iwlwifi: refactor tx byte count table usage
[deliverable/linux.git] / drivers / net / yellowfin.c
CommitLineData
1da177e4
LT
1/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2/*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
03a8c661 22 [link no longer provides useful info -jgarzik]
1da177e4 23
1da177e4
LT
24*/
25
26#define DRV_NAME "yellowfin"
d5b20697
AG
27#define DRV_VERSION "2.1"
28#define DRV_RELDATE "Sep 11, 2006"
1da177e4
LT
29
30#define PFX DRV_NAME ": "
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37static int max_interrupt_work = 20;
38static int mtu;
39#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40/* System-wide count of bogus-rx frames. */
41static int bogus_rx;
42static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44#elif defined(YF_NEW) /* A future perfect board :->. */
45static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46static int fifo_cfg = 0x0028;
47#else
f71e1309
AV
48static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
1da177e4
LT
50#endif
51
52/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54static int rx_copybreak;
55
56/* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59*/
60#define MAX_UNITS 8 /* More are supported, limit only on options */
61static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64/* Do ugly workaround for GX server chipset errata. */
65static int gx_fix;
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73#define TX_RING_SIZE 16
74#define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75#define RX_RING_SIZE 64
76#define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77#define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80/* Operational parameters that usually are not changed. */
81/* Time in jiffies before concluding the transmitter is hung. */
82#define TX_TIMEOUT (2*HZ)
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#define yellowfin_debug debug
86
87#include <linux/module.h>
88#include <linux/kernel.h>
89#include <linux/string.h>
90#include <linux/timer.h>
91#include <linux/errno.h>
92#include <linux/ioport.h>
93#include <linux/slab.h>
94#include <linux/interrupt.h>
95#include <linux/pci.h>
96#include <linux/init.h>
97#include <linux/mii.h>
98#include <linux/netdevice.h>
99#include <linux/etherdevice.h>
100#include <linux/skbuff.h>
101#include <linux/ethtool.h>
102#include <linux/crc32.h>
103#include <linux/bitops.h>
104#include <asm/uaccess.h>
105#include <asm/processor.h> /* Processor type for cache alignment. */
106#include <asm/unaligned.h>
107#include <asm/io.h>
108
109/* These identify the driver base version and may not be removed. */
110static char version[] __devinitdata =
111KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
1da177e4
LT
112KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
113
114MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116MODULE_LICENSE("GPL");
117
118module_param(max_interrupt_work, int, 0);
119module_param(mtu, int, 0);
120module_param(debug, int, 0);
121module_param(rx_copybreak, int, 0);
122module_param_array(options, int, NULL, 0);
123module_param_array(full_duplex, int, NULL, 0);
124module_param(gx_fix, int, 0);
125MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
132
133/*
134 Theory of Operation
135
136I. Board Compatibility
137
138This device driver is designed for the Packet Engines "Yellowfin" Gigabit
6aa20a22 139Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
1da177e4
LT
140Symbios 53C885E dual function chip.
141
142II. Board-specific settings
143
144PCI bus devices are configured by the system at boot time, so no jumpers
145need to be set on the board. The system BIOS preferably should assign the
146PCI INTA signal to an otherwise unused system IRQ line.
147Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148interrupt lines.
149
150III. Driver operation
151
152IIIa. Ring buffers
153
154The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155This is a descriptor list scheme similar to that used by the EEPro100 and
156Tulip. This driver uses two statically allocated fixed-size descriptor lists
157formed into rings by a branch from the final descriptor to the beginning of
158the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160The driver allocates full frame size skbuffs for the Rx ring buffers at
161open() time and passes the skb->data field to the Yellowfin as receive data
162buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163a fresh skbuff is allocated and the frame is copied to the new skbuff.
164When the incoming frame is larger, the skbuff is passed directly up the
165protocol stack and replaced by a newly allocated skbuff.
166
167The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168using a full-sized skbuff for small frames vs. the copying costs of larger
169frames. For small frames the copying cost is negligible (esp. considering
170that we are pre-loading the cache with immediately useful header
171information). For large frames the copying cost is non-trivial, and the
172larger copy might flush the cache of useful data.
173
174IIIC. Synchronization
175
176The driver runs as two independent, single-threaded flows of control. One
177is the send-packet routine, which enforces single-threaded use by the
178dev->tbusy flag. The other thread is the interrupt handler, which is single
179threaded by the hardware and other software.
180
181The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184the 'yp->tx_full' flag.
185
186The interrupt handler has exclusive control over the Rx ring and records stats
187from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189clears both the tx_full and tbusy flags.
190
191IV. Notes
192
193Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195and an AlphaStation to verifty the Alpha port!
196
197IVb. References
198
199Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
204
205IVc. Errata
206
207See Packet Engines confidential appendix (prototype chips only).
208*/
209
6aa20a22 210
1da177e4 211
1da177e4
LT
212enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
216};
c3d8e682 217
1da177e4 218/* The PCI I/O space extent. */
c3d8e682
JG
219enum {
220 YELLOWFIN_SIZE = 0x100,
221};
1da177e4
LT
222
223struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
1da177e4
LT
229 int drv_flags; /* Driver use, intended as capability flags. */
230};
231
f71e1309 232static const struct pci_id_info pci_id_tbl[] = {
1da177e4 233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
1da177e4
LT
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
c3d8e682 236 HasMII | DontUseEeprom },
1f1bd5fc 237 { }
1da177e4
LT
238};
239
1f1bd5fc 240static const struct pci_device_id yellowfin_pci_tbl[] = {
1da177e4
LT
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
1f1bd5fc 243 { }
1da177e4
LT
244};
245MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
246
247
248/* Offsets to the Yellowfin registers. Various sizes and alignments. */
249enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
263};
264
265/* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267struct yellowfin_desc {
e5a31421
AV
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
1da177e4
LT
272};
273
274struct tx_status_words {
275#ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280#else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285#endif /* __BIG_ENDIAN */
286};
287
288/* Bits in yellowfin_desc.cmd */
289enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
294};
295
296/* Bits in yellowfin_desc.status */
297enum desc_status_bits { RX_EOP=0x0040, };
298
299/* Bits in the interrupt status/mask registers. */
300enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
304
305#define PRIV_ALIGN 31 /* Required alignment mask */
306#define MII_CNT 4
307struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
316
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
319
320 struct timer_list timer; /* Media selection timer. */
1da177e4
LT
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
340};
341
342static int read_eeprom(void __iomem *ioaddr, int location);
343static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346static int yellowfin_open(struct net_device *dev);
347static void yellowfin_timer(unsigned long data);
348static void yellowfin_tx_timeout(struct net_device *dev);
349static void yellowfin_init_ring(struct net_device *dev);
350static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
7d12e780 351static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
1da177e4
LT
352static int yellowfin_rx(struct net_device *dev);
353static void yellowfin_error(struct net_device *dev, int intr_status);
354static int yellowfin_close(struct net_device *dev);
1da177e4 355static void set_rx_mode(struct net_device *dev);
7282d491 356static const struct ethtool_ops ethtool_ops;
1da177e4
LT
357
358
359static int __devinit yellowfin_init_one(struct pci_dev *pdev,
360 const struct pci_device_id *ent)
361{
362 struct net_device *dev;
363 struct yellowfin_private *np;
364 int irq;
365 int chip_idx = ent->driver_data;
366 static int find_cnt;
367 void __iomem *ioaddr;
368 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
369 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
370 void *ring_space;
371 dma_addr_t ring_dma;
372#ifdef USE_IO_OPS
373 int bar = 0;
374#else
375 int bar = 1;
376#endif
6aa20a22 377
1da177e4
LT
378/* when built into the kernel, we only print version if device is found */
379#ifndef MODULE
380 static int printed_version;
381 if (!printed_version++)
382 printk(version);
383#endif
384
385 i = pci_enable_device(pdev);
386 if (i) return i;
387
388 dev = alloc_etherdev(sizeof(*np));
389 if (!dev) {
390 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
391 return -ENOMEM;
392 }
1da177e4
LT
393 SET_NETDEV_DEV(dev, &pdev->dev);
394
395 np = netdev_priv(dev);
396
397 if (pci_request_regions(pdev, DRV_NAME))
398 goto err_out_free_netdev;
399
400 pci_set_master (pdev);
401
402 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
403 if (!ioaddr)
404 goto err_out_free_res;
405
406 irq = pdev->irq;
407
408 if (drv_flags & DontUseEeprom)
409 for (i = 0; i < 6; i++)
410 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
411 else {
412 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
413 for (i = 0; i < 6; i++)
414 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
415 }
416
417 /* Reset the chip. */
418 iowrite32(0x80000000, ioaddr + DMACtrl);
419
420 dev->base_addr = (unsigned long)ioaddr;
421 dev->irq = irq;
422
423 pci_set_drvdata(pdev, dev);
424 spin_lock_init(&np->lock);
425
426 np->pci_dev = pdev;
427 np->chip_id = chip_idx;
428 np->drv_flags = drv_flags;
429 np->base = ioaddr;
430
431 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
432 if (!ring_space)
433 goto err_out_cleardev;
434 np->tx_ring = (struct yellowfin_desc *)ring_space;
435 np->tx_ring_dma = ring_dma;
436
437 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
438 if (!ring_space)
439 goto err_out_unmap_tx;
440 np->rx_ring = (struct yellowfin_desc *)ring_space;
441 np->rx_ring_dma = ring_dma;
442
443 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
444 if (!ring_space)
445 goto err_out_unmap_rx;
446 np->tx_status = (struct tx_status_words *)ring_space;
447 np->tx_status_dma = ring_dma;
448
449 if (dev->mem_start)
450 option = dev->mem_start;
451
452 /* The lower four bits are the media type. */
453 if (option > 0) {
454 if (option & 0x200)
455 np->full_duplex = 1;
456 np->default_port = option & 15;
457 if (np->default_port)
458 np->medialock = 1;
459 }
460 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
461 np->full_duplex = 1;
462
463 if (np->full_duplex)
464 np->duplex_lock = 1;
465
466 /* The Yellowfin-specific entries in the device structure. */
467 dev->open = &yellowfin_open;
468 dev->hard_start_xmit = &yellowfin_start_xmit;
469 dev->stop = &yellowfin_close;
1da177e4
LT
470 dev->set_multicast_list = &set_rx_mode;
471 dev->do_ioctl = &netdev_ioctl;
472 SET_ETHTOOL_OPS(dev, &ethtool_ops);
473 dev->tx_timeout = yellowfin_tx_timeout;
474 dev->watchdog_timeo = TX_TIMEOUT;
475
476 if (mtu)
477 dev->mtu = mtu;
478
479 i = register_netdev(dev);
480 if (i)
481 goto err_out_unmap_status;
482
e174961c 483 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
1da177e4 484 dev->name, pci_id_tbl[chip_idx].name,
0795af57 485 ioread32(ioaddr + ChipRev), ioaddr,
e174961c 486 dev->dev_addr, irq);
1da177e4
LT
487
488 if (np->drv_flags & HasMII) {
489 int phy, phy_idx = 0;
490 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
491 int mii_status = mdio_read(ioaddr, phy, 1);
492 if (mii_status != 0xffff && mii_status != 0x0000) {
493 np->phys[phy_idx++] = phy;
494 np->advertising = mdio_read(ioaddr, phy, 4);
495 printk(KERN_INFO "%s: MII PHY found at address %d, status "
496 "0x%4.4x advertising %4.4x.\n",
497 dev->name, phy, mii_status, np->advertising);
498 }
499 }
500 np->mii_cnt = phy_idx;
501 }
502
503 find_cnt++;
6aa20a22 504
1da177e4
LT
505 return 0;
506
507err_out_unmap_status:
6aa20a22 508 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1da177e4
LT
509 np->tx_status_dma);
510err_out_unmap_rx:
511 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
512err_out_unmap_tx:
513 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
514err_out_cleardev:
515 pci_set_drvdata(pdev, NULL);
516 pci_iounmap(pdev, ioaddr);
517err_out_free_res:
518 pci_release_regions(pdev);
519err_out_free_netdev:
520 free_netdev (dev);
521 return -ENODEV;
522}
523
524static int __devinit read_eeprom(void __iomem *ioaddr, int location)
525{
526 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
527
528 iowrite8(location, ioaddr + EEAddr);
529 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
530 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
531 ;
532 return ioread8(ioaddr + EERead);
533}
534
535/* MII Managemen Data I/O accesses.
536 These routines assume the MDIO controller is idle, and do not exit until
537 the command is finished. */
538
539static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
540{
541 int i;
542
543 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
544 iowrite16(1, ioaddr + MII_Cmd);
545 for (i = 10000; i >= 0; i--)
546 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
547 break;
548 return ioread16(ioaddr + MII_Rd_Data);
549}
550
551static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
552{
553 int i;
554
555 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
556 iowrite16(value, ioaddr + MII_Wr_Data);
557
558 /* Wait for the command to finish. */
559 for (i = 10000; i >= 0; i--)
560 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
561 break;
562 return;
563}
564
6aa20a22 565
1da177e4
LT
566static int yellowfin_open(struct net_device *dev)
567{
568 struct yellowfin_private *yp = netdev_priv(dev);
569 void __iomem *ioaddr = yp->base;
570 int i;
571
572 /* Reset the chip. */
573 iowrite32(0x80000000, ioaddr + DMACtrl);
574
1fb9df5d 575 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
1da177e4
LT
576 if (i) return i;
577
578 if (yellowfin_debug > 1)
579 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
580 dev->name, dev->irq);
581
582 yellowfin_init_ring(dev);
583
584 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
585 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
586
587 for (i = 0; i < 6; i++)
588 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
589
590 /* Set up various condition 'select' registers.
591 There are no options here. */
592 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
593 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
594 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
595 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
596 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
597 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
598
599 /* Initialize other registers: with so many this eventually this will
600 converted to an offset/value list. */
601 iowrite32(dma_ctrl, ioaddr + DMACtrl);
602 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
603 /* Enable automatic generation of flow control frames, period 0xffff. */
604 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
605
606 yp->tx_threshold = 32;
607 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
608
609 if (dev->if_port == 0)
610 dev->if_port = yp->default_port;
611
612 netif_start_queue(dev);
613
614 /* Setting the Rx mode will start the Rx process. */
615 if (yp->drv_flags & IsGigabit) {
616 /* We are always in full-duplex mode with gigabit! */
617 yp->full_duplex = 1;
618 iowrite16(0x01CF, ioaddr + Cnfg);
619 } else {
620 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
621 iowrite16(0x1018, ioaddr + FrameGap1);
622 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
623 }
624 set_rx_mode(dev);
625
626 /* Enable interrupts by setting the interrupt mask. */
627 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
628 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
629 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
630 iowrite32(0x80008000, ioaddr + TxCtrl);
631
632 if (yellowfin_debug > 2) {
633 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
634 dev->name);
635 }
636
637 /* Set the timer to check for link beat. */
638 init_timer(&yp->timer);
639 yp->timer.expires = jiffies + 3*HZ;
640 yp->timer.data = (unsigned long)dev;
641 yp->timer.function = &yellowfin_timer; /* timer handler */
642 add_timer(&yp->timer);
643
644 return 0;
645}
646
647static void yellowfin_timer(unsigned long data)
648{
649 struct net_device *dev = (struct net_device *)data;
650 struct yellowfin_private *yp = netdev_priv(dev);
651 void __iomem *ioaddr = yp->base;
652 int next_tick = 60*HZ;
653
654 if (yellowfin_debug > 3) {
655 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
656 dev->name, ioread16(ioaddr + IntrStatus));
657 }
658
659 if (yp->mii_cnt) {
660 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
661 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
662 int negotiated = lpa & yp->advertising;
663 if (yellowfin_debug > 1)
664 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
665 "link partner capability %4.4x.\n",
666 dev->name, yp->phys[0], bmsr, lpa);
667
668 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
6aa20a22 669
1da177e4
LT
670 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
671
672 if (bmsr & BMSR_LSTATUS)
673 next_tick = 60*HZ;
674 else
675 next_tick = 3*HZ;
676 }
677
678 yp->timer.expires = jiffies + next_tick;
679 add_timer(&yp->timer);
680}
681
682static void yellowfin_tx_timeout(struct net_device *dev)
683{
684 struct yellowfin_private *yp = netdev_priv(dev);
685 void __iomem *ioaddr = yp->base;
686
687 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
688 "status %4.4x, Rx status %4.4x, resetting...\n",
689 dev->name, yp->cur_tx, yp->dirty_tx,
690 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
691
692 /* Note: these should be KERN_DEBUG. */
693 if (yellowfin_debug) {
694 int i;
695 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
696 for (i = 0; i < RX_RING_SIZE; i++)
697 printk(" %8.8x", yp->rx_ring[i].result_status);
698 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
699 for (i = 0; i < TX_RING_SIZE; i++)
700 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
701 yp->tx_ring[i].result_status);
702 printk("\n");
703 }
704
705 /* If the hardware is found to hang regularly, we will update the code
706 to reinitialize the chip here. */
707 dev->if_port = 0;
708
709 /* Wake the potentially-idle transmit channel. */
710 iowrite32(0x10001000, yp->base + TxCtrl);
711 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
712 netif_wake_queue (dev); /* Typical path */
713
714 dev->trans_start = jiffies;
09f75cd7 715 dev->stats.tx_errors++;
1da177e4
LT
716}
717
718/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
719static void yellowfin_init_ring(struct net_device *dev)
720{
721 struct yellowfin_private *yp = netdev_priv(dev);
722 int i;
723
724 yp->tx_full = 0;
725 yp->cur_rx = yp->cur_tx = 0;
726 yp->dirty_tx = 0;
727
728 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
729
730 for (i = 0; i < RX_RING_SIZE; i++) {
731 yp->rx_ring[i].dbdma_cmd =
732 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
733 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
734 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
735 }
736
737 for (i = 0; i < RX_RING_SIZE; i++) {
738 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
739 yp->rx_skbuff[i] = skb;
740 if (skb == NULL)
741 break;
742 skb->dev = dev; /* Mark as being used by this device. */
743 skb_reserve(skb, 2); /* 16 byte align the IP header. */
744 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
689be439 745 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1da177e4
LT
746 }
747 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
748 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
749
750#define NO_TXSTATS
751#ifdef NO_TXSTATS
752 /* In this mode the Tx ring needs only a single descriptor. */
753 for (i = 0; i < TX_RING_SIZE; i++) {
754 yp->tx_skbuff[i] = NULL;
755 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
756 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
757 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
758 }
759 /* Wrap ring */
760 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
761#else
762{
763 int j;
764
765 /* Tx ring needs a pair of descriptors, the second for the status. */
766 for (i = 0; i < TX_RING_SIZE; i++) {
767 j = 2*i;
768 yp->tx_skbuff[i] = 0;
769 /* Branch on Tx error. */
770 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
771 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
80950f8b 772 (j+1)*sizeof(struct yellowfin_desc));
1da177e4
LT
773 j++;
774 if (yp->flags & FullTxStatus) {
775 yp->tx_ring[j].dbdma_cmd =
776 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
777 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
778 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
80950f8b 779 i*sizeof(struct tx_status_words));
1da177e4
LT
780 } else {
781 /* Symbios chips write only tx_errs word. */
782 yp->tx_ring[j].dbdma_cmd =
783 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
784 yp->tx_ring[j].request_cnt = 2;
785 /* Om pade ummmmm... */
786 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
787 i*sizeof(struct tx_status_words) +
6aa20a22 788 &(yp->tx_status[0].tx_errs) -
1da177e4
LT
789 &(yp->tx_status[0]));
790 }
6aa20a22 791 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
1da177e4
LT
792 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
793 }
794 /* Wrap ring */
795 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
796}
797#endif
798 yp->tx_tail_desc = &yp->tx_status[0];
799 return;
800}
801
802static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
803{
804 struct yellowfin_private *yp = netdev_priv(dev);
805 unsigned entry;
806 int len = skb->len;
807
808 netif_stop_queue (dev);
809
810 /* Note: Ordering is important here, set the field with the
811 "ownership" bit last, and only then increment cur_tx. */
812
813 /* Calculate the next Tx descriptor entry. */
814 entry = yp->cur_tx % TX_RING_SIZE;
815
816 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
817 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
818 /* Fix GX chipset errata. */
819 if (cacheline_end > 24 || cacheline_end == 0) {
820 len = skb->len + 32 - cacheline_end + 1;
5b057c6b
HX
821 if (skb_padto(skb, len)) {
822 yp->tx_skbuff[entry] = NULL;
823 netif_wake_queue(dev);
824 return 0;
825 }
1da177e4
LT
826 }
827 }
828 yp->tx_skbuff[entry] = skb;
829
830#ifdef NO_TXSTATS
6aa20a22 831 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1da177e4
LT
832 skb->data, len, PCI_DMA_TODEVICE));
833 yp->tx_ring[entry].result_status = 0;
834 if (entry >= TX_RING_SIZE-1) {
835 /* New stop command. */
836 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
837 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
838 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
839 } else {
840 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
841 yp->tx_ring[entry].dbdma_cmd =
842 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
843 }
844 yp->cur_tx++;
845#else
846 yp->tx_ring[entry<<1].request_cnt = len;
6aa20a22 847 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1da177e4 848 skb->data, len, PCI_DMA_TODEVICE));
6aa20a22 849 /* The input_last (status-write) command is constant, but we must
1da177e4
LT
850 rewrite the subsequent 'stop' command. */
851
852 yp->cur_tx++;
853 {
854 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
855 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
856 }
857 /* Final step -- overwrite the old 'stop' command. */
858
859 yp->tx_ring[entry<<1].dbdma_cmd =
860 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
861 CMD_TX_PKT | BRANCH_IFTRUE) | len);
862#endif
863
864 /* Non-x86 Todo: explicitly flush cache lines here. */
865
866 /* Wake the potentially-idle transmit channel. */
867 iowrite32(0x10001000, yp->base + TxCtrl);
868
869 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
870 netif_start_queue (dev); /* Typical path */
871 else
872 yp->tx_full = 1;
873 dev->trans_start = jiffies;
874
875 if (yellowfin_debug > 4) {
876 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
877 dev->name, yp->cur_tx, entry);
878 }
879 return 0;
880}
881
882/* The interrupt handler does all of the Rx thread work and cleans up
883 after the Tx thread. */
7d12e780 884static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
1da177e4
LT
885{
886 struct net_device *dev = dev_instance;
887 struct yellowfin_private *yp;
888 void __iomem *ioaddr;
889 int boguscnt = max_interrupt_work;
890 unsigned int handled = 0;
891
1da177e4
LT
892 yp = netdev_priv(dev);
893 ioaddr = yp->base;
6aa20a22 894
1da177e4
LT
895 spin_lock (&yp->lock);
896
897 do {
898 u16 intr_status = ioread16(ioaddr + IntrClear);
899
900 if (yellowfin_debug > 4)
901 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
902 dev->name, intr_status);
903
904 if (intr_status == 0)
905 break;
906 handled = 1;
907
908 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
909 yellowfin_rx(dev);
910 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
911 }
912
913#ifdef NO_TXSTATS
914 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
915 int entry = yp->dirty_tx % TX_RING_SIZE;
916 struct sk_buff *skb;
917
918 if (yp->tx_ring[entry].result_status == 0)
919 break;
920 skb = yp->tx_skbuff[entry];
09f75cd7
JG
921 dev->stats.tx_packets++;
922 dev->stats.tx_bytes += skb->len;
1da177e4 923 /* Free the original skb. */
e5a31421 924 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
1da177e4
LT
925 skb->len, PCI_DMA_TODEVICE);
926 dev_kfree_skb_irq(skb);
927 yp->tx_skbuff[entry] = NULL;
928 }
929 if (yp->tx_full
930 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
931 /* The ring is no longer full, clear tbusy. */
932 yp->tx_full = 0;
933 netif_wake_queue(dev);
934 }
935#else
936 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
937 unsigned dirty_tx = yp->dirty_tx;
938
939 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
940 dirty_tx++) {
941 /* Todo: optimize this. */
942 int entry = dirty_tx % TX_RING_SIZE;
943 u16 tx_errs = yp->tx_status[entry].tx_errs;
944 struct sk_buff *skb;
945
946#ifndef final_version
947 if (yellowfin_debug > 5)
948 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
949 "%4.4x %4.4x %4.4x %4.4x.\n",
950 dev->name, entry,
951 yp->tx_status[entry].tx_cnt,
952 yp->tx_status[entry].tx_errs,
953 yp->tx_status[entry].total_tx_cnt,
954 yp->tx_status[entry].paused);
955#endif
956 if (tx_errs == 0)
957 break; /* It still hasn't been Txed */
958 skb = yp->tx_skbuff[entry];
959 if (tx_errs & 0xF810) {
960 /* There was an major error, log it. */
961#ifndef final_version
962 if (yellowfin_debug > 1)
963 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
964 dev->name, tx_errs);
965#endif
09f75cd7
JG
966 dev->stats.tx_errors++;
967 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
968 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
969 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
970 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
1da177e4
LT
971 } else {
972#ifndef final_version
973 if (yellowfin_debug > 4)
974 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
975 dev->name, tx_errs);
976#endif
09f75cd7
JG
977 dev->stats.tx_bytes += skb->len;
978 dev->stats.collisions += tx_errs & 15;
979 dev->stats.tx_packets++;
1da177e4
LT
980 }
981 /* Free the original skb. */
6aa20a22
JG
982 pci_unmap_single(yp->pci_dev,
983 yp->tx_ring[entry<<1].addr, skb->len,
1da177e4
LT
984 PCI_DMA_TODEVICE);
985 dev_kfree_skb_irq(skb);
986 yp->tx_skbuff[entry] = 0;
987 /* Mark status as empty. */
988 yp->tx_status[entry].tx_errs = 0;
989 }
990
991#ifndef final_version
992 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
993 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
994 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
995 dirty_tx += TX_RING_SIZE;
996 }
997#endif
998
999 if (yp->tx_full
1000 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1001 /* The ring is no longer full, clear tbusy. */
1002 yp->tx_full = 0;
1003 netif_wake_queue(dev);
1004 }
1005
1006 yp->dirty_tx = dirty_tx;
1007 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1008 }
1009#endif
1010
1011 /* Log errors and other uncommon events. */
1012 if (intr_status & 0x2ee) /* Abnormal error summary. */
1013 yellowfin_error(dev, intr_status);
1014
1015 if (--boguscnt < 0) {
1016 printk(KERN_WARNING "%s: Too much work at interrupt, "
1017 "status=0x%4.4x.\n",
1018 dev->name, intr_status);
1019 break;
1020 }
1021 } while (1);
1022
1023 if (yellowfin_debug > 3)
1024 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1025 dev->name, ioread16(ioaddr + IntrStatus));
1026
1027 spin_unlock (&yp->lock);
1028 return IRQ_RETVAL(handled);
1029}
1030
1031/* This routine is logically part of the interrupt handler, but separated
1032 for clarity and better register allocation. */
1033static int yellowfin_rx(struct net_device *dev)
1034{
1035 struct yellowfin_private *yp = netdev_priv(dev);
1036 int entry = yp->cur_rx % RX_RING_SIZE;
1037 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1038
1039 if (yellowfin_debug > 4) {
1040 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1041 entry, yp->rx_ring[entry].result_status);
1042 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1043 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1044 yp->rx_ring[entry].result_status);
1045 }
1046
1047 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1048 while (1) {
1049 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1050 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1051 s16 frame_status;
1052 u16 desc_status;
1053 int data_size;
1054 u8 *buf_addr;
1055
1056 if(!desc->result_status)
1057 break;
e5a31421 1058 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1da177e4
LT
1059 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1060 desc_status = le32_to_cpu(desc->result_status) >> 16;
689be439 1061 buf_addr = rx_skb->data;
6aa20a22 1062 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1da177e4 1063 le32_to_cpu(desc->result_status)) & 0xffff;
6caf52a4 1064 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1da177e4
LT
1065 if (yellowfin_debug > 4)
1066 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1067 frame_status);
1068 if (--boguscnt < 0)
1069 break;
1070 if ( ! (desc_status & RX_EOP)) {
1071 if (data_size != 0)
1072 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1073 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
09f75cd7 1074 dev->stats.rx_length_errors++;
1da177e4
LT
1075 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1076 /* There was a error. */
1077 if (yellowfin_debug > 3)
1078 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1079 frame_status);
09f75cd7
JG
1080 dev->stats.rx_errors++;
1081 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1082 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1083 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1084 if (frame_status < 0) dev->stats.rx_dropped++;
1da177e4
LT
1085 } else if ( !(yp->drv_flags & IsGigabit) &&
1086 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1087 u8 status1 = buf_addr[data_size-2];
1088 u8 status2 = buf_addr[data_size-1];
09f75cd7
JG
1089 dev->stats.rx_errors++;
1090 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1091 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1092 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1093 if (status2 & 0x80) dev->stats.rx_dropped++;
1da177e4
LT
1094#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1095 } else if ((yp->flags & HasMACAddrBug) &&
1096 memcmp(le32_to_cpu(yp->rx_ring_dma +
1097 entry*sizeof(struct yellowfin_desc)),
6aa20a22 1098 dev->dev_addr, 6) != 0 &&
1da177e4
LT
1099 memcmp(le32_to_cpu(yp->rx_ring_dma +
1100 entry*sizeof(struct yellowfin_desc)),
1101 "\377\377\377\377\377\377", 6) != 0) {
e174961c
JB
1102 if (bogus_rx++ == 0)
1103 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1104 dev->name, buf_addr);
1da177e4
LT
1105#endif
1106 } else {
1107 struct sk_buff *skb;
1108 int pkt_len = data_size -
1109 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1110 /* To verify: Yellowfin Length should omit the CRC! */
1111
1112#ifndef final_version
1113 if (yellowfin_debug > 4)
1114 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1115 " of %d, bogus_cnt %d.\n",
1116 pkt_len, data_size, boguscnt);
1117#endif
1118 /* Check if the packet is long enough to just pass up the skbuff
1119 without copying to a properly sized skbuff. */
1120 if (pkt_len > rx_copybreak) {
1121 skb_put(skb = rx_skb, pkt_len);
6aa20a22 1122 pci_unmap_single(yp->pci_dev,
e5a31421 1123 le32_to_cpu(yp->rx_ring[entry].addr),
6aa20a22 1124 yp->rx_buf_sz,
1da177e4
LT
1125 PCI_DMA_FROMDEVICE);
1126 yp->rx_skbuff[entry] = NULL;
1127 } else {
1128 skb = dev_alloc_skb(pkt_len + 2);
1129 if (skb == NULL)
1130 break;
1da177e4 1131 skb_reserve(skb, 2); /* 16 byte align the IP header */
8c7b7faa 1132 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1da177e4 1133 skb_put(skb, pkt_len);
e5a31421
AV
1134 pci_dma_sync_single_for_device(yp->pci_dev,
1135 le32_to_cpu(desc->addr),
1136 yp->rx_buf_sz,
1137 PCI_DMA_FROMDEVICE);
1da177e4
LT
1138 }
1139 skb->protocol = eth_type_trans(skb, dev);
1140 netif_rx(skb);
1141 dev->last_rx = jiffies;
09f75cd7
JG
1142 dev->stats.rx_packets++;
1143 dev->stats.rx_bytes += pkt_len;
1da177e4
LT
1144 }
1145 entry = (++yp->cur_rx) % RX_RING_SIZE;
1146 }
1147
1148 /* Refill the Rx ring buffers. */
1149 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1150 entry = yp->dirty_rx % RX_RING_SIZE;
1151 if (yp->rx_skbuff[entry] == NULL) {
1152 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1153 if (skb == NULL)
1154 break; /* Better luck next round. */
1155 yp->rx_skbuff[entry] = skb;
1156 skb->dev = dev; /* Mark as being used by this device. */
1157 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1158 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
689be439 1159 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1da177e4
LT
1160 }
1161 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1162 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1163 if (entry != 0)
1164 yp->rx_ring[entry - 1].dbdma_cmd =
1165 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1166 else
1167 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1168 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1169 | yp->rx_buf_sz);
1170 }
1171
1172 return 0;
1173}
1174
1175static void yellowfin_error(struct net_device *dev, int intr_status)
1176{
1da177e4
LT
1177 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1178 dev->name, intr_status);
1179 /* Hmmmmm, it's not clear what to do here. */
1180 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
09f75cd7 1181 dev->stats.tx_errors++;
1da177e4 1182 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
09f75cd7 1183 dev->stats.rx_errors++;
1da177e4
LT
1184}
1185
1186static int yellowfin_close(struct net_device *dev)
1187{
1188 struct yellowfin_private *yp = netdev_priv(dev);
1189 void __iomem *ioaddr = yp->base;
1190 int i;
1191
1192 netif_stop_queue (dev);
1193
1194 if (yellowfin_debug > 1) {
1195 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1196 "Rx %4.4x Int %2.2x.\n",
1197 dev->name, ioread16(ioaddr + TxStatus),
1198 ioread16(ioaddr + RxStatus),
1199 ioread16(ioaddr + IntrStatus));
1200 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1201 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1202 }
1203
1204 /* Disable interrupts by clearing the interrupt mask. */
1205 iowrite16(0x0000, ioaddr + IntrEnb);
1206
1207 /* Stop the chip's Tx and Rx processes. */
1208 iowrite32(0x80000000, ioaddr + RxCtrl);
1209 iowrite32(0x80000000, ioaddr + TxCtrl);
1210
1211 del_timer(&yp->timer);
1212
1213#if defined(__i386__)
1214 if (yellowfin_debug > 2) {
1215 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1216 (unsigned long long)yp->tx_ring_dma);
1217 for (i = 0; i < TX_RING_SIZE*2; i++)
1218 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1219 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1220 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1221 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1222 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1223 for (i = 0; i < TX_RING_SIZE; i++)
1224 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1225 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1226 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1227
1228 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1229 (unsigned long long)yp->rx_ring_dma);
1230 for (i = 0; i < RX_RING_SIZE; i++) {
1231 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1232 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1233 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1234 yp->rx_ring[i].result_status);
1235 if (yellowfin_debug > 6) {
1236 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1237 int j;
1238 for (j = 0; j < 0x50; j++)
1239 printk(" %4.4x",
1240 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1241 printk("\n");
1242 }
1243 }
1244 }
1245 }
1246#endif /* __i386__ debugging only */
1247
1248 free_irq(dev->irq, dev);
1249
1250 /* Free all the skbuffs in the Rx queue. */
1251 for (i = 0; i < RX_RING_SIZE; i++) {
1252 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
e5a31421 1253 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1da177e4
LT
1254 if (yp->rx_skbuff[i]) {
1255 dev_kfree_skb(yp->rx_skbuff[i]);
1256 }
1257 yp->rx_skbuff[i] = NULL;
1258 }
1259 for (i = 0; i < TX_RING_SIZE; i++) {
1260 if (yp->tx_skbuff[i])
1261 dev_kfree_skb(yp->tx_skbuff[i]);
1262 yp->tx_skbuff[i] = NULL;
1263 }
1264
1265#ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1266 if (yellowfin_debug > 0) {
1267 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1268 dev->name, bogus_rx);
1269 }
1270#endif
1271
1272 return 0;
1273}
1274
1da177e4
LT
1275/* Set or clear the multicast filter for this adaptor. */
1276
1277static void set_rx_mode(struct net_device *dev)
1278{
1279 struct yellowfin_private *yp = netdev_priv(dev);
1280 void __iomem *ioaddr = yp->base;
1281 u16 cfg_value = ioread16(ioaddr + Cnfg);
1282
1283 /* Stop the Rx process to change any value. */
1284 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1285 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1286 iowrite16(0x000F, ioaddr + AddrMode);
1287 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1288 /* Too many to filter well, or accept all multicasts. */
1289 iowrite16(0x000B, ioaddr + AddrMode);
1290 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1291 struct dev_mc_list *mclist;
1292 u16 hash_table[4];
1293 int i;
1294 memset(hash_table, 0, sizeof(hash_table));
1295 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1296 i++, mclist = mclist->next) {
1297 unsigned int bit;
1298
1299 /* Due to a bug in the early chip versions, multiple filter
1300 slots must be set for each address. */
1301 if (yp->drv_flags & HasMulticastBug) {
1302 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1303 hash_table[bit >> 4] |= (1 << bit);
1304 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1305 hash_table[bit >> 4] |= (1 << bit);
1306 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1307 hash_table[bit >> 4] |= (1 << bit);
1308 }
1309 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1311 }
1312 /* Copy the hash table to the chip. */
1313 for (i = 0; i < 4; i++)
1314 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1315 iowrite16(0x0003, ioaddr + AddrMode);
1316 } else { /* Normal, unicast/broadcast-only mode. */
1317 iowrite16(0x0001, ioaddr + AddrMode);
1318 }
1319 /* Restart the Rx process. */
1320 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1321}
1322
1323static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1324{
1325 struct yellowfin_private *np = netdev_priv(dev);
1326 strcpy(info->driver, DRV_NAME);
1327 strcpy(info->version, DRV_VERSION);
1328 strcpy(info->bus_info, pci_name(np->pci_dev));
1329}
1330
7282d491 1331static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1332 .get_drvinfo = yellowfin_get_drvinfo
1333};
1334
1335static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1336{
1337 struct yellowfin_private *np = netdev_priv(dev);
1338 void __iomem *ioaddr = np->base;
1339 struct mii_ioctl_data *data = if_mii(rq);
1340
1341 switch(cmd) {
1342 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1343 data->phy_id = np->phys[0] & 0x1f;
1344 /* Fall Through */
1345
1346 case SIOCGMIIREG: /* Read MII PHY register. */
1347 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1348 return 0;
1349
1350 case SIOCSMIIREG: /* Write MII PHY register. */
1351 if (!capable(CAP_NET_ADMIN))
1352 return -EPERM;
1353 if (data->phy_id == np->phys[0]) {
1354 u16 value = data->val_in;
1355 switch (data->reg_num) {
1356 case 0:
1357 /* Check for autonegotiation on or reset. */
1358 np->medialock = (value & 0x9000) ? 0 : 1;
1359 if (np->medialock)
1360 np->full_duplex = (value & 0x0100) ? 1 : 0;
1361 break;
1362 case 4: np->advertising = value; break;
1363 }
1364 /* Perhaps check_duplex(dev), depending on chip semantics. */
1365 }
1366 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1367 return 0;
1368 default:
1369 return -EOPNOTSUPP;
1370 }
1371}
1372
1373
1374static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1375{
1376 struct net_device *dev = pci_get_drvdata(pdev);
1377 struct yellowfin_private *np;
1378
5d9428de 1379 BUG_ON(!dev);
1da177e4
LT
1380 np = netdev_priv(dev);
1381
6aa20a22 1382 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1da177e4
LT
1383 np->tx_status_dma);
1384 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1385 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1386 unregister_netdev (dev);
1387
1388 pci_iounmap(pdev, np->base);
1389
1390 pci_release_regions (pdev);
1391
1392 free_netdev (dev);
1393 pci_set_drvdata(pdev, NULL);
1394}
1395
1396
1397static struct pci_driver yellowfin_driver = {
1398 .name = DRV_NAME,
1399 .id_table = yellowfin_pci_tbl,
1400 .probe = yellowfin_init_one,
1401 .remove = __devexit_p(yellowfin_remove_one),
1402};
1403
1404
1405static int __init yellowfin_init (void)
1406{
1407/* when a module, this is printed whether or not devices are found in probe */
1408#ifdef MODULE
1409 printk(version);
1410#endif
29917620 1411 return pci_register_driver(&yellowfin_driver);
1da177e4
LT
1412}
1413
1414
1415static void __exit yellowfin_cleanup (void)
1416{
1417 pci_unregister_driver (&yellowfin_driver);
1418}
1419
1420
1421module_init(yellowfin_init);
1422module_exit(yellowfin_cleanup);
6aa20a22 1423
1da177e4
LT
1424/*
1425 * Local variables:
1426 * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c"
1427 * compile-command-alphaLX: "gcc -DMODULE -Wall -Wstrict-prototypes -O2 -c yellowfin.c -fomit-frame-pointer -fno-strength-reduce -mno-fp-regs -Wa,-m21164a -DBWX_USABLE -DBWIO_ENABLED"
1428 * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c"
1429 * c-indent-level: 4
1430 * c-basic-offset: 4
1431 * tab-width: 4
1432 * End:
1433 */
This page took 0.473617 seconds and 5 git commands to generate.