oprofile: add op_cpu_buffer_get_data()
[deliverable/linux.git] / drivers / oprofile / buffer_sync.c
CommitLineData
1da177e4
LT
1/**
2 * @file buffer_sync.c
3 *
ae735e99 4 * @remark Copyright 2002-2009 OProfile authors
1da177e4
LT
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
345c2573 8 * @author Barry Kasindorf
ae735e99 9 * @author Robert Richter <robert.richter@amd.com>
1da177e4
LT
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24#include <linux/mm.h>
25#include <linux/workqueue.h>
26#include <linux/notifier.h>
27#include <linux/dcookies.h>
28#include <linux/profile.h>
29#include <linux/module.h>
30#include <linux/fs.h>
1474855d 31#include <linux/oprofile.h>
e8edc6e0 32#include <linux/sched.h>
1474855d 33
1da177e4
LT
34#include "oprofile_stats.h"
35#include "event_buffer.h"
36#include "cpu_buffer.h"
37#include "buffer_sync.h"
73185e0a 38
1da177e4
LT
39static LIST_HEAD(dying_tasks);
40static LIST_HEAD(dead_tasks);
41static cpumask_t marked_cpus = CPU_MASK_NONE;
42static DEFINE_SPINLOCK(task_mortuary);
43static void process_task_mortuary(void);
44
1da177e4
LT
45/* Take ownership of the task struct and place it on the
46 * list for processing. Only after two full buffer syncs
47 * does the task eventually get freed, because by then
48 * we are sure we will not reference it again.
4369ef3c
PM
49 * Can be invoked from softirq via RCU callback due to
50 * call_rcu() of the task struct, hence the _irqsave.
1da177e4 51 */
73185e0a
RR
52static int
53task_free_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4 54{
4369ef3c 55 unsigned long flags;
73185e0a 56 struct task_struct *task = data;
4369ef3c 57 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 58 list_add(&task->tasks, &dying_tasks);
4369ef3c 59 spin_unlock_irqrestore(&task_mortuary, flags);
1da177e4
LT
60 return NOTIFY_OK;
61}
62
63
64/* The task is on its way out. A sync of the buffer means we can catch
65 * any remaining samples for this task.
66 */
73185e0a
RR
67static int
68task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
69{
70 /* To avoid latency problems, we only process the current CPU,
71 * hoping that most samples for the task are on this CPU
72 */
39c715b7 73 sync_buffer(raw_smp_processor_id());
73185e0a 74 return 0;
1da177e4
LT
75}
76
77
78/* The task is about to try a do_munmap(). We peek at what it's going to
79 * do, and if it's an executable region, process the samples first, so
80 * we don't lose any. This does not have to be exact, it's a QoI issue
81 * only.
82 */
73185e0a
RR
83static int
84munmap_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
85{
86 unsigned long addr = (unsigned long)data;
73185e0a
RR
87 struct mm_struct *mm = current->mm;
88 struct vm_area_struct *mpnt;
1da177e4
LT
89
90 down_read(&mm->mmap_sem);
91
92 mpnt = find_vma(mm, addr);
93 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
94 up_read(&mm->mmap_sem);
95 /* To avoid latency problems, we only process the current CPU,
96 * hoping that most samples for the task are on this CPU
97 */
39c715b7 98 sync_buffer(raw_smp_processor_id());
1da177e4
LT
99 return 0;
100 }
101
102 up_read(&mm->mmap_sem);
103 return 0;
104}
105
73185e0a 106
1da177e4
LT
107/* We need to be told about new modules so we don't attribute to a previously
108 * loaded module, or drop the samples on the floor.
109 */
73185e0a
RR
110static int
111module_load_notify(struct notifier_block *self, unsigned long val, void *data)
1da177e4
LT
112{
113#ifdef CONFIG_MODULES
114 if (val != MODULE_STATE_COMING)
115 return 0;
116
117 /* FIXME: should we process all CPU buffers ? */
59cc185a 118 mutex_lock(&buffer_mutex);
1da177e4
LT
119 add_event_entry(ESCAPE_CODE);
120 add_event_entry(MODULE_LOADED_CODE);
59cc185a 121 mutex_unlock(&buffer_mutex);
1da177e4
LT
122#endif
123 return 0;
124}
125
73185e0a 126
1da177e4
LT
127static struct notifier_block task_free_nb = {
128 .notifier_call = task_free_notify,
129};
130
131static struct notifier_block task_exit_nb = {
132 .notifier_call = task_exit_notify,
133};
134
135static struct notifier_block munmap_nb = {
136 .notifier_call = munmap_notify,
137};
138
139static struct notifier_block module_load_nb = {
140 .notifier_call = module_load_notify,
141};
142
73185e0a 143
1da177e4
LT
144static void end_sync(void)
145{
146 end_cpu_work();
147 /* make sure we don't leak task structs */
148 process_task_mortuary();
149 process_task_mortuary();
150}
151
152
153int sync_start(void)
154{
155 int err;
156
157 start_cpu_work();
158
159 err = task_handoff_register(&task_free_nb);
160 if (err)
161 goto out1;
162 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
163 if (err)
164 goto out2;
165 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
166 if (err)
167 goto out3;
168 err = register_module_notifier(&module_load_nb);
169 if (err)
170 goto out4;
171
172out:
173 return err;
174out4:
175 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
176out3:
177 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
178out2:
179 task_handoff_unregister(&task_free_nb);
180out1:
181 end_sync();
182 goto out;
183}
184
185
186void sync_stop(void)
187{
188 unregister_module_notifier(&module_load_nb);
189 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
190 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
191 task_handoff_unregister(&task_free_nb);
192 end_sync();
193}
194
448678a0 195
1da177e4
LT
196/* Optimisation. We can manage without taking the dcookie sem
197 * because we cannot reach this code without at least one
198 * dcookie user still being registered (namely, the reader
199 * of the event buffer). */
448678a0 200static inline unsigned long fast_get_dcookie(struct path *path)
1da177e4
LT
201{
202 unsigned long cookie;
448678a0
JB
203
204 if (path->dentry->d_cookie)
205 return (unsigned long)path->dentry;
206 get_dcookie(path, &cookie);
1da177e4
LT
207 return cookie;
208}
209
448678a0 210
1da177e4
LT
211/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
212 * which corresponds loosely to "application name". This is
213 * not strictly necessary but allows oprofile to associate
214 * shared-library samples with particular applications
215 */
73185e0a 216static unsigned long get_exec_dcookie(struct mm_struct *mm)
1da177e4 217{
0c0a400d 218 unsigned long cookie = NO_COOKIE;
73185e0a
RR
219 struct vm_area_struct *vma;
220
1da177e4
LT
221 if (!mm)
222 goto out;
73185e0a 223
1da177e4
LT
224 for (vma = mm->mmap; vma; vma = vma->vm_next) {
225 if (!vma->vm_file)
226 continue;
227 if (!(vma->vm_flags & VM_EXECUTABLE))
228 continue;
448678a0 229 cookie = fast_get_dcookie(&vma->vm_file->f_path);
1da177e4
LT
230 break;
231 }
232
233out:
234 return cookie;
235}
236
237
238/* Convert the EIP value of a sample into a persistent dentry/offset
239 * pair that can then be added to the global event buffer. We make
240 * sure to do this lookup before a mm->mmap modification happens so
241 * we don't lose track.
242 */
73185e0a
RR
243static unsigned long
244lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
1da177e4 245{
0c0a400d 246 unsigned long cookie = NO_COOKIE;
73185e0a 247 struct vm_area_struct *vma;
1da177e4
LT
248
249 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
73185e0a 250
1da177e4
LT
251 if (addr < vma->vm_start || addr >= vma->vm_end)
252 continue;
253
0c0a400d 254 if (vma->vm_file) {
448678a0 255 cookie = fast_get_dcookie(&vma->vm_file->f_path);
0c0a400d
JL
256 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
257 vma->vm_start;
258 } else {
259 /* must be an anonymous map */
260 *offset = addr;
261 }
262
1da177e4
LT
263 break;
264 }
265
0c0a400d
JL
266 if (!vma)
267 cookie = INVALID_COOKIE;
268
1da177e4
LT
269 return cookie;
270}
271
0c0a400d 272static unsigned long last_cookie = INVALID_COOKIE;
73185e0a 273
1da177e4
LT
274static void add_cpu_switch(int i)
275{
276 add_event_entry(ESCAPE_CODE);
277 add_event_entry(CPU_SWITCH_CODE);
278 add_event_entry(i);
0c0a400d 279 last_cookie = INVALID_COOKIE;
1da177e4
LT
280}
281
282static void add_kernel_ctx_switch(unsigned int in_kernel)
283{
284 add_event_entry(ESCAPE_CODE);
285 if (in_kernel)
73185e0a 286 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
1da177e4 287 else
73185e0a 288 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
1da177e4 289}
73185e0a 290
1da177e4 291static void
73185e0a 292add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
1da177e4
LT
293{
294 add_event_entry(ESCAPE_CODE);
73185e0a 295 add_event_entry(CTX_SWITCH_CODE);
1da177e4
LT
296 add_event_entry(task->pid);
297 add_event_entry(cookie);
298 /* Another code for daemon back-compat */
299 add_event_entry(ESCAPE_CODE);
300 add_event_entry(CTX_TGID_CODE);
301 add_event_entry(task->tgid);
302}
303
73185e0a 304
1da177e4
LT
305static void add_cookie_switch(unsigned long cookie)
306{
307 add_event_entry(ESCAPE_CODE);
308 add_event_entry(COOKIE_SWITCH_CODE);
309 add_event_entry(cookie);
310}
311
73185e0a 312
1da177e4
LT
313static void add_trace_begin(void)
314{
315 add_event_entry(ESCAPE_CODE);
316 add_event_entry(TRACE_BEGIN_CODE);
317}
318
852402cc
RR
319#ifdef CONFIG_OPROFILE_IBS
320
345c2573
BK
321#define IBS_FETCH_CODE_SIZE 2
322#define IBS_OP_CODE_SIZE 5
345c2573
BK
323
324/*
325 * Add IBS fetch and op entries to event buffer
326 */
6dad828b 327static void add_ibs_begin(int cpu, int code, struct mm_struct *mm)
345c2573 328{
d358e75f 329 unsigned long pc;
345c2573 330 int i, count;
d358e75f 331 unsigned long cookie = 0;
345c2573 332 off_t offset;
2d87b14c 333 struct op_entry entry;
6dad828b 334 struct op_sample *sample;
345c2573 335
2d87b14c 336 sample = op_cpu_buffer_read_entry(&entry, cpu);
6dad828b 337 if (!sample)
dbe6e283 338 return;
d358e75f 339 pc = sample->eip;
345c2573
BK
340
341#ifdef __LP64__
d358e75f 342 pc += sample->event << 32;
345c2573
BK
343#endif
344
345 if (mm) {
d358e75f 346 cookie = lookup_dcookie(mm, pc, &offset);
345c2573 347
d358e75f
RR
348 if (cookie == NO_COOKIE)
349 offset = pc;
350 if (cookie == INVALID_COOKIE) {
345c2573 351 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
d358e75f 352 offset = pc;
345c2573 353 }
d358e75f
RR
354 if (cookie != last_cookie) {
355 add_cookie_switch(cookie);
356 last_cookie = cookie;
345c2573
BK
357 }
358 } else
d358e75f 359 offset = pc;
345c2573
BK
360
361 add_event_entry(ESCAPE_CODE);
362 add_event_entry(code);
363 add_event_entry(offset); /* Offset from Dcookie */
364
365 /* we send the Dcookie offset, but send the raw Linear Add also*/
6dad828b
RR
366 add_event_entry(sample->eip);
367 add_event_entry(sample->event);
345c2573
BK
368
369 if (code == IBS_FETCH_CODE)
370 count = IBS_FETCH_CODE_SIZE; /*IBS FETCH is 2 int64s*/
371 else
372 count = IBS_OP_CODE_SIZE; /*IBS OP is 5 int64s*/
373
374 for (i = 0; i < count; i++) {
2d87b14c 375 sample = op_cpu_buffer_read_entry(&entry, cpu);
6dad828b 376 if (!sample)
dbe6e283 377 return;
6dad828b
RR
378 add_event_entry(sample->eip);
379 add_event_entry(sample->event);
345c2573 380 }
6dad828b
RR
381
382 return;
345c2573 383}
1da177e4 384
852402cc
RR
385#endif
386
6368a1f4 387static inline void add_sample_entry(unsigned long offset, unsigned long event)
1da177e4
LT
388{
389 add_event_entry(offset);
390 add_event_entry(event);
391}
392
393
9741b309
RR
394/*
395 * Add a sample to the global event buffer. If possible the
396 * sample is converted into a persistent dentry/offset pair
397 * for later lookup from userspace. Return 0 on failure.
398 */
399static int
400add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
1da177e4
LT
401{
402 unsigned long cookie;
403 off_t offset;
73185e0a 404
9741b309
RR
405 if (in_kernel) {
406 add_sample_entry(s->eip, s->event);
407 return 1;
408 }
409
410 /* add userspace sample */
411
412 if (!mm) {
413 atomic_inc(&oprofile_stats.sample_lost_no_mm);
414 return 0;
415 }
416
73185e0a
RR
417 cookie = lookup_dcookie(mm, s->eip, &offset);
418
0c0a400d 419 if (cookie == INVALID_COOKIE) {
1da177e4
LT
420 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
421 return 0;
422 }
423
424 if (cookie != last_cookie) {
425 add_cookie_switch(cookie);
426 last_cookie = cookie;
427 }
428
429 add_sample_entry(offset, s->event);
430
431 return 1;
432}
433
73185e0a 434
73185e0a 435static void release_mm(struct mm_struct *mm)
1da177e4
LT
436{
437 if (!mm)
438 return;
439 up_read(&mm->mmap_sem);
440 mmput(mm);
441}
442
443
73185e0a 444static struct mm_struct *take_tasks_mm(struct task_struct *task)
1da177e4 445{
73185e0a 446 struct mm_struct *mm = get_task_mm(task);
1da177e4
LT
447 if (mm)
448 down_read(&mm->mmap_sem);
449 return mm;
450}
451
452
453static inline int is_code(unsigned long val)
454{
455 return val == ESCAPE_CODE;
456}
73185e0a 457
1da177e4 458
1da177e4
LT
459/* Move tasks along towards death. Any tasks on dead_tasks
460 * will definitely have no remaining references in any
461 * CPU buffers at this point, because we use two lists,
462 * and to have reached the list, it must have gone through
463 * one full sync already.
464 */
465static void process_task_mortuary(void)
466{
4369ef3c
PM
467 unsigned long flags;
468 LIST_HEAD(local_dead_tasks);
73185e0a
RR
469 struct task_struct *task;
470 struct task_struct *ttask;
1da177e4 471
4369ef3c 472 spin_lock_irqsave(&task_mortuary, flags);
1da177e4 473
4369ef3c
PM
474 list_splice_init(&dead_tasks, &local_dead_tasks);
475 list_splice_init(&dying_tasks, &dead_tasks);
1da177e4 476
4369ef3c
PM
477 spin_unlock_irqrestore(&task_mortuary, flags);
478
479 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
1da177e4 480 list_del(&task->tasks);
4369ef3c 481 free_task(task);
1da177e4 482 }
1da177e4
LT
483}
484
485
486static void mark_done(int cpu)
487{
488 int i;
489
490 cpu_set(cpu, marked_cpus);
491
492 for_each_online_cpu(i) {
493 if (!cpu_isset(i, marked_cpus))
494 return;
495 }
496
497 /* All CPUs have been processed at least once,
498 * we can process the mortuary once
499 */
500 process_task_mortuary();
501
502 cpus_clear(marked_cpus);
503}
504
505
506/* FIXME: this is not sufficient if we implement syscall barrier backtrace
507 * traversal, the code switch to sb_sample_start at first kernel enter/exit
508 * switch so we need a fifth state and some special handling in sync_buffer()
509 */
510typedef enum {
511 sb_bt_ignore = -2,
512 sb_buffer_start,
513 sb_bt_start,
514 sb_sample_start,
515} sync_buffer_state;
516
517/* Sync one of the CPU's buffers into the global event buffer.
518 * Here we need to go through each batch of samples punctuated
519 * by context switch notes, taking the task's mmap_sem and doing
520 * lookup in task->mm->mmap to convert EIP into dcookie/offset
521 * value.
522 */
523void sync_buffer(int cpu)
524{
1da177e4 525 struct mm_struct *mm = NULL;
fd7826d5 526 struct mm_struct *oldmm;
bd7dc46f 527 unsigned long val;
73185e0a 528 struct task_struct *new;
1da177e4
LT
529 unsigned long cookie = 0;
530 int in_kernel = 1;
1da177e4 531 sync_buffer_state state = sb_buffer_start;
9b1f2611 532 unsigned int i;
1da177e4 533 unsigned long available;
ae735e99 534 unsigned long flags;
2d87b14c
RR
535 struct op_entry entry;
536 struct op_sample *sample;
1da177e4 537
59cc185a 538 mutex_lock(&buffer_mutex);
73185e0a 539
1da177e4
LT
540 add_cpu_switch(cpu);
541
6d2c53f3
RR
542 op_cpu_buffer_reset(cpu);
543 available = op_cpu_buffer_entries(cpu);
1da177e4
LT
544
545 for (i = 0; i < available; ++i) {
2d87b14c
RR
546 sample = op_cpu_buffer_read_entry(&entry, cpu);
547 if (!sample)
6dad828b 548 break;
73185e0a 549
2d87b14c 550 if (is_code(sample->eip)) {
ae735e99
RR
551 flags = sample->event;
552 if (flags & TRACE_BEGIN) {
553 state = sb_bt_start;
554 add_trace_begin();
555 }
556 if (flags & KERNEL_CTX_SWITCH) {
1da177e4 557 /* kernel/userspace switch */
ae735e99 558 in_kernel = flags & IS_KERNEL;
1da177e4
LT
559 if (state == sb_buffer_start)
560 state = sb_sample_start;
ae735e99
RR
561 add_kernel_ctx_switch(flags & IS_KERNEL);
562 }
bd7dc46f
RR
563 if (flags & USER_CTX_SWITCH
564 && op_cpu_buffer_get_data(&entry, &val)) {
1da177e4 565 /* userspace context switch */
bd7dc46f 566 new = (struct task_struct *)val;
fd7826d5 567 oldmm = mm;
1da177e4
LT
568 release_mm(oldmm);
569 mm = take_tasks_mm(new);
570 if (mm != oldmm)
571 cookie = get_exec_dcookie(mm);
572 add_user_ctx_switch(new, cookie);
573 }
ae735e99
RR
574#ifdef CONFIG_OPROFILE_IBS
575 if (flags & IBS_FETCH_BEGIN)
576 add_ibs_begin(cpu, IBS_FETCH_CODE, mm);
577 if (flags & IBS_OP_BEGIN)
578 add_ibs_begin(cpu, IBS_OP_CODE, mm);
579#endif
317f33bc
RR
580 continue;
581 }
582
583 if (state < sb_bt_start)
584 /* ignore sample */
585 continue;
586
2d87b14c 587 if (add_sample(mm, sample, in_kernel))
317f33bc
RR
588 continue;
589
590 /* ignore backtraces if failed to add a sample */
591 if (state == sb_bt_start) {
592 state = sb_bt_ignore;
593 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
1da177e4 594 }
1da177e4
LT
595 }
596 release_mm(mm);
597
598 mark_done(cpu);
599
59cc185a 600 mutex_unlock(&buffer_mutex);
1da177e4 601}
a5598ca0
CL
602
603/* The function can be used to add a buffer worth of data directly to
604 * the kernel buffer. The buffer is assumed to be a circular buffer.
605 * Take the entries from index start and end at index end, wrapping
606 * at max_entries.
607 */
608void oprofile_put_buff(unsigned long *buf, unsigned int start,
609 unsigned int stop, unsigned int max)
610{
611 int i;
612
613 i = start;
614
615 mutex_lock(&buffer_mutex);
616 while (i != stop) {
617 add_event_entry(buf[i++]);
618
619 if (i >= max)
620 i = 0;
621 }
622
623 mutex_unlock(&buffer_mutex);
624}
625
This page took 0.779372 seconds and 5 git commands to generate.