wl1271: Update TX path block calucation algo
[deliverable/linux.git] / drivers / net / wireless / wl12xx / wl1271_spi.c
CommitLineData
f5fc0f86
LC
1/*
2 * This file is part of wl1271
3 *
4 * Copyright (C) 2008-2009 Nokia Corporation
5 *
6 * Contact: Luciano Coelho <luciano.coelho@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/crc7.h>
27#include <linux/spi/spi.h>
28
29#include "wl1271.h"
30#include "wl12xx_80211.h"
31#include "wl1271_spi.h"
32
451de97a 33static int wl1271_translate_addr(struct wl1271 *wl, int addr)
f5fc0f86 34{
451de97a
JO
35 /*
36 * To translate, first check to which window of addresses the
37 * particular address belongs. Then subtract the starting address
38 * of that window from the address. Then, add offset of the
39 * translated region.
40 *
41 * The translated regions occur next to each other in physical device
42 * memory, so just add the sizes of the preceeding address regions to
43 * get the offset to the new region.
44 *
45 * Currently, only the two first regions are addressed, and the
46 * assumption is that all addresses will fall into either of those
47 * two.
48 */
49 if ((addr >= wl->part.reg.start) &&
50 (addr < wl->part.reg.start + wl->part.reg.size))
51 return addr - wl->part.reg.start + wl->part.mem.size;
52 else
53 return addr - wl->part.mem.start;
f5fc0f86
LC
54}
55
f5fc0f86
LC
56void wl1271_spi_reset(struct wl1271 *wl)
57{
58 u8 *cmd;
59 struct spi_transfer t;
60 struct spi_message m;
61
62 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
63 if (!cmd) {
64 wl1271_error("could not allocate cmd for spi reset");
65 return;
66 }
67
68 memset(&t, 0, sizeof(t));
69 spi_message_init(&m);
70
71 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
72
73 t.tx_buf = cmd;
74 t.len = WSPI_INIT_CMD_LEN;
75 spi_message_add_tail(&t, &m);
76
77 spi_sync(wl->spi, &m);
78
79 wl1271_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
80}
81
82void wl1271_spi_init(struct wl1271 *wl)
83{
84 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
85 struct spi_transfer t;
86 struct spi_message m;
87
88 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
89 if (!cmd) {
90 wl1271_error("could not allocate cmd for spi init");
91 return;
92 }
93
94 memset(crc, 0, sizeof(crc));
95 memset(&t, 0, sizeof(t));
96 spi_message_init(&m);
97
98 /*
99 * Set WSPI_INIT_COMMAND
100 * the data is being send from the MSB to LSB
101 */
102 cmd[2] = 0xff;
103 cmd[3] = 0xff;
104 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
105 cmd[0] = 0;
106 cmd[7] = 0;
107 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
108 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
109
110 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
111 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
112 else
113 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
114
115 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
116 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
117
118 crc[0] = cmd[1];
119 crc[1] = cmd[0];
120 crc[2] = cmd[7];
121 crc[3] = cmd[6];
122 crc[4] = cmd[5];
123
124 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
125 cmd[4] |= WSPI_INIT_CMD_END;
126
127 t.tx_buf = cmd;
128 t.len = WSPI_INIT_CMD_LEN;
129 spi_message_add_tail(&t, &m);
130
131 spi_sync(wl->spi, &m);
132
133 wl1271_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
134}
135
136/* Set the SPI partitions to access the chip addresses
137 *
451de97a
JO
138 * To simplify driver code, a fixed (virtual) memory map is defined for
139 * register and memory addresses. Because in the chipset, in different stages
140 * of operation, those addresses will move around, an address translation
141 * mechanism is required.
f5fc0f86 142 *
451de97a
JO
143 * There are four partitions (three memory and one register partition),
144 * which are mapped to two different areas of the hardware memory.
145 *
146 * Virtual address
f5fc0f86
LC
147 * space
148 *
149 * | |
451de97a
JO
150 * ...+----+--> mem.start
151 * Physical address ... | |
f5fc0f86
LC
152 * space ... | | [PART_0]
153 * ... | |
451de97a 154 * 00000000 <--+----+... ...+----+--> mem.start + mem.size
f5fc0f86
LC
155 * | | ... | |
156 * |MEM | ... | |
157 * | | ... | |
451de97a 158 * mem.size <--+----+... | | {unused area)
f5fc0f86
LC
159 * | | ... | |
160 * |REG | ... | |
451de97a
JO
161 * mem.size | | ... | |
162 * + <--+----+... ...+----+--> reg.start
163 * reg.size | | ... | |
164 * |MEM2| ... | | [PART_1]
165 * | | ... | |
166 * ...+----+--> reg.start + reg.size
f5fc0f86
LC
167 * | |
168 *
169 */
170int wl1271_set_partition(struct wl1271 *wl,
451de97a 171 struct wl1271_partition_set *p)
f5fc0f86 172{
451de97a
JO
173 /* copy partition info */
174 memcpy(&wl->part, p, sizeof(*p));
f5fc0f86
LC
175
176 wl1271_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
451de97a 177 p->mem.start, p->mem.size);
f5fc0f86 178 wl1271_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
451de97a
JO
179 p->reg.start, p->reg.size);
180 wl1271_debug(DEBUG_SPI, "mem2_start %08X mem2_size %08X",
181 p->mem2.start, p->mem2.size);
182 wl1271_debug(DEBUG_SPI, "mem3_start %08X mem3_size %08X",
183 p->mem3.start, p->mem3.size);
184
185 /* write partition info to the chipset */
186 wl1271_write32(wl, HW_PART0_START_ADDR, p->mem.start);
187 wl1271_write32(wl, HW_PART0_SIZE_ADDR, p->mem.size);
188 wl1271_write32(wl, HW_PART1_START_ADDR, p->reg.start);
189 wl1271_write32(wl, HW_PART1_SIZE_ADDR, p->reg.size);
190 wl1271_write32(wl, HW_PART2_START_ADDR, p->mem2.start);
191 wl1271_write32(wl, HW_PART2_SIZE_ADDR, p->mem2.size);
192 wl1271_write32(wl, HW_PART3_START_ADDR, p->mem3.start);
f5fc0f86
LC
193
194 return 0;
195}
196
545f1da8
JO
197#define WL1271_BUSY_WORD_TIMEOUT 1000
198
199void wl1271_spi_read_busy(struct wl1271 *wl, void *buf, size_t len)
200{
201 struct spi_transfer t[1];
202 struct spi_message m;
203 u32 *busy_buf;
204 int num_busy_bytes = 0;
205
206 wl1271_info("spi read BUSY!");
207
208 /*
209 * Look for the non-busy word in the read buffer, and if found,
210 * read in the remaining data into the buffer.
211 */
212 busy_buf = (u32 *)buf;
213 for (; (u32)busy_buf < (u32)buf + len; busy_buf++) {
214 num_busy_bytes += sizeof(u32);
215 if (*busy_buf & 0x1) {
216 spi_message_init(&m);
217 memset(t, 0, sizeof(t));
218 memmove(buf, busy_buf, len - num_busy_bytes);
219 t[0].rx_buf = buf + (len - num_busy_bytes);
220 t[0].len = num_busy_bytes;
221 spi_message_add_tail(&t[0], &m);
222 spi_sync(wl->spi, &m);
223 return;
224 }
225 }
226
227 /*
228 * Read further busy words from SPI until a non-busy word is
229 * encountered, then read the data itself into the buffer.
230 */
231 wl1271_info("spi read BUSY-polling needed!");
232
233 num_busy_bytes = WL1271_BUSY_WORD_TIMEOUT;
234 busy_buf = wl->buffer_busyword;
235 while (num_busy_bytes) {
236 num_busy_bytes--;
237 spi_message_init(&m);
238 memset(t, 0, sizeof(t));
239 t[0].rx_buf = busy_buf;
240 t[0].len = sizeof(u32);
241 spi_message_add_tail(&t[0], &m);
242 spi_sync(wl->spi, &m);
243
244 if (*busy_buf & 0x1) {
245 spi_message_init(&m);
246 memset(t, 0, sizeof(t));
247 t[0].rx_buf = buf;
248 t[0].len = len;
249 spi_message_add_tail(&t[0], &m);
250 spi_sync(wl->spi, &m);
251 return;
252 }
253 }
254
255 /* The SPI bus is unresponsive, the read failed. */
256 memset(buf, 0, len);
257 wl1271_error("SPI read busy-word timeout!\n");
258}
259
f5fc0f86
LC
260void wl1271_spi_read(struct wl1271 *wl, int addr, void *buf,
261 size_t len, bool fixed)
262{
263 struct spi_transfer t[3];
264 struct spi_message m;
545f1da8 265 u32 *busy_buf;
f5fc0f86
LC
266 u32 *cmd;
267
268 cmd = &wl->buffer_cmd;
269 busy_buf = wl->buffer_busyword;
270
271 *cmd = 0;
272 *cmd |= WSPI_CMD_READ;
273 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
274 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
275
276 if (fixed)
277 *cmd |= WSPI_CMD_FIXED;
278
279 spi_message_init(&m);
280 memset(t, 0, sizeof(t));
281
282 t[0].tx_buf = cmd;
283 t[0].len = 4;
284 spi_message_add_tail(&t[0], &m);
285
286 /* Busy and non busy words read */
287 t[1].rx_buf = busy_buf;
288 t[1].len = WL1271_BUSY_WORD_LEN;
289 spi_message_add_tail(&t[1], &m);
290
291 t[2].rx_buf = buf;
292 t[2].len = len;
293 spi_message_add_tail(&t[2], &m);
294
295 spi_sync(wl->spi, &m);
296
545f1da8
JO
297 /* Check busy words */
298 if (!(busy_buf[WL1271_BUSY_WORD_CNT - 1] & 0x1))
299 wl1271_spi_read_busy(wl, buf, len);
f5fc0f86
LC
300
301 wl1271_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
302 wl1271_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
303}
304
305void wl1271_spi_write(struct wl1271 *wl, int addr, void *buf,
306 size_t len, bool fixed)
307{
308 struct spi_transfer t[2];
309 struct spi_message m;
310 u32 *cmd;
311
312 cmd = &wl->buffer_cmd;
313
314 *cmd = 0;
315 *cmd |= WSPI_CMD_WRITE;
316 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
317 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
318
319 if (fixed)
320 *cmd |= WSPI_CMD_FIXED;
321
322 spi_message_init(&m);
323 memset(t, 0, sizeof(t));
324
325 t[0].tx_buf = cmd;
326 t[0].len = sizeof(*cmd);
327 spi_message_add_tail(&t[0], &m);
328
329 t[1].tx_buf = buf;
330 t[1].len = len;
331 spi_message_add_tail(&t[1], &m);
332
333 spi_sync(wl->spi, &m);
334
335 wl1271_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
336 wl1271_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
337}
338
339void wl1271_spi_mem_read(struct wl1271 *wl, int addr, void *buf,
340 size_t len)
341{
342 int physical;
343
451de97a 344 physical = wl1271_translate_addr(wl, addr);
f5fc0f86
LC
345
346 wl1271_spi_read(wl, physical, buf, len, false);
347}
348
349void wl1271_spi_mem_write(struct wl1271 *wl, int addr, void *buf,
350 size_t len)
351{
352 int physical;
353
451de97a 354 physical = wl1271_translate_addr(wl, addr);
f5fc0f86
LC
355
356 wl1271_spi_write(wl, physical, buf, len, false);
357}
358
359void wl1271_spi_reg_read(struct wl1271 *wl, int addr, void *buf, size_t len,
360 bool fixed)
361{
362 int physical;
363
451de97a 364 physical = wl1271_translate_addr(wl, addr);
f5fc0f86
LC
365
366 wl1271_spi_read(wl, physical, buf, len, fixed);
367}
368
369void wl1271_spi_reg_write(struct wl1271 *wl, int addr, void *buf, size_t len,
370 bool fixed)
371{
372 int physical;
373
451de97a 374 physical = wl1271_translate_addr(wl, addr);
f5fc0f86
LC
375
376 wl1271_spi_write(wl, physical, buf, len, fixed);
377}
378
379u32 wl1271_mem_read32(struct wl1271 *wl, int addr)
380{
451de97a 381 return wl1271_read32(wl, wl1271_translate_addr(wl, addr));
f5fc0f86
LC
382}
383
384void wl1271_mem_write32(struct wl1271 *wl, int addr, u32 val)
385{
451de97a 386 wl1271_write32(wl, wl1271_translate_addr(wl, addr), val);
f5fc0f86
LC
387}
388
389u32 wl1271_reg_read32(struct wl1271 *wl, int addr)
390{
451de97a 391 return wl1271_read32(wl, wl1271_translate_addr(wl, addr));
f5fc0f86
LC
392}
393
394void wl1271_reg_write32(struct wl1271 *wl, int addr, u32 val)
395{
451de97a 396 wl1271_write32(wl, wl1271_translate_addr(wl, addr), val);
f5fc0f86 397}
e8768eeb
JO
398
399void wl1271_top_reg_write(struct wl1271 *wl, int addr, u16 val)
400{
401 /* write address >> 1 + 0x30000 to OCP_POR_CTR */
402 addr = (addr >> 1) + 0x30000;
403 wl1271_reg_write32(wl, OCP_POR_CTR, addr);
404
405 /* write value to OCP_POR_WDATA */
406 wl1271_reg_write32(wl, OCP_DATA_WRITE, val);
407
408 /* write 1 to OCP_CMD */
409 wl1271_reg_write32(wl, OCP_CMD, OCP_CMD_WRITE);
410}
411
412u16 wl1271_top_reg_read(struct wl1271 *wl, int addr)
413{
414 u32 val;
415 int timeout = OCP_CMD_LOOP;
416
417 /* write address >> 1 + 0x30000 to OCP_POR_CTR */
418 addr = (addr >> 1) + 0x30000;
419 wl1271_reg_write32(wl, OCP_POR_CTR, addr);
420
421 /* write 2 to OCP_CMD */
422 wl1271_reg_write32(wl, OCP_CMD, OCP_CMD_READ);
423
424 /* poll for data ready */
425 do {
426 val = wl1271_reg_read32(wl, OCP_DATA_READ);
427 timeout--;
428 } while (!(val & OCP_READY_MASK) && timeout);
429
430 if (!timeout) {
431 wl1271_warning("Top register access timed out.");
432 return 0xffff;
433 }
434
435 /* check data status and return if OK */
436 if ((val & OCP_STATUS_MASK) == OCP_STATUS_OK)
437 return val & 0xffff;
438 else {
439 wl1271_warning("Top register access returned error.");
440 return 0xffff;
441 }
442}
443
This page took 0.141226 seconds and 5 git commands to generate.