rt2x00: Implement HW encryption (rt73usb)
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
CommitLineData
95ea3627 1/*
811aa9ca 2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
a7f3a06c 27#include <linux/crc-itu-t.h>
95ea3627
ID
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/pci.h>
34#include <linux/eeprom_93cx6.h>
35
36#include "rt2x00.h"
37#include "rt2x00pci.h"
38#include "rt61pci.h"
39
40/*
41 * Register access.
42 * BBP and RF register require indirect register access,
43 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44 * These indirect registers work with busy bits,
45 * and we will try maximal REGISTER_BUSY_COUNT times to access
46 * the register while taking a REGISTER_BUSY_DELAY us delay
47 * between each attampt. When the busy bit is still set at that time,
48 * the access attempt is considered to have failed,
49 * and we will print an error.
50 */
0e14f6d3 51static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
52{
53 u32 reg;
54 unsigned int i;
55
56 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
58 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
59 break;
60 udelay(REGISTER_BUSY_DELAY);
61 }
62
63 return reg;
64}
65
0e14f6d3 66static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
67 const unsigned int word, const u8 value)
68{
69 u32 reg;
70
71 /*
72 * Wait until the BBP becomes ready.
73 */
74 reg = rt61pci_bbp_check(rt2x00dev);
75 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
77 return;
78 }
79
80 /*
81 * Write the data into the BBP.
82 */
83 reg = 0;
84 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
85 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
86 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
87 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
88
89 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
90}
91
0e14f6d3 92static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
93 const unsigned int word, u8 *value)
94{
95 u32 reg;
96
97 /*
98 * Wait until the BBP becomes ready.
99 */
100 reg = rt61pci_bbp_check(rt2x00dev);
101 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
103 return;
104 }
105
106 /*
107 * Write the request into the BBP.
108 */
109 reg = 0;
110 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
111 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
112 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
113
114 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
115
116 /*
117 * Wait until the BBP becomes ready.
118 */
119 reg = rt61pci_bbp_check(rt2x00dev);
120 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
122 *value = 0xff;
123 return;
124 }
125
126 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
127}
128
0e14f6d3 129static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
130 const unsigned int word, const u32 value)
131{
132 u32 reg;
133 unsigned int i;
134
135 if (!word)
136 return;
137
138 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
140 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
141 goto rf_write;
142 udelay(REGISTER_BUSY_DELAY);
143 }
144
145 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
146 return;
147
148rf_write:
149 reg = 0;
150 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
151 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
152 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
153 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
154
155 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156 rt2x00_rf_write(rt2x00dev, word, value);
157}
158
a9450b70
ID
159#ifdef CONFIG_RT61PCI_LEDS
160/*
161 * This function is only called from rt61pci_led_brightness()
162 * make gcc happy by placing this function inside the
163 * same ifdef statement as the caller.
164 */
0e14f6d3 165static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
166 const u8 command, const u8 token,
167 const u8 arg0, const u8 arg1)
168{
169 u32 reg;
170
171 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
172
173 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174 ERROR(rt2x00dev, "mcu request error. "
175 "Request 0x%02x failed for token 0x%02x.\n",
176 command, token);
177 return;
178 }
179
180 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
181 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
183 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
184 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
185
186 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
187 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
188 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
190}
a9450b70 191#endif /* CONFIG_RT61PCI_LEDS */
95ea3627
ID
192
193static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
194{
195 struct rt2x00_dev *rt2x00dev = eeprom->data;
196 u32 reg;
197
198 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
199
200 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202 eeprom->reg_data_clock =
203 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204 eeprom->reg_chip_select =
205 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
206}
207
208static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
209{
210 struct rt2x00_dev *rt2x00dev = eeprom->data;
211 u32 reg = 0;
212
213 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
216 !!eeprom->reg_data_clock);
217 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
218 !!eeprom->reg_chip_select);
219
220 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
221}
222
223#ifdef CONFIG_RT2X00_LIB_DEBUGFS
224#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
225
0e14f6d3 226static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
227 const unsigned int word, u32 *data)
228{
229 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
230}
231
0e14f6d3 232static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
233 const unsigned int word, u32 data)
234{
235 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
236}
237
238static const struct rt2x00debug rt61pci_rt2x00debug = {
239 .owner = THIS_MODULE,
240 .csr = {
241 .read = rt61pci_read_csr,
242 .write = rt61pci_write_csr,
243 .word_size = sizeof(u32),
244 .word_count = CSR_REG_SIZE / sizeof(u32),
245 },
246 .eeprom = {
247 .read = rt2x00_eeprom_read,
248 .write = rt2x00_eeprom_write,
249 .word_size = sizeof(u16),
250 .word_count = EEPROM_SIZE / sizeof(u16),
251 },
252 .bbp = {
253 .read = rt61pci_bbp_read,
254 .write = rt61pci_bbp_write,
255 .word_size = sizeof(u8),
256 .word_count = BBP_SIZE / sizeof(u8),
257 },
258 .rf = {
259 .read = rt2x00_rf_read,
260 .write = rt61pci_rf_write,
261 .word_size = sizeof(u32),
262 .word_count = RF_SIZE / sizeof(u32),
263 },
264};
265#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
266
267#ifdef CONFIG_RT61PCI_RFKILL
268static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
269{
270 u32 reg;
271
272 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
181d6902 273 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
95ea3627 274}
81873e9c
ID
275#else
276#define rt61pci_rfkill_poll NULL
dcf5475b 277#endif /* CONFIG_RT61PCI_RFKILL */
95ea3627 278
a9450b70 279#ifdef CONFIG_RT61PCI_LEDS
a2e1d52a 280static void rt61pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
281 enum led_brightness brightness)
282{
283 struct rt2x00_led *led =
284 container_of(led_cdev, struct rt2x00_led, led_dev);
285 unsigned int enabled = brightness != LED_OFF;
286 unsigned int a_mode =
287 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288 unsigned int bg_mode =
289 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
290
291 if (led->type == LED_TYPE_RADIO) {
292 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293 MCU_LEDCS_RADIO_STATUS, enabled);
294
295 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296 (led->rt2x00dev->led_mcu_reg & 0xff),
297 ((led->rt2x00dev->led_mcu_reg >> 8)));
298 } else if (led->type == LED_TYPE_ASSOC) {
299 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302 MCU_LEDCS_LINK_A_STATUS, a_mode);
303
304 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305 (led->rt2x00dev->led_mcu_reg & 0xff),
306 ((led->rt2x00dev->led_mcu_reg >> 8)));
307 } else if (led->type == LED_TYPE_QUALITY) {
308 /*
309 * The brightness is divided into 6 levels (0 - 5),
310 * this means we need to convert the brightness
311 * argument into the matching level within that range.
312 */
313 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314 brightness / (LED_FULL / 6), 0);
315 }
316}
a2e1d52a
ID
317
318static int rt61pci_blink_set(struct led_classdev *led_cdev,
319 unsigned long *delay_on,
320 unsigned long *delay_off)
321{
322 struct rt2x00_led *led =
323 container_of(led_cdev, struct rt2x00_led, led_dev);
324 u32 reg;
325
326 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
327 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
328 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
329 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
330
331 return 0;
332}
475433be
ID
333
334static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
335 struct rt2x00_led *led,
336 enum led_type type)
337{
338 led->rt2x00dev = rt2x00dev;
339 led->type = type;
340 led->led_dev.brightness_set = rt61pci_brightness_set;
341 led->led_dev.blink_set = rt61pci_blink_set;
342 led->flags = LED_INITIALIZED;
343}
a9450b70
ID
344#endif /* CONFIG_RT61PCI_LEDS */
345
95ea3627
ID
346/*
347 * Configuration handlers.
348 */
61e754f4
ID
349static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
350 struct rt2x00lib_crypto *crypto,
351 struct ieee80211_key_conf *key)
352{
353 struct hw_key_entry key_entry;
354 struct rt2x00_field32 field;
355 u32 mask;
356 u32 reg;
357
358 if (crypto->cmd == SET_KEY) {
359 /*
360 * rt2x00lib can't determine the correct free
361 * key_idx for shared keys. We have 1 register
362 * with key valid bits. The goal is simple, read
363 * the register, if that is full we have no slots
364 * left.
365 * Note that each BSS is allowed to have up to 4
366 * shared keys, so put a mask over the allowed
367 * entries.
368 */
369 mask = (0xf << crypto->bssidx);
370
371 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
372 reg &= mask;
373
374 if (reg && reg == mask)
375 return -ENOSPC;
376
377 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
378
379 /*
380 * Upload key to hardware
381 */
382 memcpy(key_entry.key, crypto->key,
383 sizeof(key_entry.key));
384 memcpy(key_entry.tx_mic, crypto->tx_mic,
385 sizeof(key_entry.tx_mic));
386 memcpy(key_entry.rx_mic, crypto->rx_mic,
387 sizeof(key_entry.rx_mic));
388
389 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
390 rt2x00pci_register_multiwrite(rt2x00dev, reg,
391 &key_entry, sizeof(key_entry));
392
393 /*
394 * The cipher types are stored over 2 registers.
395 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
396 * bssidx 1 and 2 keys are stored in SEC_CSR5.
397 * Using the correct defines correctly will cause overhead,
398 * so just calculate the correct offset.
399 */
400 if (key->hw_key_idx < 8) {
401 field.bit_offset = (3 * key->hw_key_idx);
402 field.bit_mask = 0x7 << field.bit_offset;
403
404 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
405 rt2x00_set_field32(&reg, field, crypto->cipher);
406 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
407 } else {
408 field.bit_offset = (3 * (key->hw_key_idx - 8));
409 field.bit_mask = 0x7 << field.bit_offset;
410
411 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
412 rt2x00_set_field32(&reg, field, crypto->cipher);
413 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
414 }
415
416 /*
417 * The driver does not support the IV/EIV generation
418 * in hardware. However it doesn't support the IV/EIV
419 * inside the ieee80211 frame either, but requires it
420 * to be provided seperately for the descriptor.
421 * rt2x00lib will cut the IV/EIV data out of all frames
422 * given to us by mac80211, but we must tell mac80211
423 * to generate the IV/EIV data.
424 */
425 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
426 }
427
428 /*
429 * SEC_CSR0 contains only single-bit fields to indicate
430 * a particular key is valid. Because using the FIELD32()
431 * defines directly will cause a lot of overhead we use
432 * a calculation to determine the correct bit directly.
433 */
434 mask = 1 << key->hw_key_idx;
435
436 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
437 if (crypto->cmd == SET_KEY)
438 reg |= mask;
439 else if (crypto->cmd == DISABLE_KEY)
440 reg &= ~mask;
441 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
442
443 return 0;
444}
445
446static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
447 struct rt2x00lib_crypto *crypto,
448 struct ieee80211_key_conf *key)
449{
450 struct hw_pairwise_ta_entry addr_entry;
451 struct hw_key_entry key_entry;
452 u32 mask;
453 u32 reg;
454
455 if (crypto->cmd == SET_KEY) {
456 /*
457 * rt2x00lib can't determine the correct free
458 * key_idx for pairwise keys. We have 2 registers
459 * with key valid bits. The goal is simple, read
460 * the first register, if that is full move to
461 * the next register.
462 * When both registers are full, we drop the key,
463 * otherwise we use the first invalid entry.
464 */
465 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
466 if (reg && reg == ~0) {
467 key->hw_key_idx = 32;
468 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
469 if (reg && reg == ~0)
470 return -ENOSPC;
471 }
472
473 key->hw_key_idx += reg ? (ffz(reg) - 1) : 0;
474
475 /*
476 * Upload key to hardware
477 */
478 memcpy(key_entry.key, crypto->key,
479 sizeof(key_entry.key));
480 memcpy(key_entry.tx_mic, crypto->tx_mic,
481 sizeof(key_entry.tx_mic));
482 memcpy(key_entry.rx_mic, crypto->rx_mic,
483 sizeof(key_entry.rx_mic));
484
485 memset(&addr_entry, 0, sizeof(addr_entry));
486 memcpy(&addr_entry, crypto->address, ETH_ALEN);
487 addr_entry.cipher = crypto->cipher;
488
489 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
490 rt2x00pci_register_multiwrite(rt2x00dev, reg,
491 &key_entry, sizeof(key_entry));
492
493 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
494 rt2x00pci_register_multiwrite(rt2x00dev, reg,
495 &addr_entry, sizeof(addr_entry));
496
497 /*
498 * Enable pairwise lookup table for given BSS idx,
499 * without this received frames will not be decrypted
500 * by the hardware.
501 */
502 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
503 reg |= (1 << crypto->bssidx);
504 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
505
506 /*
507 * The driver does not support the IV/EIV generation
508 * in hardware. However it doesn't support the IV/EIV
509 * inside the ieee80211 frame either, but requires it
510 * to be provided seperately for the descriptor.
511 * rt2x00lib will cut the IV/EIV data out of all frames
512 * given to us by mac80211, but we must tell mac80211
513 * to generate the IV/EIV data.
514 */
515 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
516 }
517
518 /*
519 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
520 * a particular key is valid. Because using the FIELD32()
521 * defines directly will cause a lot of overhead we use
522 * a calculation to determine the correct bit directly.
523 */
524 if (key->hw_key_idx < 32) {
525 mask = 1 << key->hw_key_idx;
526
527 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
528 if (crypto->cmd == SET_KEY)
529 reg |= mask;
530 else if (crypto->cmd == DISABLE_KEY)
531 reg &= ~mask;
532 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
533 } else {
534 mask = 1 << (key->hw_key_idx - 32);
535
536 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
537 if (crypto->cmd == SET_KEY)
538 reg |= mask;
539 else if (crypto->cmd == DISABLE_KEY)
540 reg &= ~mask;
541 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
542 }
543
544 return 0;
545}
546
3a643d24
ID
547static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
548 const unsigned int filter_flags)
549{
550 u32 reg;
551
552 /*
553 * Start configuration steps.
554 * Note that the version error will always be dropped
555 * and broadcast frames will always be accepted since
556 * there is no filter for it at this time.
557 */
558 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
559 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
560 !(filter_flags & FIF_FCSFAIL));
561 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
562 !(filter_flags & FIF_PLCPFAIL));
563 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
564 !(filter_flags & FIF_CONTROL));
565 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
566 !(filter_flags & FIF_PROMISC_IN_BSS));
567 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
e0b005fa
ID
568 !(filter_flags & FIF_PROMISC_IN_BSS) &&
569 !rt2x00dev->intf_ap_count);
3a643d24
ID
570 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
571 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
572 !(filter_flags & FIF_ALLMULTI));
573 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
574 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
575 !(filter_flags & FIF_CONTROL));
576 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
577}
578
6bb40dd1
ID
579static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
580 struct rt2x00_intf *intf,
581 struct rt2x00intf_conf *conf,
582 const unsigned int flags)
95ea3627 583{
6bb40dd1
ID
584 unsigned int beacon_base;
585 u32 reg;
95ea3627 586
6bb40dd1
ID
587 if (flags & CONFIG_UPDATE_TYPE) {
588 /*
589 * Clear current synchronisation setup.
590 * For the Beacon base registers we only need to clear
591 * the first byte since that byte contains the VALID and OWNER
592 * bits which (when set to 0) will invalidate the entire beacon.
593 */
594 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
6bb40dd1 595 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
95ea3627 596
6bb40dd1
ID
597 /*
598 * Enable synchronisation.
599 */
600 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
fd3c91c5 601 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
6bb40dd1 602 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
fd3c91c5 603 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
6bb40dd1
ID
604 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
605 }
95ea3627 606
6bb40dd1
ID
607 if (flags & CONFIG_UPDATE_MAC) {
608 reg = le32_to_cpu(conf->mac[1]);
609 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
610 conf->mac[1] = cpu_to_le32(reg);
95ea3627 611
6bb40dd1
ID
612 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
613 conf->mac, sizeof(conf->mac));
614 }
95ea3627 615
6bb40dd1
ID
616 if (flags & CONFIG_UPDATE_BSSID) {
617 reg = le32_to_cpu(conf->bssid[1]);
618 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
619 conf->bssid[1] = cpu_to_le32(reg);
95ea3627 620
6bb40dd1
ID
621 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
622 conf->bssid, sizeof(conf->bssid));
623 }
95ea3627
ID
624}
625
3a643d24
ID
626static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
627 struct rt2x00lib_erp *erp)
95ea3627 628{
95ea3627 629 u32 reg;
95ea3627
ID
630
631 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
72810379 632 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
95ea3627
ID
633 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
634
635 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
4f5af6eb 636 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
72810379 637 !!erp->short_preamble);
95ea3627
ID
638 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
639}
640
641static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
5c58ee51 642 const int basic_rate_mask)
95ea3627 643{
5c58ee51 644 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
95ea3627
ID
645}
646
5c58ee51
ID
647static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
648 struct rf_channel *rf, const int txpower)
95ea3627
ID
649{
650 u8 r3;
651 u8 r94;
652 u8 smart;
653
654 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
655 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
656
657 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
658 rt2x00_rf(&rt2x00dev->chip, RF2527));
659
660 rt61pci_bbp_read(rt2x00dev, 3, &r3);
661 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
662 rt61pci_bbp_write(rt2x00dev, 3, r3);
663
664 r94 = 6;
665 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
666 r94 += txpower - MAX_TXPOWER;
667 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
668 r94 += txpower;
669 rt61pci_bbp_write(rt2x00dev, 94, r94);
670
671 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
672 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
673 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
674 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
675
676 udelay(200);
677
678 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
679 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
680 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
681 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
682
683 udelay(200);
684
685 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
686 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
687 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
688 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
689
690 msleep(1);
691}
692
95ea3627
ID
693static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
694 const int txpower)
695{
696 struct rf_channel rf;
697
698 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
699 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
700 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
701 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
702
5c58ee51 703 rt61pci_config_channel(rt2x00dev, &rf, txpower);
95ea3627
ID
704}
705
706static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
addc81bd 707 struct antenna_setup *ant)
95ea3627
ID
708{
709 u8 r3;
710 u8 r4;
711 u8 r77;
712
713 rt61pci_bbp_read(rt2x00dev, 3, &r3);
714 rt61pci_bbp_read(rt2x00dev, 4, &r4);
715 rt61pci_bbp_read(rt2x00dev, 77, &r77);
716
717 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 718 rt2x00_rf(&rt2x00dev->chip, RF5325));
e4cd2ff8
ID
719
720 /*
721 * Configure the RX antenna.
722 */
addc81bd 723 switch (ant->rx) {
95ea3627 724 case ANTENNA_HW_DIVERSITY:
acaa410d 725 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627 726 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
8318d78a 727 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
95ea3627
ID
728 break;
729 case ANTENNA_A:
acaa410d 730 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 731 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 732 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
733 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
734 else
735 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
736 break;
737 case ANTENNA_B:
a4fe07d9 738 default:
acaa410d 739 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 740 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 741 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
742 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
743 else
744 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
745 break;
746 }
747
748 rt61pci_bbp_write(rt2x00dev, 77, r77);
749 rt61pci_bbp_write(rt2x00dev, 3, r3);
750 rt61pci_bbp_write(rt2x00dev, 4, r4);
751}
752
753static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
addc81bd 754 struct antenna_setup *ant)
95ea3627
ID
755{
756 u8 r3;
757 u8 r4;
758 u8 r77;
759
760 rt61pci_bbp_read(rt2x00dev, 3, &r3);
761 rt61pci_bbp_read(rt2x00dev, 4, &r4);
762 rt61pci_bbp_read(rt2x00dev, 77, &r77);
763
764 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
acaa410d 765 rt2x00_rf(&rt2x00dev->chip, RF2529));
95ea3627
ID
766 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
767 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
768
e4cd2ff8
ID
769 /*
770 * Configure the RX antenna.
771 */
addc81bd 772 switch (ant->rx) {
95ea3627 773 case ANTENNA_HW_DIVERSITY:
acaa410d 774 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627
ID
775 break;
776 case ANTENNA_A:
acaa410d
MN
777 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
778 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
779 break;
780 case ANTENNA_B:
a4fe07d9 781 default:
acaa410d
MN
782 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
783 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
784 break;
785 }
786
787 rt61pci_bbp_write(rt2x00dev, 77, r77);
788 rt61pci_bbp_write(rt2x00dev, 3, r3);
789 rt61pci_bbp_write(rt2x00dev, 4, r4);
790}
791
792static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
793 const int p1, const int p2)
794{
795 u32 reg;
796
797 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
798
acaa410d
MN
799 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
800 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
801
802 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
803 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
804
805 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
95ea3627
ID
806}
807
808static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
addc81bd 809 struct antenna_setup *ant)
95ea3627 810{
95ea3627
ID
811 u8 r3;
812 u8 r4;
813 u8 r77;
814
815 rt61pci_bbp_read(rt2x00dev, 3, &r3);
816 rt61pci_bbp_read(rt2x00dev, 4, &r4);
817 rt61pci_bbp_read(rt2x00dev, 77, &r77);
e4cd2ff8 818
e4cd2ff8
ID
819 /*
820 * Configure the RX antenna.
821 */
822 switch (ant->rx) {
823 case ANTENNA_A:
acaa410d
MN
824 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
825 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
826 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
e4cd2ff8 827 break;
e4cd2ff8
ID
828 case ANTENNA_HW_DIVERSITY:
829 /*
a4fe07d9
ID
830 * FIXME: Antenna selection for the rf 2529 is very confusing
831 * in the legacy driver. Just default to antenna B until the
832 * legacy code can be properly translated into rt2x00 code.
e4cd2ff8
ID
833 */
834 case ANTENNA_B:
a4fe07d9 835 default:
acaa410d
MN
836 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
837 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
838 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
e4cd2ff8
ID
839 break;
840 }
841
e4cd2ff8 842 rt61pci_bbp_write(rt2x00dev, 77, r77);
95ea3627
ID
843 rt61pci_bbp_write(rt2x00dev, 3, r3);
844 rt61pci_bbp_write(rt2x00dev, 4, r4);
845}
846
847struct antenna_sel {
848 u8 word;
849 /*
850 * value[0] -> non-LNA
851 * value[1] -> LNA
852 */
853 u8 value[2];
854};
855
856static const struct antenna_sel antenna_sel_a[] = {
857 { 96, { 0x58, 0x78 } },
858 { 104, { 0x38, 0x48 } },
859 { 75, { 0xfe, 0x80 } },
860 { 86, { 0xfe, 0x80 } },
861 { 88, { 0xfe, 0x80 } },
862 { 35, { 0x60, 0x60 } },
863 { 97, { 0x58, 0x58 } },
864 { 98, { 0x58, 0x58 } },
865};
866
867static const struct antenna_sel antenna_sel_bg[] = {
868 { 96, { 0x48, 0x68 } },
869 { 104, { 0x2c, 0x3c } },
870 { 75, { 0xfe, 0x80 } },
871 { 86, { 0xfe, 0x80 } },
872 { 88, { 0xfe, 0x80 } },
873 { 35, { 0x50, 0x50 } },
874 { 97, { 0x48, 0x48 } },
875 { 98, { 0x48, 0x48 } },
876};
877
878static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
addc81bd 879 struct antenna_setup *ant)
95ea3627
ID
880{
881 const struct antenna_sel *sel;
882 unsigned int lna;
883 unsigned int i;
884 u32 reg;
885
a4fe07d9
ID
886 /*
887 * We should never come here because rt2x00lib is supposed
888 * to catch this and send us the correct antenna explicitely.
889 */
890 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
891 ant->tx == ANTENNA_SW_DIVERSITY);
892
8318d78a 893 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
894 sel = antenna_sel_a;
895 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
95ea3627
ID
896 } else {
897 sel = antenna_sel_bg;
898 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
95ea3627
ID
899 }
900
acaa410d
MN
901 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
902 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
903
904 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
905
ddc827f9 906 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
8318d78a 907 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
ddc827f9 908 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
8318d78a 909 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
ddc827f9 910
95ea3627
ID
911 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
912
913 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
914 rt2x00_rf(&rt2x00dev->chip, RF5325))
addc81bd 915 rt61pci_config_antenna_5x(rt2x00dev, ant);
95ea3627 916 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
addc81bd 917 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627
ID
918 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
919 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
addc81bd 920 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627 921 else
addc81bd 922 rt61pci_config_antenna_2529(rt2x00dev, ant);
95ea3627
ID
923 }
924}
925
926static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
5c58ee51 927 struct rt2x00lib_conf *libconf)
95ea3627
ID
928{
929 u32 reg;
930
931 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
5c58ee51 932 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
95ea3627
ID
933 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
934
935 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
5c58ee51 936 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
95ea3627 937 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
5c58ee51 938 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
95ea3627
ID
939 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
940
941 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
942 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
943 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
944
945 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
946 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
947 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
948
949 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
5c58ee51
ID
950 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
951 libconf->conf->beacon_int * 16);
95ea3627
ID
952 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
953}
954
955static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
956 struct rt2x00lib_conf *libconf,
957 const unsigned int flags)
95ea3627 958{
95ea3627 959 if (flags & CONFIG_UPDATE_PHYMODE)
5c58ee51 960 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
95ea3627 961 if (flags & CONFIG_UPDATE_CHANNEL)
5c58ee51
ID
962 rt61pci_config_channel(rt2x00dev, &libconf->rf,
963 libconf->conf->power_level);
95ea3627 964 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
5c58ee51 965 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
95ea3627 966 if (flags & CONFIG_UPDATE_ANTENNA)
addc81bd 967 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
95ea3627 968 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
5c58ee51 969 rt61pci_config_duration(rt2x00dev, libconf);
95ea3627
ID
970}
971
95ea3627
ID
972/*
973 * Link tuning
974 */
ebcf26da
ID
975static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
976 struct link_qual *qual)
95ea3627
ID
977{
978 u32 reg;
979
980 /*
981 * Update FCS error count from register.
982 */
983 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
ebcf26da 984 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
95ea3627
ID
985
986 /*
987 * Update False CCA count from register.
988 */
989 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
ebcf26da 990 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
95ea3627
ID
991}
992
993static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
994{
995 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
996 rt2x00dev->link.vgc_level = 0x20;
997}
998
999static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
1000{
1001 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
1002 u8 r17;
1003 u8 up_bound;
1004 u8 low_bound;
1005
95ea3627
ID
1006 rt61pci_bbp_read(rt2x00dev, 17, &r17);
1007
1008 /*
1009 * Determine r17 bounds.
1010 */
1497074a 1011 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1012 low_bound = 0x28;
1013 up_bound = 0x48;
1014 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1015 low_bound += 0x10;
1016 up_bound += 0x10;
1017 }
1018 } else {
1019 low_bound = 0x20;
1020 up_bound = 0x40;
1021 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1022 low_bound += 0x10;
1023 up_bound += 0x10;
1024 }
1025 }
1026
6bb40dd1
ID
1027 /*
1028 * If we are not associated, we should go straight to the
1029 * dynamic CCA tuning.
1030 */
1031 if (!rt2x00dev->intf_associated)
1032 goto dynamic_cca_tune;
1033
95ea3627
ID
1034 /*
1035 * Special big-R17 for very short distance
1036 */
1037 if (rssi >= -35) {
1038 if (r17 != 0x60)
1039 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
1040 return;
1041 }
1042
1043 /*
1044 * Special big-R17 for short distance
1045 */
1046 if (rssi >= -58) {
1047 if (r17 != up_bound)
1048 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1049 return;
1050 }
1051
1052 /*
1053 * Special big-R17 for middle-short distance
1054 */
1055 if (rssi >= -66) {
1056 low_bound += 0x10;
1057 if (r17 != low_bound)
1058 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1059 return;
1060 }
1061
1062 /*
1063 * Special mid-R17 for middle distance
1064 */
1065 if (rssi >= -74) {
1066 low_bound += 0x08;
1067 if (r17 != low_bound)
1068 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
1069 return;
1070 }
1071
1072 /*
1073 * Special case: Change up_bound based on the rssi.
1074 * Lower up_bound when rssi is weaker then -74 dBm.
1075 */
1076 up_bound -= 2 * (-74 - rssi);
1077 if (low_bound > up_bound)
1078 up_bound = low_bound;
1079
1080 if (r17 > up_bound) {
1081 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
1082 return;
1083 }
1084
6bb40dd1
ID
1085dynamic_cca_tune:
1086
95ea3627
ID
1087 /*
1088 * r17 does not yet exceed upper limit, continue and base
1089 * the r17 tuning on the false CCA count.
1090 */
ebcf26da 1091 if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
95ea3627
ID
1092 if (++r17 > up_bound)
1093 r17 = up_bound;
1094 rt61pci_bbp_write(rt2x00dev, 17, r17);
ebcf26da 1095 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
95ea3627
ID
1096 if (--r17 < low_bound)
1097 r17 = low_bound;
1098 rt61pci_bbp_write(rt2x00dev, 17, r17);
1099 }
1100}
1101
1102/*
a7f3a06c 1103 * Firmware functions
95ea3627
ID
1104 */
1105static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1106{
1107 char *fw_name;
1108
1109 switch (rt2x00dev->chip.rt) {
1110 case RT2561:
1111 fw_name = FIRMWARE_RT2561;
1112 break;
1113 case RT2561s:
1114 fw_name = FIRMWARE_RT2561s;
1115 break;
1116 case RT2661:
1117 fw_name = FIRMWARE_RT2661;
1118 break;
1119 default:
1120 fw_name = NULL;
1121 break;
1122 }
1123
1124 return fw_name;
1125}
1126
f160ebcb 1127static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
a7f3a06c
ID
1128{
1129 u16 crc;
1130
1131 /*
1132 * Use the crc itu-t algorithm.
1133 * The last 2 bytes in the firmware array are the crc checksum itself,
1134 * this means that we should never pass those 2 bytes to the crc
1135 * algorithm.
1136 */
1137 crc = crc_itu_t(0, data, len - 2);
1138 crc = crc_itu_t_byte(crc, 0);
1139 crc = crc_itu_t_byte(crc, 0);
1140
1141 return crc;
1142}
1143
f160ebcb 1144static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
95ea3627
ID
1145 const size_t len)
1146{
1147 int i;
1148 u32 reg;
1149
1150 /*
1151 * Wait for stable hardware.
1152 */
1153 for (i = 0; i < 100; i++) {
1154 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1155 if (reg)
1156 break;
1157 msleep(1);
1158 }
1159
1160 if (!reg) {
1161 ERROR(rt2x00dev, "Unstable hardware.\n");
1162 return -EBUSY;
1163 }
1164
1165 /*
1166 * Prepare MCU and mailbox for firmware loading.
1167 */
1168 reg = 0;
1169 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1170 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1171 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1172 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1173 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1174
1175 /*
1176 * Write firmware to device.
1177 */
1178 reg = 0;
1179 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1180 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1181 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1182
1183 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1184 data, len);
1185
1186 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1187 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1188
1189 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1190 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1191
1192 for (i = 0; i < 100; i++) {
1193 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1194 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1195 break;
1196 msleep(1);
1197 }
1198
1199 if (i == 100) {
1200 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1201 return -EBUSY;
1202 }
1203
e6d3e902
ID
1204 /*
1205 * Hardware needs another millisecond before it is ready.
1206 */
1207 msleep(1);
1208
95ea3627
ID
1209 /*
1210 * Reset MAC and BBP registers.
1211 */
1212 reg = 0;
1213 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1214 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1215 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1216
1217 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1218 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1219 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1220 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1221
1222 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1223 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1224 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1225
1226 return 0;
1227}
1228
a7f3a06c
ID
1229/*
1230 * Initialization functions.
1231 */
837e7f24 1232static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
181d6902 1233 struct queue_entry *entry)
95ea3627 1234{
b8be63ff 1235 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
c4da0048 1236 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
1237 u32 word;
1238
b8be63ff 1239 rt2x00_desc_read(entry_priv->desc, 5, &word);
30b3a23c 1240 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
c4da0048 1241 skbdesc->skb_dma);
b8be63ff 1242 rt2x00_desc_write(entry_priv->desc, 5, word);
95ea3627 1243
b8be63ff 1244 rt2x00_desc_read(entry_priv->desc, 0, &word);
837e7f24 1245 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
b8be63ff 1246 rt2x00_desc_write(entry_priv->desc, 0, word);
95ea3627
ID
1247}
1248
837e7f24 1249static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
181d6902 1250 struct queue_entry *entry)
95ea3627 1251{
b8be63ff 1252 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1253 u32 word;
1254
b8be63ff 1255 rt2x00_desc_read(entry_priv->desc, 0, &word);
837e7f24
ID
1256 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1257 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
b8be63ff 1258 rt2x00_desc_write(entry_priv->desc, 0, word);
95ea3627
ID
1259}
1260
181d6902 1261static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 1262{
b8be63ff 1263 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
1264 u32 reg;
1265
95ea3627
ID
1266 /*
1267 * Initialize registers.
1268 */
1269 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1270 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
181d6902 1271 rt2x00dev->tx[0].limit);
95ea3627 1272 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
181d6902 1273 rt2x00dev->tx[1].limit);
95ea3627 1274 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
181d6902 1275 rt2x00dev->tx[2].limit);
95ea3627 1276 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
181d6902 1277 rt2x00dev->tx[3].limit);
95ea3627
ID
1278 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1279
1280 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
95ea3627 1281 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
181d6902 1282 rt2x00dev->tx[0].desc_size / 4);
95ea3627
ID
1283 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1284
b8be63ff 1285 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 1286 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
30b3a23c 1287 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
b8be63ff 1288 entry_priv->desc_dma);
95ea3627
ID
1289 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1290
b8be63ff 1291 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 1292 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
30b3a23c 1293 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
b8be63ff 1294 entry_priv->desc_dma);
95ea3627
ID
1295 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1296
b8be63ff 1297 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
95ea3627 1298 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
30b3a23c 1299 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
b8be63ff 1300 entry_priv->desc_dma);
95ea3627
ID
1301 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1302
b8be63ff 1303 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
95ea3627 1304 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
30b3a23c 1305 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
b8be63ff 1306 entry_priv->desc_dma);
95ea3627
ID
1307 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1308
95ea3627 1309 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
181d6902 1310 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
95ea3627
ID
1311 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1312 rt2x00dev->rx->desc_size / 4);
1313 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1314 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1315
b8be63ff 1316 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 1317 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
30b3a23c 1318 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
b8be63ff 1319 entry_priv->desc_dma);
95ea3627
ID
1320 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1321
1322 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1323 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1324 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1325 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1326 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
95ea3627
ID
1327 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1328
1329 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1330 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1331 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1332 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1333 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
95ea3627
ID
1334 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1335
1336 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1337 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1338 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1339
1340 return 0;
1341}
1342
1343static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1344{
1345 u32 reg;
1346
1347 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1348 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1349 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1350 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1351 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1352
1353 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1354 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1355 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1356 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1357 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1358 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1359 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1360 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1361 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1362 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1363
1364 /*
1365 * CCK TXD BBP registers
1366 */
1367 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1368 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1369 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1370 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1371 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1372 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1373 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1374 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1375 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1376 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1377
1378 /*
1379 * OFDM TXD BBP registers
1380 */
1381 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1382 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1383 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1384 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1385 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1386 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1387 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1388 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1389
1390 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1391 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1392 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1393 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1394 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1395 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1396
1397 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1398 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1399 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1400 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1401 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1402 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1403
1f909162
ID
1404 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1405 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1406 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1407 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1408 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1409 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1410 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1411 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1412
95ea3627
ID
1413 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1414
1415 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1416
1417 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1418 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1419 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1420
1421 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1422
1423 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1424 return -EBUSY;
1425
1426 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1427
1428 /*
1429 * Invalidate all Shared Keys (SEC_CSR0),
1430 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1431 */
1432 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1433 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1434 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1435
1436 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1437 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1438 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1439 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1440
1441 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1442
1443 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1444
1445 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1446
1447 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1448 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1449 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1450 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1451
1452 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1453 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1454 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1455 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1456
6bb40dd1
ID
1457 /*
1458 * Clear all beacons
1459 * For the Beacon base registers we only need to clear
1460 * the first byte since that byte contains the VALID and OWNER
1461 * bits which (when set to 0) will invalidate the entire beacon.
1462 */
1463 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1464 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1465 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1466 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1467
95ea3627
ID
1468 /*
1469 * We must clear the error counters.
1470 * These registers are cleared on read,
1471 * so we may pass a useless variable to store the value.
1472 */
1473 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1474 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1475 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1476
1477 /*
1478 * Reset MAC and BBP registers.
1479 */
1480 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1481 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1482 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1483 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1484
1485 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1486 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1487 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1488 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1489
1490 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1491 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1492 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1493
1494 return 0;
1495}
1496
2b08da3f 1497static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1498{
1499 unsigned int i;
95ea3627
ID
1500 u8 value;
1501
1502 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1503 rt61pci_bbp_read(rt2x00dev, 0, &value);
1504 if ((value != 0xff) && (value != 0x00))
2b08da3f 1505 return 0;
95ea3627
ID
1506 udelay(REGISTER_BUSY_DELAY);
1507 }
1508
1509 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1510 return -EACCES;
2b08da3f
ID
1511}
1512
1513static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1514{
1515 unsigned int i;
1516 u16 eeprom;
1517 u8 reg_id;
1518 u8 value;
1519
1520 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1521 return -EACCES;
95ea3627 1522
95ea3627
ID
1523 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1524 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1525 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1526 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1527 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1528 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1529 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1530 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1531 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1532 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1533 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1534 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1535 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1536 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1537 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1538 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1539 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1540 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1541 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1542 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1543 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1544 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1545 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1546 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1547
95ea3627
ID
1548 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1549 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1550
1551 if (eeprom != 0xffff && eeprom != 0x0000) {
1552 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1553 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1554 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1555 }
1556 }
95ea3627
ID
1557
1558 return 0;
1559}
1560
1561/*
1562 * Device state switch handlers.
1563 */
1564static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1565 enum dev_state state)
1566{
1567 u32 reg;
1568
1569 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1570 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
2b08da3f
ID
1571 (state == STATE_RADIO_RX_OFF) ||
1572 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1573 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1574}
1575
1576static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1577 enum dev_state state)
1578{
1579 int mask = (state == STATE_RADIO_IRQ_OFF);
1580 u32 reg;
1581
1582 /*
1583 * When interrupts are being enabled, the interrupt registers
1584 * should clear the register to assure a clean state.
1585 */
1586 if (state == STATE_RADIO_IRQ_ON) {
1587 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1588 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1589
1590 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1591 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1592 }
1593
1594 /*
1595 * Only toggle the interrupts bits we are going to use.
1596 * Non-checked interrupt bits are disabled by default.
1597 */
1598 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1599 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1600 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1601 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1602 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1603 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1604
1605 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1606 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1607 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1608 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1609 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1610 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1611 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1612 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1613 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1614 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1615}
1616
1617static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1618{
1619 u32 reg;
1620
1621 /*
1622 * Initialize all registers.
1623 */
2b08da3f
ID
1624 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1625 rt61pci_init_registers(rt2x00dev) ||
1626 rt61pci_init_bbp(rt2x00dev)))
95ea3627 1627 return -EIO;
95ea3627
ID
1628
1629 /*
1630 * Enable RX.
1631 */
1632 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1633 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1634 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1635
95ea3627
ID
1636 return 0;
1637}
1638
1639static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1640{
1641 u32 reg;
1642
95ea3627
ID
1643 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1644
1645 /*
1646 * Disable synchronisation.
1647 */
1648 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1649
1650 /*
1651 * Cancel RX and TX.
1652 */
1653 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1654 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1655 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1656 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1657 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
95ea3627 1658 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
95ea3627
ID
1659}
1660
1661static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1662{
1663 u32 reg;
1664 unsigned int i;
1665 char put_to_sleep;
95ea3627
ID
1666
1667 put_to_sleep = (state != STATE_AWAKE);
1668
1669 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1670 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1671 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1672 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1673
1674 /*
1675 * Device is not guaranteed to be in the requested state yet.
1676 * We must wait until the register indicates that the
1677 * device has entered the correct state.
1678 */
1679 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1680 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
2b08da3f
ID
1681 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1682 if (state == !put_to_sleep)
95ea3627
ID
1683 return 0;
1684 msleep(10);
1685 }
1686
95ea3627
ID
1687 return -EBUSY;
1688}
1689
1690static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1691 enum dev_state state)
1692{
1693 int retval = 0;
1694
1695 switch (state) {
1696 case STATE_RADIO_ON:
1697 retval = rt61pci_enable_radio(rt2x00dev);
1698 break;
1699 case STATE_RADIO_OFF:
1700 rt61pci_disable_radio(rt2x00dev);
1701 break;
1702 case STATE_RADIO_RX_ON:
61667d8d 1703 case STATE_RADIO_RX_ON_LINK:
95ea3627 1704 case STATE_RADIO_RX_OFF:
61667d8d 1705 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1706 rt61pci_toggle_rx(rt2x00dev, state);
1707 break;
1708 case STATE_RADIO_IRQ_ON:
1709 case STATE_RADIO_IRQ_OFF:
1710 rt61pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1711 break;
1712 case STATE_DEEP_SLEEP:
1713 case STATE_SLEEP:
1714 case STATE_STANDBY:
1715 case STATE_AWAKE:
1716 retval = rt61pci_set_state(rt2x00dev, state);
1717 break;
1718 default:
1719 retval = -ENOTSUPP;
1720 break;
1721 }
1722
2b08da3f
ID
1723 if (unlikely(retval))
1724 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1725 state, retval);
1726
95ea3627
ID
1727 return retval;
1728}
1729
1730/*
1731 * TX descriptor initialization
1732 */
1733static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
61e754f4
ID
1734 struct sk_buff *skb,
1735 struct txentry_desc *txdesc)
95ea3627 1736{
181d6902 1737 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
dd3193e1 1738 __le32 *txd = skbdesc->desc;
95ea3627
ID
1739 u32 word;
1740
1741 /*
1742 * Start writing the descriptor words.
1743 */
1744 rt2x00_desc_read(txd, 1, &word);
181d6902
ID
1745 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1746 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1747 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1748 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
61e754f4 1749 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
5adf6d63
ID
1750 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1751 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
4de36fe5 1752 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
95ea3627
ID
1753 rt2x00_desc_write(txd, 1, word);
1754
1755 rt2x00_desc_read(txd, 2, &word);
181d6902
ID
1756 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1757 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1758 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1759 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1760 rt2x00_desc_write(txd, 2, word);
1761
61e754f4
ID
1762 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1763 _rt2x00_desc_write(txd, 3, skbdesc->iv);
1764 _rt2x00_desc_write(txd, 4, skbdesc->eiv);
1765 }
1766
95ea3627 1767 rt2x00_desc_read(txd, 5, &word);
4de36fe5
GW
1768 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1769 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1770 skbdesc->entry->entry_idx);
95ea3627 1771 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
ac1aa7e4 1772 TXPOWER_TO_DEV(rt2x00dev->tx_power));
95ea3627
ID
1773 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1774 rt2x00_desc_write(txd, 5, word);
1775
4de36fe5
GW
1776 rt2x00_desc_read(txd, 6, &word);
1777 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
c4da0048 1778 skbdesc->skb_dma);
4de36fe5
GW
1779 rt2x00_desc_write(txd, 6, word);
1780
d7bafff3
AB
1781 if (skbdesc->desc_len > TXINFO_SIZE) {
1782 rt2x00_desc_read(txd, 11, &word);
d56d453a 1783 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
d7bafff3
AB
1784 rt2x00_desc_write(txd, 11, word);
1785 }
95ea3627
ID
1786
1787 rt2x00_desc_read(txd, 0, &word);
1788 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1789 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1790 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1791 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1792 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1793 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1794 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1795 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1796 rt2x00_set_field32(&word, TXD_W0_OFDM,
181d6902
ID
1797 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1798 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1799 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1800 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
61e754f4
ID
1801 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1802 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1803 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1804 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1805 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
d56d453a 1806 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
95ea3627 1807 rt2x00_set_field32(&word, TXD_W0_BURST,
181d6902 1808 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
61e754f4 1809 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
95ea3627
ID
1810 rt2x00_desc_write(txd, 0, word);
1811}
1812
1813/*
1814 * TX data initialization
1815 */
bd88a781
ID
1816static void rt61pci_write_beacon(struct queue_entry *entry)
1817{
1818 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1819 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1820 unsigned int beacon_base;
1821 u32 reg;
1822
1823 /*
1824 * Disable beaconing while we are reloading the beacon data,
1825 * otherwise we might be sending out invalid data.
1826 */
1827 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1828 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1829 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1830 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1831 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1832
1833 /*
1834 * Write entire beacon with descriptor to register.
1835 */
1836 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1837 rt2x00pci_register_multiwrite(rt2x00dev,
1838 beacon_base,
1839 skbdesc->desc, skbdesc->desc_len);
1840 rt2x00pci_register_multiwrite(rt2x00dev,
1841 beacon_base + skbdesc->desc_len,
1842 entry->skb->data, entry->skb->len);
1843
1844 /*
1845 * Clean up beacon skb.
1846 */
1847 dev_kfree_skb_any(entry->skb);
1848 entry->skb = NULL;
1849}
1850
95ea3627 1851static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
e58c6aca 1852 const enum data_queue_qid queue)
95ea3627
ID
1853{
1854 u32 reg;
1855
e58c6aca 1856 if (queue == QID_BEACON) {
95ea3627
ID
1857 /*
1858 * For Wi-Fi faily generated beacons between participating
1859 * stations. Set TBTT phase adaptive adjustment step to 8us.
1860 */
1861 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1862
1863 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1864 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
8af244cc
ID
1865 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1866 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
95ea3627
ID
1867 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1868 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1869 }
1870 return;
1871 }
1872
1873 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
e58c6aca
ID
1874 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1875 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1876 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1877 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
95ea3627
ID
1878 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1879}
1880
1881/*
1882 * RX control handlers
1883 */
1884static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1885{
1886 u16 eeprom;
1887 u8 offset;
1888 u8 lna;
1889
1890 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1891 switch (lna) {
1892 case 3:
1893 offset = 90;
1894 break;
1895 case 2:
1896 offset = 74;
1897 break;
1898 case 1:
1899 offset = 64;
1900 break;
1901 default:
1902 return 0;
1903 }
1904
8318d78a 1905 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1906 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1907 offset += 14;
1908
1909 if (lna == 3 || lna == 2)
1910 offset += 10;
1911
1912 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1913 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1914 } else {
1915 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1916 offset += 14;
1917
1918 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1919 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1920 }
1921
1922 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1923}
1924
181d6902
ID
1925static void rt61pci_fill_rxdone(struct queue_entry *entry,
1926 struct rxdone_entry_desc *rxdesc)
95ea3627 1927{
61e754f4 1928 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
b8be63ff 1929 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1930 u32 word0;
1931 u32 word1;
1932
b8be63ff
ID
1933 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1934 rt2x00_desc_read(entry_priv->desc, 1, &word1);
95ea3627 1935
4150c572 1936 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 1937 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
95ea3627 1938
61e754f4
ID
1939 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1940 rxdesc->cipher =
1941 rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1942 rxdesc->cipher_status =
1943 rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1944 }
1945
1946 if (rxdesc->cipher != CIPHER_NONE) {
1947 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv);
1948 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->eiv);
1949 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1950
1951 /*
1952 * Hardware has stripped IV/EIV data from 802.11 frame during
1953 * decryption. It has provided the data seperately but rt2x00lib
1954 * should decide if it should be reinserted.
1955 */
1956 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1957
1958 /*
1959 * FIXME: Legacy driver indicates that the frame does
1960 * contain the Michael Mic. Unfortunately, in rt2x00
1961 * the MIC seems to be missing completely...
1962 */
1963 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1964
1965 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1966 rxdesc->flags |= RX_FLAG_DECRYPTED;
1967 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1968 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1969 }
1970
95ea3627
ID
1971 /*
1972 * Obtain the status about this packet.
89993890
ID
1973 * When frame was received with an OFDM bitrate,
1974 * the signal is the PLCP value. If it was received with
1975 * a CCK bitrate the signal is the rate in 100kbit/s.
95ea3627 1976 */
181d6902 1977 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
61e754f4 1978 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
181d6902 1979 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 1980
19d30e02
ID
1981 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1982 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1983 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1984 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
1985}
1986
1987/*
1988 * Interrupt functions.
1989 */
1990static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1991{
181d6902
ID
1992 struct data_queue *queue;
1993 struct queue_entry *entry;
1994 struct queue_entry *entry_done;
b8be63ff 1995 struct queue_entry_priv_pci *entry_priv;
181d6902 1996 struct txdone_entry_desc txdesc;
95ea3627
ID
1997 u32 word;
1998 u32 reg;
1999 u32 old_reg;
2000 int type;
2001 int index;
95ea3627
ID
2002
2003 /*
2004 * During each loop we will compare the freshly read
2005 * STA_CSR4 register value with the value read from
2006 * the previous loop. If the 2 values are equal then
2007 * we should stop processing because the chance it
2008 * quite big that the device has been unplugged and
2009 * we risk going into an endless loop.
2010 */
2011 old_reg = 0;
2012
2013 while (1) {
2014 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2015 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2016 break;
2017
2018 if (old_reg == reg)
2019 break;
2020 old_reg = reg;
2021
2022 /*
2023 * Skip this entry when it contains an invalid
181d6902 2024 * queue identication number.
95ea3627
ID
2025 */
2026 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
181d6902
ID
2027 queue = rt2x00queue_get_queue(rt2x00dev, type);
2028 if (unlikely(!queue))
95ea3627
ID
2029 continue;
2030
2031 /*
2032 * Skip this entry when it contains an invalid
2033 * index number.
2034 */
2035 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
181d6902 2036 if (unlikely(index >= queue->limit))
95ea3627
ID
2037 continue;
2038
181d6902 2039 entry = &queue->entries[index];
b8be63ff
ID
2040 entry_priv = entry->priv_data;
2041 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
2042
2043 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2044 !rt2x00_get_field32(word, TXD_W0_VALID))
2045 return;
2046
181d6902 2047 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b 2048 while (entry != entry_done) {
181d6902
ID
2049 /* Catch up.
2050 * Just report any entries we missed as failed.
2051 */
62bc060b 2052 WARNING(rt2x00dev,
181d6902
ID
2053 "TX status report missed for entry %d\n",
2054 entry_done->entry_idx);
2055
fb55f4d1
ID
2056 txdesc.flags = 0;
2057 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
181d6902
ID
2058 txdesc.retry = 0;
2059
d74f5ba4 2060 rt2x00lib_txdone(entry_done, &txdesc);
181d6902 2061 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b
MN
2062 }
2063
95ea3627
ID
2064 /*
2065 * Obtain the status about this packet.
2066 */
fb55f4d1
ID
2067 txdesc.flags = 0;
2068 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2069 case 0: /* Success, maybe with retry */
2070 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2071 break;
2072 case 6: /* Failure, excessive retries */
2073 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2074 /* Don't break, this is a failed frame! */
2075 default: /* Failure */
2076 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2077 }
181d6902 2078 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
95ea3627 2079
d74f5ba4 2080 rt2x00lib_txdone(entry, &txdesc);
95ea3627
ID
2081 }
2082}
2083
2084static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2085{
2086 struct rt2x00_dev *rt2x00dev = dev_instance;
2087 u32 reg_mcu;
2088 u32 reg;
2089
2090 /*
2091 * Get the interrupt sources & saved to local variable.
2092 * Write register value back to clear pending interrupts.
2093 */
2094 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2095 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2096
2097 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2098 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2099
2100 if (!reg && !reg_mcu)
2101 return IRQ_NONE;
2102
2103 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
2104 return IRQ_HANDLED;
2105
2106 /*
2107 * Handle interrupts, walk through all bits
2108 * and run the tasks, the bits are checked in order of
2109 * priority.
2110 */
2111
2112 /*
2113 * 1 - Rx ring done interrupt.
2114 */
2115 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2116 rt2x00pci_rxdone(rt2x00dev);
2117
2118 /*
2119 * 2 - Tx ring done interrupt.
2120 */
2121 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2122 rt61pci_txdone(rt2x00dev);
2123
2124 /*
2125 * 3 - Handle MCU command done.
2126 */
2127 if (reg_mcu)
2128 rt2x00pci_register_write(rt2x00dev,
2129 M2H_CMD_DONE_CSR, 0xffffffff);
2130
2131 return IRQ_HANDLED;
2132}
2133
2134/*
2135 * Device probe functions.
2136 */
2137static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2138{
2139 struct eeprom_93cx6 eeprom;
2140 u32 reg;
2141 u16 word;
2142 u8 *mac;
2143 s8 value;
2144
2145 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2146
2147 eeprom.data = rt2x00dev;
2148 eeprom.register_read = rt61pci_eepromregister_read;
2149 eeprom.register_write = rt61pci_eepromregister_write;
2150 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2151 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2152 eeprom.reg_data_in = 0;
2153 eeprom.reg_data_out = 0;
2154 eeprom.reg_data_clock = 0;
2155 eeprom.reg_chip_select = 0;
2156
2157 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2158 EEPROM_SIZE / sizeof(u16));
2159
2160 /*
2161 * Start validation of the data that has been read.
2162 */
2163 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2164 if (!is_valid_ether_addr(mac)) {
0795af57
JP
2165 DECLARE_MAC_BUF(macbuf);
2166
95ea3627 2167 random_ether_addr(mac);
0795af57 2168 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
95ea3627
ID
2169 }
2170
2171 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2172 if (word == 0xffff) {
2173 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
2174 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2175 ANTENNA_B);
2176 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2177 ANTENNA_B);
95ea3627
ID
2178 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2179 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2180 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2181 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2182 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2183 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2184 }
2185
2186 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2187 if (word == 0xffff) {
2188 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2189 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2190 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2191 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2192 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2193 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2194 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2195 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2196 }
2197
2198 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2199 if (word == 0xffff) {
2200 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2201 LED_MODE_DEFAULT);
2202 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2203 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2204 }
2205
2206 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2207 if (word == 0xffff) {
2208 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2209 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2210 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2211 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2212 }
2213
2214 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2215 if (word == 0xffff) {
2216 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2217 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2218 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2219 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2220 } else {
2221 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2222 if (value < -10 || value > 10)
2223 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2224 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2225 if (value < -10 || value > 10)
2226 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2227 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2228 }
2229
2230 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2231 if (word == 0xffff) {
2232 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2233 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2234 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
417f412f 2235 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
95ea3627
ID
2236 } else {
2237 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2238 if (value < -10 || value > 10)
2239 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2240 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2241 if (value < -10 || value > 10)
2242 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2243 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2244 }
2245
2246 return 0;
2247}
2248
2249static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2250{
2251 u32 reg;
2252 u16 value;
2253 u16 eeprom;
2254 u16 device;
2255
2256 /*
2257 * Read EEPROM word for configuration.
2258 */
2259 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2260
2261 /*
2262 * Identify RF chipset.
2263 * To determine the RT chip we have to read the
2264 * PCI header of the device.
2265 */
14a3bf89 2266 pci_read_config_word(to_pci_dev(rt2x00dev->dev),
95ea3627
ID
2267 PCI_CONFIG_HEADER_DEVICE, &device);
2268 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2269 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2270 rt2x00_set_chip(rt2x00dev, device, value, reg);
2271
2272 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2273 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2274 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2275 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2276 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2277 return -ENODEV;
2278 }
2279
e4cd2ff8
ID
2280 /*
2281 * Determine number of antenna's.
2282 */
2283 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2284 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2285
95ea3627
ID
2286 /*
2287 * Identify default antenna configuration.
2288 */
addc81bd 2289 rt2x00dev->default_ant.tx =
95ea3627 2290 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 2291 rt2x00dev->default_ant.rx =
95ea3627
ID
2292 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2293
2294 /*
2295 * Read the Frame type.
2296 */
2297 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2298 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2299
95ea3627
ID
2300 /*
2301 * Detect if this device has an hardware controlled radio.
2302 */
81873e9c 2303#ifdef CONFIG_RT61PCI_RFKILL
95ea3627 2304 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 2305 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
81873e9c 2306#endif /* CONFIG_RT61PCI_RFKILL */
95ea3627
ID
2307
2308 /*
2309 * Read frequency offset and RF programming sequence.
2310 */
2311 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2312 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2313 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2314
2315 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2316
2317 /*
2318 * Read external LNA informations.
2319 */
2320 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2321
2322 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2323 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2324 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2325 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2326
e4cd2ff8
ID
2327 /*
2328 * When working with a RF2529 chip without double antenna
2329 * the antenna settings should be gathered from the NIC
2330 * eeprom word.
2331 */
2332 if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2333 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2334 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2335 case 0:
2336 rt2x00dev->default_ant.tx = ANTENNA_B;
2337 rt2x00dev->default_ant.rx = ANTENNA_A;
2338 break;
2339 case 1:
2340 rt2x00dev->default_ant.tx = ANTENNA_B;
2341 rt2x00dev->default_ant.rx = ANTENNA_B;
2342 break;
2343 case 2:
2344 rt2x00dev->default_ant.tx = ANTENNA_A;
2345 rt2x00dev->default_ant.rx = ANTENNA_A;
2346 break;
2347 case 3:
2348 rt2x00dev->default_ant.tx = ANTENNA_A;
2349 rt2x00dev->default_ant.rx = ANTENNA_B;
2350 break;
2351 }
2352
2353 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2354 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2355 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2356 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2357 }
2358
95ea3627
ID
2359 /*
2360 * Store led settings, for correct led behaviour.
2361 * If the eeprom value is invalid,
2362 * switch to default led mode.
2363 */
a9450b70 2364#ifdef CONFIG_RT61PCI_LEDS
95ea3627 2365 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
a9450b70
ID
2366 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2367
475433be
ID
2368 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2369 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2370 if (value == LED_MODE_SIGNAL_STRENGTH)
2371 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2372 LED_TYPE_QUALITY);
95ea3627 2373
a9450b70
ID
2374 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2375 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
95ea3627
ID
2376 rt2x00_get_field16(eeprom,
2377 EEPROM_LED_POLARITY_GPIO_0));
a9450b70 2378 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
95ea3627
ID
2379 rt2x00_get_field16(eeprom,
2380 EEPROM_LED_POLARITY_GPIO_1));
a9450b70 2381 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
95ea3627
ID
2382 rt2x00_get_field16(eeprom,
2383 EEPROM_LED_POLARITY_GPIO_2));
a9450b70 2384 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
95ea3627
ID
2385 rt2x00_get_field16(eeprom,
2386 EEPROM_LED_POLARITY_GPIO_3));
a9450b70 2387 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
95ea3627
ID
2388 rt2x00_get_field16(eeprom,
2389 EEPROM_LED_POLARITY_GPIO_4));
a9450b70 2390 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
95ea3627 2391 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
a9450b70 2392 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
95ea3627
ID
2393 rt2x00_get_field16(eeprom,
2394 EEPROM_LED_POLARITY_RDY_G));
a9450b70 2395 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
95ea3627
ID
2396 rt2x00_get_field16(eeprom,
2397 EEPROM_LED_POLARITY_RDY_A));
a9450b70 2398#endif /* CONFIG_RT61PCI_LEDS */
95ea3627
ID
2399
2400 return 0;
2401}
2402
2403/*
2404 * RF value list for RF5225 & RF5325
2405 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2406 */
2407static const struct rf_channel rf_vals_noseq[] = {
2408 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2409 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2410 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2411 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2412 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2413 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2414 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2415 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2416 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2417 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2418 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2419 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2420 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2421 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2422
2423 /* 802.11 UNI / HyperLan 2 */
2424 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2425 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2426 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2427 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2428 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2429 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2430 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2431 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2432
2433 /* 802.11 HyperLan 2 */
2434 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2435 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2436 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2437 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2438 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2439 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2440 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2441 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2442 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2443 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2444
2445 /* 802.11 UNII */
2446 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2447 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2448 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2449 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2450 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2451 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2452
2453 /* MMAC(Japan)J52 ch 34,38,42,46 */
2454 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2455 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2456 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2457 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2458};
2459
2460/*
2461 * RF value list for RF5225 & RF5325
2462 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2463 */
2464static const struct rf_channel rf_vals_seq[] = {
2465 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2466 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2467 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2468 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2469 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2470 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2471 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2472 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2473 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2474 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2475 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2476 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2477 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2478 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2479
2480 /* 802.11 UNI / HyperLan 2 */
2481 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2482 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2483 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2484 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2485 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2486 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2487 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2488 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2489
2490 /* 802.11 HyperLan 2 */
2491 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2492 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2493 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2494 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2495 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2496 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2497 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2498 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2499 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2500 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2501
2502 /* 802.11 UNII */
2503 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2504 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2505 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2506 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2507 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2508 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2509
2510 /* MMAC(Japan)J52 ch 34,38,42,46 */
2511 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2512 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2513 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2514 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2515};
2516
2517static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2518{
2519 struct hw_mode_spec *spec = &rt2x00dev->spec;
2520 u8 *txpower;
2521 unsigned int i;
2522
2523 /*
2524 * Initialize all hw fields.
2525 */
2526 rt2x00dev->hw->flags =
566bfe5a
BR
2527 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2528 IEEE80211_HW_SIGNAL_DBM;
95ea3627 2529 rt2x00dev->hw->extra_tx_headroom = 0;
95ea3627 2530
14a3bf89 2531 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
2532 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2533 rt2x00_eeprom_addr(rt2x00dev,
2534 EEPROM_MAC_ADDR_0));
2535
2536 /*
2537 * Convert tx_power array in eeprom.
2538 */
2539 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2540 for (i = 0; i < 14; i++)
2541 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2542
2543 /*
2544 * Initialize hw_mode information.
2545 */
31562e80
ID
2546 spec->supported_bands = SUPPORT_BAND_2GHZ;
2547 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
2548 spec->tx_power_a = NULL;
2549 spec->tx_power_bg = txpower;
2550 spec->tx_power_default = DEFAULT_TXPOWER;
2551
2552 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2553 spec->num_channels = 14;
2554 spec->channels = rf_vals_noseq;
2555 } else {
2556 spec->num_channels = 14;
2557 spec->channels = rf_vals_seq;
2558 }
2559
2560 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2561 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
31562e80 2562 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627
ID
2563 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2564
2565 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2566 for (i = 0; i < 14; i++)
2567 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2568
2569 spec->tx_power_a = txpower;
2570 }
2571}
2572
2573static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2574{
2575 int retval;
2576
2577 /*
2578 * Allocate eeprom data.
2579 */
2580 retval = rt61pci_validate_eeprom(rt2x00dev);
2581 if (retval)
2582 return retval;
2583
2584 retval = rt61pci_init_eeprom(rt2x00dev);
2585 if (retval)
2586 return retval;
2587
2588 /*
2589 * Initialize hw specifications.
2590 */
2591 rt61pci_probe_hw_mode(rt2x00dev);
2592
2593 /*
c4da0048 2594 * This device requires firmware and DMA mapped skbs.
95ea3627 2595 */
066cb637 2596 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
c4da0048 2597 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
61e754f4 2598 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
95ea3627
ID
2599
2600 /*
2601 * Set the rssi offset.
2602 */
2603 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2604
2605 return 0;
2606}
2607
2608/*
2609 * IEEE80211 stack callback functions.
2610 */
2611static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2612 u32 short_retry, u32 long_retry)
2613{
2614 struct rt2x00_dev *rt2x00dev = hw->priv;
2615 u32 reg;
2616
2617 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2618 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2619 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2620 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2621
2622 return 0;
2623}
2624
2625static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2626{
2627 struct rt2x00_dev *rt2x00dev = hw->priv;
2628 u64 tsf;
2629 u32 reg;
2630
2631 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2632 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2633 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2634 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2635
2636 return tsf;
2637}
2638
95ea3627
ID
2639static const struct ieee80211_ops rt61pci_mac80211_ops = {
2640 .tx = rt2x00mac_tx,
4150c572
JB
2641 .start = rt2x00mac_start,
2642 .stop = rt2x00mac_stop,
95ea3627
ID
2643 .add_interface = rt2x00mac_add_interface,
2644 .remove_interface = rt2x00mac_remove_interface,
2645 .config = rt2x00mac_config,
2646 .config_interface = rt2x00mac_config_interface,
3a643d24 2647 .configure_filter = rt2x00mac_configure_filter,
61e754f4 2648 .set_key = rt2x00mac_set_key,
95ea3627
ID
2649 .get_stats = rt2x00mac_get_stats,
2650 .set_retry_limit = rt61pci_set_retry_limit,
471b3efd 2651 .bss_info_changed = rt2x00mac_bss_info_changed,
95ea3627
ID
2652 .conf_tx = rt2x00mac_conf_tx,
2653 .get_tx_stats = rt2x00mac_get_tx_stats,
2654 .get_tsf = rt61pci_get_tsf,
95ea3627
ID
2655};
2656
2657static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2658 .irq_handler = rt61pci_interrupt,
2659 .probe_hw = rt61pci_probe_hw,
2660 .get_firmware_name = rt61pci_get_firmware_name,
a7f3a06c 2661 .get_firmware_crc = rt61pci_get_firmware_crc,
95ea3627
ID
2662 .load_firmware = rt61pci_load_firmware,
2663 .initialize = rt2x00pci_initialize,
2664 .uninitialize = rt2x00pci_uninitialize,
837e7f24
ID
2665 .init_rxentry = rt61pci_init_rxentry,
2666 .init_txentry = rt61pci_init_txentry,
95ea3627 2667 .set_device_state = rt61pci_set_device_state,
95ea3627 2668 .rfkill_poll = rt61pci_rfkill_poll,
95ea3627
ID
2669 .link_stats = rt61pci_link_stats,
2670 .reset_tuner = rt61pci_reset_tuner,
2671 .link_tuner = rt61pci_link_tuner,
2672 .write_tx_desc = rt61pci_write_tx_desc,
2673 .write_tx_data = rt2x00pci_write_tx_data,
bd88a781 2674 .write_beacon = rt61pci_write_beacon,
95ea3627
ID
2675 .kick_tx_queue = rt61pci_kick_tx_queue,
2676 .fill_rxdone = rt61pci_fill_rxdone,
61e754f4
ID
2677 .config_shared_key = rt61pci_config_shared_key,
2678 .config_pairwise_key = rt61pci_config_pairwise_key,
3a643d24 2679 .config_filter = rt61pci_config_filter,
6bb40dd1 2680 .config_intf = rt61pci_config_intf,
72810379 2681 .config_erp = rt61pci_config_erp,
95ea3627
ID
2682 .config = rt61pci_config,
2683};
2684
181d6902
ID
2685static const struct data_queue_desc rt61pci_queue_rx = {
2686 .entry_num = RX_ENTRIES,
2687 .data_size = DATA_FRAME_SIZE,
2688 .desc_size = RXD_DESC_SIZE,
b8be63ff 2689 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2690};
2691
2692static const struct data_queue_desc rt61pci_queue_tx = {
2693 .entry_num = TX_ENTRIES,
2694 .data_size = DATA_FRAME_SIZE,
2695 .desc_size = TXD_DESC_SIZE,
b8be63ff 2696 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2697};
2698
2699static const struct data_queue_desc rt61pci_queue_bcn = {
6bb40dd1 2700 .entry_num = 4 * BEACON_ENTRIES,
78720897 2701 .data_size = 0, /* No DMA required for beacons */
181d6902 2702 .desc_size = TXINFO_SIZE,
b8be63ff 2703 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2704};
2705
95ea3627 2706static const struct rt2x00_ops rt61pci_ops = {
2360157c 2707 .name = KBUILD_MODNAME,
6bb40dd1
ID
2708 .max_sta_intf = 1,
2709 .max_ap_intf = 4,
95ea3627
ID
2710 .eeprom_size = EEPROM_SIZE,
2711 .rf_size = RF_SIZE,
61448f88 2712 .tx_queues = NUM_TX_QUEUES,
181d6902
ID
2713 .rx = &rt61pci_queue_rx,
2714 .tx = &rt61pci_queue_tx,
2715 .bcn = &rt61pci_queue_bcn,
95ea3627
ID
2716 .lib = &rt61pci_rt2x00_ops,
2717 .hw = &rt61pci_mac80211_ops,
2718#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2719 .debugfs = &rt61pci_rt2x00debug,
2720#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2721};
2722
2723/*
2724 * RT61pci module information.
2725 */
2726static struct pci_device_id rt61pci_device_table[] = {
2727 /* RT2561s */
2728 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2729 /* RT2561 v2 */
2730 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2731 /* RT2661 */
2732 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2733 { 0, }
2734};
2735
2736MODULE_AUTHOR(DRV_PROJECT);
2737MODULE_VERSION(DRV_VERSION);
2738MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2739MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2740 "PCI & PCMCIA chipset based cards");
2741MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2742MODULE_FIRMWARE(FIRMWARE_RT2561);
2743MODULE_FIRMWARE(FIRMWARE_RT2561s);
2744MODULE_FIRMWARE(FIRMWARE_RT2661);
2745MODULE_LICENSE("GPL");
2746
2747static struct pci_driver rt61pci_driver = {
2360157c 2748 .name = KBUILD_MODNAME,
95ea3627
ID
2749 .id_table = rt61pci_device_table,
2750 .probe = rt2x00pci_probe,
2751 .remove = __devexit_p(rt2x00pci_remove),
2752 .suspend = rt2x00pci_suspend,
2753 .resume = rt2x00pci_resume,
2754};
2755
2756static int __init rt61pci_init(void)
2757{
2758 return pci_register_driver(&rt61pci_driver);
2759}
2760
2761static void __exit rt61pci_exit(void)
2762{
2763 pci_unregister_driver(&rt61pci_driver);
2764}
2765
2766module_init(rt61pci_init);
2767module_exit(rt61pci_exit);
This page took 0.342025 seconds and 5 git commands to generate.