mac80211: convert to %pM away from print_mac
[deliverable/linux.git] / drivers / net / wireless / zd1211rw / zd_chip.c
CommitLineData
66bb42fd
DD
1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
e85d0918
DD
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/* This file implements all the hardware specific functions for the ZD1211
22 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
23 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
24 */
25
26#include <linux/kernel.h>
27#include <linux/errno.h>
28
29#include "zd_def.h"
30#include "zd_chip.h"
e85d0918
DD
31#include "zd_mac.h"
32#include "zd_rf.h"
e85d0918
DD
33
34void zd_chip_init(struct zd_chip *chip,
459c51ad 35 struct ieee80211_hw *hw,
e85d0918
DD
36 struct usb_interface *intf)
37{
38 memset(chip, 0, sizeof(*chip));
39 mutex_init(&chip->mutex);
459c51ad 40 zd_usb_init(&chip->usb, hw, intf);
e85d0918
DD
41 zd_rf_init(&chip->rf);
42}
43
44void zd_chip_clear(struct zd_chip *chip)
45{
c48cf125 46 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
e85d0918
DD
47 zd_usb_clear(&chip->usb);
48 zd_rf_clear(&chip->rf);
e85d0918 49 mutex_destroy(&chip->mutex);
c48cf125 50 ZD_MEMCLEAR(chip, sizeof(*chip));
e85d0918
DD
51}
52
74553aed 53static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
e85d0918 54{
459c51ad 55 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
e85d0918
DD
56 return scnprintf(buffer, size, "%02x-%02x-%02x",
57 addr[0], addr[1], addr[2]);
58}
59
60/* Prints an identifier line, which will support debugging. */
61static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
62{
63 int i = 0;
64
65 i = scnprintf(buffer, size, "zd1211%s chip ",
74553aed 66 zd_chip_is_zd1211b(chip) ? "b" : "");
e85d0918
DD
67 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
68 i += scnprintf(buffer+i, size-i, " ");
74553aed 69 i += scnprint_mac_oui(chip, buffer+i, size-i);
e85d0918
DD
70 i += scnprintf(buffer+i, size-i, " ");
71 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
f2a81a16 72 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
e85d0918
DD
73 chip->patch_cck_gain ? 'g' : '-',
74 chip->patch_cr157 ? '7' : '-',
20fe2176 75 chip->patch_6m_band_edge ? '6' : '-',
f2a81a16
DD
76 chip->new_phy_layout ? 'N' : '-',
77 chip->al2230s_bit ? 'S' : '-');
e85d0918
DD
78 return i;
79}
80
81static void print_id(struct zd_chip *chip)
82{
83 char buffer[80];
84
85 scnprint_id(chip, buffer, sizeof(buffer));
86 buffer[sizeof(buffer)-1] = 0;
87 dev_info(zd_chip_dev(chip), "%s\n", buffer);
88}
89
0ce34bc8
DD
90static zd_addr_t inc_addr(zd_addr_t addr)
91{
92 u16 a = (u16)addr;
93 /* Control registers use byte addressing, but everything else uses word
94 * addressing. */
95 if ((a & 0xf000) == CR_START)
96 a += 2;
97 else
98 a += 1;
99 return (zd_addr_t)a;
100}
101
e85d0918
DD
102/* Read a variable number of 32-bit values. Parameter count is not allowed to
103 * exceed USB_MAX_IOREAD32_COUNT.
104 */
105int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
106 unsigned int count)
107{
108 int r;
109 int i;
fa46081c 110 zd_addr_t *a16;
e85d0918
DD
111 u16 *v16;
112 unsigned int count16;
113
114 if (count > USB_MAX_IOREAD32_COUNT)
115 return -EINVAL;
116
117 /* Allocate a single memory block for values and addresses. */
118 count16 = 2*count;
44956855 119 a16 = (zd_addr_t *) kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)),
35c3404e 120 GFP_KERNEL);
e85d0918
DD
121 if (!a16) {
122 dev_dbg_f(zd_chip_dev(chip),
123 "error ENOMEM in allocation of a16\n");
124 r = -ENOMEM;
125 goto out;
126 }
127 v16 = (u16 *)(a16 + count16);
128
129 for (i = 0; i < count; i++) {
130 int j = 2*i;
131 /* We read the high word always first. */
0ce34bc8 132 a16[j] = inc_addr(addr[i]);
e85d0918
DD
133 a16[j+1] = addr[i];
134 }
135
136 r = zd_ioread16v_locked(chip, v16, a16, count16);
137 if (r) {
138 dev_dbg_f(zd_chip_dev(chip),
139 "error: zd_ioread16v_locked. Error number %d\n", r);
140 goto out;
141 }
142
143 for (i = 0; i < count; i++) {
144 int j = 2*i;
145 values[i] = (v16[j] << 16) | v16[j+1];
146 }
147
148out:
149 kfree((void *)a16);
150 return r;
151}
152
153int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
154 unsigned int count)
155{
156 int i, j, r;
157 struct zd_ioreq16 *ioreqs16;
158 unsigned int count16;
159
160 ZD_ASSERT(mutex_is_locked(&chip->mutex));
161
162 if (count == 0)
163 return 0;
164 if (count > USB_MAX_IOWRITE32_COUNT)
165 return -EINVAL;
166
167 /* Allocate a single memory block for values and addresses. */
168 count16 = 2*count;
35c3404e 169 ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_KERNEL);
e85d0918
DD
170 if (!ioreqs16) {
171 r = -ENOMEM;
172 dev_dbg_f(zd_chip_dev(chip),
173 "error %d in ioreqs16 allocation\n", r);
174 goto out;
175 }
176
177 for (i = 0; i < count; i++) {
178 j = 2*i;
179 /* We write the high word always first. */
180 ioreqs16[j].value = ioreqs[i].value >> 16;
0ce34bc8 181 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
e85d0918
DD
182 ioreqs16[j+1].value = ioreqs[i].value;
183 ioreqs16[j+1].addr = ioreqs[i].addr;
184 }
185
186 r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16);
187#ifdef DEBUG
188 if (r) {
189 dev_dbg_f(zd_chip_dev(chip),
190 "error %d in zd_usb_write16v\n", r);
191 }
192#endif /* DEBUG */
193out:
194 kfree(ioreqs16);
195 return r;
196}
197
198int zd_iowrite16a_locked(struct zd_chip *chip,
199 const struct zd_ioreq16 *ioreqs, unsigned int count)
200{
201 int r;
202 unsigned int i, j, t, max;
203
204 ZD_ASSERT(mutex_is_locked(&chip->mutex));
205 for (i = 0; i < count; i += j + t) {
206 t = 0;
207 max = count-i;
208 if (max > USB_MAX_IOWRITE16_COUNT)
209 max = USB_MAX_IOWRITE16_COUNT;
210 for (j = 0; j < max; j++) {
211 if (!ioreqs[i+j].addr) {
212 t = 1;
213 break;
214 }
215 }
216
217 r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j);
218 if (r) {
219 dev_dbg_f(zd_chip_dev(chip),
220 "error zd_usb_iowrite16v. Error number %d\n",
221 r);
222 return r;
223 }
224 }
225
226 return 0;
227}
228
229/* Writes a variable number of 32 bit registers. The functions will split
230 * that in several USB requests. A split can be forced by inserting an IO
231 * request with an zero address field.
232 */
233int zd_iowrite32a_locked(struct zd_chip *chip,
234 const struct zd_ioreq32 *ioreqs, unsigned int count)
235{
236 int r;
237 unsigned int i, j, t, max;
238
239 for (i = 0; i < count; i += j + t) {
240 t = 0;
241 max = count-i;
242 if (max > USB_MAX_IOWRITE32_COUNT)
243 max = USB_MAX_IOWRITE32_COUNT;
244 for (j = 0; j < max; j++) {
245 if (!ioreqs[i+j].addr) {
246 t = 1;
247 break;
248 }
249 }
250
251 r = _zd_iowrite32v_locked(chip, &ioreqs[i], j);
252 if (r) {
253 dev_dbg_f(zd_chip_dev(chip),
254 "error _zd_iowrite32v_locked."
255 " Error number %d\n", r);
256 return r;
257 }
258 }
259
260 return 0;
261}
262
263int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
264{
265 int r;
266
e85d0918
DD
267 mutex_lock(&chip->mutex);
268 r = zd_ioread16_locked(chip, value, addr);
269 mutex_unlock(&chip->mutex);
270 return r;
271}
272
273int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
274{
275 int r;
276
e85d0918
DD
277 mutex_lock(&chip->mutex);
278 r = zd_ioread32_locked(chip, value, addr);
279 mutex_unlock(&chip->mutex);
280 return r;
281}
282
283int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
284{
285 int r;
286
e85d0918
DD
287 mutex_lock(&chip->mutex);
288 r = zd_iowrite16_locked(chip, value, addr);
289 mutex_unlock(&chip->mutex);
290 return r;
291}
292
293int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
294{
295 int r;
296
e85d0918
DD
297 mutex_lock(&chip->mutex);
298 r = zd_iowrite32_locked(chip, value, addr);
299 mutex_unlock(&chip->mutex);
300 return r;
301}
302
303int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
304 u32 *values, unsigned int count)
305{
306 int r;
307
e85d0918
DD
308 mutex_lock(&chip->mutex);
309 r = zd_ioread32v_locked(chip, values, addresses, count);
310 mutex_unlock(&chip->mutex);
311 return r;
312}
313
314int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
315 unsigned int count)
316{
317 int r;
318
e85d0918
DD
319 mutex_lock(&chip->mutex);
320 r = zd_iowrite32a_locked(chip, ioreqs, count);
321 mutex_unlock(&chip->mutex);
322 return r;
323}
324
325static int read_pod(struct zd_chip *chip, u8 *rf_type)
326{
327 int r;
328 u32 value;
329
330 ZD_ASSERT(mutex_is_locked(&chip->mutex));
331 r = zd_ioread32_locked(chip, &value, E2P_POD);
332 if (r)
333 goto error;
334 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
335
336 /* FIXME: AL2230 handling (Bit 7 in POD) */
337 *rf_type = value & 0x0f;
338 chip->pa_type = (value >> 16) & 0x0f;
339 chip->patch_cck_gain = (value >> 8) & 0x1;
340 chip->patch_cr157 = (value >> 13) & 0x1;
341 chip->patch_6m_band_edge = (value >> 21) & 0x1;
20fe2176 342 chip->new_phy_layout = (value >> 31) & 0x1;
ae6ead46 343 chip->al2230s_bit = (value >> 7) & 0x1;
583afd1e
UK
344 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
345 chip->supports_tx_led = 1;
346 if (value & (1 << 24)) { /* LED scenario */
347 if (value & (1 << 29))
348 chip->supports_tx_led = 0;
349 }
e85d0918
DD
350
351 dev_dbg_f(zd_chip_dev(chip),
352 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
583afd1e 353 "patch 6M %d new PHY %d link LED%d tx led %d\n",
e85d0918
DD
354 zd_rf_name(*rf_type), *rf_type,
355 chip->pa_type, chip->patch_cck_gain,
583afd1e
UK
356 chip->patch_cr157, chip->patch_6m_band_edge,
357 chip->new_phy_layout,
358 chip->link_led == LED1 ? 1 : 2,
359 chip->supports_tx_led);
e85d0918
DD
360 return 0;
361error:
362 *rf_type = 0;
363 chip->pa_type = 0;
364 chip->patch_cck_gain = 0;
365 chip->patch_cr157 = 0;
366 chip->patch_6m_band_edge = 0;
20fe2176 367 chip->new_phy_layout = 0;
e85d0918
DD
368 return r;
369}
370
e85d0918
DD
371/* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and
372 * CR_MAC_ADDR_P2 must be overwritten
373 */
e85d0918
DD
374int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
375{
376 int r;
377 struct zd_ioreq32 reqs[2] = {
378 [0] = { .addr = CR_MAC_ADDR_P1 },
379 [1] = { .addr = CR_MAC_ADDR_P2 },
380 };
0795af57 381 DECLARE_MAC_BUF(mac);
e85d0918 382
459c51ad
DD
383 if (mac_addr) {
384 reqs[0].value = (mac_addr[3] << 24)
385 | (mac_addr[2] << 16)
386 | (mac_addr[1] << 8)
387 | mac_addr[0];
388 reqs[1].value = (mac_addr[5] << 8)
389 | mac_addr[4];
390 dev_dbg_f(zd_chip_dev(chip),
391 "mac addr %s\n", print_mac(mac, mac_addr));
392 } else {
393 dev_dbg_f(zd_chip_dev(chip), "set NULL mac\n");
394 }
e85d0918
DD
395
396 mutex_lock(&chip->mutex);
397 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
e85d0918
DD
398 mutex_unlock(&chip->mutex);
399 return r;
400}
401
402int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
403{
404 int r;
405 u32 value;
406
407 mutex_lock(&chip->mutex);
408 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
409 mutex_unlock(&chip->mutex);
410 if (r)
411 return r;
412
413 *regdomain = value >> 16;
414 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
415
416 return 0;
417}
418
419static int read_values(struct zd_chip *chip, u8 *values, size_t count,
420 zd_addr_t e2p_addr, u32 guard)
421{
422 int r;
423 int i;
424 u32 v;
425
426 ZD_ASSERT(mutex_is_locked(&chip->mutex));
427 for (i = 0;;) {
0ce34bc8
DD
428 r = zd_ioread32_locked(chip, &v,
429 (zd_addr_t)((u16)e2p_addr+i/2));
e85d0918
DD
430 if (r)
431 return r;
432 v -= guard;
433 if (i+4 < count) {
434 values[i++] = v;
435 values[i++] = v >> 8;
436 values[i++] = v >> 16;
437 values[i++] = v >> 24;
438 continue;
439 }
440 for (;i < count; i++)
441 values[i] = v >> (8*(i%3));
442 return 0;
443 }
444}
445
446static int read_pwr_cal_values(struct zd_chip *chip)
447{
448 return read_values(chip, chip->pwr_cal_values,
449 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
450 0);
451}
452
453static int read_pwr_int_values(struct zd_chip *chip)
454{
455 return read_values(chip, chip->pwr_int_values,
456 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
457 E2P_PWR_INT_GUARD);
458}
459
460static int read_ofdm_cal_values(struct zd_chip *chip)
461{
462 int r;
463 int i;
464 static const zd_addr_t addresses[] = {
465 E2P_36M_CAL_VALUE1,
466 E2P_48M_CAL_VALUE1,
467 E2P_54M_CAL_VALUE1,
468 };
469
470 for (i = 0; i < 3; i++) {
471 r = read_values(chip, chip->ofdm_cal_values[i],
472 E2P_CHANNEL_COUNT, addresses[i], 0);
473 if (r)
474 return r;
475 }
476 return 0;
477}
478
479static int read_cal_int_tables(struct zd_chip *chip)
480{
481 int r;
482
483 r = read_pwr_cal_values(chip);
484 if (r)
485 return r;
486 r = read_pwr_int_values(chip);
487 if (r)
488 return r;
489 r = read_ofdm_cal_values(chip);
490 if (r)
491 return r;
492 return 0;
493}
494
495/* phy means physical registers */
496int zd_chip_lock_phy_regs(struct zd_chip *chip)
497{
498 int r;
499 u32 tmp;
500
501 ZD_ASSERT(mutex_is_locked(&chip->mutex));
502 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
503 if (r) {
504 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
505 return r;
506 }
507
e85d0918
DD
508 tmp &= ~UNLOCK_PHY_REGS;
509
510 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
511 if (r)
512 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
513 return r;
514}
515
516int zd_chip_unlock_phy_regs(struct zd_chip *chip)
517{
518 int r;
519 u32 tmp;
520
521 ZD_ASSERT(mutex_is_locked(&chip->mutex));
522 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
523 if (r) {
524 dev_err(zd_chip_dev(chip),
525 "error ioread32(CR_REG1): %d\n", r);
526 return r;
527 }
528
e85d0918
DD
529 tmp |= UNLOCK_PHY_REGS;
530
531 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
532 if (r)
533 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
534 return r;
535}
536
92b3e2e9 537/* CR157 can be optionally patched by the EEPROM for original ZD1211 */
e85d0918
DD
538static int patch_cr157(struct zd_chip *chip)
539{
540 int r;
92b3e2e9 541 u16 value;
e85d0918
DD
542
543 if (!chip->patch_cr157)
544 return 0;
545
92b3e2e9 546 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
e85d0918
DD
547 if (r)
548 return r;
549
550 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
551 return zd_iowrite32_locked(chip, value >> 8, CR157);
552}
553
554/*
555 * 6M band edge can be optionally overwritten for certain RF's
556 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
557 * bit (for AL2230, AL2230S)
558 */
72018b22
DD
559static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
560{
561 ZD_ASSERT(mutex_is_locked(&chip->mutex));
562 if (!chip->patch_6m_band_edge)
563 return 0;
564
565 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
566}
567
568/* Generic implementation of 6M band edge patching, used by most RFs via
569 * zd_rf_generic_patch_6m() */
570int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
e85d0918
DD
571{
572 struct zd_ioreq16 ioreqs[] = {
573 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
574 { CR47, 0x1e },
575 };
576
e85d0918
DD
577 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
578 if (channel == 1 || channel == 11)
579 ioreqs[0].value = 0x12;
580
581 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
582 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
583}
584
585static int zd1211_hw_reset_phy(struct zd_chip *chip)
586{
587 static const struct zd_ioreq16 ioreqs[] = {
588 { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 },
589 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 },
590 { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f },
591 { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d },
592 { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a },
593 { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c },
594 { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 },
595 { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 },
596 { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b },
597 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
598 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
599 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
600 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
601 { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff },
602 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
603 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
604 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
605 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
606 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
607 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
608 { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 },
609 { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 },
610 { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 },
611 { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 },
612 { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 },
613 { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff },
614 { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 },
615 { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 },
616 { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 },
617 { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a },
618 { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 },
619 { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e },
620 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
621 { },
622 { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 },
623 { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 },
624 { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 },
625 { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 },
626 { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C },
627 { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 },
628 { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 },
629 { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 },
630 { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 },
631 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
632 { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 },
633 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
634 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
635 { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f },
dc536a70
DD
636 { CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 },
637 { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C },
638 { CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 },
639 { CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 },
640 { CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c },
641 { CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 },
642 { CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe },
643 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
644 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
645 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
646 { CR170, 0xba }, { CR171, 0xba },
e85d0918
DD
647 /* Note: CR204 must lead the CR203 */
648 { CR204, 0x7d },
649 { },
650 { CR203, 0x30 },
651 };
652
653 int r, t;
654
655 dev_dbg_f(zd_chip_dev(chip), "\n");
656
657 r = zd_chip_lock_phy_regs(chip);
658 if (r)
659 goto out;
660
661 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
662 if (r)
663 goto unlock;
664
665 r = patch_cr157(chip);
666unlock:
667 t = zd_chip_unlock_phy_regs(chip);
668 if (t && !r)
669 r = t;
670out:
671 return r;
672}
673
674static int zd1211b_hw_reset_phy(struct zd_chip *chip)
675{
676 static const struct zd_ioreq16 ioreqs[] = {
677 { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 },
678 { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 },
679 { CR10, 0x81 },
680 /* power control { { CR11, 1 << 6 }, */
681 { CR11, 0x00 },
682 { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 },
683 { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e },
684 { CR18, 0x0a }, { CR19, 0x48 },
685 { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
686 { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 },
687 { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 },
688 { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 },
fe7215ca 689 { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
e85d0918
DD
690 { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 },
691 { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 },
692 { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c },
693 { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 },
694 { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff },
695 { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b },
696 { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 },
697 { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 },
698 { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff },
699 { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 },
700 { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 },
701 { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 },
702 { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 },
703 { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 },
704 { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 },
705 { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 },
706 { CR94, 0x01 },
707 { CR95, 0x20 }, /* ZD1211B */
708 { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 },
709 { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 },
710 { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 },
711 { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 },
712 { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 },
713 { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 },
714 { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 },
715 { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e },
716 { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 },
717 { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 },
718 { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 },
719 { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 },
720 { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c },
721 { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 },
722 { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
723 { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
724 { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe },
725 { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa },
726 { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe },
727 { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba },
728 { CR170, 0xba }, { CR171, 0xba },
729 /* Note: CR204 must lead the CR203 */
730 { CR204, 0x7d },
731 {},
732 { CR203, 0x30 },
733 };
734
735 int r, t;
736
737 dev_dbg_f(zd_chip_dev(chip), "\n");
738
739 r = zd_chip_lock_phy_regs(chip);
740 if (r)
741 goto out;
742
743 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
744 t = zd_chip_unlock_phy_regs(chip);
745 if (t && !r)
746 r = t;
747out:
748 return r;
749}
750
751static int hw_reset_phy(struct zd_chip *chip)
752{
74553aed 753 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
e85d0918
DD
754 zd1211_hw_reset_phy(chip);
755}
756
757static int zd1211_hw_init_hmac(struct zd_chip *chip)
758{
759 static const struct zd_ioreq32 ioreqs[] = {
e85d0918 760 { CR_ZD1211_RETRY_MAX, 0x2 },
e85d0918 761 { CR_RX_THRESHOLD, 0x000c0640 },
e85d0918
DD
762 };
763
e85d0918
DD
764 dev_dbg_f(zd_chip_dev(chip), "\n");
765 ZD_ASSERT(mutex_is_locked(&chip->mutex));
34c44912 766 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
767}
768
769static int zd1211b_hw_init_hmac(struct zd_chip *chip)
770{
771 static const struct zd_ioreq32 ioreqs[] = {
e85d0918 772 { CR_ZD1211B_RETRY_MAX, 0x02020202 },
e51c6837
JC
773 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
774 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
775 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
776 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
e85d0918
DD
777 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
778 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
779 { CR_ZD1211B_TXOP, 0x01800824 },
34c44912
DD
780 { CR_RX_THRESHOLD, 0x000c0eff, },
781 };
782
783 dev_dbg_f(zd_chip_dev(chip), "\n");
784 ZD_ASSERT(mutex_is_locked(&chip->mutex));
785 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
786}
787
788static int hw_init_hmac(struct zd_chip *chip)
789{
790 int r;
791 static const struct zd_ioreq32 ioreqs[] = {
792 { CR_ACK_TIMEOUT_EXT, 0x20 },
793 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
e85d0918 794 { CR_SNIFFER_ON, 0 },
fde627b5 795 { CR_RX_FILTER, STA_RX_FILTER },
e85d0918
DD
796 { CR_GROUP_HASH_P1, 0x00 },
797 { CR_GROUP_HASH_P2, 0x80000000 },
798 { CR_REG1, 0xa4 },
799 { CR_ADDA_PWR_DWN, 0x7f },
800 { CR_BCN_PLCP_CFG, 0x00f00401 },
801 { CR_PHY_DELAY, 0x00 },
802 { CR_ACK_TIMEOUT_EXT, 0x80 },
803 { CR_ADDA_PWR_DWN, 0x00 },
804 { CR_ACK_TIME_80211, 0x100 },
e85d0918
DD
805 { CR_RX_PE_DELAY, 0x70 },
806 { CR_PS_CTRL, 0x10000000 },
807 { CR_RTS_CTS_RATE, 0x02030203 },
e85d0918
DD
808 { CR_AFTER_PNP, 0x1 },
809 { CR_WEP_PROTECT, 0x114 },
34c44912 810 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
72e77a8a 811 { CR_CAM_MODE, MODE_AP_WDS},
e85d0918
DD
812 };
813
e85d0918
DD
814 ZD_ASSERT(mutex_is_locked(&chip->mutex));
815 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
34c44912
DD
816 if (r)
817 return r;
e85d0918 818
74553aed 819 return zd_chip_is_zd1211b(chip) ?
e85d0918
DD
820 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
821}
822
823struct aw_pt_bi {
824 u32 atim_wnd_period;
825 u32 pre_tbtt;
826 u32 beacon_interval;
827};
828
829static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
830{
831 int r;
832 static const zd_addr_t aw_pt_bi_addr[] =
833 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
834 u32 values[3];
835
836 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
837 ARRAY_SIZE(aw_pt_bi_addr));
838 if (r) {
839 memset(s, 0, sizeof(*s));
840 return r;
841 }
842
843 s->atim_wnd_period = values[0];
844 s->pre_tbtt = values[1];
845 s->beacon_interval = values[2];
e85d0918
DD
846 return 0;
847}
848
849static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
850{
851 struct zd_ioreq32 reqs[3];
852
853 if (s->beacon_interval <= 5)
854 s->beacon_interval = 5;
855 if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval)
856 s->pre_tbtt = s->beacon_interval - 1;
857 if (s->atim_wnd_period >= s->pre_tbtt)
858 s->atim_wnd_period = s->pre_tbtt - 1;
859
860 reqs[0].addr = CR_ATIM_WND_PERIOD;
861 reqs[0].value = s->atim_wnd_period;
862 reqs[1].addr = CR_PRE_TBTT;
863 reqs[1].value = s->pre_tbtt;
864 reqs[2].addr = CR_BCN_INTERVAL;
865 reqs[2].value = s->beacon_interval;
866
e85d0918
DD
867 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
868}
869
870
871static int set_beacon_interval(struct zd_chip *chip, u32 interval)
872{
873 int r;
874 struct aw_pt_bi s;
875
876 ZD_ASSERT(mutex_is_locked(&chip->mutex));
877 r = get_aw_pt_bi(chip, &s);
878 if (r)
879 return r;
880 s.beacon_interval = interval;
881 return set_aw_pt_bi(chip, &s);
882}
883
884int zd_set_beacon_interval(struct zd_chip *chip, u32 interval)
885{
886 int r;
887
888 mutex_lock(&chip->mutex);
889 r = set_beacon_interval(chip, interval);
890 mutex_unlock(&chip->mutex);
891 return r;
892}
893
894static int hw_init(struct zd_chip *chip)
895{
896 int r;
897
898 dev_dbg_f(zd_chip_dev(chip), "\n");
899 ZD_ASSERT(mutex_is_locked(&chip->mutex));
900 r = hw_reset_phy(chip);
901 if (r)
902 return r;
903
904 r = hw_init_hmac(chip);
905 if (r)
906 return r;
98227a90 907
98227a90 908 return set_beacon_interval(chip, 100);
e85d0918
DD
909}
910
0ce34bc8
DD
911static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
912{
913 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
914}
915
e85d0918
DD
916#ifdef DEBUG
917static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
918 const char *addr_string)
919{
920 int r;
921 u32 value;
922
923 r = zd_ioread32_locked(chip, &value, addr);
924 if (r) {
925 dev_dbg_f(zd_chip_dev(chip),
926 "error reading %s. Error number %d\n", addr_string, r);
927 return r;
928 }
929
930 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
931 addr_string, (unsigned int)value);
932 return 0;
933}
934
935static int test_init(struct zd_chip *chip)
936{
937 int r;
938
939 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
940 if (r)
941 return r;
942 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
943 if (r)
944 return r;
945 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
946}
947
948static void dump_fw_registers(struct zd_chip *chip)
949{
0ce34bc8
DD
950 const zd_addr_t addr[4] = {
951 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
952 fw_reg_addr(chip, FW_REG_USB_SPEED),
953 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
954 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
e85d0918
DD
955 };
956
957 int r;
958 u16 values[4];
959
960 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
961 ARRAY_SIZE(addr));
962 if (r) {
963 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
964 r);
965 return;
966 }
967
968 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
969 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
970 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
971 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
972}
973#endif /* DEBUG */
974
975static int print_fw_version(struct zd_chip *chip)
976{
977 int r;
978 u16 version;
979
0ce34bc8
DD
980 r = zd_ioread16_locked(chip, &version,
981 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
e85d0918
DD
982 if (r)
983 return r;
984
985 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
986 return 0;
987}
988
8318d78a 989static int set_mandatory_rates(struct zd_chip *chip, int gmode)
e85d0918
DD
990{
991 u32 rates;
992 ZD_ASSERT(mutex_is_locked(&chip->mutex));
993 /* This sets the mandatory rates, which only depend from the standard
994 * that the device is supporting. Until further notice we should try
995 * to support 802.11g also for full speed USB.
996 */
8318d78a 997 if (!gmode)
e85d0918 998 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
8318d78a 999 else
e85d0918
DD
1000 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1001 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
8318d78a 1002
e85d0918
DD
1003 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1004}
1005
b1382ede 1006int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
459c51ad 1007 int preamble)
b1382ede 1008{
b1382ede
DD
1009 u32 value = 0;
1010
459c51ad 1011 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
b1382ede
DD
1012 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1013 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1014
459c51ad
DD
1015 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1016 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1017 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
64f222cc 1018 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
b1382ede
DD
1019 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1020
1021 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1022}
1023
e85d0918
DD
1024int zd_chip_enable_hwint(struct zd_chip *chip)
1025{
1026 int r;
1027
1028 mutex_lock(&chip->mutex);
1029 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1030 mutex_unlock(&chip->mutex);
1031 return r;
1032}
1033
1034static int disable_hwint(struct zd_chip *chip)
1035{
1036 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1037}
1038
1039int zd_chip_disable_hwint(struct zd_chip *chip)
1040{
1041 int r;
1042
1043 mutex_lock(&chip->mutex);
1044 r = disable_hwint(chip);
1045 mutex_unlock(&chip->mutex);
1046 return r;
1047}
1048
0ce34bc8
DD
1049static int read_fw_regs_offset(struct zd_chip *chip)
1050{
1051 int r;
1052
1053 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1054 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1055 FWRAW_REGS_ADDR);
1056 if (r)
1057 return r;
1058 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1059 (u16)chip->fw_regs_base);
1060
1061 return 0;
1062}
1063
74553aed
DD
1064/* Read mac address using pre-firmware interface */
1065int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1066{
1067 dev_dbg_f(zd_chip_dev(chip), "\n");
1068 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1069 ETH_ALEN);
1070}
0ce34bc8 1071
74553aed 1072int zd_chip_init_hw(struct zd_chip *chip)
e85d0918
DD
1073{
1074 int r;
1075 u8 rf_type;
1076
1077 dev_dbg_f(zd_chip_dev(chip), "\n");
1078
1079 mutex_lock(&chip->mutex);
e85d0918
DD
1080
1081#ifdef DEBUG
1082 r = test_init(chip);
1083 if (r)
1084 goto out;
1085#endif
1086 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1087 if (r)
1088 goto out;
1089
0ce34bc8 1090 r = read_fw_regs_offset(chip);
e85d0918
DD
1091 if (r)
1092 goto out;
1093
1094 /* GPI is always disabled, also in the other driver.
1095 */
1096 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1097 if (r)
1098 goto out;
1099 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1100 if (r)
1101 goto out;
1102 /* Currently we support IEEE 802.11g for full and high speed USB.
1103 * It might be discussed, whether we should suppport pure b mode for
1104 * full speed USB.
1105 */
8318d78a 1106 r = set_mandatory_rates(chip, 1);
e85d0918
DD
1107 if (r)
1108 goto out;
1109 /* Disabling interrupts is certainly a smart thing here.
1110 */
1111 r = disable_hwint(chip);
1112 if (r)
1113 goto out;
1114 r = read_pod(chip, &rf_type);
1115 if (r)
1116 goto out;
1117 r = hw_init(chip);
1118 if (r)
1119 goto out;
1120 r = zd_rf_init_hw(&chip->rf, rf_type);
1121 if (r)
1122 goto out;
1123
1124 r = print_fw_version(chip);
1125 if (r)
1126 goto out;
1127
1128#ifdef DEBUG
1129 dump_fw_registers(chip);
1130 r = test_init(chip);
1131 if (r)
1132 goto out;
1133#endif /* DEBUG */
1134
e85d0918
DD
1135 r = read_cal_int_tables(chip);
1136 if (r)
1137 goto out;
1138
1139 print_id(chip);
1140out:
1141 mutex_unlock(&chip->mutex);
1142 return r;
1143}
1144
1145static int update_pwr_int(struct zd_chip *chip, u8 channel)
1146{
1147 u8 value = chip->pwr_int_values[channel - 1];
cbb5e6bb 1148 return zd_iowrite16_locked(chip, value, CR31);
e85d0918
DD
1149}
1150
1151static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1152{
1153 u8 value = chip->pwr_cal_values[channel-1];
cbb5e6bb 1154 return zd_iowrite16_locked(chip, value, CR68);
e85d0918
DD
1155}
1156
1157static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1158{
cbb5e6bb 1159 struct zd_ioreq16 ioreqs[3];
e85d0918
DD
1160
1161 ioreqs[0].addr = CR67;
1162 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1163 ioreqs[1].addr = CR66;
1164 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1165 ioreqs[2].addr = CR65;
1166 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1167
cbb5e6bb 1168 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
1169}
1170
1171static int update_channel_integration_and_calibration(struct zd_chip *chip,
1172 u8 channel)
1173{
1174 int r;
1175
9c8fc71d
DD
1176 if (!zd_rf_should_update_pwr_int(&chip->rf))
1177 return 0;
1178
e85d0918
DD
1179 r = update_pwr_int(chip, channel);
1180 if (r)
1181 return r;
74553aed 1182 if (zd_chip_is_zd1211b(chip)) {
cbb5e6bb 1183 static const struct zd_ioreq16 ioreqs[] = {
e85d0918
DD
1184 { CR69, 0x28 },
1185 {},
1186 { CR69, 0x2a },
1187 };
1188
1189 r = update_ofdm_cal(chip, channel);
1190 if (r)
1191 return r;
1192 r = update_pwr_cal(chip, channel);
1193 if (r)
1194 return r;
cbb5e6bb 1195 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
e85d0918
DD
1196 if (r)
1197 return r;
1198 }
1199
1200 return 0;
1201}
1202
1203/* The CCK baseband gain can be optionally patched by the EEPROM */
1204static int patch_cck_gain(struct zd_chip *chip)
1205{
1206 int r;
1207 u32 value;
1208
aaf83d4f 1209 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
e85d0918
DD
1210 return 0;
1211
1212 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1213 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1214 if (r)
1215 return r;
1216 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
cbb5e6bb 1217 return zd_iowrite16_locked(chip, value & 0xff, CR47);
e85d0918
DD
1218}
1219
1220int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1221{
1222 int r, t;
1223
1224 mutex_lock(&chip->mutex);
1225 r = zd_chip_lock_phy_regs(chip);
1226 if (r)
1227 goto out;
1228 r = zd_rf_set_channel(&chip->rf, channel);
1229 if (r)
1230 goto unlock;
1231 r = update_channel_integration_and_calibration(chip, channel);
1232 if (r)
1233 goto unlock;
1234 r = patch_cck_gain(chip);
1235 if (r)
1236 goto unlock;
1237 r = patch_6m_band_edge(chip, channel);
1238 if (r)
1239 goto unlock;
1240 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1241unlock:
1242 t = zd_chip_unlock_phy_regs(chip);
1243 if (t && !r)
1244 r = t;
1245out:
1246 mutex_unlock(&chip->mutex);
1247 return r;
1248}
1249
1250u8 zd_chip_get_channel(struct zd_chip *chip)
1251{
1252 u8 channel;
1253
1254 mutex_lock(&chip->mutex);
1255 channel = chip->rf.channel;
1256 mutex_unlock(&chip->mutex);
1257 return channel;
1258}
1259
583afd1e 1260int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
e85d0918 1261{
0ce34bc8
DD
1262 const zd_addr_t a[] = {
1263 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
583afd1e
UK
1264 CR_LED,
1265 };
e85d0918 1266
583afd1e
UK
1267 int r;
1268 u16 v[ARRAY_SIZE(a)];
1269 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
0ce34bc8 1270 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
583afd1e
UK
1271 [1] = { CR_LED },
1272 };
1273 u16 other_led;
e85d0918 1274
e85d0918 1275 mutex_lock(&chip->mutex);
583afd1e 1276 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
e85d0918 1277 if (r)
583afd1e
UK
1278 goto out;
1279
1280 other_led = chip->link_led == LED1 ? LED2 : LED1;
1281
e85d0918 1282 switch (status) {
e85d0918 1283 case LED_OFF:
583afd1e
UK
1284 ioreqs[0].value = FW_LINK_OFF;
1285 ioreqs[1].value = v[1] & ~(LED1|LED2);
e85d0918 1286 break;
583afd1e
UK
1287 case LED_SCANNING:
1288 ioreqs[0].value = FW_LINK_OFF;
1289 ioreqs[1].value = v[1] & ~other_led;
1290 if (get_seconds() % 3 == 0) {
1291 ioreqs[1].value &= ~chip->link_led;
1292 } else {
1293 ioreqs[1].value |= chip->link_led;
1294 }
e85d0918 1295 break;
583afd1e
UK
1296 case LED_ASSOCIATED:
1297 ioreqs[0].value = FW_LINK_TX;
1298 ioreqs[1].value = v[1] & ~other_led;
1299 ioreqs[1].value |= chip->link_led;
e85d0918
DD
1300 break;
1301 default:
583afd1e 1302 r = -EINVAL;
e85d0918
DD
1303 goto out;
1304 }
e85d0918 1305
583afd1e
UK
1306 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1307 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1308 if (r)
e85d0918 1309 goto out;
e85d0918 1310 }
583afd1e 1311 r = 0;
e85d0918 1312out:
583afd1e 1313 mutex_unlock(&chip->mutex);
e85d0918
DD
1314 return r;
1315}
1316
459c51ad 1317int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
e85d0918 1318{
459c51ad
DD
1319 int r;
1320
1321 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1322 return -EINVAL;
e85d0918 1323
459c51ad
DD
1324 mutex_lock(&chip->mutex);
1325 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1326 mutex_unlock(&chip->mutex);
1327 return r;
e85d0918
DD
1328}
1329
64f222cc 1330static int ofdm_qual_db(u8 status_quality, u8 zd_rate, unsigned int size)
e85d0918
DD
1331{
1332 static const u16 constants[] = {
1333 715, 655, 585, 540, 470, 410, 360, 315,
1334 270, 235, 205, 175, 150, 125, 105, 85,
1335 65, 50, 40, 25, 15
1336 };
1337
1338 int i;
1339 u32 x;
1340
1341 /* It seems that their quality parameter is somehow per signal
1342 * and is now transferred per bit.
1343 */
64f222cc 1344 switch (zd_rate) {
e85d0918
DD
1345 case ZD_OFDM_RATE_6M:
1346 case ZD_OFDM_RATE_12M:
1347 case ZD_OFDM_RATE_24M:
1348 size *= 2;
1349 break;
1350 case ZD_OFDM_RATE_9M:
1351 case ZD_OFDM_RATE_18M:
1352 case ZD_OFDM_RATE_36M:
1353 case ZD_OFDM_RATE_54M:
1354 size *= 4;
1355 size /= 3;
1356 break;
1357 case ZD_OFDM_RATE_48M:
1358 size *= 3;
1359 size /= 2;
1360 break;
1361 default:
1362 return -EINVAL;
1363 }
1364
1365 x = (10000 * status_quality)/size;
1366 for (i = 0; i < ARRAY_SIZE(constants); i++) {
1367 if (x > constants[i])
1368 break;
1369 }
1370
64f222cc 1371 switch (zd_rate) {
db888aed
UK
1372 case ZD_OFDM_RATE_6M:
1373 case ZD_OFDM_RATE_9M:
1374 i += 3;
1375 break;
1376 case ZD_OFDM_RATE_12M:
1377 case ZD_OFDM_RATE_18M:
1378 i += 5;
1379 break;
1380 case ZD_OFDM_RATE_24M:
1381 case ZD_OFDM_RATE_36M:
1382 i += 9;
1383 break;
1384 case ZD_OFDM_RATE_48M:
1385 case ZD_OFDM_RATE_54M:
1386 i += 15;
1387 break;
1388 default:
1389 return -EINVAL;
1390 }
1391
e85d0918
DD
1392 return i;
1393}
1394
64f222cc 1395static int ofdm_qual_percent(u8 status_quality, u8 zd_rate, unsigned int size)
db888aed
UK
1396{
1397 int r;
1398
64f222cc 1399 r = ofdm_qual_db(status_quality, zd_rate, size);
db888aed
UK
1400 ZD_ASSERT(r >= 0);
1401 if (r < 0)
1402 r = 0;
1403
1404 r = (r * 100)/29;
1405 return r <= 100 ? r : 100;
1406}
1407
e85d0918
DD
1408static unsigned int log10times100(unsigned int x)
1409{
1410 static const u8 log10[] = {
1411 0,
1412 0, 30, 47, 60, 69, 77, 84, 90, 95, 100,
1413 104, 107, 111, 114, 117, 120, 123, 125, 127, 130,
1414 132, 134, 136, 138, 139, 141, 143, 144, 146, 147,
1415 149, 150, 151, 153, 154, 155, 156, 157, 159, 160,
1416 161, 162, 163, 164, 165, 166, 167, 168, 169, 169,
1417 170, 171, 172, 173, 174, 174, 175, 176, 177, 177,
1418 178, 179, 179, 180, 181, 181, 182, 183, 183, 184,
1419 185, 185, 186, 186, 187, 188, 188, 189, 189, 190,
1420 190, 191, 191, 192, 192, 193, 193, 194, 194, 195,
1421 195, 196, 196, 197, 197, 198, 198, 199, 199, 200,
1422 200, 200, 201, 201, 202, 202, 202, 203, 203, 204,
1423 204, 204, 205, 205, 206, 206, 206, 207, 207, 207,
1424 208, 208, 208, 209, 209, 210, 210, 210, 211, 211,
1425 211, 212, 212, 212, 213, 213, 213, 213, 214, 214,
1426 214, 215, 215, 215, 216, 216, 216, 217, 217, 217,
1427 217, 218, 218, 218, 219, 219, 219, 219, 220, 220,
1428 220, 220, 221, 221, 221, 222, 222, 222, 222, 223,
1429 223, 223, 223, 224, 224, 224, 224,
1430 };
1431
1432 return x < ARRAY_SIZE(log10) ? log10[x] : 225;
1433}
1434
1435enum {
1436 MAX_CCK_EVM_DB = 45,
1437};
1438
1439static int cck_evm_db(u8 status_quality)
1440{
1441 return (20 * log10times100(status_quality)) / 100;
1442}
1443
1444static int cck_snr_db(u8 status_quality)
1445{
1446 int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality);
1447 ZD_ASSERT(r >= 0);
1448 return r;
1449}
1450
db888aed 1451static int cck_qual_percent(u8 status_quality)
e85d0918 1452{
db888aed
UK
1453 int r;
1454
1455 r = cck_snr_db(status_quality);
1456 r = (100*r)/17;
1457 return r <= 100 ? r : 100;
e85d0918
DD
1458}
1459
64f222cc
UK
1460static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1461{
1462 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1463}
1464
e85d0918
DD
1465u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size,
1466 const struct rx_status *status)
1467{
db888aed
UK
1468 return (status->frame_status&ZD_RX_OFDM) ?
1469 ofdm_qual_percent(status->signal_quality_ofdm,
459c51ad 1470 zd_rate_from_ofdm_plcp_header(rx_frame),
db888aed
UK
1471 size) :
1472 cck_qual_percent(status->signal_quality_cck);
e85d0918
DD
1473}
1474
459c51ad
DD
1475/**
1476 * zd_rx_rate - report zd-rate
1477 * @rx_frame - received frame
1478 * @rx_status - rx_status as given by the device
1479 *
1480 * This function converts the rate as encoded in the received packet to the
1481 * zd-rate, we are using on other places in the driver.
1482 */
1483u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
e85d0918 1484{
459c51ad 1485 u8 zd_rate;
e85d0918 1486 if (status->frame_status & ZD_RX_OFDM) {
459c51ad 1487 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
e85d0918 1488 } else {
64f222cc
UK
1489 switch (zd_cck_plcp_header_signal(rx_frame)) {
1490 case ZD_CCK_PLCP_SIGNAL_1M:
459c51ad 1491 zd_rate = ZD_CCK_RATE_1M;
e85d0918 1492 break;
64f222cc 1493 case ZD_CCK_PLCP_SIGNAL_2M:
459c51ad 1494 zd_rate = ZD_CCK_RATE_2M;
e85d0918 1495 break;
64f222cc 1496 case ZD_CCK_PLCP_SIGNAL_5M5:
459c51ad 1497 zd_rate = ZD_CCK_RATE_5_5M;
e85d0918 1498 break;
64f222cc 1499 case ZD_CCK_PLCP_SIGNAL_11M:
459c51ad 1500 zd_rate = ZD_CCK_RATE_11M;
e85d0918
DD
1501 break;
1502 default:
459c51ad 1503 zd_rate = 0;
e85d0918
DD
1504 }
1505 }
1506
459c51ad 1507 return zd_rate;
e85d0918
DD
1508}
1509
1510int zd_chip_switch_radio_on(struct zd_chip *chip)
1511{
1512 int r;
1513
1514 mutex_lock(&chip->mutex);
1515 r = zd_switch_radio_on(&chip->rf);
1516 mutex_unlock(&chip->mutex);
1517 return r;
1518}
1519
1520int zd_chip_switch_radio_off(struct zd_chip *chip)
1521{
1522 int r;
1523
1524 mutex_lock(&chip->mutex);
1525 r = zd_switch_radio_off(&chip->rf);
1526 mutex_unlock(&chip->mutex);
1527 return r;
1528}
1529
1530int zd_chip_enable_int(struct zd_chip *chip)
1531{
1532 int r;
1533
1534 mutex_lock(&chip->mutex);
1535 r = zd_usb_enable_int(&chip->usb);
1536 mutex_unlock(&chip->mutex);
1537 return r;
1538}
1539
1540void zd_chip_disable_int(struct zd_chip *chip)
1541{
1542 mutex_lock(&chip->mutex);
1543 zd_usb_disable_int(&chip->usb);
1544 mutex_unlock(&chip->mutex);
1545}
1546
459c51ad 1547int zd_chip_enable_rxtx(struct zd_chip *chip)
e85d0918
DD
1548{
1549 int r;
1550
1551 mutex_lock(&chip->mutex);
459c51ad 1552 zd_usb_enable_tx(&chip->usb);
e85d0918
DD
1553 r = zd_usb_enable_rx(&chip->usb);
1554 mutex_unlock(&chip->mutex);
1555 return r;
1556}
1557
459c51ad 1558void zd_chip_disable_rxtx(struct zd_chip *chip)
e85d0918
DD
1559{
1560 mutex_lock(&chip->mutex);
1561 zd_usb_disable_rx(&chip->usb);
459c51ad 1562 zd_usb_disable_tx(&chip->usb);
e85d0918
DD
1563 mutex_unlock(&chip->mutex);
1564}
1565
1566int zd_rfwritev_locked(struct zd_chip *chip,
1567 const u32* values, unsigned int count, u8 bits)
1568{
1569 int r;
1570 unsigned int i;
1571
1572 for (i = 0; i < count; i++) {
1573 r = zd_rfwrite_locked(chip, values[i], bits);
1574 if (r)
1575 return r;
1576 }
1577
1578 return 0;
1579}
20fe2176
DD
1580
1581/*
1582 * We can optionally program the RF directly through CR regs, if supported by
1583 * the hardware. This is much faster than the older method.
1584 */
ec62bd91 1585int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
20fe2176
DD
1586{
1587 struct zd_ioreq16 ioreqs[] = {
1588 { CR244, (value >> 16) & 0xff },
1589 { CR243, (value >> 8) & 0xff },
1590 { CR242, value & 0xff },
1591 };
1592 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1593 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1594}
1595
1596int zd_rfwritev_cr_locked(struct zd_chip *chip,
1597 const u32 *values, unsigned int count)
1598{
1599 int r;
1600 unsigned int i;
1601
1602 for (i = 0; i < count; i++) {
1603 r = zd_rfwrite_cr_locked(chip, values[i]);
1604 if (r)
1605 return r;
1606 }
1607
1608 return 0;
1609}
9cdac965
UK
1610
1611int zd_chip_set_multicast_hash(struct zd_chip *chip,
1612 struct zd_mc_hash *hash)
1613{
1614 struct zd_ioreq32 ioreqs[] = {
1615 { CR_GROUP_HASH_P1, hash->low },
1616 { CR_GROUP_HASH_P2, hash->high },
1617 };
1618
9cdac965
UK
1619 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1620}
This page took 0.467455 seconds and 5 git commands to generate.