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1451 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1452 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1453 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1454 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1455 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1456
1457 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1458 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1459 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1460 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1461 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1462 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1463
1464 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1465 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1466 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1467 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1468 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1469 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1470
1f909162
ID
1471 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1472 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1473 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1474 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1475 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1476 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1477 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1478 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1479
95ea3627
ID
1480 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1481
1482 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1483
1484 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1485 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1486 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1487
1488 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1489
1490 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1491 return -EBUSY;
1492
1493 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1494
1495 /*
1496 * Invalidate all Shared Keys (SEC_CSR0),
1497 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1498 */
1499 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1500 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1501 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1502
1503 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1504 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1505 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1506 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1507
1508 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1509
1510 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1511
1512 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1513
6bb40dd1
ID
1514 /*
1515 * Clear all beacons
1516 * For the Beacon base registers we only need to clear
1517 * the first byte since that byte contains the VALID and OWNER
1518 * bits which (when set to 0) will invalidate the entire beacon.
1519 */
1520 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1521 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1522 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1523 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1524
95ea3627
ID
1525 /*
1526 * We must clear the error counters.
1527 * These registers are cleared on read,
1528 * so we may pass a useless variable to store the value.
1529 */
1530 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1531 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1532 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1533
1534 /*
1535 * Reset MAC and BBP registers.
1536 */
1537 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1538 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1539 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1540 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1541
1542 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1543 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1544 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1545 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1546
1547 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1548 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1549 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1550
1551 return 0;
1552}
1553
2b08da3f 1554static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1555{
1556 unsigned int i;
95ea3627
ID
1557 u8 value;
1558
1559 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1560 rt61pci_bbp_read(rt2x00dev, 0, &value);
1561 if ((value != 0xff) && (value != 0x00))
2b08da3f 1562 return 0;
95ea3627
ID
1563 udelay(REGISTER_BUSY_DELAY);
1564 }
1565
1566 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1567 return -EACCES;
2b08da3f
ID
1568}
1569
1570static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1571{
1572 unsigned int i;
1573 u16 eeprom;
1574 u8 reg_id;
1575 u8 value;
1576
1577 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1578 return -EACCES;
95ea3627 1579
95ea3627
ID
1580 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1581 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1582 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1583 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1584 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1585 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1586 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1587 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1588 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1589 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1590 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1591 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1592 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1593 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1594 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1595 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1596 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1597 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1598 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1599 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1600 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1601 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1602 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1603 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1604
95ea3627
ID
1605 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1606 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1607
1608 if (eeprom != 0xffff && eeprom != 0x0000) {
1609 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1610 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1611 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1612 }
1613 }
95ea3627
ID
1614
1615 return 0;
1616}
1617
1618/*
1619 * Device state switch handlers.
1620 */
1621static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1622 enum dev_state state)
1623{
1624 u32 reg;
1625
1626 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1627 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
2b08da3f
ID
1628 (state == STATE_RADIO_RX_OFF) ||
1629 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1630 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1631}
1632
1633static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1634 enum dev_state state)
1635{
1636 int mask = (state == STATE_RADIO_IRQ_OFF);
1637 u32 reg;
1638
1639 /*
1640 * When interrupts are being enabled, the interrupt registers
1641 * should clear the register to assure a clean state.
1642 */
1643 if (state == STATE_RADIO_IRQ_ON) {
1644 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1645 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1646
1647 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1648 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1649 }
1650
1651 /*
1652 * Only toggle the interrupts bits we are going to use.
1653 * Non-checked interrupt bits are disabled by default.
1654 */
1655 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1656 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1657 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1658 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1659 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1660 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1661
1662 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1663 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1664 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1665 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1666 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1667 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1668 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1669 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1670 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1671 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1672}
1673
1674static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1675{
1676 u32 reg;
1677
1678 /*
1679 * Initialize all registers.
1680 */
2b08da3f
ID
1681 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1682 rt61pci_init_registers(rt2x00dev) ||
1683 rt61pci_init_bbp(rt2x00dev)))
95ea3627 1684 return -EIO;
95ea3627
ID
1685
1686 /*
1687 * Enable RX.
1688 */
1689 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1690 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1691 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1692
95ea3627
ID
1693 return 0;
1694}
1695
1696static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1697{
1698 u32 reg;
1699
95ea3627
ID
1700 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1701
1702 /*
1703 * Disable synchronisation.
1704 */
1705 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1706
1707 /*
1708 * Cancel RX and TX.
1709 */
1710 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1711 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1712 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1713 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1714 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
95ea3627 1715 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
95ea3627
ID
1716}
1717
1718static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1719{
1720 u32 reg;
1721 unsigned int i;
1722 char put_to_sleep;
95ea3627
ID
1723
1724 put_to_sleep = (state != STATE_AWAKE);
1725
1726 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1727 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1728 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1729 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1730
1731 /*
1732 * Device is not guaranteed to be in the requested state yet.
1733 * We must wait until the register indicates that the
1734 * device has entered the correct state.
1735 */
1736 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1737 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
2b08da3f
ID
1738 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1739 if (state == !put_to_sleep)
95ea3627
ID
1740 return 0;
1741 msleep(10);
1742 }
1743
95ea3627
ID
1744 return -EBUSY;
1745}
1746
1747static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1748 enum dev_state state)
1749{
1750 int retval = 0;
1751
1752 switch (state) {
1753 case STATE_RADIO_ON:
1754 retval = rt61pci_enable_radio(rt2x00dev);
1755 break;
1756 case STATE_RADIO_OFF:
1757 rt61pci_disable_radio(rt2x00dev);
1758 break;
1759 case STATE_RADIO_RX_ON:
61667d8d 1760 case STATE_RADIO_RX_ON_LINK:
95ea3627 1761 case STATE_RADIO_RX_OFF:
61667d8d 1762 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1763 rt61pci_toggle_rx(rt2x00dev, state);
1764 break;
1765 case STATE_RADIO_IRQ_ON:
1766 case STATE_RADIO_IRQ_OFF:
1767 rt61pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1768 break;
1769 case STATE_DEEP_SLEEP:
1770 case STATE_SLEEP:
1771 case STATE_STANDBY:
1772 case STATE_AWAKE:
1773 retval = rt61pci_set_state(rt2x00dev, state);
1774 break;
1775 default:
1776 retval = -ENOTSUPP;
1777 break;
1778 }
1779
2b08da3f
ID
1780 if (unlikely(retval))
1781 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1782 state, retval);
1783
95ea3627
ID
1784 return retval;
1785}
1786
1787/*
1788 * TX descriptor initialization
1789 */
1790static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
61e754f4
ID
1791 struct sk_buff *skb,
1792 struct txentry_desc *txdesc)
95ea3627 1793{
181d6902 1794 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
dd3193e1 1795 __le32 *txd = skbdesc->desc;
95ea3627
ID
1796 u32 word;
1797
1798 /*
1799 * Start writing the descriptor words.
1800 */
1801 rt2x00_desc_read(txd, 1, &word);
181d6902
ID
1802 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1803 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1804 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1805 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
61e754f4 1806 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
5adf6d63
ID
1807 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1808 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
4de36fe5 1809 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
95ea3627
ID
1810 rt2x00_desc_write(txd, 1, word);
1811
1812 rt2x00_desc_read(txd, 2, &word);
181d6902
ID
1813 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1814 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1815 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1816 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1817 rt2x00_desc_write(txd, 2, word);
1818
61e754f4 1819 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1ce9cdac
ID
1820 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1821 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
61e754f4
ID
1822 }
1823
95ea3627 1824 rt2x00_desc_read(txd, 5, &word);
4de36fe5
GW
1825 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1826 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1827 skbdesc->entry->entry_idx);
95ea3627 1828 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
ac1aa7e4 1829 TXPOWER_TO_DEV(rt2x00dev->tx_power));
95ea3627
ID
1830 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1831 rt2x00_desc_write(txd, 5, word);
1832
4de36fe5
GW
1833 rt2x00_desc_read(txd, 6, &word);
1834 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
c4da0048 1835 skbdesc->skb_dma);
4de36fe5
GW
1836 rt2x00_desc_write(txd, 6, word);
1837
d7bafff3
AB
1838 if (skbdesc->desc_len > TXINFO_SIZE) {
1839 rt2x00_desc_read(txd, 11, &word);
d56d453a 1840 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
d7bafff3
AB
1841 rt2x00_desc_write(txd, 11, word);
1842 }
95ea3627
ID
1843
1844 rt2x00_desc_read(txd, 0, &word);
1845 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1846 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1847 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1848 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1849 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1850 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1851 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1852 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1853 rt2x00_set_field32(&word, TXD_W0_OFDM,
181d6902
ID
1854 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1855 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1856 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1857 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
61e754f4
ID
1858 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1859 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1860 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1861 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1862 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
d56d453a 1863 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
95ea3627 1864 rt2x00_set_field32(&word, TXD_W0_BURST,
181d6902 1865 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
61e754f4 1866 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
95ea3627
ID
1867 rt2x00_desc_write(txd, 0, word);
1868}
1869
1870/*
1871 * TX data initialization
1872 */
bd88a781
ID
1873static void rt61pci_write_beacon(struct queue_entry *entry)
1874{
1875 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1876 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1877 unsigned int beacon_base;
1878 u32 reg;
1879
1880 /*
1881 * Disable beaconing while we are reloading the beacon data,
1882 * otherwise we might be sending out invalid data.
1883 */
1884 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1885 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1886 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1887 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1888 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1889
1890 /*
1891 * Write entire beacon with descriptor to register.
1892 */
1893 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1894 rt2x00pci_register_multiwrite(rt2x00dev,
1895 beacon_base,
1896 skbdesc->desc, skbdesc->desc_len);
1897 rt2x00pci_register_multiwrite(rt2x00dev,
1898 beacon_base + skbdesc->desc_len,
1899 entry->skb->data, entry->skb->len);
1900
1901 /*
1902 * Clean up beacon skb.
1903 */
1904 dev_kfree_skb_any(entry->skb);
1905 entry->skb = NULL;
1906}
1907
95ea3627 1908static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
e58c6aca 1909 const enum data_queue_qid queue)
95ea3627
ID
1910{
1911 u32 reg;
1912
e58c6aca 1913 if (queue == QID_BEACON) {
95ea3627
ID
1914 /*
1915 * For Wi-Fi faily generated beacons between participating
1916 * stations. Set TBTT phase adaptive adjustment step to 8us.
1917 */
1918 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1919
1920 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1921 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
8af244cc
ID
1922 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1923 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
95ea3627
ID
1924 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1925 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1926 }
1927 return;
1928 }
1929
1930 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
e58c6aca
ID
1931 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1932 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1933 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1934 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
95ea3627
ID
1935 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1936}
1937
1938/*
1939 * RX control handlers
1940 */
1941static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1942{
ba2ab471 1943 u8 offset = rt2x00dev->lna_gain;
95ea3627
ID
1944 u8 lna;
1945
1946 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1947 switch (lna) {
1948 case 3:
ba2ab471 1949 offset += 90;
95ea3627
ID
1950 break;
1951 case 2:
ba2ab471 1952 offset += 74;
95ea3627
ID
1953 break;
1954 case 1:
ba2ab471 1955 offset += 64;
95ea3627
ID
1956 break;
1957 default:
1958 return 0;
1959 }
1960
8318d78a 1961 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1962 if (lna == 3 || lna == 2)
1963 offset += 10;
95ea3627
ID
1964 }
1965
1966 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1967}
1968
181d6902 1969static void rt61pci_fill_rxdone(struct queue_entry *entry,
55887511 1970 struct rxdone_entry_desc *rxdesc)
95ea3627 1971{
61e754f4 1972 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
b8be63ff 1973 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1974 u32 word0;
1975 u32 word1;
1976
b8be63ff
ID
1977 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1978 rt2x00_desc_read(entry_priv->desc, 1, &word1);
95ea3627 1979
4150c572 1980 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1981 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
95ea3627 1982
61e754f4
ID
1983 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1984 rxdesc->cipher =
1985 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1986 rxdesc->cipher_status =
1987 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1988 }
1989
1990 if (rxdesc->cipher != CIPHER_NONE) {
1ce9cdac
ID
1991 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1992 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
74415edb
ID
1993 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1994
61e754f4 1995 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
74415edb 1996 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
61e754f4
ID
1997
1998 /*
1999 * Hardware has stripped IV/EIV data from 802.11 frame during
2000 * decryption. It has provided the data seperately but rt2x00lib
2001 * should decide if it should be reinserted.
2002 */
2003 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2004
2005 /*
2006 * FIXME: Legacy driver indicates that the frame does
2007 * contain the Michael Mic. Unfortunately, in rt2x00
2008 * the MIC seems to be missing completely...
2009 */
2010 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2011
2012 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2013 rxdesc->flags |= RX_FLAG_DECRYPTED;
2014 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2015 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2016 }
2017
95ea3627
ID
2018 /*
2019 * Obtain the status about this packet.
89993890
ID
2020 * When frame was received with an OFDM bitrate,
2021 * the signal is the PLCP value. If it was received with
2022 * a CCK bitrate the signal is the rate in 100kbit/s.
95ea3627 2023 */
181d6902 2024 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
61e754f4 2025 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
181d6902 2026 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 2027
19d30e02
ID
2028 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2029 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
2030 else
2031 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
2032 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2033 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
2034}
2035
2036/*
2037 * Interrupt functions.
2038 */
2039static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2040{
181d6902
ID
2041 struct data_queue *queue;
2042 struct queue_entry *entry;
2043 struct queue_entry *entry_done;
b8be63ff 2044 struct queue_entry_priv_pci *entry_priv;
181d6902 2045 struct txdone_entry_desc txdesc;
95ea3627
ID
2046 u32 word;
2047 u32 reg;
2048 u32 old_reg;
2049 int type;
2050 int index;
95ea3627
ID
2051
2052 /*
2053 * During each loop we will compare the freshly read
2054 * STA_CSR4 register value with the value read from
2055 * the previous loop. If the 2 values are equal then
2056 * we should stop processing because the chance it
2057 * quite big that the device has been unplugged and
2058 * we risk going into an endless loop.
2059 */
2060 old_reg = 0;
2061
2062 while (1) {
2063 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2064 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2065 break;
2066
2067 if (old_reg == reg)
2068 break;
2069 old_reg = reg;
2070
2071 /*
2072 * Skip this entry when it contains an invalid
181d6902 2073 * queue identication number.
95ea3627
ID
2074 */
2075 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
181d6902
ID
2076 queue = rt2x00queue_get_queue(rt2x00dev, type);
2077 if (unlikely(!queue))
95ea3627
ID
2078 continue;
2079
2080 /*
2081 * Skip this entry when it contains an invalid
2082 * index number.
2083 */
2084 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
181d6902 2085 if (unlikely(index >= queue->limit))
95ea3627
ID
2086 continue;
2087
181d6902 2088 entry = &queue->entries[index];
b8be63ff
ID
2089 entry_priv = entry->priv_data;
2090 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
2091
2092 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2093 !rt2x00_get_field32(word, TXD_W0_VALID))
2094 return;
2095
181d6902 2096 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b 2097 while (entry != entry_done) {
181d6902
ID
2098 /* Catch up.
2099 * Just report any entries we missed as failed.
2100 */
62bc060b 2101 WARNING(rt2x00dev,
181d6902
ID
2102 "TX status report missed for entry %d\n",
2103 entry_done->entry_idx);
2104
fb55f4d1
ID
2105 txdesc.flags = 0;
2106 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
181d6902
ID
2107 txdesc.retry = 0;
2108
d74f5ba4 2109 rt2x00lib_txdone(entry_done, &txdesc);
181d6902 2110 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b
MN
2111 }
2112
95ea3627
ID
2113 /*
2114 * Obtain the status about this packet.
2115 */
fb55f4d1
ID
2116 txdesc.flags = 0;
2117 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2118 case 0: /* Success, maybe with retry */
2119 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2120 break;
2121 case 6: /* Failure, excessive retries */
2122 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2123 /* Don't break, this is a failed frame! */
2124 default: /* Failure */
2125 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2126 }
181d6902 2127 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
95ea3627 2128
d74f5ba4 2129 rt2x00lib_txdone(entry, &txdesc);
95ea3627
ID
2130 }
2131}
2132
2133static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2134{
2135 struct rt2x00_dev *rt2x00dev = dev_instance;
2136 u32 reg_mcu;
2137 u32 reg;
2138
2139 /*
2140 * Get the interrupt sources & saved to local variable.
2141 * Write register value back to clear pending interrupts.
2142 */
2143 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2144 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2145
2146 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2147 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2148
2149 if (!reg && !reg_mcu)
2150 return IRQ_NONE;
2151
0262ab0d 2152 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
95ea3627
ID
2153 return IRQ_HANDLED;
2154
2155 /*
2156 * Handle interrupts, walk through all bits
2157 * and run the tasks, the bits are checked in order of
2158 * priority.
2159 */
2160
2161 /*
2162 * 1 - Rx ring done interrupt.
2163 */
2164 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2165 rt2x00pci_rxdone(rt2x00dev);
2166
2167 /*
2168 * 2 - Tx ring done interrupt.
2169 */
2170 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2171 rt61pci_txdone(rt2x00dev);
2172
2173 /*
2174 * 3 - Handle MCU command done.
2175 */
2176 if (reg_mcu)
2177 rt2x00pci_register_write(rt2x00dev,
2178 M2H_CMD_DONE_CSR, 0xffffffff);
2179
2180 return IRQ_HANDLED;
2181}
2182
2183/*
2184 * Device probe functions.
2185 */
2186static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2187{
2188 struct eeprom_93cx6 eeprom;
2189 u32 reg;
2190 u16 word;
2191 u8 *mac;
2192 s8 value;
2193
2194 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2195
2196 eeprom.data = rt2x00dev;
2197 eeprom.register_read = rt61pci_eepromregister_read;
2198 eeprom.register_write = rt61pci_eepromregister_write;
2199 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2200 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2201 eeprom.reg_data_in = 0;
2202 eeprom.reg_data_out = 0;
2203 eeprom.reg_data_clock = 0;
2204 eeprom.reg_chip_select = 0;
2205
2206 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2207 EEPROM_SIZE / sizeof(u16));
2208
2209 /*
2210 * Start validation of the data that has been read.
2211 */
2212 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2213 if (!is_valid_ether_addr(mac)) {
2214 random_ether_addr(mac);
e174961c 2215 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
2216 }
2217
2218 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2219 if (word == 0xffff) {
2220 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
2221 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2222 ANTENNA_B);
2223 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2224 ANTENNA_B);
95ea3627
ID
2225 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2226 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2227 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2228 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2229 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2230 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2231 }
2232
2233 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2234 if (word == 0xffff) {
2235 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2236 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2237 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2238 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2239 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2240 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2241 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2242 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2243 }
2244
2245 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2246 if (word == 0xffff) {
2247 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2248 LED_MODE_DEFAULT);
2249 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2250 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2251 }
2252
2253 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2254 if (word == 0xffff) {
2255 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2256 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2257 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2258 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2259 }
2260
2261 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2262 if (word == 0xffff) {
2263 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2264 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2265 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2266 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2267 } else {
2268 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2269 if (value < -10 || value > 10)
2270 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2271 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2272 if (value < -10 || value > 10)
2273 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2274 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2275 }
2276
2277 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2278 if (word == 0xffff) {
2279 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2280 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2281 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
417f412f 2282 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
95ea3627
ID
2283 } else {
2284 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2285 if (value < -10 || value > 10)
2286 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2287 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2288 if (value < -10 || value > 10)
2289 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2290 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2291 }
2292
2293 return 0;
2294}
2295
2296static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2297{
2298 u32 reg;
2299 u16 value;
2300 u16 eeprom;
2301 u16 device;
2302
2303 /*
2304 * Read EEPROM word for configuration.
2305 */
2306 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2307
2308 /*
2309 * Identify RF chipset.
2310 * To determine the RT chip we have to read the
2311 * PCI header of the device.
2312 */
14a3bf89 2313 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
95ea3627
ID
2314 PCI_CONFIG_HEADER_DEVICE, &device);
2315 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2316 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2317 rt2x00_set_chip(rt2x00dev, device, value, reg);
2318
2319 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2320 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2321 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2322 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2323 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2324 return -ENODEV;
2325 }
2326
e4cd2ff8
ID
2327 /*
2328 * Determine number of antenna's.
2329 */
2330 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2331 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2332
95ea3627
ID
2333 /*
2334 * Identify default antenna configuration.
2335 */
addc81bd 2336 rt2x00dev->default_ant.tx =
95ea3627 2337 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 2338 rt2x00dev->default_ant.rx =
95ea3627
ID
2339 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2340
2341 /*
2342 * Read the Frame type.
2343 */
2344 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2345 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2346
95ea3627
ID
2347 /*
2348 * Detect if this device has an hardware controlled radio.
2349 */
58169529 2350#ifdef CONFIG_RT2X00_LIB_RFKILL
95ea3627 2351 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 2352 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
58169529 2353#endif /* CONFIG_RT2X00_LIB_RFKILL */
95ea3627
ID
2354
2355 /*
2356 * Read frequency offset and RF programming sequence.
2357 */
2358 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2359 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2360 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2361
2362 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2363
2364 /*
2365 * Read external LNA informations.
2366 */
2367 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2368
2369 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2370 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2371 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2372 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2373
e4cd2ff8
ID
2374 /*
2375 * When working with a RF2529 chip without double antenna
2376 * the antenna settings should be gathered from the NIC
2377 * eeprom word.
2378 */
2379 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2380 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2381 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2382 case 0:
2383 rt2x00dev->default_ant.tx = ANTENNA_B;
2384 rt2x00dev->default_ant.rx = ANTENNA_A;
2385 break;
2386 case 1:
2387 rt2x00dev->default_ant.tx = ANTENNA_B;
2388 rt2x00dev->default_ant.rx = ANTENNA_B;
2389 break;
2390 case 2:
2391 rt2x00dev->default_ant.tx = ANTENNA_A;
2392 rt2x00dev->default_ant.rx = ANTENNA_A;
2393 break;
2394 case 3:
2395 rt2x00dev->default_ant.tx = ANTENNA_A;
2396 rt2x00dev->default_ant.rx = ANTENNA_B;
2397 break;
2398 }
2399
2400 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2401 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2402 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2403 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2404 }
2405
95ea3627
ID
2406 /*
2407 * Store led settings, for correct led behaviour.
2408 * If the eeprom value is invalid,
2409 * switch to default led mode.
2410 */
771fd565 2411#ifdef CONFIG_RT2X00_LIB_LEDS
95ea3627 2412 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
a9450b70
ID
2413 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2414
475433be
ID
2415 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2416 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2417 if (value == LED_MODE_SIGNAL_STRENGTH)
2418 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2419 LED_TYPE_QUALITY);
95ea3627 2420
a9450b70
ID
2421 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2422 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
95ea3627
ID
2423 rt2x00_get_field16(eeprom,
2424 EEPROM_LED_POLARITY_GPIO_0));
a9450b70 2425 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
95ea3627
ID
2426 rt2x00_get_field16(eeprom,
2427 EEPROM_LED_POLARITY_GPIO_1));
a9450b70 2428 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
95ea3627
ID
2429 rt2x00_get_field16(eeprom,
2430 EEPROM_LED_POLARITY_GPIO_2));
a9450b70 2431 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
95ea3627
ID
2432 rt2x00_get_field16(eeprom,
2433 EEPROM_LED_POLARITY_GPIO_3));
a9450b70 2434 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
95ea3627
ID
2435 rt2x00_get_field16(eeprom,
2436 EEPROM_LED_POLARITY_GPIO_4));
a9450b70 2437 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
95ea3627 2438 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
a9450b70 2439 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
95ea3627
ID
2440 rt2x00_get_field16(eeprom,
2441 EEPROM_LED_POLARITY_RDY_G));
a9450b70 2442 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
95ea3627
ID
2443 rt2x00_get_field16(eeprom,
2444 EEPROM_LED_POLARITY_RDY_A));
771fd565 2445#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
2446
2447 return 0;
2448}
2449
2450/*
2451 * RF value list for RF5225 & RF5325
2452 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2453 */
2454static const struct rf_channel rf_vals_noseq[] = {
2455 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2456 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2457 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2458 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2459 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2460 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2461 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2462 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2463 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2464 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2465 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2466 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2467 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2468 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2469
2470 /* 802.11 UNI / HyperLan 2 */
2471 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2472 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2473 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2474 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2475 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2476 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2477 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2478 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2479
2480 /* 802.11 HyperLan 2 */
2481 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2482 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2483 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2484 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2485 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2486 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2487 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2488 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2489 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2490 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2491
2492 /* 802.11 UNII */
2493 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2494 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2495 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2496 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2497 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2498 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2499
2500 /* MMAC(Japan)J52 ch 34,38,42,46 */
2501 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2502 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2503 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2504 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2505};
2506
2507/*
2508 * RF value list for RF5225 & RF5325
2509 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2510 */
2511static const struct rf_channel rf_vals_seq[] = {
2512 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2513 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2514 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2515 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2516 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2517 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2518 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2519 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2520 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2521 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2522 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2523 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2524 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2525 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2526
2527 /* 802.11 UNI / HyperLan 2 */
2528 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2529 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2530 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2531 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2532 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2533 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2534 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2535 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2536
2537 /* 802.11 HyperLan 2 */
2538 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2539 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2540 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2541 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2542 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2543 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2544 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2545 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2546 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2547 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2548
2549 /* 802.11 UNII */
2550 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2551 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2552 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2553 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2554 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2555 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2556
2557 /* MMAC(Japan)J52 ch 34,38,42,46 */
2558 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2559 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2560 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2561 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2562};
2563
8c5e7a5f 2564static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
2565{
2566 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
2567 struct channel_info *info;
2568 char *tx_power;
95ea3627
ID
2569 unsigned int i;
2570
2571 /*
2572 * Initialize all hw fields.
2573 */
2574 rt2x00dev->hw->flags =
566bfe5a
BR
2575 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2576 IEEE80211_HW_SIGNAL_DBM;
95ea3627 2577 rt2x00dev->hw->extra_tx_headroom = 0;
95ea3627 2578
14a3bf89 2579 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
2580 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2581 rt2x00_eeprom_addr(rt2x00dev,
2582 EEPROM_MAC_ADDR_0));
2583
95ea3627
ID
2584 /*
2585 * Initialize hw_mode information.
2586 */
31562e80
ID
2587 spec->supported_bands = SUPPORT_BAND_2GHZ;
2588 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
2589
2590 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2591 spec->num_channels = 14;
2592 spec->channels = rf_vals_noseq;
2593 } else {
2594 spec->num_channels = 14;
2595 spec->channels = rf_vals_seq;
2596 }
2597
2598 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2599 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
31562e80 2600 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627 2601 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
8c5e7a5f
ID
2602 }
2603
2604 /*
2605 * Create channel information array
2606 */
2607 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2608 if (!info)
2609 return -ENOMEM;
2610
2611 spec->channels_info = info;
95ea3627 2612
8c5e7a5f
ID
2613 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2614 for (i = 0; i < 14; i++)
2615 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2616
8c5e7a5f
ID
2617 if (spec->num_channels > 14) {
2618 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2619 for (i = 14; i < spec->num_channels; i++)
2620 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
95ea3627 2621 }
8c5e7a5f
ID
2622
2623 return 0;
95ea3627
ID
2624}
2625
2626static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2627{
2628 int retval;
2629
2630 /*
2631 * Allocate eeprom data.
2632 */
2633 retval = rt61pci_validate_eeprom(rt2x00dev);
2634 if (retval)
2635 return retval;
2636
2637 retval = rt61pci_init_eeprom(rt2x00dev);
2638 if (retval)
2639 return retval;
2640
2641 /*
2642 * Initialize hw specifications.
2643 */
8c5e7a5f
ID
2644 retval = rt61pci_probe_hw_mode(rt2x00dev);
2645 if (retval)
2646 return retval;
95ea3627
ID
2647
2648 /*
c4da0048 2649 * This device requires firmware and DMA mapped skbs.
95ea3627 2650 */
066cb637 2651 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
c4da0048 2652 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
008c4482
ID
2653 if (!modparam_nohwcrypt)
2654 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
95ea3627
ID
2655
2656 /*
2657 * Set the rssi offset.
2658 */
2659 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2660
2661 return 0;
2662}
2663
2664/*
2665 * IEEE80211 stack callback functions.
2666 */
2af0a570
ID
2667static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2668 const struct ieee80211_tx_queue_params *params)
2669{
2670 struct rt2x00_dev *rt2x00dev = hw->priv;
2671 struct data_queue *queue;
2672 struct rt2x00_field32 field;
2673 int retval;
2674 u32 reg;
2675
2676 /*
2677 * First pass the configuration through rt2x00lib, that will
2678 * update the queue settings and validate the input. After that
2679 * we are free to update the registers based on the value
2680 * in the queue parameter.
2681 */
2682 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2683 if (retval)
2684 return retval;
2685
2686 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2687
2688 /* Update WMM TXOP register */
2689 if (queue_idx < 2) {
2690 field.bit_offset = queue_idx * 16;
2691 field.bit_mask = 0xffff << field.bit_offset;
2692
2693 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2694 rt2x00_set_field32(&reg, field, queue->txop);
2695 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2696 } else if (queue_idx < 4) {
2697 field.bit_offset = (queue_idx - 2) * 16;
2698 field.bit_mask = 0xffff << field.bit_offset;
2699
2700 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2701 rt2x00_set_field32(&reg, field, queue->txop);
2702 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2703 }
2704
2705 /* Update WMM registers */
2706 field.bit_offset = queue_idx * 4;
2707 field.bit_mask = 0xf << field.bit_offset;
2708
2709 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2710 rt2x00_set_field32(&reg, field, queue->aifs);
2711 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2712
2713 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2714 rt2x00_set_field32(&reg, field, queue->cw_min);
2715 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2716
2717 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2718 rt2x00_set_field32(&reg, field, queue->cw_max);
2719 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2720
2721 return 0;
2722}
2723
95ea3627
ID
2724static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2725{
2726 struct rt2x00_dev *rt2x00dev = hw->priv;
2727 u64 tsf;
2728 u32 reg;
2729
2730 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2731 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2732 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2733 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2734
2735 return tsf;
2736}
2737
95ea3627
ID
2738static const struct ieee80211_ops rt61pci_mac80211_ops = {
2739 .tx = rt2x00mac_tx,
4150c572
JB
2740 .start = rt2x00mac_start,
2741 .stop = rt2x00mac_stop,
95ea3627
ID
2742 .add_interface = rt2x00mac_add_interface,
2743 .remove_interface = rt2x00mac_remove_interface,
2744 .config = rt2x00mac_config,
2745 .config_interface = rt2x00mac_config_interface,
3a643d24 2746 .configure_filter = rt2x00mac_configure_filter,
61e754f4 2747 .set_key = rt2x00mac_set_key,
95ea3627 2748 .get_stats = rt2x00mac_get_stats,
471b3efd 2749 .bss_info_changed = rt2x00mac_bss_info_changed,
2af0a570 2750 .conf_tx = rt61pci_conf_tx,
95ea3627
ID
2751 .get_tx_stats = rt2x00mac_get_tx_stats,
2752 .get_tsf = rt61pci_get_tsf,
95ea3627
ID
2753};
2754
2755static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2756 .irq_handler = rt61pci_interrupt,
2757 .probe_hw = rt61pci_probe_hw,
2758 .get_firmware_name = rt61pci_get_firmware_name,
a7f3a06c 2759 .get_firmware_crc = rt61pci_get_firmware_crc,
95ea3627
ID
2760 .load_firmware = rt61pci_load_firmware,
2761 .initialize = rt2x00pci_initialize,
2762 .uninitialize = rt2x00pci_uninitialize,
798b7adb
ID
2763 .get_entry_state = rt61pci_get_entry_state,
2764 .clear_entry = rt61pci_clear_entry,
95ea3627 2765 .set_device_state = rt61pci_set_device_state,
95ea3627 2766 .rfkill_poll = rt61pci_rfkill_poll,
95ea3627
ID
2767 .link_stats = rt61pci_link_stats,
2768 .reset_tuner = rt61pci_reset_tuner,
2769 .link_tuner = rt61pci_link_tuner,
2770 .write_tx_desc = rt61pci_write_tx_desc,
2771 .write_tx_data = rt2x00pci_write_tx_data,
bd88a781 2772 .write_beacon = rt61pci_write_beacon,
95ea3627
ID
2773 .kick_tx_queue = rt61pci_kick_tx_queue,
2774 .fill_rxdone = rt61pci_fill_rxdone,
61e754f4
ID
2775 .config_shared_key = rt61pci_config_shared_key,
2776 .config_pairwise_key = rt61pci_config_pairwise_key,
3a643d24 2777 .config_filter = rt61pci_config_filter,
6bb40dd1 2778 .config_intf = rt61pci_config_intf,
72810379 2779 .config_erp = rt61pci_config_erp,
e4ea1c40 2780 .config_ant = rt61pci_config_ant,
95ea3627
ID
2781 .config = rt61pci_config,
2782};
2783
181d6902
ID
2784static const struct data_queue_desc rt61pci_queue_rx = {
2785 .entry_num = RX_ENTRIES,
2786 .data_size = DATA_FRAME_SIZE,
2787 .desc_size = RXD_DESC_SIZE,
b8be63ff 2788 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2789};
2790
2791static const struct data_queue_desc rt61pci_queue_tx = {
2792 .entry_num = TX_ENTRIES,
2793 .data_size = DATA_FRAME_SIZE,
2794 .desc_size = TXD_DESC_SIZE,
b8be63ff 2795 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2796};
2797
2798static const struct data_queue_desc rt61pci_queue_bcn = {
6bb40dd1 2799 .entry_num = 4 * BEACON_ENTRIES,
78720897 2800 .data_size = 0, /* No DMA required for beacons */
181d6902 2801 .desc_size = TXINFO_SIZE,
b8be63ff 2802 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2803};
2804
95ea3627 2805static const struct rt2x00_ops rt61pci_ops = {
2360157c 2806 .name = KBUILD_MODNAME,
6bb40dd1
ID
2807 .max_sta_intf = 1,
2808 .max_ap_intf = 4,
95ea3627
ID
2809 .eeprom_size = EEPROM_SIZE,
2810 .rf_size = RF_SIZE,
61448f88 2811 .tx_queues = NUM_TX_QUEUES,
181d6902
ID
2812 .rx = &rt61pci_queue_rx,
2813 .tx = &rt61pci_queue_tx,
2814 .bcn = &rt61pci_queue_bcn,
95ea3627
ID
2815 .lib = &rt61pci_rt2x00_ops,
2816 .hw = &rt61pci_mac80211_ops,
2817#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2818 .debugfs = &rt61pci_rt2x00debug,
2819#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2820};
2821
2822/*
2823 * RT61pci module information.
2824 */
2825static struct pci_device_id rt61pci_device_table[] = {
2826 /* RT2561s */
2827 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2828 /* RT2561 v2 */
2829 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2830 /* RT2661 */
2831 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2832 { 0, }
2833};
2834
2835MODULE_AUTHOR(DRV_PROJECT);
2836MODULE_VERSION(DRV_VERSION);
2837MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2838MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2839 "PCI & PCMCIA chipset based cards");
2840MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2841MODULE_FIRMWARE(FIRMWARE_RT2561);
2842MODULE_FIRMWARE(FIRMWARE_RT2561s);
2843MODULE_FIRMWARE(FIRMWARE_RT2661);
2844MODULE_LICENSE("GPL");
2845
2846static struct pci_driver rt61pci_driver = {
2360157c 2847 .name = KBUILD_MODNAME,
95ea3627
ID
2848 .id_table = rt61pci_device_table,
2849 .probe = rt2x00pci_probe,
2850 .remove = __devexit_p(rt2x00pci_remove),
2851 .suspend = rt2x00pci_suspend,
2852 .resume = rt2x00pci_resume,
2853};
2854
2855static int __init rt61pci_init(void)
2856{
2857 return pci_register_driver(&rt61pci_driver);
2858}
2859
2860static void __exit rt61pci_exit(void)
2861{
2862 pci_unregister_driver(&rt61pci_driver);
2863}
2864
2865module_init(rt61pci_init);
2866module_exit(rt61pci_exit);
This page took 0.709039 seconds and 5 git commands to generate.