rt2x00: Implement flush callback
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt61pci.c
CommitLineData
95ea3627 1/*
9c9a0d14 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
95ea3627
ID
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
a7f3a06c 27#include <linux/crc-itu-t.h>
95ea3627
ID
28#include <linux/delay.h>
29#include <linux/etherdevice.h>
30#include <linux/init.h>
31#include <linux/kernel.h>
32#include <linux/module.h>
5a0e3ad6 33#include <linux/slab.h>
95ea3627
ID
34#include <linux/pci.h>
35#include <linux/eeprom_93cx6.h>
36
37#include "rt2x00.h"
38#include "rt2x00pci.h"
39#include "rt61pci.h"
40
008c4482
ID
41/*
42 * Allow hardware encryption to be disabled.
43 */
44static int modparam_nohwcrypt = 0;
45module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
95ea3627
ID
48/*
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
b34e620f 55 * between each attempt. When the busy bit is still set at that time,
95ea3627
ID
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 */
c9c3b1a5
ID
59#define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61#define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63#define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
95ea3627 66
0e14f6d3 67static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
68 const unsigned int word, const u8 value)
69{
70 u32 reg;
71
8ff48a8b
ID
72 mutex_lock(&rt2x00dev->csr_mutex);
73
95ea3627 74 /*
c9c3b1a5
ID
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
95ea3627 77 */
c9c3b1a5
ID
78 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 reg = 0;
80 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86 }
8ff48a8b 87
8ff48a8b 88 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
89}
90
0e14f6d3 91static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
92 const unsigned int word, u8 *value)
93{
94 u32 reg;
95
8ff48a8b
ID
96 mutex_lock(&rt2x00dev->csr_mutex);
97
95ea3627 98 /*
c9c3b1a5
ID
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
95ea3627 105 */
c9c3b1a5
ID
106 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 reg = 0;
108 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
95ea3627 111
c9c3b1a5 112 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
95ea3627 113
c9c3b1a5
ID
114 WAIT_FOR_BBP(rt2x00dev, &reg);
115 }
95ea3627
ID
116
117 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
8ff48a8b 118
8ff48a8b 119 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
120}
121
0e14f6d3 122static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
123 const unsigned int word, const u32 value)
124{
125 u32 reg;
95ea3627 126
8ff48a8b
ID
127 mutex_lock(&rt2x00dev->csr_mutex);
128
c9c3b1a5
ID
129 /*
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
132 */
133 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 reg = 0;
135 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 rt2x00_rf_write(rt2x00dev, word, value);
95ea3627
ID
142 }
143
8ff48a8b 144 mutex_unlock(&rt2x00dev->csr_mutex);
95ea3627
ID
145}
146
0e14f6d3 147static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
95ea3627
ID
148 const u8 command, const u8 token,
149 const u8 arg0, const u8 arg1)
150{
151 u32 reg;
152
8ff48a8b
ID
153 mutex_lock(&rt2x00dev->csr_mutex);
154
c9c3b1a5
ID
155 /*
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
158 */
159 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170 }
8ff48a8b 171
8ff48a8b
ID
172 mutex_unlock(&rt2x00dev->csr_mutex);
173
95ea3627
ID
174}
175
176static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177{
178 struct rt2x00_dev *rt2x00dev = eeprom->data;
179 u32 reg;
180
181 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 eeprom->reg_data_clock =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 eeprom->reg_chip_select =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189}
190
191static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192{
193 struct rt2x00_dev *rt2x00dev = eeprom->data;
194 u32 reg = 0;
195
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 !!eeprom->reg_data_clock);
200 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 !!eeprom->reg_chip_select);
202
203 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204}
205
206#ifdef CONFIG_RT2X00_LIB_DEBUGFS
95ea3627
ID
207static const struct rt2x00debug rt61pci_rt2x00debug = {
208 .owner = THIS_MODULE,
209 .csr = {
743b97ca
ID
210 .read = rt2x00pci_register_read,
211 .write = rt2x00pci_register_write,
212 .flags = RT2X00DEBUGFS_OFFSET,
213 .word_base = CSR_REG_BASE,
95ea3627
ID
214 .word_size = sizeof(u32),
215 .word_count = CSR_REG_SIZE / sizeof(u32),
216 },
217 .eeprom = {
218 .read = rt2x00_eeprom_read,
219 .write = rt2x00_eeprom_write,
743b97ca 220 .word_base = EEPROM_BASE,
95ea3627
ID
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt61pci_bbp_read,
226 .write = rt61pci_bbp_write,
743b97ca 227 .word_base = BBP_BASE,
95ea3627
ID
228 .word_size = sizeof(u8),
229 .word_count = BBP_SIZE / sizeof(u8),
230 },
231 .rf = {
232 .read = rt2x00_rf_read,
233 .write = rt61pci_rf_write,
743b97ca 234 .word_base = RF_BASE,
95ea3627
ID
235 .word_size = sizeof(u32),
236 .word_count = RF_SIZE / sizeof(u32),
237 },
238};
239#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
95ea3627
ID
241static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242{
243 u32 reg;
244
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
181d6902 246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
95ea3627 247}
95ea3627 248
771fd565 249#ifdef CONFIG_RT2X00_LIB_LEDS
a2e1d52a 250static void rt61pci_brightness_set(struct led_classdev *led_cdev,
a9450b70
ID
251 enum led_brightness brightness)
252{
253 struct rt2x00_led *led =
254 container_of(led_cdev, struct rt2x00_led, led_dev);
255 unsigned int enabled = brightness != LED_OFF;
256 unsigned int a_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 unsigned int bg_mode =
259 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261 if (led->type == LED_TYPE_RADIO) {
262 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 MCU_LEDCS_RADIO_STATUS, enabled);
264
265 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 (led->rt2x00dev->led_mcu_reg & 0xff),
267 ((led->rt2x00dev->led_mcu_reg >> 8)));
268 } else if (led->type == LED_TYPE_ASSOC) {
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 (led->rt2x00dev->led_mcu_reg & 0xff),
276 ((led->rt2x00dev->led_mcu_reg >> 8)));
277 } else if (led->type == LED_TYPE_QUALITY) {
278 /*
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
282 */
283 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 brightness / (LED_FULL / 6), 0);
285 }
286}
a2e1d52a
ID
287
288static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 unsigned long *delay_on,
290 unsigned long *delay_off)
291{
292 struct rt2x00_led *led =
293 container_of(led_cdev, struct rt2x00_led, led_dev);
294 u32 reg;
295
296 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301 return 0;
302}
475433be
ID
303
304static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 struct rt2x00_led *led,
306 enum led_type type)
307{
308 led->rt2x00dev = rt2x00dev;
309 led->type = type;
310 led->led_dev.brightness_set = rt61pci_brightness_set;
311 led->led_dev.blink_set = rt61pci_blink_set;
312 led->flags = LED_INITIALIZED;
313}
771fd565 314#endif /* CONFIG_RT2X00_LIB_LEDS */
a9450b70 315
95ea3627
ID
316/*
317 * Configuration handlers.
318 */
61e754f4
ID
319static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
322{
323 struct hw_key_entry key_entry;
324 struct rt2x00_field32 field;
325 u32 mask;
326 u32 reg;
327
328 if (crypto->cmd == SET_KEY) {
329 /*
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
334 * left.
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
337 * entries.
338 */
339 mask = (0xf << crypto->bssidx);
340
341 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 reg &= mask;
343
344 if (reg && reg == mask)
345 return -ENOSPC;
346
acaf908d 347 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
348
349 /*
350 * Upload key to hardware
351 */
352 memcpy(key_entry.key, crypto->key,
353 sizeof(key_entry.key));
354 memcpy(key_entry.tx_mic, crypto->tx_mic,
355 sizeof(key_entry.tx_mic));
356 memcpy(key_entry.rx_mic, crypto->rx_mic,
357 sizeof(key_entry.rx_mic));
358
359 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 &key_entry, sizeof(key_entry));
362
363 /*
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
369 */
370 if (key->hw_key_idx < 8) {
371 field.bit_offset = (3 * key->hw_key_idx);
372 field.bit_mask = 0x7 << field.bit_offset;
373
374 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 rt2x00_set_field32(&reg, field, crypto->cipher);
376 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 } else {
378 field.bit_offset = (3 * (key->hw_key_idx - 8));
379 field.bit_mask = 0x7 << field.bit_offset;
380
381 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 rt2x00_set_field32(&reg, field, crypto->cipher);
383 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384 }
385
386 /*
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
b34e620f 390 * to be provided separately for the descriptor.
61e754f4
ID
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
394 */
395 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396 }
397
398 /*
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
b34e620f 401 * defines directly will cause a lot of overhead, we use
61e754f4
ID
402 * a calculation to determine the correct bit directly.
403 */
404 mask = 1 << key->hw_key_idx;
405
406 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 if (crypto->cmd == SET_KEY)
408 reg |= mask;
409 else if (crypto->cmd == DISABLE_KEY)
410 reg &= ~mask;
411 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413 return 0;
414}
415
416static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 struct rt2x00lib_crypto *crypto,
418 struct ieee80211_key_conf *key)
419{
420 struct hw_pairwise_ta_entry addr_entry;
421 struct hw_key_entry key_entry;
422 u32 mask;
423 u32 reg;
424
425 if (crypto->cmd == SET_KEY) {
426 /*
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
b34e620f
TLSC
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
61e754f4 431 * the next register.
b34e620f
TLSC
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
61e754f4
ID
434 */
435 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 if (reg && reg == ~0) {
437 key->hw_key_idx = 32;
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 if (reg && reg == ~0)
440 return -ENOSPC;
441 }
442
acaf908d 443 key->hw_key_idx += reg ? ffz(reg) : 0;
61e754f4
ID
444
445 /*
446 * Upload key to hardware
447 */
448 memcpy(key_entry.key, crypto->key,
449 sizeof(key_entry.key));
450 memcpy(key_entry.tx_mic, crypto->tx_mic,
451 sizeof(key_entry.tx_mic));
452 memcpy(key_entry.rx_mic, crypto->rx_mic,
453 sizeof(key_entry.rx_mic));
454
455 memset(&addr_entry, 0, sizeof(addr_entry));
456 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 addr_entry.cipher = crypto->cipher;
458
459 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 &key_entry, sizeof(key_entry));
462
463 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 &addr_entry, sizeof(addr_entry));
466
467 /*
b34e620f
TLSC
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
61e754f4
ID
470 * by the hardware.
471 */
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 reg |= (1 << crypto->bssidx);
474 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476 /*
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
3ad2f3fb 480 * to be provided separately for the descriptor.
61e754f4
ID
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
484 */
485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486 }
487
488 /*
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
b34e620f 491 * defines directly will cause a lot of overhead, we use
61e754f4
ID
492 * a calculation to determine the correct bit directly.
493 */
494 if (key->hw_key_idx < 32) {
495 mask = 1 << key->hw_key_idx;
496
497 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 if (crypto->cmd == SET_KEY)
499 reg |= mask;
500 else if (crypto->cmd == DISABLE_KEY)
501 reg &= ~mask;
502 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 } else {
504 mask = 1 << (key->hw_key_idx - 32);
505
506 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 if (crypto->cmd == SET_KEY)
508 reg |= mask;
509 else if (crypto->cmd == DISABLE_KEY)
510 reg &= ~mask;
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512 }
513
514 return 0;
515}
516
3a643d24
ID
517static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 const unsigned int filter_flags)
519{
520 u32 reg;
521
522 /*
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
527 */
528 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 !(filter_flags & FIF_FCSFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 !(filter_flags & FIF_PLCPFAIL));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
1afcfd54 534 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
3a643d24
ID
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 !(filter_flags & FIF_PROMISC_IN_BSS));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
e0b005fa
ID
538 !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 !rt2x00dev->intf_ap_count);
3a643d24
ID
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 !(filter_flags & FIF_ALLMULTI));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 !(filter_flags & FIF_CONTROL));
546 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547}
548
6bb40dd1
ID
549static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 struct rt2x00_intf *intf,
551 struct rt2x00intf_conf *conf,
552 const unsigned int flags)
95ea3627 553{
6bb40dd1
ID
554 unsigned int beacon_base;
555 u32 reg;
95ea3627 556
6bb40dd1
ID
557 if (flags & CONFIG_UPDATE_TYPE) {
558 /*
559 * Clear current synchronisation setup.
b34e620f 560 * For the Beacon base registers, we only need to clear
6bb40dd1
ID
561 * the first byte since that byte contains the VALID and OWNER
562 * bits which (when set to 0) will invalidate the entire beacon.
563 */
564 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
6bb40dd1 565 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
95ea3627 566
6bb40dd1
ID
567 /*
568 * Enable synchronisation.
569 */
570 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
fd3c91c5 571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
6bb40dd1 572 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
fd3c91c5 573 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
6bb40dd1
ID
574 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
575 }
95ea3627 576
6bb40dd1
ID
577 if (flags & CONFIG_UPDATE_MAC) {
578 reg = le32_to_cpu(conf->mac[1]);
579 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580 conf->mac[1] = cpu_to_le32(reg);
95ea3627 581
6bb40dd1
ID
582 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583 conf->mac, sizeof(conf->mac));
584 }
95ea3627 585
6bb40dd1
ID
586 if (flags & CONFIG_UPDATE_BSSID) {
587 reg = le32_to_cpu(conf->bssid[1]);
588 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589 conf->bssid[1] = cpu_to_le32(reg);
95ea3627 590
6bb40dd1
ID
591 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592 conf->bssid, sizeof(conf->bssid));
593 }
95ea3627
ID
594}
595
3a643d24 596static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
02044643
HS
597 struct rt2x00lib_erp *erp,
598 u32 changed)
95ea3627 599{
95ea3627 600 u32 reg;
95ea3627
ID
601
602 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
4789666e 603 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
8a566afe 604 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
95ea3627
ID
605 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
606
02044643
HS
607 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
608 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
609 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
610 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
611 !!erp->short_preamble);
612 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
613 }
95ea3627 614
02044643
HS
615 if (changed & BSS_CHANGED_BASIC_RATES)
616 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
617 erp->basic_rates);
95ea3627 618
02044643
HS
619 if (changed & BSS_CHANGED_BEACON_INT) {
620 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
621 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
622 erp->beacon_int * 16);
623 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
624 }
8a566afe 625
02044643
HS
626 if (changed & BSS_CHANGED_ERP_SLOT) {
627 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
628 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
629 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
95ea3627 630
02044643
HS
631 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
632 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
633 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
634 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
635 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
636 }
95ea3627
ID
637}
638
639static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
addc81bd 640 struct antenna_setup *ant)
95ea3627
ID
641{
642 u8 r3;
643 u8 r4;
644 u8 r77;
645
646 rt61pci_bbp_read(rt2x00dev, 3, &r3);
647 rt61pci_bbp_read(rt2x00dev, 4, &r4);
648 rt61pci_bbp_read(rt2x00dev, 77, &r77);
649
5122d898 650 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
e4cd2ff8
ID
651
652 /*
653 * Configure the RX antenna.
654 */
addc81bd 655 switch (ant->rx) {
95ea3627 656 case ANTENNA_HW_DIVERSITY:
acaa410d 657 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627 658 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
8318d78a 659 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
95ea3627
ID
660 break;
661 case ANTENNA_A:
acaa410d 662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
668 break;
669 case ANTENNA_B:
a4fe07d9 670 default:
acaa410d 671 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
95ea3627 672 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
8318d78a 673 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
acaa410d
MN
674 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
675 else
676 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
677 break;
678 }
679
680 rt61pci_bbp_write(rt2x00dev, 77, r77);
681 rt61pci_bbp_write(rt2x00dev, 3, r3);
682 rt61pci_bbp_write(rt2x00dev, 4, r4);
683}
684
685static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
addc81bd 686 struct antenna_setup *ant)
95ea3627
ID
687{
688 u8 r3;
689 u8 r4;
690 u8 r77;
691
692 rt61pci_bbp_read(rt2x00dev, 3, &r3);
693 rt61pci_bbp_read(rt2x00dev, 4, &r4);
694 rt61pci_bbp_read(rt2x00dev, 77, &r77);
695
5122d898 696 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
95ea3627
ID
697 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
698 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
699
e4cd2ff8
ID
700 /*
701 * Configure the RX antenna.
702 */
addc81bd 703 switch (ant->rx) {
95ea3627 704 case ANTENNA_HW_DIVERSITY:
acaa410d 705 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
95ea3627
ID
706 break;
707 case ANTENNA_A:
acaa410d
MN
708 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
709 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
95ea3627
ID
710 break;
711 case ANTENNA_B:
a4fe07d9 712 default:
acaa410d
MN
713 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
714 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
95ea3627
ID
715 break;
716 }
717
718 rt61pci_bbp_write(rt2x00dev, 77, r77);
719 rt61pci_bbp_write(rt2x00dev, 3, r3);
720 rt61pci_bbp_write(rt2x00dev, 4, r4);
721}
722
723static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
724 const int p1, const int p2)
725{
726 u32 reg;
727
728 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
729
acaa410d
MN
730 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
731 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
732
733 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
734 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
735
736 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
95ea3627
ID
737}
738
739static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
addc81bd 740 struct antenna_setup *ant)
95ea3627 741{
95ea3627
ID
742 u8 r3;
743 u8 r4;
744 u8 r77;
745
746 rt61pci_bbp_read(rt2x00dev, 3, &r3);
747 rt61pci_bbp_read(rt2x00dev, 4, &r4);
748 rt61pci_bbp_read(rt2x00dev, 77, &r77);
e4cd2ff8 749
e4cd2ff8
ID
750 /*
751 * Configure the RX antenna.
752 */
753 switch (ant->rx) {
754 case ANTENNA_A:
acaa410d
MN
755 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
757 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
e4cd2ff8 758 break;
e4cd2ff8
ID
759 case ANTENNA_HW_DIVERSITY:
760 /*
a4fe07d9
ID
761 * FIXME: Antenna selection for the rf 2529 is very confusing
762 * in the legacy driver. Just default to antenna B until the
763 * legacy code can be properly translated into rt2x00 code.
e4cd2ff8
ID
764 */
765 case ANTENNA_B:
a4fe07d9 766 default:
acaa410d
MN
767 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
768 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
769 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
e4cd2ff8
ID
770 break;
771 }
772
e4cd2ff8 773 rt61pci_bbp_write(rt2x00dev, 77, r77);
95ea3627
ID
774 rt61pci_bbp_write(rt2x00dev, 3, r3);
775 rt61pci_bbp_write(rt2x00dev, 4, r4);
776}
777
778struct antenna_sel {
779 u8 word;
780 /*
781 * value[0] -> non-LNA
782 * value[1] -> LNA
783 */
784 u8 value[2];
785};
786
787static const struct antenna_sel antenna_sel_a[] = {
788 { 96, { 0x58, 0x78 } },
789 { 104, { 0x38, 0x48 } },
790 { 75, { 0xfe, 0x80 } },
791 { 86, { 0xfe, 0x80 } },
792 { 88, { 0xfe, 0x80 } },
793 { 35, { 0x60, 0x60 } },
794 { 97, { 0x58, 0x58 } },
795 { 98, { 0x58, 0x58 } },
796};
797
798static const struct antenna_sel antenna_sel_bg[] = {
799 { 96, { 0x48, 0x68 } },
800 { 104, { 0x2c, 0x3c } },
801 { 75, { 0xfe, 0x80 } },
802 { 86, { 0xfe, 0x80 } },
803 { 88, { 0xfe, 0x80 } },
804 { 35, { 0x50, 0x50 } },
805 { 97, { 0x48, 0x48 } },
806 { 98, { 0x48, 0x48 } },
807};
808
e4ea1c40
ID
809static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
810 struct antenna_setup *ant)
95ea3627
ID
811{
812 const struct antenna_sel *sel;
813 unsigned int lna;
814 unsigned int i;
815 u32 reg;
816
a4fe07d9
ID
817 /*
818 * We should never come here because rt2x00lib is supposed
819 * to catch this and send us the correct antenna explicitely.
820 */
821 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
822 ant->tx == ANTENNA_SW_DIVERSITY);
823
8318d78a 824 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
825 sel = antenna_sel_a;
826 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
95ea3627
ID
827 } else {
828 sel = antenna_sel_bg;
829 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
95ea3627
ID
830 }
831
acaa410d
MN
832 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
833 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
834
835 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
836
ddc827f9 837 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
8318d78a 838 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
ddc827f9 839 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
8318d78a 840 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
ddc827f9 841
95ea3627
ID
842 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
843
5122d898 844 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
addc81bd 845 rt61pci_config_antenna_5x(rt2x00dev, ant);
5122d898 846 else if (rt2x00_rf(rt2x00dev, RF2527))
addc81bd 847 rt61pci_config_antenna_2x(rt2x00dev, ant);
5122d898 848 else if (rt2x00_rf(rt2x00dev, RF2529)) {
95ea3627 849 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
addc81bd 850 rt61pci_config_antenna_2x(rt2x00dev, ant);
95ea3627 851 else
addc81bd 852 rt61pci_config_antenna_2529(rt2x00dev, ant);
95ea3627
ID
853 }
854}
855
e4ea1c40
ID
856static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
857 struct rt2x00lib_conf *libconf)
858{
859 u16 eeprom;
860 short lna_gain = 0;
861
862 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
863 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
864 lna_gain += 14;
865
866 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
867 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
868 } else {
869 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
870 lna_gain += 14;
871
872 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
873 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
874 }
875
876 rt2x00dev->lna_gain = lna_gain;
877}
878
879static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
880 struct rf_channel *rf, const int txpower)
881{
882 u8 r3;
883 u8 r94;
884 u8 smart;
885
886 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
887 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
888
5122d898 889 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
e4ea1c40
ID
890
891 rt61pci_bbp_read(rt2x00dev, 3, &r3);
892 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
893 rt61pci_bbp_write(rt2x00dev, 3, r3);
894
895 r94 = 6;
896 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
897 r94 += txpower - MAX_TXPOWER;
898 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
899 r94 += txpower;
900 rt61pci_bbp_write(rt2x00dev, 94, r94);
901
902 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
903 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
904 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
905 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
906
907 udelay(200);
908
909 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
910 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
911 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
912 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
913
914 udelay(200);
915
916 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
917 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
918 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
919 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
920
921 msleep(1);
922}
923
924static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
925 const int txpower)
926{
927 struct rf_channel rf;
928
929 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
930 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
931 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
932 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
933
934 rt61pci_config_channel(rt2x00dev, &rf, txpower);
935}
936
937static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
5c58ee51 938 struct rt2x00lib_conf *libconf)
95ea3627
ID
939{
940 u32 reg;
941
e4ea1c40 942 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
e1b4d7b7
ID
943 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
944 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
945 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
e4ea1c40
ID
946 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
947 libconf->conf->long_frame_max_tx_count);
948 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
949 libconf->conf->short_frame_max_tx_count);
950 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
951}
95ea3627 952
7d7f19cc
ID
953static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
954 struct rt2x00lib_conf *libconf)
955{
956 enum dev_state state =
957 (libconf->conf->flags & IEEE80211_CONF_PS) ?
958 STATE_SLEEP : STATE_AWAKE;
959 u32 reg;
960
961 if (state == STATE_SLEEP) {
962 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
963 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
6b347bff 964 rt2x00dev->beacon_int - 10);
7d7f19cc
ID
965 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
966 libconf->conf->listen_interval - 1);
967 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
968
969 /* We must first disable autowake before it can be enabled */
970 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
971 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
972
973 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
974 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
975
976 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
977 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
978 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
979
980 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
981 } else {
982 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
983 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
984 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
985 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
986 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
987 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
988
989 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
990 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
991 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
992
993 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
994 }
995}
996
95ea3627 997static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
6bb40dd1
ID
998 struct rt2x00lib_conf *libconf,
999 const unsigned int flags)
95ea3627 1000{
ba2ab471
ID
1001 /* Always recalculate LNA gain before changing configuration */
1002 rt61pci_config_lna_gain(rt2x00dev, libconf);
1003
e4ea1c40 1004 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
5c58ee51
ID
1005 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1006 libconf->conf->power_level);
e4ea1c40
ID
1007 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1008 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
5c58ee51 1009 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
e4ea1c40
ID
1010 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1011 rt61pci_config_retry_limit(rt2x00dev, libconf);
7d7f19cc
ID
1012 if (flags & IEEE80211_CONF_CHANGE_PS)
1013 rt61pci_config_ps(rt2x00dev, libconf);
95ea3627
ID
1014}
1015
95ea3627
ID
1016/*
1017 * Link tuning
1018 */
ebcf26da
ID
1019static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1020 struct link_qual *qual)
95ea3627
ID
1021{
1022 u32 reg;
1023
1024 /*
1025 * Update FCS error count from register.
1026 */
1027 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
ebcf26da 1028 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
95ea3627
ID
1029
1030 /*
1031 * Update False CCA count from register.
1032 */
1033 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
ebcf26da 1034 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
95ea3627
ID
1035}
1036
5352ff65
ID
1037static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1038 struct link_qual *qual, u8 vgc_level)
eb20b4e8 1039{
5352ff65 1040 if (qual->vgc_level != vgc_level) {
eb20b4e8 1041 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
5352ff65
ID
1042 qual->vgc_level = vgc_level;
1043 qual->vgc_level_reg = vgc_level;
eb20b4e8
ID
1044 }
1045}
1046
5352ff65
ID
1047static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1048 struct link_qual *qual)
95ea3627 1049{
5352ff65 1050 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
95ea3627
ID
1051}
1052
5352ff65
ID
1053static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1054 struct link_qual *qual, const u32 count)
95ea3627 1055{
95ea3627
ID
1056 u8 up_bound;
1057 u8 low_bound;
1058
95ea3627
ID
1059 /*
1060 * Determine r17 bounds.
1061 */
e5ef5bad 1062 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1063 low_bound = 0x28;
1064 up_bound = 0x48;
1065 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1066 low_bound += 0x10;
1067 up_bound += 0x10;
1068 }
1069 } else {
1070 low_bound = 0x20;
1071 up_bound = 0x40;
1072 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1073 low_bound += 0x10;
1074 up_bound += 0x10;
1075 }
1076 }
1077
6bb40dd1
ID
1078 /*
1079 * If we are not associated, we should go straight to the
1080 * dynamic CCA tuning.
1081 */
1082 if (!rt2x00dev->intf_associated)
1083 goto dynamic_cca_tune;
1084
95ea3627
ID
1085 /*
1086 * Special big-R17 for very short distance
1087 */
5352ff65
ID
1088 if (qual->rssi >= -35) {
1089 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
95ea3627
ID
1090 return;
1091 }
1092
1093 /*
1094 * Special big-R17 for short distance
1095 */
5352ff65
ID
1096 if (qual->rssi >= -58) {
1097 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
95ea3627
ID
1098 return;
1099 }
1100
1101 /*
1102 * Special big-R17 for middle-short distance
1103 */
5352ff65
ID
1104 if (qual->rssi >= -66) {
1105 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
95ea3627
ID
1106 return;
1107 }
1108
1109 /*
1110 * Special mid-R17 for middle distance
1111 */
5352ff65
ID
1112 if (qual->rssi >= -74) {
1113 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
95ea3627
ID
1114 return;
1115 }
1116
1117 /*
1118 * Special case: Change up_bound based on the rssi.
1119 * Lower up_bound when rssi is weaker then -74 dBm.
1120 */
5352ff65 1121 up_bound -= 2 * (-74 - qual->rssi);
95ea3627
ID
1122 if (low_bound > up_bound)
1123 up_bound = low_bound;
1124
5352ff65
ID
1125 if (qual->vgc_level > up_bound) {
1126 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
95ea3627
ID
1127 return;
1128 }
1129
6bb40dd1
ID
1130dynamic_cca_tune:
1131
95ea3627
ID
1132 /*
1133 * r17 does not yet exceed upper limit, continue and base
1134 * the r17 tuning on the false CCA count.
1135 */
5352ff65
ID
1136 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1137 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1138 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1139 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
95ea3627
ID
1140}
1141
1142/*
a7f3a06c 1143 * Firmware functions
95ea3627
ID
1144 */
1145static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1146{
49e721ec 1147 u16 chip;
95ea3627
ID
1148 char *fw_name;
1149
49e721ec
GW
1150 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1151 switch (chip) {
1152 case RT2561_PCI_ID:
95ea3627
ID
1153 fw_name = FIRMWARE_RT2561;
1154 break;
49e721ec 1155 case RT2561s_PCI_ID:
95ea3627
ID
1156 fw_name = FIRMWARE_RT2561s;
1157 break;
49e721ec 1158 case RT2661_PCI_ID:
95ea3627
ID
1159 fw_name = FIRMWARE_RT2661;
1160 break;
1161 default:
1162 fw_name = NULL;
1163 break;
1164 }
1165
1166 return fw_name;
1167}
1168
0cbe0064
ID
1169static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1170 const u8 *data, const size_t len)
a7f3a06c 1171{
0cbe0064 1172 u16 fw_crc;
a7f3a06c
ID
1173 u16 crc;
1174
1175 /*
0cbe0064
ID
1176 * Only support 8kb firmware files.
1177 */
1178 if (len != 8192)
1179 return FW_BAD_LENGTH;
1180
1181 /*
b34e620f
TLSC
1182 * The last 2 bytes in the firmware array are the crc checksum itself.
1183 * This means that we should never pass those 2 bytes to the crc
a7f3a06c
ID
1184 * algorithm.
1185 */
0cbe0064
ID
1186 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1187
1188 /*
1189 * Use the crc itu-t algorithm.
1190 */
a7f3a06c
ID
1191 crc = crc_itu_t(0, data, len - 2);
1192 crc = crc_itu_t_byte(crc, 0);
1193 crc = crc_itu_t_byte(crc, 0);
1194
0cbe0064 1195 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
a7f3a06c
ID
1196}
1197
0cbe0064
ID
1198static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1199 const u8 *data, const size_t len)
95ea3627
ID
1200{
1201 int i;
1202 u32 reg;
1203
1204 /*
1205 * Wait for stable hardware.
1206 */
1207 for (i = 0; i < 100; i++) {
1208 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1209 if (reg)
1210 break;
1211 msleep(1);
1212 }
1213
1214 if (!reg) {
1215 ERROR(rt2x00dev, "Unstable hardware.\n");
1216 return -EBUSY;
1217 }
1218
1219 /*
1220 * Prepare MCU and mailbox for firmware loading.
1221 */
1222 reg = 0;
1223 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1224 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1225 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1226 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1227 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1228
1229 /*
1230 * Write firmware to device.
1231 */
1232 reg = 0;
1233 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1234 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1235 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1236
1237 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1238 data, len);
1239
1240 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1241 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1242
1243 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1244 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1245
1246 for (i = 0; i < 100; i++) {
1247 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1248 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1249 break;
1250 msleep(1);
1251 }
1252
1253 if (i == 100) {
1254 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1255 return -EBUSY;
1256 }
1257
e6d3e902
ID
1258 /*
1259 * Hardware needs another millisecond before it is ready.
1260 */
1261 msleep(1);
1262
95ea3627
ID
1263 /*
1264 * Reset MAC and BBP registers.
1265 */
1266 reg = 0;
1267 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1268 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1269 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1270
1271 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1272 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1273 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1274 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1275
1276 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1277 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1278 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1279
1280 return 0;
1281}
1282
a7f3a06c
ID
1283/*
1284 * Initialization functions.
1285 */
798b7adb 1286static bool rt61pci_get_entry_state(struct queue_entry *entry)
95ea3627 1287{
b8be63ff 1288 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1289 u32 word;
1290
798b7adb
ID
1291 if (entry->queue->qid == QID_RX) {
1292 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627 1293
798b7adb
ID
1294 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1295 } else {
1296 rt2x00_desc_read(entry_priv->desc, 0, &word);
1297
1298 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1299 rt2x00_get_field32(word, TXD_W0_VALID));
1300 }
95ea3627
ID
1301}
1302
798b7adb 1303static void rt61pci_clear_entry(struct queue_entry *entry)
95ea3627 1304{
b8be63ff 1305 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
798b7adb 1306 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
95ea3627
ID
1307 u32 word;
1308
798b7adb
ID
1309 if (entry->queue->qid == QID_RX) {
1310 rt2x00_desc_read(entry_priv->desc, 5, &word);
1311 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1312 skbdesc->skb_dma);
1313 rt2x00_desc_write(entry_priv->desc, 5, word);
1314
1315 rt2x00_desc_read(entry_priv->desc, 0, &word);
1316 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1317 rt2x00_desc_write(entry_priv->desc, 0, word);
1318 } else {
1319 rt2x00_desc_read(entry_priv->desc, 0, &word);
1320 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1321 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1322 rt2x00_desc_write(entry_priv->desc, 0, word);
1323 }
95ea3627
ID
1324}
1325
181d6902 1326static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
95ea3627 1327{
b8be63ff 1328 struct queue_entry_priv_pci *entry_priv;
95ea3627
ID
1329 u32 reg;
1330
95ea3627
ID
1331 /*
1332 * Initialize registers.
1333 */
1334 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1335 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
181d6902 1336 rt2x00dev->tx[0].limit);
95ea3627 1337 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
181d6902 1338 rt2x00dev->tx[1].limit);
95ea3627 1339 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
181d6902 1340 rt2x00dev->tx[2].limit);
95ea3627 1341 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
181d6902 1342 rt2x00dev->tx[3].limit);
95ea3627
ID
1343 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1344
1345 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
95ea3627 1346 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
181d6902 1347 rt2x00dev->tx[0].desc_size / 4);
95ea3627
ID
1348 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1349
b8be63ff 1350 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
95ea3627 1351 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
30b3a23c 1352 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
b8be63ff 1353 entry_priv->desc_dma);
95ea3627
ID
1354 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1355
b8be63ff 1356 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
95ea3627 1357 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
30b3a23c 1358 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
b8be63ff 1359 entry_priv->desc_dma);
95ea3627
ID
1360 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1361
b8be63ff 1362 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
95ea3627 1363 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
30b3a23c 1364 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
b8be63ff 1365 entry_priv->desc_dma);
95ea3627
ID
1366 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1367
b8be63ff 1368 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
95ea3627 1369 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
30b3a23c 1370 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
b8be63ff 1371 entry_priv->desc_dma);
95ea3627
ID
1372 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1373
95ea3627 1374 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
181d6902 1375 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
95ea3627
ID
1376 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1377 rt2x00dev->rx->desc_size / 4);
1378 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1379 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1380
b8be63ff 1381 entry_priv = rt2x00dev->rx->entries[0].priv_data;
95ea3627 1382 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
30b3a23c 1383 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
b8be63ff 1384 entry_priv->desc_dma);
95ea3627
ID
1385 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1386
1387 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1388 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1389 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1390 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1391 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
95ea3627
ID
1392 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1393
1394 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1395 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1396 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1397 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1398 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
95ea3627
ID
1399 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1400
1401 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1402 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1403 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1404
1405 return 0;
1406}
1407
1408static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1409{
1410 u32 reg;
1411
1412 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1413 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1414 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1415 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1416 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1417
1418 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1419 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1420 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1421 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1422 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1423 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1424 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1425 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1426 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1427 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1428
1429 /*
1430 * CCK TXD BBP registers
1431 */
1432 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1433 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1434 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1435 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1436 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1437 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1438 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1439 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1440 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1441 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1442
1443 /*
1444 * OFDM TXD BBP registers
1445 */
1446 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1447 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1448 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1449 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1450 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1451 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1452 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1453 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1454
1455 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1456 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1457 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1458 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1459 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1460 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1461
1462 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1463 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1464 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1465 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1466 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1467 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1468
1f909162
ID
1469 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1470 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1471 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1472 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1473 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1474 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1475 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1476 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1477
95ea3627
ID
1478 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1479
1480 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1481
1482 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1483 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1484 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1485
1486 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1487
1488 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1489 return -EBUSY;
1490
1491 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1492
1493 /*
1494 * Invalidate all Shared Keys (SEC_CSR0),
1495 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1496 */
1497 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1498 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1499 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1500
1501 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1502 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1503 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1504 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1505
1506 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1507
1508 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1509
1510 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1511
6bb40dd1
ID
1512 /*
1513 * Clear all beacons
1514 * For the Beacon base registers we only need to clear
1515 * the first byte since that byte contains the VALID and OWNER
1516 * bits which (when set to 0) will invalidate the entire beacon.
1517 */
1518 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1519 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1520 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1521 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1522
95ea3627
ID
1523 /*
1524 * We must clear the error counters.
1525 * These registers are cleared on read,
1526 * so we may pass a useless variable to store the value.
1527 */
1528 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1529 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1530 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1531
1532 /*
1533 * Reset MAC and BBP registers.
1534 */
1535 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1536 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1537 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1538 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1539
1540 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1541 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1542 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1543 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1544
1545 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1546 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1547 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1548
1549 return 0;
1550}
1551
2b08da3f 1552static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
1553{
1554 unsigned int i;
95ea3627
ID
1555 u8 value;
1556
1557 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1558 rt61pci_bbp_read(rt2x00dev, 0, &value);
1559 if ((value != 0xff) && (value != 0x00))
2b08da3f 1560 return 0;
95ea3627
ID
1561 udelay(REGISTER_BUSY_DELAY);
1562 }
1563
1564 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1565 return -EACCES;
2b08da3f
ID
1566}
1567
1568static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1569{
1570 unsigned int i;
1571 u16 eeprom;
1572 u8 reg_id;
1573 u8 value;
1574
1575 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1576 return -EACCES;
95ea3627 1577
95ea3627
ID
1578 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1579 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1580 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1581 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1582 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1583 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1584 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1585 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1586 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1587 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1588 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1589 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1590 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1591 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1592 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1593 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1594 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1595 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1596 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1597 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1598 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1599 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1600 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1601 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1602
95ea3627
ID
1603 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1604 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1605
1606 if (eeprom != 0xffff && eeprom != 0x0000) {
1607 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1608 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
95ea3627
ID
1609 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1610 }
1611 }
95ea3627
ID
1612
1613 return 0;
1614}
1615
1616/*
1617 * Device state switch handlers.
1618 */
1619static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1620 enum dev_state state)
1621{
1622 u32 reg;
1623
1624 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1625 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
2b08da3f
ID
1626 (state == STATE_RADIO_RX_OFF) ||
1627 (state == STATE_RADIO_RX_OFF_LINK));
95ea3627
ID
1628 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1629}
1630
1631static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1632 enum dev_state state)
1633{
78e256c9
HS
1634 int mask = (state == STATE_RADIO_IRQ_OFF) ||
1635 (state == STATE_RADIO_IRQ_OFF_ISR);
95ea3627
ID
1636 u32 reg;
1637
1638 /*
1639 * When interrupts are being enabled, the interrupt registers
1640 * should clear the register to assure a clean state.
1641 */
1642 if (state == STATE_RADIO_IRQ_ON) {
1643 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1644 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1645
1646 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1647 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1648 }
1649
1650 /*
1651 * Only toggle the interrupts bits we are going to use.
1652 * Non-checked interrupt bits are disabled by default.
1653 */
1654 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1655 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1656 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
6646505d 1657 rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
95ea3627
ID
1658 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1659 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1660 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1661
1662 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1663 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1664 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1665 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1666 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1667 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1668 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1669 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1670 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
6646505d 1671 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
95ea3627
ID
1672 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1673}
1674
1675static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1676{
1677 u32 reg;
1678
1679 /*
1680 * Initialize all registers.
1681 */
2b08da3f
ID
1682 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1683 rt61pci_init_registers(rt2x00dev) ||
1684 rt61pci_init_bbp(rt2x00dev)))
95ea3627 1685 return -EIO;
95ea3627
ID
1686
1687 /*
1688 * Enable RX.
1689 */
1690 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1691 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1692 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1693
95ea3627
ID
1694 return 0;
1695}
1696
1697static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1698{
95ea3627 1699 /*
a2c9b652 1700 * Disable power
95ea3627 1701 */
a2c9b652 1702 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
95ea3627
ID
1703}
1704
1705static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1706{
9655a6ec 1707 u32 reg, reg2;
95ea3627
ID
1708 unsigned int i;
1709 char put_to_sleep;
95ea3627
ID
1710
1711 put_to_sleep = (state != STATE_AWAKE);
1712
1713 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1714 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1715 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1716 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1717
1718 /*
1719 * Device is not guaranteed to be in the requested state yet.
1720 * We must wait until the register indicates that the
1721 * device has entered the correct state.
1722 */
1723 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
9655a6ec
GW
1724 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1725 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
2b08da3f 1726 if (state == !put_to_sleep)
95ea3627 1727 return 0;
9655a6ec 1728 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
95ea3627
ID
1729 msleep(10);
1730 }
1731
95ea3627
ID
1732 return -EBUSY;
1733}
1734
1735static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1736 enum dev_state state)
1737{
1738 int retval = 0;
1739
1740 switch (state) {
1741 case STATE_RADIO_ON:
1742 retval = rt61pci_enable_radio(rt2x00dev);
1743 break;
1744 case STATE_RADIO_OFF:
1745 rt61pci_disable_radio(rt2x00dev);
1746 break;
1747 case STATE_RADIO_RX_ON:
61667d8d 1748 case STATE_RADIO_RX_ON_LINK:
95ea3627 1749 case STATE_RADIO_RX_OFF:
61667d8d 1750 case STATE_RADIO_RX_OFF_LINK:
2b08da3f
ID
1751 rt61pci_toggle_rx(rt2x00dev, state);
1752 break;
1753 case STATE_RADIO_IRQ_ON:
78e256c9 1754 case STATE_RADIO_IRQ_ON_ISR:
2b08da3f 1755 case STATE_RADIO_IRQ_OFF:
78e256c9 1756 case STATE_RADIO_IRQ_OFF_ISR:
2b08da3f 1757 rt61pci_toggle_irq(rt2x00dev, state);
95ea3627
ID
1758 break;
1759 case STATE_DEEP_SLEEP:
1760 case STATE_SLEEP:
1761 case STATE_STANDBY:
1762 case STATE_AWAKE:
1763 retval = rt61pci_set_state(rt2x00dev, state);
1764 break;
1765 default:
1766 retval = -ENOTSUPP;
1767 break;
1768 }
1769
2b08da3f
ID
1770 if (unlikely(retval))
1771 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1772 state, retval);
1773
95ea3627
ID
1774 return retval;
1775}
1776
1777/*
1778 * TX descriptor initialization
1779 */
93331458 1780static void rt61pci_write_tx_desc(struct queue_entry *entry,
61e754f4 1781 struct txentry_desc *txdesc)
95ea3627 1782{
93331458
ID
1783 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1784 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
85b7a8b3 1785 __le32 *txd = entry_priv->desc;
95ea3627
ID
1786 u32 word;
1787
1788 /*
1789 * Start writing the descriptor words.
1790 */
1791 rt2x00_desc_read(txd, 1, &word);
2b23cdaa
HS
1792 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1793 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1794 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1795 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
61e754f4 1796 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
5adf6d63
ID
1797 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1798 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
4de36fe5 1799 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
95ea3627
ID
1800 rt2x00_desc_write(txd, 1, word);
1801
1802 rt2x00_desc_read(txd, 2, &word);
181d6902
ID
1803 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1804 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1805 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1806 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
95ea3627
ID
1807 rt2x00_desc_write(txd, 2, word);
1808
61e754f4 1809 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1ce9cdac
ID
1810 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1811 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
61e754f4
ID
1812 }
1813
95ea3627 1814 rt2x00_desc_read(txd, 5, &word);
93331458 1815 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
4de36fe5
GW
1816 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1817 skbdesc->entry->entry_idx);
95ea3627 1818 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
93331458 1819 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
95ea3627
ID
1820 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1821 rt2x00_desc_write(txd, 5, word);
1822
2b23cdaa 1823 if (entry->queue->qid != QID_BEACON) {
6b97cb04
GW
1824 rt2x00_desc_read(txd, 6, &word);
1825 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1826 skbdesc->skb_dma);
1827 rt2x00_desc_write(txd, 6, word);
4de36fe5 1828
d7bafff3 1829 rt2x00_desc_read(txd, 11, &word);
df624ca5
GW
1830 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1831 txdesc->length);
d7bafff3
AB
1832 rt2x00_desc_write(txd, 11, word);
1833 }
95ea3627 1834
e01f1ec3
GW
1835 /*
1836 * Writing TXD word 0 must the last to prevent a race condition with
1837 * the device, whereby the device may take hold of the TXD before we
1838 * finished updating it.
1839 */
95ea3627
ID
1840 rt2x00_desc_read(txd, 0, &word);
1841 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1842 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1843 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
181d6902 1844 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95ea3627 1845 rt2x00_set_field32(&word, TXD_W0_ACK,
181d6902 1846 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
95ea3627 1847 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
181d6902 1848 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
95ea3627 1849 rt2x00_set_field32(&word, TXD_W0_OFDM,
076f9582 1850 (txdesc->rate_mode == RATE_MODE_OFDM));
181d6902 1851 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
95ea3627 1852 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
61486e0f 1853 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
61e754f4
ID
1854 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1855 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1856 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1857 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1858 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
df624ca5 1859 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
95ea3627 1860 rt2x00_set_field32(&word, TXD_W0_BURST,
181d6902 1861 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
61e754f4 1862 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
95ea3627 1863 rt2x00_desc_write(txd, 0, word);
85b7a8b3
GW
1864
1865 /*
1866 * Register descriptor details in skb frame descriptor.
1867 */
1868 skbdesc->desc = txd;
2b23cdaa
HS
1869 skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1870 TXD_DESC_SIZE;
95ea3627
ID
1871}
1872
1873/*
1874 * TX data initialization
1875 */
f224f4ef
GW
1876static void rt61pci_write_beacon(struct queue_entry *entry,
1877 struct txentry_desc *txdesc)
bd88a781
ID
1878{
1879 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
85b7a8b3 1880 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
bd88a781
ID
1881 unsigned int beacon_base;
1882 u32 reg;
1883
1884 /*
1885 * Disable beaconing while we are reloading the beacon data,
1886 * otherwise we might be sending out invalid data.
1887 */
1888 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
bd88a781
ID
1889 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1890 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1891
5c3b685c
GW
1892 /*
1893 * Write the TX descriptor for the beacon.
1894 */
93331458 1895 rt61pci_write_tx_desc(entry, txdesc);
5c3b685c
GW
1896
1897 /*
1898 * Dump beacon to userspace through debugfs.
1899 */
1900 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1901
bd88a781
ID
1902 /*
1903 * Write entire beacon with descriptor to register.
1904 */
1905 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
85b7a8b3
GW
1906 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1907 entry_priv->desc, TXINFO_SIZE);
1908 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
bd88a781
ID
1909 entry->skb->data, entry->skb->len);
1910
d61cb266
GW
1911 /*
1912 * Enable beaconing again.
1913 *
1914 * For Wi-Fi faily generated beacons between participating
1915 * stations. Set TBTT phase adaptive adjustment step to 8us.
1916 */
1917 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1918
1919 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1920 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1921 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1922 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1923
bd88a781
ID
1924 /*
1925 * Clean up beacon skb.
1926 */
1927 dev_kfree_skb_any(entry->skb);
1928 entry->skb = NULL;
1929}
1930
93331458 1931static void rt61pci_kick_tx_queue(struct data_queue *queue)
95ea3627 1932{
93331458 1933 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
95ea3627
ID
1934 u32 reg;
1935
95ea3627 1936 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
93331458
ID
1937 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue->qid == QID_AC_BE));
1938 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue->qid == QID_AC_BK));
1939 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue->qid == QID_AC_VI));
1940 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue->qid == QID_AC_VO));
95ea3627
ID
1941 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1942}
1943
93331458 1944static void rt61pci_kill_tx_queue(struct data_queue *queue)
a2c9b652 1945{
93331458 1946 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
a2c9b652
ID
1947 u32 reg;
1948
93331458 1949 if (queue->qid == QID_BEACON) {
a2c9b652
ID
1950 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1951 return;
1952 }
1953
1954 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
93331458
ID
1955 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (queue->qid == QID_AC_BE));
1956 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (queue->qid == QID_AC_BK));
1957 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (queue->qid == QID_AC_VI));
1958 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (queue->qid == QID_AC_VO));
a2c9b652
ID
1959 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1960}
1961
95ea3627
ID
1962/*
1963 * RX control handlers
1964 */
1965static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1966{
ba2ab471 1967 u8 offset = rt2x00dev->lna_gain;
95ea3627
ID
1968 u8 lna;
1969
1970 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1971 switch (lna) {
1972 case 3:
ba2ab471 1973 offset += 90;
95ea3627
ID
1974 break;
1975 case 2:
ba2ab471 1976 offset += 74;
95ea3627
ID
1977 break;
1978 case 1:
ba2ab471 1979 offset += 64;
95ea3627
ID
1980 break;
1981 default:
1982 return 0;
1983 }
1984
e5ef5bad 1985 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
95ea3627
ID
1986 if (lna == 3 || lna == 2)
1987 offset += 10;
95ea3627
ID
1988 }
1989
1990 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1991}
1992
181d6902 1993static void rt61pci_fill_rxdone(struct queue_entry *entry,
55887511 1994 struct rxdone_entry_desc *rxdesc)
95ea3627 1995{
61e754f4 1996 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
b8be63ff 1997 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
95ea3627
ID
1998 u32 word0;
1999 u32 word1;
2000
b8be63ff
ID
2001 rt2x00_desc_read(entry_priv->desc, 0, &word0);
2002 rt2x00_desc_read(entry_priv->desc, 1, &word1);
95ea3627 2003
4150c572 2004 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
181d6902 2005 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
95ea3627 2006
78b8f3b0
GW
2007 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2008 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
61e754f4
ID
2009
2010 if (rxdesc->cipher != CIPHER_NONE) {
1ce9cdac
ID
2011 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2012 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
74415edb
ID
2013 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2014
61e754f4 2015 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
74415edb 2016 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
61e754f4
ID
2017
2018 /*
2019 * Hardware has stripped IV/EIV data from 802.11 frame during
b34e620f 2020 * decryption. It has provided the data separately but rt2x00lib
61e754f4
ID
2021 * should decide if it should be reinserted.
2022 */
2023 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2024
2025 /*
2026 * FIXME: Legacy driver indicates that the frame does
2027 * contain the Michael Mic. Unfortunately, in rt2x00
2028 * the MIC seems to be missing completely...
2029 */
2030 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2031
2032 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2033 rxdesc->flags |= RX_FLAG_DECRYPTED;
2034 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2035 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2036 }
2037
95ea3627
ID
2038 /*
2039 * Obtain the status about this packet.
89993890
ID
2040 * When frame was received with an OFDM bitrate,
2041 * the signal is the PLCP value. If it was received with
2042 * a CCK bitrate the signal is the rate in 100kbit/s.
95ea3627 2043 */
181d6902 2044 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
61e754f4 2045 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
181d6902 2046 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
19d30e02 2047
19d30e02
ID
2048 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2049 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
6c6aa3c0
ID
2050 else
2051 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
19d30e02
ID
2052 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2053 rxdesc->dev_flags |= RXDONE_MY_BSS;
95ea3627
ID
2054}
2055
2056/*
2057 * Interrupt functions.
2058 */
2059static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2060{
181d6902
ID
2061 struct data_queue *queue;
2062 struct queue_entry *entry;
2063 struct queue_entry *entry_done;
b8be63ff 2064 struct queue_entry_priv_pci *entry_priv;
181d6902 2065 struct txdone_entry_desc txdesc;
95ea3627
ID
2066 u32 word;
2067 u32 reg;
95ea3627
ID
2068 int type;
2069 int index;
e6474c3c 2070 int i;
95ea3627
ID
2071
2072 /*
e6474c3c
ID
2073 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2074 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2075 * flag is not set anymore.
2076 *
2077 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2078 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2079 * tx ring size for now.
95ea3627 2080 */
efd2f271 2081 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
95ea3627
ID
2082 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2083 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2084 break;
2085
95ea3627
ID
2086 /*
2087 * Skip this entry when it contains an invalid
181d6902 2088 * queue identication number.
95ea3627
ID
2089 */
2090 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
181d6902
ID
2091 queue = rt2x00queue_get_queue(rt2x00dev, type);
2092 if (unlikely(!queue))
95ea3627
ID
2093 continue;
2094
2095 /*
2096 * Skip this entry when it contains an invalid
2097 * index number.
2098 */
2099 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
181d6902 2100 if (unlikely(index >= queue->limit))
95ea3627
ID
2101 continue;
2102
181d6902 2103 entry = &queue->entries[index];
b8be63ff
ID
2104 entry_priv = entry->priv_data;
2105 rt2x00_desc_read(entry_priv->desc, 0, &word);
95ea3627
ID
2106
2107 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2108 !rt2x00_get_field32(word, TXD_W0_VALID))
2109 return;
2110
181d6902 2111 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b 2112 while (entry != entry_done) {
181d6902
ID
2113 /* Catch up.
2114 * Just report any entries we missed as failed.
2115 */
62bc060b 2116 WARNING(rt2x00dev,
181d6902
ID
2117 "TX status report missed for entry %d\n",
2118 entry_done->entry_idx);
2119
65b7fc97 2120 rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
181d6902 2121 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
62bc060b
MN
2122 }
2123
95ea3627
ID
2124 /*
2125 * Obtain the status about this packet.
2126 */
fb55f4d1
ID
2127 txdesc.flags = 0;
2128 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2129 case 0: /* Success, maybe with retry */
2130 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2131 break;
2132 case 6: /* Failure, excessive retries */
2133 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2134 /* Don't break, this is a failed frame! */
2135 default: /* Failure */
2136 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2137 }
181d6902 2138 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
95ea3627 2139
e1b4d7b7
ID
2140 /*
2141 * the frame was retried at least once
2142 * -> hw used fallback rates
2143 */
2144 if (txdesc.retry)
2145 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2146
e513a0b6 2147 rt2x00lib_txdone(entry, &txdesc);
95ea3627
ID
2148 }
2149}
2150
9e189446
GW
2151static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2152{
2153 struct ieee80211_conf conf = { .flags = 0 };
2154 struct rt2x00lib_conf libconf = { .conf = &conf };
2155
2156 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2157}
2158
78e256c9 2159static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
95ea3627
ID
2160{
2161 struct rt2x00_dev *rt2x00dev = dev_instance;
78e256c9
HS
2162 u32 reg = rt2x00dev->irqvalue[0];
2163 u32 reg_mcu = rt2x00dev->irqvalue[1];
95ea3627
ID
2164
2165 /*
2166 * Handle interrupts, walk through all bits
2167 * and run the tasks, the bits are checked in order of
2168 * priority.
2169 */
2170
2171 /*
2172 * 1 - Rx ring done interrupt.
2173 */
2174 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2175 rt2x00pci_rxdone(rt2x00dev);
2176
2177 /*
2178 * 2 - Tx ring done interrupt.
2179 */
2180 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2181 rt61pci_txdone(rt2x00dev);
2182
2183 /*
2184 * 3 - Handle MCU command done.
2185 */
2186 if (reg_mcu)
2187 rt2x00pci_register_write(rt2x00dev,
2188 M2H_CMD_DONE_CSR, 0xffffffff);
2189
9e189446
GW
2190 /*
2191 * 4 - MCU Autowakeup interrupt.
2192 */
2193 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2194 rt61pci_wakeup(rt2x00dev);
2195
fa43750f
HS
2196 /*
2197 * 5 - Beacon done interrupt.
2198 */
2199 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2200 rt2x00lib_beacondone(rt2x00dev);
2201
78e256c9
HS
2202 /* Enable interrupts again. */
2203 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2204 STATE_RADIO_IRQ_ON_ISR);
95ea3627
ID
2205 return IRQ_HANDLED;
2206}
2207
78e256c9
HS
2208
2209static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2210{
2211 struct rt2x00_dev *rt2x00dev = dev_instance;
2212 u32 reg_mcu;
2213 u32 reg;
2214
2215 /*
2216 * Get the interrupt sources & saved to local variable.
2217 * Write register value back to clear pending interrupts.
2218 */
2219 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2220 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2221
2222 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2223 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2224
2225 if (!reg && !reg_mcu)
2226 return IRQ_NONE;
2227
2228 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2229 return IRQ_HANDLED;
2230
2231 /* Store irqvalues for use in the interrupt thread. */
2232 rt2x00dev->irqvalue[0] = reg;
2233 rt2x00dev->irqvalue[1] = reg_mcu;
2234
2235 /* Disable interrupts, will be enabled again in the interrupt thread. */
2236 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2237 STATE_RADIO_IRQ_OFF_ISR);
2238 return IRQ_WAKE_THREAD;
2239}
2240
95ea3627
ID
2241/*
2242 * Device probe functions.
2243 */
2244static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2245{
2246 struct eeprom_93cx6 eeprom;
2247 u32 reg;
2248 u16 word;
2249 u8 *mac;
2250 s8 value;
2251
2252 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2253
2254 eeprom.data = rt2x00dev;
2255 eeprom.register_read = rt61pci_eepromregister_read;
2256 eeprom.register_write = rt61pci_eepromregister_write;
2257 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2258 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2259 eeprom.reg_data_in = 0;
2260 eeprom.reg_data_out = 0;
2261 eeprom.reg_data_clock = 0;
2262 eeprom.reg_chip_select = 0;
2263
2264 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2265 EEPROM_SIZE / sizeof(u16));
2266
2267 /*
2268 * Start validation of the data that has been read.
2269 */
2270 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2271 if (!is_valid_ether_addr(mac)) {
2272 random_ether_addr(mac);
e174961c 2273 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
95ea3627
ID
2274 }
2275
2276 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2277 if (word == 0xffff) {
2278 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
362f3b6b
ID
2279 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2280 ANTENNA_B);
2281 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2282 ANTENNA_B);
95ea3627
ID
2283 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2284 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2285 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2286 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2287 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2288 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2289 }
2290
2291 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2292 if (word == 0xffff) {
2293 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2294 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
91581b62
ID
2295 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2296 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
95ea3627
ID
2297 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2298 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2299 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2300 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2301 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2302 }
2303
2304 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2305 if (word == 0xffff) {
2306 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2307 LED_MODE_DEFAULT);
2308 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2309 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2310 }
2311
2312 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2313 if (word == 0xffff) {
2314 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2315 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2316 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2317 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2318 }
2319
2320 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2321 if (word == 0xffff) {
2322 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2323 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2324 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2325 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2326 } else {
2327 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2328 if (value < -10 || value > 10)
2329 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2330 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2331 if (value < -10 || value > 10)
2332 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2333 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2334 }
2335
2336 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2337 if (word == 0xffff) {
2338 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2339 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2340 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
417f412f 2341 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
95ea3627
ID
2342 } else {
2343 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2344 if (value < -10 || value > 10)
2345 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2346 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2347 if (value < -10 || value > 10)
2348 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2349 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2350 }
2351
2352 return 0;
2353}
2354
2355static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2356{
2357 u32 reg;
2358 u16 value;
2359 u16 eeprom;
95ea3627
ID
2360
2361 /*
2362 * Read EEPROM word for configuration.
2363 */
2364 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2365
2366 /*
2367 * Identify RF chipset.
95ea3627 2368 */
95ea3627
ID
2369 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2370 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
49e721ec
GW
2371 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2372 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
95ea3627 2373
5122d898
GW
2374 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2375 !rt2x00_rf(rt2x00dev, RF5325) &&
2376 !rt2x00_rf(rt2x00dev, RF2527) &&
2377 !rt2x00_rf(rt2x00dev, RF2529)) {
95ea3627
ID
2378 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2379 return -ENODEV;
2380 }
2381
e4cd2ff8 2382 /*
49513481 2383 * Determine number of antennas.
e4cd2ff8
ID
2384 */
2385 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2386 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2387
95ea3627
ID
2388 /*
2389 * Identify default antenna configuration.
2390 */
addc81bd 2391 rt2x00dev->default_ant.tx =
95ea3627 2392 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
addc81bd 2393 rt2x00dev->default_ant.rx =
95ea3627
ID
2394 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2395
2396 /*
2397 * Read the Frame type.
2398 */
2399 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2400 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2401
95ea3627 2402 /*
b34e620f 2403 * Detect if this device has a hardware controlled radio.
95ea3627
ID
2404 */
2405 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
066cb637 2406 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
95ea3627
ID
2407
2408 /*
2409 * Read frequency offset and RF programming sequence.
2410 */
2411 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2412 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2413 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2414
2415 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2416
2417 /*
2418 * Read external LNA informations.
2419 */
2420 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2421
2422 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2423 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2424 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2425 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2426
e4cd2ff8 2427 /*
b34e620f 2428 * When working with a RF2529 chip without double antenna,
e4cd2ff8
ID
2429 * the antenna settings should be gathered from the NIC
2430 * eeprom word.
2431 */
5122d898 2432 if (rt2x00_rf(rt2x00dev, RF2529) &&
e4cd2ff8 2433 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
91581b62
ID
2434 rt2x00dev->default_ant.rx =
2435 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2436 rt2x00dev->default_ant.tx =
2437 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
e4cd2ff8
ID
2438
2439 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2440 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2441 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2442 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2443 }
2444
95ea3627
ID
2445 /*
2446 * Store led settings, for correct led behaviour.
2447 * If the eeprom value is invalid,
2448 * switch to default led mode.
2449 */
771fd565 2450#ifdef CONFIG_RT2X00_LIB_LEDS
95ea3627 2451 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
a9450b70
ID
2452 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2453
475433be
ID
2454 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2455 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2456 if (value == LED_MODE_SIGNAL_STRENGTH)
2457 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2458 LED_TYPE_QUALITY);
95ea3627 2459
a9450b70
ID
2460 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2461 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
95ea3627
ID
2462 rt2x00_get_field16(eeprom,
2463 EEPROM_LED_POLARITY_GPIO_0));
a9450b70 2464 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
95ea3627
ID
2465 rt2x00_get_field16(eeprom,
2466 EEPROM_LED_POLARITY_GPIO_1));
a9450b70 2467 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
95ea3627
ID
2468 rt2x00_get_field16(eeprom,
2469 EEPROM_LED_POLARITY_GPIO_2));
a9450b70 2470 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
95ea3627
ID
2471 rt2x00_get_field16(eeprom,
2472 EEPROM_LED_POLARITY_GPIO_3));
a9450b70 2473 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
95ea3627
ID
2474 rt2x00_get_field16(eeprom,
2475 EEPROM_LED_POLARITY_GPIO_4));
a9450b70 2476 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
95ea3627 2477 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
a9450b70 2478 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
95ea3627
ID
2479 rt2x00_get_field16(eeprom,
2480 EEPROM_LED_POLARITY_RDY_G));
a9450b70 2481 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
95ea3627
ID
2482 rt2x00_get_field16(eeprom,
2483 EEPROM_LED_POLARITY_RDY_A));
771fd565 2484#endif /* CONFIG_RT2X00_LIB_LEDS */
95ea3627
ID
2485
2486 return 0;
2487}
2488
2489/*
2490 * RF value list for RF5225 & RF5325
2491 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2492 */
2493static const struct rf_channel rf_vals_noseq[] = {
2494 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2495 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2496 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2497 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2498 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2499 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2500 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2501 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2502 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2503 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2504 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2505 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2506 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2507 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2508
2509 /* 802.11 UNI / HyperLan 2 */
2510 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2511 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2512 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2513 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2514 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2515 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2516 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2517 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2518
2519 /* 802.11 HyperLan 2 */
2520 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2521 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2522 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2523 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2524 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2525 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2526 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2527 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2528 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2529 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2530
2531 /* 802.11 UNII */
2532 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2533 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2534 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2535 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2536 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2537 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2538
2539 /* MMAC(Japan)J52 ch 34,38,42,46 */
2540 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2541 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2542 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2543 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2544};
2545
2546/*
2547 * RF value list for RF5225 & RF5325
2548 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2549 */
2550static const struct rf_channel rf_vals_seq[] = {
2551 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2552 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2553 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2554 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2555 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2556 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2557 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2558 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2559 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2560 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2561 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2562 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2563 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2564 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2565
2566 /* 802.11 UNI / HyperLan 2 */
2567 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2568 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2569 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2570 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2571 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2572 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2573 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2574 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2575
2576 /* 802.11 HyperLan 2 */
2577 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2578 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2579 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2580 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2581 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2582 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2583 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2584 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2585 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2586 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2587
2588 /* 802.11 UNII */
2589 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2590 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2591 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2592 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2593 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2594 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2595
2596 /* MMAC(Japan)J52 ch 34,38,42,46 */
2597 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2598 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2599 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2600 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2601};
2602
8c5e7a5f 2603static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
95ea3627
ID
2604{
2605 struct hw_mode_spec *spec = &rt2x00dev->spec;
8c5e7a5f
ID
2606 struct channel_info *info;
2607 char *tx_power;
95ea3627
ID
2608 unsigned int i;
2609
93b6bd26
GW
2610 /*
2611 * Disable powersaving as default.
2612 */
2613 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2614
95ea3627
ID
2615 /*
2616 * Initialize all hw fields.
2617 */
2618 rt2x00dev->hw->flags =
566bfe5a 2619 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
4be8c387
JB
2620 IEEE80211_HW_SIGNAL_DBM |
2621 IEEE80211_HW_SUPPORTS_PS |
2622 IEEE80211_HW_PS_NULLFUNC_STACK;
95ea3627 2623
14a3bf89 2624 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
95ea3627
ID
2625 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2626 rt2x00_eeprom_addr(rt2x00dev,
2627 EEPROM_MAC_ADDR_0));
2628
95ea3627 2629 /*
e1b4d7b7
ID
2630 * As rt61 has a global fallback table we cannot specify
2631 * more then one tx rate per frame but since the hw will
2632 * try several rates (based on the fallback table) we should
ba3b9e5e 2633 * initialize max_report_rates to the maximum number of rates
e1b4d7b7
ID
2634 * we are going to try. Otherwise mac80211 will truncate our
2635 * reported tx rates and the rc algortihm will end up with
2636 * incorrect data.
2637 */
ba3b9e5e
HS
2638 rt2x00dev->hw->max_rates = 1;
2639 rt2x00dev->hw->max_report_rates = 7;
e1b4d7b7
ID
2640 rt2x00dev->hw->max_rate_tries = 1;
2641
2642 /*
95ea3627
ID
2643 * Initialize hw_mode information.
2644 */
31562e80
ID
2645 spec->supported_bands = SUPPORT_BAND_2GHZ;
2646 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
95ea3627
ID
2647
2648 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2649 spec->num_channels = 14;
2650 spec->channels = rf_vals_noseq;
2651 } else {
2652 spec->num_channels = 14;
2653 spec->channels = rf_vals_seq;
2654 }
2655
5122d898 2656 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
31562e80 2657 spec->supported_bands |= SUPPORT_BAND_5GHZ;
95ea3627 2658 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
8c5e7a5f
ID
2659 }
2660
2661 /*
2662 * Create channel information array
2663 */
baeb2ffa 2664 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
8c5e7a5f
ID
2665 if (!info)
2666 return -ENOMEM;
2667
2668 spec->channels_info = info;
95ea3627 2669
8c5e7a5f 2670 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
8d1331b3
ID
2671 for (i = 0; i < 14; i++) {
2672 info[i].max_power = MAX_TXPOWER;
2673 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2674 }
95ea3627 2675
8c5e7a5f
ID
2676 if (spec->num_channels > 14) {
2677 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
8d1331b3
ID
2678 for (i = 14; i < spec->num_channels; i++) {
2679 info[i].max_power = MAX_TXPOWER;
2680 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2681 }
95ea3627 2682 }
8c5e7a5f
ID
2683
2684 return 0;
95ea3627
ID
2685}
2686
2687static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2688{
2689 int retval;
2690
117839bd
PR
2691 /*
2692 * Disable power saving.
2693 */
2694 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2695
95ea3627
ID
2696 /*
2697 * Allocate eeprom data.
2698 */
2699 retval = rt61pci_validate_eeprom(rt2x00dev);
2700 if (retval)
2701 return retval;
2702
2703 retval = rt61pci_init_eeprom(rt2x00dev);
2704 if (retval)
2705 return retval;
2706
2707 /*
2708 * Initialize hw specifications.
2709 */
8c5e7a5f
ID
2710 retval = rt61pci_probe_hw_mode(rt2x00dev);
2711 if (retval)
2712 return retval;
95ea3627 2713
1afcfd54
IP
2714 /*
2715 * This device has multiple filters for control frames,
2716 * but has no a separate filter for PS Poll frames.
2717 */
2718 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2719
95ea3627 2720 /*
c4da0048 2721 * This device requires firmware and DMA mapped skbs.
95ea3627 2722 */
066cb637 2723 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
c4da0048 2724 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
008c4482
ID
2725 if (!modparam_nohwcrypt)
2726 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
27df2a9c 2727 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
95ea3627
ID
2728
2729 /*
2730 * Set the rssi offset.
2731 */
2732 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2733
2734 return 0;
2735}
2736
2737/*
2738 * IEEE80211 stack callback functions.
2739 */
2af0a570
ID
2740static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2741 const struct ieee80211_tx_queue_params *params)
2742{
2743 struct rt2x00_dev *rt2x00dev = hw->priv;
2744 struct data_queue *queue;
2745 struct rt2x00_field32 field;
2746 int retval;
2747 u32 reg;
5e790023 2748 u32 offset;
2af0a570
ID
2749
2750 /*
2751 * First pass the configuration through rt2x00lib, that will
2752 * update the queue settings and validate the input. After that
2753 * we are free to update the registers based on the value
2754 * in the queue parameter.
2755 */
2756 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2757 if (retval)
2758 return retval;
2759
5e790023
ID
2760 /*
2761 * We only need to perform additional register initialization
b34e620f 2762 * for WMM queues.
5e790023
ID
2763 */
2764 if (queue_idx >= 4)
2765 return 0;
2766
2af0a570
ID
2767 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2768
2769 /* Update WMM TXOP register */
5e790023
ID
2770 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2771 field.bit_offset = (queue_idx & 1) * 16;
2772 field.bit_mask = 0xffff << field.bit_offset;
2773
2774 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2775 rt2x00_set_field32(&reg, field, queue->txop);
2776 rt2x00pci_register_write(rt2x00dev, offset, reg);
2af0a570
ID
2777
2778 /* Update WMM registers */
2779 field.bit_offset = queue_idx * 4;
2780 field.bit_mask = 0xf << field.bit_offset;
2781
2782 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2783 rt2x00_set_field32(&reg, field, queue->aifs);
2784 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2785
2786 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2787 rt2x00_set_field32(&reg, field, queue->cw_min);
2788 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2789
2790 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2791 rt2x00_set_field32(&reg, field, queue->cw_max);
2792 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2793
2794 return 0;
2795}
2796
95ea3627
ID
2797static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2798{
2799 struct rt2x00_dev *rt2x00dev = hw->priv;
2800 u64 tsf;
2801 u32 reg;
2802
2803 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2804 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2805 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2806 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2807
2808 return tsf;
2809}
2810
95ea3627
ID
2811static const struct ieee80211_ops rt61pci_mac80211_ops = {
2812 .tx = rt2x00mac_tx,
4150c572
JB
2813 .start = rt2x00mac_start,
2814 .stop = rt2x00mac_stop,
95ea3627
ID
2815 .add_interface = rt2x00mac_add_interface,
2816 .remove_interface = rt2x00mac_remove_interface,
2817 .config = rt2x00mac_config,
3a643d24 2818 .configure_filter = rt2x00mac_configure_filter,
61e754f4 2819 .set_key = rt2x00mac_set_key,
d8147f9d
ID
2820 .sw_scan_start = rt2x00mac_sw_scan_start,
2821 .sw_scan_complete = rt2x00mac_sw_scan_complete,
95ea3627 2822 .get_stats = rt2x00mac_get_stats,
471b3efd 2823 .bss_info_changed = rt2x00mac_bss_info_changed,
2af0a570 2824 .conf_tx = rt61pci_conf_tx,
95ea3627 2825 .get_tsf = rt61pci_get_tsf,
e47a5cdd 2826 .rfkill_poll = rt2x00mac_rfkill_poll,
f44df18c 2827 .flush = rt2x00mac_flush,
95ea3627
ID
2828};
2829
2830static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2831 .irq_handler = rt61pci_interrupt,
78e256c9 2832 .irq_handler_thread = rt61pci_interrupt_thread,
95ea3627
ID
2833 .probe_hw = rt61pci_probe_hw,
2834 .get_firmware_name = rt61pci_get_firmware_name,
0cbe0064 2835 .check_firmware = rt61pci_check_firmware,
95ea3627
ID
2836 .load_firmware = rt61pci_load_firmware,
2837 .initialize = rt2x00pci_initialize,
2838 .uninitialize = rt2x00pci_uninitialize,
798b7adb
ID
2839 .get_entry_state = rt61pci_get_entry_state,
2840 .clear_entry = rt61pci_clear_entry,
95ea3627 2841 .set_device_state = rt61pci_set_device_state,
95ea3627 2842 .rfkill_poll = rt61pci_rfkill_poll,
95ea3627
ID
2843 .link_stats = rt61pci_link_stats,
2844 .reset_tuner = rt61pci_reset_tuner,
2845 .link_tuner = rt61pci_link_tuner,
2846 .write_tx_desc = rt61pci_write_tx_desc,
bd88a781 2847 .write_beacon = rt61pci_write_beacon,
95ea3627 2848 .kick_tx_queue = rt61pci_kick_tx_queue,
a2c9b652 2849 .kill_tx_queue = rt61pci_kill_tx_queue,
95ea3627 2850 .fill_rxdone = rt61pci_fill_rxdone,
61e754f4
ID
2851 .config_shared_key = rt61pci_config_shared_key,
2852 .config_pairwise_key = rt61pci_config_pairwise_key,
3a643d24 2853 .config_filter = rt61pci_config_filter,
6bb40dd1 2854 .config_intf = rt61pci_config_intf,
72810379 2855 .config_erp = rt61pci_config_erp,
e4ea1c40 2856 .config_ant = rt61pci_config_ant,
95ea3627
ID
2857 .config = rt61pci_config,
2858};
2859
181d6902 2860static const struct data_queue_desc rt61pci_queue_rx = {
efd2f271 2861 .entry_num = 32,
181d6902
ID
2862 .data_size = DATA_FRAME_SIZE,
2863 .desc_size = RXD_DESC_SIZE,
b8be63ff 2864 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2865};
2866
2867static const struct data_queue_desc rt61pci_queue_tx = {
efd2f271 2868 .entry_num = 32,
181d6902
ID
2869 .data_size = DATA_FRAME_SIZE,
2870 .desc_size = TXD_DESC_SIZE,
b8be63ff 2871 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2872};
2873
2874static const struct data_queue_desc rt61pci_queue_bcn = {
efd2f271 2875 .entry_num = 4,
78720897 2876 .data_size = 0, /* No DMA required for beacons */
181d6902 2877 .desc_size = TXINFO_SIZE,
b8be63ff 2878 .priv_size = sizeof(struct queue_entry_priv_pci),
181d6902
ID
2879};
2880
95ea3627 2881static const struct rt2x00_ops rt61pci_ops = {
04d0362e
GW
2882 .name = KBUILD_MODNAME,
2883 .max_sta_intf = 1,
2884 .max_ap_intf = 4,
2885 .eeprom_size = EEPROM_SIZE,
2886 .rf_size = RF_SIZE,
2887 .tx_queues = NUM_TX_QUEUES,
e6218cc4 2888 .extra_tx_headroom = 0,
04d0362e
GW
2889 .rx = &rt61pci_queue_rx,
2890 .tx = &rt61pci_queue_tx,
2891 .bcn = &rt61pci_queue_bcn,
2892 .lib = &rt61pci_rt2x00_ops,
2893 .hw = &rt61pci_mac80211_ops,
95ea3627 2894#ifdef CONFIG_RT2X00_LIB_DEBUGFS
04d0362e 2895 .debugfs = &rt61pci_rt2x00debug,
95ea3627
ID
2896#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2897};
2898
2899/*
2900 * RT61pci module information.
2901 */
a3aa1884 2902static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
95ea3627
ID
2903 /* RT2561s */
2904 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2905 /* RT2561 v2 */
2906 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2907 /* RT2661 */
2908 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2909 { 0, }
2910};
2911
2912MODULE_AUTHOR(DRV_PROJECT);
2913MODULE_VERSION(DRV_VERSION);
2914MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2915MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2916 "PCI & PCMCIA chipset based cards");
2917MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2918MODULE_FIRMWARE(FIRMWARE_RT2561);
2919MODULE_FIRMWARE(FIRMWARE_RT2561s);
2920MODULE_FIRMWARE(FIRMWARE_RT2661);
2921MODULE_LICENSE("GPL");
2922
2923static struct pci_driver rt61pci_driver = {
2360157c 2924 .name = KBUILD_MODNAME,
95ea3627
ID
2925 .id_table = rt61pci_device_table,
2926 .probe = rt2x00pci_probe,
2927 .remove = __devexit_p(rt2x00pci_remove),
2928 .suspend = rt2x00pci_suspend,
2929 .resume = rt2x00pci_resume,
2930};
2931
2932static int __init rt61pci_init(void)
2933{
2934 return pci_register_driver(&rt61pci_driver);
2935}
2936
2937static void __exit rt61pci_exit(void)
2938{
2939 pci_unregister_driver(&rt61pci_driver);
2940}
2941
2942module_init(rt61pci_init);
2943module_exit(rt61pci_exit);
This page took 0.790163 seconds and 5 git commands to generate.